

1 2 3	Nitrous oxide emissions from pan-Arctic terrestrial ecosystems: A process-based biogeochemistry model analysis from 1969 to 2019
4 5	Ye Yuan ¹ , Qianlai Zhuang ¹ , Bailu Zhao ¹ , and Narasinha Shurpali ²
6	¹ Earth, atmospheric, and planetary science department, Purdue University, West
7	Lafayette IN 47906
8	² Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790
9	HELSINKI, FINLAND
10	Correspondence to: <u>qzhuang@purdue.edu</u>
11	

12 Abstract: Nitrous oxide (N₂O) is a potent greenhouse gas with radiative forcing 265-298 times 13 stronger than that of carbon dioxide (CO₂). Increasing atmospheric N₂O burden also contributes 14 to stratospheric ozone depletion. Recent field studies show N2O emissions from the Arctic ecosystems have increased due to warming. To date, the emissions across space and time have 15 not been adequately quantified. Here we revised an extant process-based biogeochemistry 16 17 model, the Terrestrial Ecosystem Model (TEM) to incorporate more detailed processes of soil 18 biogeochemical nitrogen (N) cycle, permafrost thawing effects, and atmospheric N₂O uptake in 19 soils. The model is then used to analyze N₂O emissions from pan-Arctic terrestrial ecosystems. 20 We find that both regional N_2O production and net emissions increased from 1969 to 2019, with production ranging from 1.2 - 1.3 Tg N yr ⁻¹ and net emissions from 1.1 - 1.2 Tg N yr⁻¹ 21 considering the permafrost thaw effects. Soil N₂O uptake from the atmosphere was 0.1 Tg N yr⁻¹ 22 23 with a small interannual variability. Atmospheric N deposition significantly increased N2O 24 emission by $31.5 \pm 3.1\%$. Spatially, terrestrial ecosystems act as net sources or sinks ranging

- from -12 to 700 mg N m⁻² yr⁻¹ depending on temperature, precipitation, soil characteristics, and
- 26 vegetation types in the region.

27 1. Introduction

28 Global climate change entails rising temperatures, a change in precipitation patterns, and 29 a more frequent occurrence of extreme weather events. The common consensus is that 30 temperature increase will be most pronounced in the northern high latitudes (Overland et al., 31 2013). Pan-Arctic land areas are predicted to warm up to 5.6-12.4 °C by the end of this century 32 (IPCC, 2013), leading to widespread permafrost degradation and thaw (Borge et al., 2017; Jones 33 et al., 2016; Romanovsky et al., 2010) and substantial changes in ecosystem functioning (Grosse 34 et al., 2016), accelerating decomposition of permafrost soil organic matter (SOM) and 35 stimulating greenhouse gas (GHG) emissions (Yang et al., 2010; Sierra et al., 2015; Voigt et al., 36 2017). Permafrost soils are also large nitrogen (N) reservoirs (Post et al., 1985), with a 37 conservative estimate of 67 billion tons of total N in the upper 3 m (Harden et al., 2012). The storage of organic nitrogen supplies plenty of substrates for nitrification and denitrification. 38 39 While past studies on greenhouse gas emissions from the Arctic have mainly focused on 40 carbon-based compounds, recent studies show that Arctic soils might also be a significant source 41 of N₂O from peatlands (Repo et al., 2009; Marushchak et al., 2011), and high N₂O production 42 potential in soils after permafrost thaw (Elberling et al., 2010). Elevated soil N₂O concentrations 43 have been observed in upland tundra due to thawing permafrost (Abbott & Jones, 2015). 44 Furthermore, rising temperatures also promote N₂O emissions from tundra ecosystems (Vigot et 45 al., 2017), which cover large areas of the Arctic. The great unknown, however, is how permafrost thaw affects N₂O emissions by potentially unlocking the vast N stocks currently 46 47 stored in Arctic soils (Harden et al., 2012). Although Arctic N₂O fluxes are low on a mass basis,

48	they are important since N_2O is a more potent GHG with radiative forcing of 265-298 times
49	stronger than that of CO ₂ (IPCC, 2013). N ₂ O contributes nearly 10% of the total anthropogenic
50	radiative forcing and is among the key chemicals destroying the stratospheric ozone layer
51	(Ravishankara et al., 2009).
52	Soil temperature, moisture, acidity, soil organic matter (SOM) content, C/N ratio, and
53	plant growth have been identified as the key regulators of Arctic N ₂ O emissions (Marushchak et
54	al., 2011; Voigt et al., 2017; Smith et al. 1998). Soil temperature involves in both organic and
55	inorganic processes in the N cycle. Soil moisture determines the rates of gas destruction via
56	oxidation. High water content leads to the low oxygen condition, which is associated with
57	reducing environment, whereas less water leads to an oxidizing environment. Soil acidity
58	controls the chemical reactions involving H^+ or OH^- , both of which influence the activity of
59	microorganisms and enzymes (Kunhikrishnan et al., 2016). Traditionally, N2O emissions
60	originating from areas of high latitudes are viewed as an insignificant source (Martikainen et al.
61	1993, Potter et al. 1996) due to a slow mineralization rate under low temperature, humid
62	conditions, and low atmospheric deposition of nitrogen (Dentener et al. 2006). In pan-Arctic
63	terrestrial ecosystems, the shortage of mineral N used to be one of the main reasons for the low
64	nitrous oxide (N ₂ O) emissions measured from tundra soils (Ludwig et al., 2006; Ma et al., 2007).
65	However, in recent decades, the warming climate and loss of permafrost may disrupt the past
66	closed Arctic N cycling and cause significant export of inorganic N (Frey et al. 2007;
67	McClelland et al. 2007). Such patterns may result from the introduction of previously frozen N
68	into the cycling pool due to gradual degradation of permafrost that deepens the zone of
69	seasonally thawed soils, or from direct effects of temperature on microbial processes.

70	To date, a group of process-based biogeochemistry models have been used to quantify
71	N ₂ O fluxes, including a version of Terrestrial Ecosystem Model (TEM) (Qin et al. 2014,2015;
72	Yu, 2016; Yu and Zhuang 2019), the Community Land Model, Carbon and Nitrogen cycles
73	(CLM-CN) (Saikawa et al. 2013), the daily Century (DayCent) model (Parton et al. 1998, Del
74	Grosso et al. 2005), and the Denitrification/ Decomposition (DNDC) Model (Li 1992). However,
75	none of them has included the Arctic permafrost thawing effects on N_2O emission and N_2O
76	uptake from atmosphere in modeling. Here we further develop the TEM based on the version of
77	the model in Yu (2016) and Yu and Zhuang (2019) by incorporating the effects of permafrost
78	thawing on nitrogen mineralization and the soil N_2O uptake from the atmosphere. The model is
79	then parameterized and verified and applied to quantify N_2O emissions from pan-Arctic
80	terrestrial ecosystems from 1969 to 2019.

81

82 2 Method

83 2.1 Model Description

84 TEM is a global-scale biogeochemical model designed to quantify the cycling of carbon 85 (C) and nitrogen (N) in terrestrial ecosystems (Melillo et al., 1993; Zhuang et al., 2003; Yu, 2016; Yu and Zhuang., 2019). The major processes of nitrogen (N) dynamic module were 86 87 inherited from Yu and Zhuang (2019), including the effect of physical conditions on both nitrification and denitrification, as well as the principles of the stoichiometry of carbon and 88 nitrogen dynamics in soils. Here we revised the N cycling algorithms in TEM by incorporating 89 90 the loss of nitrogen through gas emissions, the uptake of N₂O from the atmosphere, and 91 additional inputs of organic nitrogen and carbon resulting from permafrost thawing (Fig. 1).


```
92
```

Figure 1. Nitrogen cycle and N₂O production in the revised Terrestrial Ecosystem Model. Net
mineralization: the difference between mineralization (organic N mineralized to inorganic N)
and mobilization (inorganic N to organic N); Litter: organic N from plant litters; Uptake¹:
inorganic N uptake by plants; Deposition: Atmospheric deposition of N; Production: N₂O
production in soils; Uptake²: atmospheric N₂O uptake in soils.

```
99 The net N_2O emission is calculated as the difference between N_2O production (N_P) in
```

100 soils and soil N₂O uptake (N_U) from the atmosphere. We include N₂O generated from

101 nitrification (N_N) and denitrification (N_{DN}) in the total N₂O production:

 $102 \qquad N_E = N_P - N_U \tag{1}$

103 $N_P = N_N + N_{DN}$ (2)

104 The amount of N₂O uptake is calculated according to Fick's law of gas diffusion (Eq. 3),

105 where C_{air} and C_{soil} represent N₂O concentration in air and soils, respectively.

$$106 \qquad N_U = (C_{air} - C_{soil}) \times k_S \tag{3}$$

107 We use atmospheric N₂O concentrations of 331.1 ppb. k_s represents the diffusion

108 coefficient. The N₂O diffusion coefficient used in this study is 1.26×10^{-6} m² s⁻¹ (van Bochove,

109 Bertran, & Caron, 1998).

110 The N_P from nitrification was determined by a fraction of the nitrification rate k_n , which

- 111 is 0.02 in the DayCent model (William et al. 1998, Delgrosso et al. 2005), and 0.0006 in the
- 112 DNDC Model (Li 1992). In this study, we varied k_n within the range of 0.0006 to 0.02 and
- 113 calibrated it using observational data. The NI_P from denitrification, k_{dn}, is the fraction of
- 114 denitrified N lost as N₂O fluxes, calculated based on the ratio of N₂ to the sum of N₂ and N₂O
- 115 $(N_2/(N_2+N_2O))$ from denitrification, which is influenced by soil moisture, pH and electron level.
- 116 The effects of electron donor to the substrate (f_{nc}) and water function to N_2 ratio (f_m) are from Del
- 117 Grosso et al (2000), in which the pH function for N₂/N₂O ratio ($f_{ph_{rn2}}$) is derived from the
- 118 SWAT model (Wagena et al, 2017):
- 119

 $120 N_N = k_n \times f_{nit} (4)$

$$121 N_{DN} = k_{dn} \times f_{deni} (5)$$

122
$$k_{dn} = \frac{1}{1 + r_{n2}}$$
 (6)

 $123 r_{n2} = f_{nc} \times f_m \times f_{ph_{rn2}} (7)$

124
$$f_{ph_{rn2}} = \begin{cases} 0.1, & (pH \le 4.5) \\ \frac{1}{1470 \times e^{-1.1 \times pH}}, & (pH > 4.5) \end{cases}$$
 (8)

125
$$f_{nc} = \begin{cases} k_1 \times e^{(-0.8 \times \frac{no3}{co^2})}, & (0.16 \times k_1 \le k_1 \times e^{(-0.8 \times \frac{no3}{co^2})}) \\ 0.16 \times k_1, & (0.16 \times k_1 > k_1 \times e^{(-0.8 \times \frac{no3}{co^2})}) \end{cases}$$
(9)

126
$$k_1 = \begin{cases} 1.7 , ((38.4 - 350 \times \text{diff}) < 1.7) \\ 38.4 - 350 \times \text{diff}, ((38.4 - 350 \times \text{diff}) \ge 1.7) \end{cases}$$
 (10)

127
$$f_m = \begin{cases} 0.1, & ((0.015 \times \text{wfps} - 0.32 < 0.1)) \\ 0.015 \times \text{wfps} - 0.32, & ((0.015 \times \text{wfps} - 0.32 \ge 0.1)) \end{cases}$$
(11)

To assess the impact of permafrost thaw on N mineralization, we account for the additional nitrogen and carbon input due to permafrost thaw depth changes. The thawing depth in the current year was compared with the maximum thawing depth in previous years. If the

- thawing depth in the current year exceeded the maximum thawing depth in past years, the
- thawing depth difference was considered as the thawing depth change, and the organic N and C
- 133 between two depths were added to soil organic N and C pools. We based our calculation on a
- soil thermal model, detailed information can be found in Liu et al. (2022) and Zhuang et al.
- 135 (2001). Due to lacking permafrost deep layer profile data of C and N, we assumed they are
- uniformly distributed in vertical (Wang et al., 2020), with nitrogen density of 2 kg m⁻³ (Strauss et
- 137 al., 2022) and C density of 29 kg m⁻³ (Mishra et al., 2021), and half of the total N and C (1 kg m⁻³
- 138 and 14.5 kg m⁻³) are organic that will undergo N mineralization and release.

139

140 2.2 Model parameterization and verification

141 We conducted model parameterization using observation data from 22 sites across the

- 142 pan-Arctic region, including 4 wet tundra sites, 12 boreal forest sites, and 6 alpine tundra sites
- 143 (Table.1).

Table 1: Site description for N₂O emission observations that are used for modelparameterization and verification.

Site	Classificati on	Location	Countr y	Latitu de	Longitu de	Soil bulk densit y (g cm ⁻³)	р Н	Tim e	Referenc e
W1	Wet Tundra	Inner Mongolia	China	N 49.3	E 119.9	1.2	4. 9	2008 -5 to 2009 -9	Liu et al (2017)
W2	Wet Tundra	Yakutsk, eastern Siberia	Russia	N 62.5	E 129.5	1.0	8. 0	2004 -6 to 2005 -9	Takakai et al. (2008)
W3	Wet Tundra	Seida	Russia	N 67	E 63	0.0	3. 7	2012 -07 to	Voigt et al. (2017)

2013 -09

W4	Wet Tundra		Canada	N 48.5	W 58.5	0.1	4. 5	2015 -6 to 2016 -9	Gong et al. (2019)
B1	Boreal Forest		Russia	N 64.5	E 100	1.4	5. 8	2005 -6 to 2007 -9	Morishita et al. (2014)
B2	Boreal Forest	Joensuu, Eastern Finland	Finland	N 62.5	E 29.5	1.6	4. 3	2007 -3 to 2007 -9	Maljanen et al. (2010)
B3	Boreal Forest	New Hampshire	USA	N 44.0	W 72	1.3	3. 9	1997 -12 to 2000 -4	Groffman et al. (2006)
B4	Boreal Forest	Daxing'an Mountain	China	N 53.5	E 122.5	1.0	5. 6	2016 -5 to 2016 -12	Wu et al. (2019)
B5	Boreal Forest	Ballyholly	Ireland	N 52.0	W 8.5	1.3	3. 4	1993 -11 to 1995 -7	Butterbac h-Bahl et al. (1998)
B6	Boreal Forest	Yakutsk,East ern Siberia	Russia	N 62.5	E 129.5	1.1	7. 9	2004 -6 to 2005 -9	Takakai et al. (2008)
B7	Boreal Forest	Great Hing'an Mountains	China	N 53	E 123	14.0	4. 6	2013 -5 to 2015 -10	Cui et al. (2018)
В8	Boreal Forest	Mid-boreal Upland Ecoregion of central Saskatchewan	Canada	N 53.5	W 105.5	1.1	5. 7	2006 -5 to 2007 -10	Matson et al.(2009)

B9	Boreal Forest	Mont St. Hilaire	Canada	N 45.6	W 73.2	0.7	4. 7	2006 -5 to 2008 -5	Ullah & Moore (2011)
B1 0	Boreal Forest	Southern Finland	Finland	N 61.3	E 25	1.2	3. 7	2000 -6 to 2003 -8	Maljanen et al. (2006)
B1 1	Boreal Forest	Southern Lower Saxony	German y	N 51.6	E 10.1	1.3	4. 5	1999 -4 to 2000 -3	Teepe et al. (2004)
B1 2	Boreal Forest	Hoglwald Forest	German y	N 48.5	E 11.2	1.0	3. 6	1995 -1 to 1997 -12	Luo t al. (2013)
A1	Dry Tundra	Yakutsk, Eastern Siberia	Russia	N 62.3	E 129.5	1.4	8. 3	2004 -6 to 2005 -9	Takakai et al. (2008)
A2	Alpine Tundra	Changbai Mountain	China	N 42.5	E 128.0	0.8	7. 3	2011 -7 to 2013 -9	Zhou et al. (2016)
A3	Alpine Meadow	Qinghai– Tibetan Plateau	China	N 31.4	E 92.0	1.0	5. 3	2015 -5 to 2016 -12	Yan et al. (2018)
A4	Alpine Meadow	Tibetan Plateau	China	N 37.5	E 101.5	0.8	8. 4	2013 	Du et al.(2016)
A5	Upland Grassland	Daun	German	N 50.2	E 6.8	1.3	5. 1	1997 -4 to 1998 -3	Anger et al. (2003)
A6	Upland Grassland	French Massif Central region	France	N 45.7	E 3.0	1.2	6. 2	2007 -4 to 2009 -3	Cantarel et al. (2011)

146

147 The N₂O emission observational data was organized on a monthly basis over the

148 measurement period. Data of soil density and pH were obtained from the same publications or

- relevant publications associated with the same site, or from the global soil bulk density map
- 150 (Global Soil Data Task, 2000) and Global Database of Soil Properties (Carter and Scholes.,
- 151 2000). Meteorological data including air temperature, water vapor pressure, precipitation, and
- 152 cloudiness were collected from literature or the Climate Research Unit (CRU TS v. 4.05) (Harris
- 153 et al. 2020).
- 154 We use PEST (V17.2 for Linux) for parameterization (<u>https://pesthomepage.org/</u>) of
- nitrification and denitrification parameters for major ecosystem types in the region (Table 2).
- 156 The parameters are obtained through minimizing the difference between simulated and observed
- 157 N_2O emissions (Figure 2).
- 158 Table 2. Parameter values in nitrification and denitrification used in this study (Average \pm
- 159 standard error).

		K1	Kmax	fno3k	fco2k	kn
	Boreal Forest	0.2 ± 0.05	0.21 ± 0.07	1.23 ± 0.1	0.08 ± 0.01	0.016 ± 0.001
	Wet Tundra	0.19 ± 0.1	0.0003 ± 0.0003	0.62 ± 0.36	0.075 ± 0.02	0.0055 ± 0.005
	Alpine Tundra	0.23 ± 0.07	0.13 ± 0.07	0.94 ± 0.16	0.08 ± 0.02	0.012 ± 0.004
160						

Figure 2. Comparison between the simulated and observed N₂O emissions (A) and simulated
N₂O emissions using averaged parameters and simulated N₂O emissions (B) for alpine tundra
(AT), boreal forest (BF) and wet tundra (WT). The grey line represents y=x.

167 2.3 Regional extrapolation

168 To get the spatially and temporally explicit estimates of N₂O emission at the regional 169 scale, we used the data of land cover, soils, and climate from various sources at a spatial 170 resolution of 0.5° latitude $\times 0.5^{\circ}$ longitude to drive TEM. We used climate forcing data 171 including the monthly CRU TS v. 4.05 data during 1969 –2019. Data of soil density and pH were 172 obtained from the global soil bulk density map (Global Soil Data Task, 2000) and the Global 173 Database of Soil Properties (Carter and Scholes., 2000). The regional N deposition data is 174 sourced from re-gridded model results from GEOS-Chem (Ackerman et al., 2018). We assumed 175 half of the inorganic N deposition is NH₄⁺. Gaps between modeled years were filled with the 176 average values between two time periods.

177	We also conducted model sensitivity test of N2O emissions, nitrification, and
178	denitrification by increasing or decreasing temperature by 3 °C and increasing or decreasing
179	precipitation by 30% for each gird while keeping all other meteorological input the same, from
180	1969 to 2019.
181	
182	3 Results

183 3.1 Annual emissions of N₂O

184	TEM estimated that the annual N ₂ O emiss	ions in pan-Arctic region increased f	rom 1969

to 2019, with the highest value of $1.14 \text{ Tg N yr}^{-1}$ in 2011 and the lowest value of $1.09 \text{ Tg N yr}^{-1}$

- 186 in 1992 without considering the effect of permafrost thawing (hereafter, referred to as base
- 187 simulation). When permafrost thawing effects were included (hereafter, referred to as permafrost
- thawing simulation), the emissions were highest in 2019 (1.19 Tg N yr⁻¹) and lowest in 1992 (1.1
- 189 Tg N yr ⁻¹) (Figure 3). The difference between base simulation and permafrost thawing
- simulation increases with the largest difference in the last year of our simulation (2019, 4.8%).

191

Figure 3. Annual N₂O emissions from pan-Arctic terrestrial ecosystems from 1969 to 2019 in
base simulation (blue) and permafrost thawing simulation (red). The dashed curves are locally
estimated scatterplot smoothing (LOOSE) lines.

Our calibration provides lower and upper bounds of parameters for each ecosystem type
in the pan-arcitc region. Based on these parameter values, our model estimates that regional N₂O
emissions range from 0.82 to 0.87 Tg N yr ⁻¹ and 1.4 to 1.46 Tg N yr ⁻¹ for the periods of 1969 to
2019 (Appendix A, Figure A1).

200

201 3.2 Spatial variability of N₂O emissions

202 Spatially, in the base simulation, the N_2O emissions range from -12.41 mg N m⁻² yr⁻¹ to

203 $686.02 \text{ mg N} \text{ m}^{-2} \text{ yr}^{-1}$ in 1969 -1973 period, and from -12.35 mg N m⁻² yr⁻¹ to 686.81 mg N m⁻²

 yr^{-1} in 2015 - 2019 period. The ecosystems with net sink of N₂O (N₂O net emission < 0.0) are

205 mainly scattered in higher latitude regions (> 65°), while the hotspots for net N₂O sources are

- 206 concentrated in the lower latitude regions ($<65^{\circ}$) (Figure 4). The general spatial pattern remains
- 207 relatively stable from 1969 to 2019. However, over this period, the net sink areas of N₂O reduced
- 208 from 3.08% to 2.54% in the region.
- 209 Considering permafrost thawing effects, simulated N₂O emission ranges from -12.41 mg
- 210 N m⁻² yr⁻¹ to 686.02 mg N m⁻² yr⁻¹ in 1969-1973 period, from -10.59 mg N m⁻² yr⁻¹ to 703.42 mg
- $N m^{-2} yr^{-1}$ in the 2015-2019 period. Similar to the base simulation, the general spatial pattern
- does not have an obvious change from 1969 to 2019. However, from 1969 to 2019, the
- 213 proportion of net sink grid cells of N₂O decreases from 3.07% to 1.95% in the region.
- 214

Figure 4. Averaged net annual N₂O emissions in the pan-Arctic from 1969 to 1973 (A) and from
 2015 to 2019 (B) of the base simulation and the simulation considering permafrost thawing

218 effects (C and D). Blue indicates the net N₂O sink (negative values).

227 3.3 Model sensitivity

 $\label{eq:228} \ensuremath{\text{Table 3. Sensitivity of N_2O emissions, nitrification rate, and denitrification in the pan-Arctic}$

- region to changing temperature and precipitation between 1969 and 2019.
- 230

		Temperature +3 °C	Temperature -3 °C	Precipitation + 30%	Precipitation - 30%			
	N ₂ O emissions (%)	21.2 ± 0.47	-20.9 ± 0.42	2.69 ± 0.53	-2.22 ± 0.5			
_	Nitrification rate (%)	9.4 ± 0.36	-16.6 ± 0.27	-0.24 ± 0.19	-0.73 ± 0.24			
	Denitrification rate (%)	25.0 ± 0.68	-22.7 ± 0.47	0.55 ± 0.62	0.54 ± 0.41			
231 232 233	Model se	ensitivity analysis show	ws that summed N_2O e	emissions are highly se	nsitive to			
234	changes in temperature (\pm 3 °C) but less sensitive to precipitation change (\pm 30%). In general,							
235	higher temperature and precipitation levels encourage N2O emissions in the region, while lower							
236	temperature and	precipitation inhibit th	he emission. Regional	nitrification rate increa	ases by about			
237	10% while deni	trification increases ab	out 25% under 3°C ter	mperature increase, lea	ding to an			
238	N ₂ O emission ir	ncrease by 21% (Table	3). Conversely, decre	asing temperature by 3	°C results in a			
239	similar magnitu	de decrease of N ₂ O em	nissions and denitrifica	ation rate, but nitrificati	ion tends to			
240	decrease more.	The total nitrification a	and denitrification rate	s exhibit smaller sensit	ivity to			
241	precipitation. Pr	ecipitation changes by	30% did not induce d	ramatic change in both	summed			
242	nitrification rate	and denitrification rat	e, thus, the regional ne	et N ₂ O emissions in va	lues.			
243	Spatially, pan-A	arctic region shows var	rious responses to the	changes in precipitation	n in			
244	nitrification and	denitrification rates. N	Vitrification has an opt	timal value of soil mois	sture, thus soil			
245	moisture differe	nces in the region resu	lt in large different en	nission responses under	r both higher			
246	(+30%) and low	ver (-30%) precipitation	n conditions. In additio	on to the effect of preci	pitation on			
247	soil moisture, de	enitrification is also int	fluenced by nitrification	on since nitrification pr	ovides			
248	substrate NO3 ⁻ f	or denitrification, lead	ing to variation in den	itrification rate at diffe	rent grid cells			

in the region.

250 4 Discussion

- 4.1 The role of soil N_2O uptake in net emissions
- 252 Wetlands and peatlands are considered as the major N₂O sinks (Schlesinger 2013). Soil
- 253 water or oxygen content, mineralization, temperature, pH, concentrations of electron donors and
- acceptors influence soil N₂O uptake (Wen et al., 2016; Chapuis-Lardy et al., 2007). Negative
- 255 N₂O fluxes were observed at various ecosystem sites in the pan-Arctic (Takakai et al., 2008;
- 256 Gong et al., 2019; Morishita et al 2014; Groffman et al., 2006; Wu et al., 2019; Butterbach-Bahl
- 257 et al., 1998; Cui et al., 2018; Matson et al., 2009; Ullah and Moore 2011; Teepe et al., 2004a;
- 258 Zhou et al., 2016; Cantarel et al., 2011; Goldberg & Gebauer 2009).

260 Figure 5. Annual N₂O uptake in pan-Arctic terrestrial ecosystems from 1969 to 2019 in base

(blue) and permafrost thawing simulations (red). The dashed curves are locally estimated
scatterplot smoothing (LOOSE) lines.

264	In our simulation, the total N_2O uptake in pan-Arctic terrestrial ecosystems slightly
265	declines in both base and permafrost thawing simulations (Figure 5) over the simulation period.
266	The highest value of N_2O uptake (0.11 Tg N yr $^{-1}$) under base simulation was estimated in 1982
267	and the lowest value of 0.1 Tg N yr ⁻¹ in 2010, while permafrost simulation has the highest value
268	in 1969 of 0.11 Tg N yr ⁻¹ and the lowest value in 2019 of 0.1 Tg N yr ⁻¹ . N ₂ O uptake accounts for
269	8.28 - 8.92% of the total production and 9.14 - 9.24% of the total emission in base simulation,
270	7.8 - 8.86% of total production and 8.57- 9.85% of the total emission in permafrost thawing
271	simulation. N ₂ O uptake mostly occurs in winter when soils have the lowest production of N ₂ O
272	with the maximum N_2O uptake reaching 0.05 mg N m ⁻² day ⁻¹ . Previous study suggests that the
273	median uptake potential is 4 μg N m $^{-2}$ h $^{-1}$ and global consumption is less than 0.3 Tg N yr $^{-1}$
274	(Schlesinger 2013). The projected sink is about 5% of the currently estimated global net N_2O
275	fluxes from soils to the atmosphere (Schlesinger 2013). N_2O uptake in the pan-Arctic region
276	plays a more significant role than globally.
277	In our model, the N_2O uptake is calculated based on constant N_2O concentration in the
278	atmosphere. However, the soil released N_2O increases, leading to higher N_2O concentrations in
279	the atmosphere, consequently, increasing the N ₂ O uptake from the atmosphere. If considering the
280	increasing atmospheric N_2O concentration, the total N_2O uptake amount may be altered. Current
281	simulation only considered the physical process of diffusion because the biochemical processes
282	have not been well understood. However, N2O is consumed in several reactions of nitrification
283	(Wrage et al., 2004), and under anaerobic conditions, incomplete denitrification produces N_2O
284	whereas the terminal step of denitrification (i.e., the reduction of N_2O to N_2 with the absence of

- 285 nosZ gene) consumes N₂O (Wen et al., 2016, Shan et al., 2021). In addition, within the soil
- profile and in the soil air-filled pores, N₂O can be further reduced to N₂ during its transport to the
- soil surface (Chapuis-Lardy et al., 2007; Wen et al., 2016, Yang & Silver., 2016). We expect an
- 288 increase in N₂O uptake by taking these processes into account.
- 289
- 4.2 The role of N deposition in regional N_2O emissions
- 291 In field observations, nitrogen deposition has been shown to induce a substantial increase
- of N₂O emissions of around 95% in dry alpine meadow (Yan et al., 2018), grasslands (Du et al.,
- 2021), boreal and temporal forests (Deng et al., 2020). In our simulation, the impact of N
- 294 deposition on N₂O emissions varies at different sites depending on initial conditions and the
- amount of N deposition.
- 296

297

Figure 6. Modeled annual net N₂O emissions from pan-Arctic terrestrial ecosystems from 1984
to 2016 with and without considering N deposition effects. Red line represents the total N
deposition in pan-Arctic region.

³⁰³ significant increase $(31.5 \pm 3.1 \%, p < 0.001)$ in the total N₂O emissions compared with the

307 following the spatial pattern of nitrogen deposition (Ackerman et al., 2018).

simulation without N deposition (Figure 6). With N deposition from the atmosphere, although

³⁰⁵ the spatial distribution of net N₂O sink and the source remains the same, there are more grid cells

in lower latitudes ($<60^{\circ}$) that have high N₂O emissions (> 100 mg N m⁻² yr⁻¹, Figure 7), generally

Figure 7. Estimated net N₂O emissions from pan-Arctic terrestrial ecosystems from 2014 to 2016
with (B) and without (A) considering N deposition effects. Blue indicates net sink (negative values).

313

309

314

315 4.3 The role of permafrost thawing

316

317 Permafrost thawing adds more soil organic N for mineralization, consequently, increasing

- the amount of inorganic N availability, resulting in higher nitrification and denitrification rate
- 319 (Figure 8A, B, C).

320

Figure 8. Simulated N mineralization (A), nitrification rate (B), denitrification rate (C), total N₂O
production (D), N₂O production from nitrification (E) and N₂O production from denitrification in
base (blue) and permafrost thawing simulations (red) from 1969 to 2019. The dashed curves are
locally estimated scatterplot smoothing (LOOSE) lines.

326

In the base simulation, regional nitrification and production of N₂O from nitrification

327 show an upward trend from 1969 to 2019, whereas the denitrification rate slightly decreases and

328	N_2O production from denitrification remains relatively stable (Figure 5). Higher soil moisture
329	favors denitrification (Klemedtsson et al 1988). Decreasing average soil moisture (Figure A2)
330	may decrease the denitrification rate from 2000 to 2019. In contrast, in the permafrost thawing
331	simulation, the denitrification rate increases from 2000 to 2019. Although lower soil moisture
332	inhibits the denitrification rate, higher nitrification rate provides more NO ₃ ⁻ for denitrification,
333	making up for the loss caused by lower soil moisture. The higher N_2O production from both
334	nitrification and denitrification contributes to the higher total N2O production.
335	Similar to the simulation of the annual N_2O emissions (N_2O production - N_2O uptake) in
336	the pan-Arctic region, the N_2O production generally increased from 1969 to 2019 (Figure 6, D),
337	with the highest value of 1.26 Tg N yr ⁻¹ in 2011 and the lowest value of 1.21 Tg N yr ⁻¹ in 1992 in
338	the base simulation, and the highest in 2019 (1.31 Tg N yr $^{\text{-1}}$) and lowest in 1992 (1.22 Tg N yr $^{\text{-1}}$)
339	in the permafrost thawing simulation. The difference of N_2O production between base simulation
340	and permafrost thawing simulation increases, with the largest difference in the last year of our
341	simulation (2019, 4.14%). The averaged maximum permafrost thawing depth in the pan-Arctic
342	region increased 0.2 m in our simulation, meaning the organic nitrogen and carbon stored in the
343	0.2 m permafrost was released. Average temperature in the pan-Arctic region increases from
344	-4.37 °C to -1.37 °C during 1969 - 2019 according to CRU Ts v. 4.05 data. The increasing
345	thawing depth from 1969 to 2019 is small. However, the Arctic region is predicted to warm up to
346	5.6–12.4 °C and the permafrost is expected to have 3 meters thawing depth (Schuur et al., 2011)
347	for 47-61% area by 2100, which will significantly intensify N_2O emissions from the region.
348	

349 4.4 Study limitations

350

There are several limitations to this study. First, current parameterization is based on a

351 limited amount of observational data. Obtaining additional observations could provide a more

352 complete understanding of the spatial and temporal variability of key parameters that influence

353 N₂O emissions, such as soil moisture, temperature, and N availability.

Second, the uncertainty of input soil data may overestimate N₂O emissions. Specifically, the input of soil bulk density data has a median bulk density value of 1.39 g cm⁻³, which differs from our observation sites with the median bulk density of 1.13 g cm⁻³. Similarly, the input of soil pH data has a median value of 6.04 while the median value at observation sites is 4.9. These differences in bulk density and pH between input data at observation sites may bias our model results.

360 Third, high N₂O emissions during spring thawing and later fall have been observed. Two sources have been proposed to contribute to the enhanced N2O emissions upon permafrost 361 362 thawing, including the physical release of N₂O produced throughout the winter and trapped 363 under frozen surface layers and the emission of newly produced N_2O . While early studies 364 suggested that the physical release of accumulated N₂O from subsurface soil layers was the primary mechanism contributing to spring thaw emissions (Risk et al., 2013), most current 365 366 studies favor the newly produced N₂O as microorganisms remain active during both periods 367 (Teepe et al., 2004b; Röver et al., 1998, Risk et al., 2013) because the timing and amount of N_2O 368 release during thawing do not correspond to the amount of N₂O trapped in soils (Wagner-Riddle 369 et al., 2008; Furon et al., 2008). These "shoulder season" emissions have not been well modeled 370 as the model requires considering the snow dynamics and soil physical models need to be driven with daily data to capture these final temporal scale dynamics. The time step in current model is 371 372 not fine enough to account for these freeze-thaw processes. In current modeling, the N₂O

- $373 \quad \text{emission mainly happens in the growing season, with N_2O emission in winter being negligible. }$
- 374 This may cause an underestimate of annual N₂O emissions.
- Fourth, while our model simulates nitrogen mineralization by taking into account soil
- 376 nitrogen availability and environmental factors; recent studies also suggested that soil carbon to
- nitrogen (C/N) ratio may also play a role in influencing nitrification (Bengtsson et al., 2003;
- 378 Elrys et al., 2021). This ratio affects the abundance of ammonia-oxidizing bacteria (AOB) and
- archaea (AOA) (Xiao et al., 2021) and denitrification (Aulakh et al., 2000; Wang et al., 2023).
- 380 Denitrification prefers a certain range of C/N ratio (Lee et al., 2019). Missing this stochiometric
- 381 control factor in our model may introduce uncertainties to our estimates.
- 382 Finally, our simulation has not included N loading effects caused by dynamics of
- 383 groundwater, nearby rivers and wetlands, which may significantly influence soil N availability in
- soils and enhance N₂O emissions (Zhang et al.,2022). The omission of this factor may have led
- to an underestimation of N₂O emissions. The increasing level of N loading caused by
- anthropogenic activities may increase the total N₂O emissions and change their spatial patterns.
- 387 Further research is needed to investigate the extent to which N loading affects N_2O emissions
- 388 from the region.
- 389

390 5 Conclusions

We use a process-based biogeochemistry model to quantify the regional N₂O emissions considering the effects of N₂O uptake, thawing permafrost, and N deposition. Our simulations show there is an increasing trend in regional net N₂O emissions from 1969 to 2019, ranging from 1.1 to 1.19 Tg N yr⁻¹ considering the permafrost thawing effects. Spatially, annual N₂O emissions

395	or soil N ₂ O uptake range from -12 to around 700 mg N m ⁻² yr ⁻¹ , with the negative values
396	indicating an N_2O sink, exhibiting significant spatial variabilities in both N_2O emissions and soil
397	uptake in this region. Nitrogen deposition from the atmosphere leads to a significant increase
398	$(31.49 \pm 3.09 \%)$ in the emission. Our results suggest that in the future, the pan-Arctic terrestrial
399	ecosystem might act as an even larger N_2O source with more warming, permafrost thawing, and
400	higher N deposition.
401	
402	
403	Code and data availability. The TEM codes, outputs, and samples of running directory can be
404	accessed via the Purdue University Research Repository doi:10.4231/KZ5W-DC21
405	Author contributions. YY was responsible for model revision, model simulation and paper
406	writing. QZ was responsible for project design and paper revision. BZ was responsible for model
407	revision support and paper revision. NS was responsible for project design support and paper
408	revision.
409	Competing interests. The contact author has declared that neither of the authors has any
410	competing interests.
411	Financial support. This research has been supported by the National Science Foundation (grant
412	no. 1802832).
413	

- 415 Reference
- 416 Abbott, B. W. and Jones, J. B.: Permafrost collapse alters soil carbon stocks, respiration, CH₄,
- 417 and N_2O in upland tundra, Glob Change Biol, 21, 4570–4587, https://doi.org/10.1111/gcb.13069, 2015.
- 419 Ackerman, Daniel E; Chen, Xin; Millet, Dylan B: Global nitrogen deposition (2°×2.5° grid
- resolution) simulated with GEOS-Chem for 1984-1986, 1994-1996, 2004-2006, and 2014-2016,
 https://doi.org/10.13020/D6KX2R, 2018.
- 422 Anger, M., Hoffmann, C., and Kühbauch, W.: Nitrous oxide emissions from artificial urine
- 423 patches applied to different N-fertilized swards and estimated annual N₂O emissions for
- 424 differently fertilized pastures in an upland location in Germany, Soil Use and Management, 19,
- 425 104–111, https://doi.org/10.1111/j.1475-2743.2003.tb00288.x, 2006.
- 426 Aulakh, M. S., Khera, T. S., and Doran, J. W.: Mineralization and denitrification in upland,
- 427 nearly saturated and flooded subtropical soil, Biology and Fertility of Soils, 31, 168–174,
 428 https://doi.org/10.1007/s003740050641, 2000.
- 429 Bengtsson, G., Bengtson, P., and Månsson, K. F.: Gross nitrogen mineralization-,
- 430 immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity, Soil
- 431 Biology and Biochemistry, 35, 143–154, https://doi.org/10.1016/S0038-0717(02)00248-1, 2003.
- 432 Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and
- peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16,
- 434 https://doi.org/10.5194/tc-11-1-2017, 2017.
- 435 Bose, K. S. and Sarma, R. H.: Delineation of the intimate details of the backbone conformation
- 436 of pyridine nucleotide coenzymes in aqueous solution, Biochem Biophys Res Commun, 66,
- 437 1173–1179, https://doi.org/10.1016/0006-291x(75)90482-9, 1975.
- 438 Butterbach-Bahl, K., Gasche, R., Huber, C., Kreutzer, K., and Papen, H.: Impact of N-input by
- 439 wet deposition on N-trace gas fluxes and CH₄-oxidation in spruce forest ecosystems of the
- temperate zone in Europe, Atmospheric Environment, 32, 559–564,
- 441 https://doi.org/10.1016/S1352-2310(97)00234-3, 1998.
- Cantarel, A. A. M., Bloor, J. M. G., Deltroy, N., and Soussana, J.-F.: Effects of Climate Change
 Drivers on Nitrous Oxide Fluxes in an Upland Temperate Grassland, Ecosystems, 14, 223–233,
 https://doi.org/10.1007/s10021-010-9405-7, 2011.
- Carter, A. J. and Scholes, R. J.: SoilData v2.0: Generating a Global Database of Soil Properties
 CSIR Environmentek, Pretoria, South Africa, 2000.
- Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L., and Bernoux, M.: Soils, a sink for N₂O?
 A review, Glob Change Biol, 13, 1–17, https://doi.org/10.1111/j.1365-2486.2006.01280.x, 2007.

- Cui, Q., Song, C., Wang, X., Shi, F., Yu, X., and Tan, W.: Effects of warming on N₂O fluxes in a
 boreal peatland of Permafrost region, Northeast China, Science of The Total Environment, 616–
- 451 617, 427–434, https://doi.org/10.1016/j.scitotenv.2017.10.246, 2018.
- 452 Del Grosso, S. J., Parton, W. J., Mosier, A. R., Ojima, D. S., Kulmala, A. E., and Phongpan, S.:
- 453 General model for N 2 O and N 2 gas emissions from soils due to dentrification, Global
- 454 Biogeochem Cycles, 14, 1045–1060, https://doi.org/10.1029/1999GB001225, 2000.
- 455 Deng, L., Huang, C., Kim, D., Shangguan, Z., Wang, K., Song, X., and Peng, C.: Soil GHG
- 456 fluxes are altered by N deposition: New data indicate lower N stimulation of the N₂O flux and
- 457 greater stimulation of the calculated C pools, Glob Change Biol, 26, 2613–2629,
- 458 https://doi.org/10.1111/gcb.14970, 2020.
- 459 Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D.,
- 460 Horowitz, L. W., Krol, M., Kulshrestha, U. C., Lawrence, M., Galy-Lacaux, C., Rast, S.,
- 461 Shindell, D., Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T.,
- 462 Cofala, J., Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro, V.,
- 463 Müller, J. F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F., Strahan, S., Schultz, M., Sudo,
- 464 K., Szopa, S., and Wild, O.: Nitrogen and sulfur deposition on regional and global scales: A
- 465 multimodel evaluation, Global Biogeochem. Cycles, 20, n/a-n/a,
- 466 https://doi.org/10.1029/2005GB002672, 2006.

467 Du, Y., Guo, X., Cao, G., Wang, B., Pan, G., and Liu, D. L.: Simulation and prediction of nitrous
468 oxide emission by the water and nitrogen management model on the Tibetan plateau,
469 Biochemical Systematics and Ecology, 65, 49–56, https://doi.org/10.1016/j.bse.2016.02.002,

- 469 Biochemical Systematics and Ecology, 65, 49–56, https://doi.org/10.1016/j.bse.2016.02.00
 470 2016.
- 471 Du, Y., Ke, X., Li, J., Wang, Y., Cao, G., Guo, X., and Chen, K.: Nitrogen deposition increases
- 472 global grassland N₂O emission rates steeply: A meta-analysis, CATENA, 199, 105105,
- 473 https://doi.org/10.1016/j.catena.2020.105105, 2021.
- Elberling, B., Christiansen, H. H., and Hansen, B. U.: Erratum: High nitrous oxide production
 from thawing permafrost, Nature Geosci, 3, 506–506, https://doi.org/10.1038/ngeo893, 2010.
- 476 Elrys, A. S., Wang, J., Metwally, M. A. S., Cheng, Y., Zhang, J., Cai, Z., Chang, S. X., and
- 477 Müller, C.: Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen
- 478 stoichiometry and total nitrogen, Glob Change Biol, 27, 6512–6524,
- 479 https://doi.org/10.1111/gcb.15883, 2021.
- 480 Frey, K. E., McClelland, J. W., Holmes, R. M., and Smith, L. C.: Impacts of climate warming
- and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea, J.
 Geophys. Res., 112, n/a-n/a, https://doi.org/10.1029/2006JG000369, 2007.
- 483 Furon, A. C., Wagner-Riddle, C., Smith, C. R., and Warland, J. S.: Wavelet analysis of
- 485 Meteorology, 148, 1305–1317, https://doi.org/10.1016/j.agrformet.2008.03.006, 2008.

- 486 GLOBAL SOIL DATA TASK: Global Gridded Surfaces of Selected Soil Characteristics (IGBP487 DIS), 218.590182 MB, https://doi.org/10.3334/ORNLDAAC/569, 2000.
- 488 Goldberg, S. D. and Gebauer, G.: Drought turns a Central European Norway spruce forest soil
- 489 from an N₂O source to a transient N₂O sink, Glob Change Biol, 15, 850–860,
- 490 https://doi.org/10.1111/j.1365-2486.2008.01752.x, 2009.
- Gong, Y., Wu, J., Vogt, J., and Le, T. B.: Warming reduces the increase in N₂O emission under
 nitrogen fertilization in a boreal peatland, Science of The Total Environment, 664, 72–78,
- 493 https://doi.org/10.1016/j.scitotenv.2019.02.012, 2019.
- 494 Groffman, P. M., Hardy, J. P., Driscoll, C. T., and Fahey, T. J.: Snow depth, soil freezing, and
- 495 fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest: SOIL
- 496 FREEZING AND TRACE GASES, Glob Change Biol, 12, 1748–1760,
- 497 https://doi.org/10.1111/j.1365-2486.2006.01194.x, 2006.
- Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E., and Schuur, E. A. G.: Changing
 permafrost in a warming world and feedbacks to the Earth system, Environ. Res. Lett., 11,
- 500 040201, https://doi.org/10.1088/1748-9326/11/4/040201, 2016.
- 501 Harden, J. W., Koven, C. D., Ping, C.-L., Hugelius, G., David McGuire, A., Camill, P.,
- 502 Jorgenson, T., Kuhry, P., Michaelson, G. J., O'Donnell, J. A., Schuur, E. A. G., Tarnocai, C.,
- 503 Johnson, K., and Grosse, G.: Field information links permafrost carbon to physical
- vulnerabilities of thawing, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL051958,2012.
- Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly highresolution gridded multivariate climate dataset, Sci Data, 7, 109, https://doi.org/10.1038/s41597020-0453-3, 2020.
- 509 IPCC (2013), Climate change 2013: The physical science basis. Contribution of working group I
- 510 to the fifth assessment report of the intergovernmental panel on climate change, edited by T. F.
- 511 Stocker et al., 1535 pp., Cambridge University. Press, Cambridge, U. K., and New York.
- 512 https://www.ipcc.ch/report/ar5/wg1/
- 513 Jones, B. M., Baughman, C. A., Romanovsky, V. E., Parsekian, A. D., Babcock, E. L., Stephani,
- 514 E., Jones, M. C., Grosse, G., and Berg, E. E.: Presence of rapidly degrading permafrost plateaus
- 515 in south-central Alaska, The Cryosphere, 10, 2673–2692, https://doi.org/10.5194/tc-10-2673516 2016, 2016.
- 517 Klemedtsson, L., Svensson, B. H., and Rosswall, T.: Relationships between soil moisture content
- and nitrous oxide production during nitrification and denitrification, Biol Fert Soils, 6,
- 519 https://doi.org/10.1007/BF00257658, 1988.
- 520 Kunhikrishnan, A., Thangarajan, R., Bolan, N. S., Xu, Y., Mandal, S., Gleeson, D. B., Seshadri,
- 521 B., Zaman, M., Barton, L., Tang, C., Luo, J., Dalal, R., Ding, W., Kirkham, M. B., and Naidu,
- 522 R.: Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux, in:

- Advances in Agronomy, vol. 139, Elsevier, 1–71, https://doi.org/10.1016/bs.agron.2016.05.001,
 2016.
- 525 Lee, Y.-Y., Choi, H., and Cho, K.-S.: Effects of carbon source, C/N ratio, nitrate, temperature,
- 526 and pH on N₂O emission and functional denitrifying genes during heterotrophic denitrification,
- 527 Journal of Environmental Science and Health, Part A, 54, 16–29,
- 528 https://doi.org/10.1080/10934529.2018.1503903, 2019.
- 529 Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous oxide evolution from soil driven by
- rainfall events: 2. Model applications, J. Geophys. Res., 97, 9777–9783,
- 531 https://doi.org/10.1029/92JD00510, 1992.
- 532 Liu, L., Zhuang, Q., Zhao, D., Zheng, D., Kou, D., and Yang, Y.: Permafrost Degradation
- 533 Diminishes Terrestrial Ecosystem Carbon Sequestration Capacity on the Qinghai-Tibetan
- 534Plateau, Global Biogeochem. Cycles, 36, https://doi.org/10.1029/2021GB007068, 2022.
- Liu, X., Zhang, Q., Li, S., Zhang, L., and Ren, J.: Simulated NH₄⁺-N Deposition Inhibits CH₄
- 536 Uptake and Promotes N₂O Emission in the Meadow Steppe of Inner Mongolia, China, 527 Dedeemberg 27, 206, 217, https://doi.org/10.1016/51002.0160(17)60218.7, 2017
- 537 Pedosphere, 27, 306–317, https://doi.org/10.1016/S1002-0160(17)60318-7, 2017.
- 538 Ludwig, B., Teepe, R., Lopes De Gerenyu, V., and Flessa, H.: CO₂ and N₂O emissions from
- 539 gleyic soils in the Russian tundra and a German forest during freeze-thaw periods—a microcosm
- study, Soil Biology and Biochemistry, 38, 3516–3519,
- 541 https://doi.org/10.1016/j.soilbio.2006.06.006, 2006.
- 542 Luo, G. J., Kiese, R., Wolf, B., and Butterbach-Bahl, K.: Effects of soil temperature and
- moisture on methane uptake and nitrous oxide emissions across three different ecosystem types,
 Biogeosciences, 10, 3205–3219, https://doi.org/10.5194/bg-10-3205-2013, 2013.
- 545 Ma, W. K., Schautz, A., Fishback, L.-A. E., Bedard-Haughn, A., Farrell, R. E., and Siciliano, S.
- 546 D.: Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a
- 547 high arctic lowland ecosystem on Devon Island, Canada, Soil Biology and Biochemistry, 39,
- 548 2001–2013, https://doi.org/10.1016/j.soilbio.2007.03.001, 2007.
- Maljanen, M., Jokinen, H., Saari, A., Strommer, R., and Martikainen, P. J.: Methane and nitrous
 oxide fluxes, and carbon dioxide production in boreal forest soil fertilized with wood ash and
- 551 nitrogen, Soil Use & Management, 22, 151–157, https://doi.org/10.1111/j.1475-
- 552 2743.2006.00029.x, 2006.
- 553 Maljanen, M., Alm, J., Martikainen, P. J., and Repo, T.: Prolongation of soil frost resulting from
- reduced snow cover increases nitrous oxide emissions from boreal forest soil, Boreal
- Environment Research, 15, 2010.
- 556 Martikainen, P. J., Nykänen, H., Crill, P., and Silvola, J.: Effect of a lowered water table on
- nitrous oxide fluxes from northern peatlands, Nature, 366, 51–53,
- 558 https://doi.org/10.1038/366051a0, 1993.

- 559 Marushchak, M. E., Pitkämäki, A., Koponen, H., Biasi, C., Seppälä, M., and Martikainen, P. J.:
- 560 Hot spots for nitrous oxide emissions found in different types of permafrost peatlands, Glob 561
- Change Biol, 17, 2601–2614, https://doi.org/10.1111/j.1365-2486.2011.02442.x, 2011.
- 562 Matson, A., Pennock, D., and Bedard-Haughn, A.: Methane and nitrous oxide emissions from
- 563 mature forest stands in the boreal forest, Saskatchewan, Canada, Forest Ecology and
- 564 Management, 258, 1073–1083, https://doi.org/10.1016/j.foreco.2009.05.034, 2009.
- 565 McClelland, J. W., Stieglitz, M., Pan, F., Holmes, R. M., and Peterson, B. J.: Recent changes in
- 566 nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska,
- 567 J. Geophys. Res., 112, n/a-n/a, https://doi.org/10.1029/2006JG000371, 2007.
- 568 Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., and Schloss,
- 569 A. L.: Global climate change and terrestrial net primary production, Nature, 363, 234–240,
- https://doi.org/10.1038/363234a0, 1993. 570
- 571 Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., Harden, J. W., Jastrow,
- 572 J. D., Ping, C.-L., Riley, W. J., Schuur, E. A. G., Matamala, R., Siewert, M., Nave, L. E., Koven,
- 573 C. D., Fuchs, M., Palmtag, J., Kuhry, P., Treat, C. C., Zubrzycki, S., Hoffman, F. M., Elberling,
- 574 B., Camill, P., Veremeeva, A., and Orr, A.: Spatial heterogeneity and environmental predictors
- 575 of permafrost region soil organic carbon stocks, Sci. Adv., 7, eaaz5236,
- 576 https://doi.org/10.1126/sciadv.aaz5236, 2021.
- 577 Morishita, T., Matsuura, Y., Kajimoto, T., Osawa, A., Zyryanova, O. A., and Prokushkin, A. S.:
- 578 CH₄ and N₂O dynamics of a Larix gmelinii forest in a continuous permafrost region of central
- 579 Siberia during the growing season, Polar Science, 8, 156–165,
- 580 https://doi.org/10.1016/j.polar.2014.01.004, 2014.
- 581 Overland, J. E., Wang, M., Walsh, J. E., and Stroeve, J. C.: Future Arctic climate changes:
- 582 Adaptation and mitigation time scales, Earth's Future, 2, 68–74,
- 583 https://doi.org/10.1002/2013EF000162, 2014.
- 584 Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D. S., Weier, K., and
- 585 Kulmala, A. E.: Generalized model for N2 and N2O production from nitrification and
- 586 denitrification, Global Biogeochem. Cycles, 10, 401–412, https://doi.org/10.1029/96GB01455, 587 1996.
- 588 Post, W. M., Pastor, J., Zinke, P. J., and Stangenberger, A. G.: Global patterns of soil nitrogen 589 storage, Nature, 317, 613-616, https://doi.org/10.1038/317613a0, 1985.
- 590 Potter, C. S., Matson, P. A., Vitousek, P. M., and Davidson, E. A.: Process modeling of controls 591 on nitrogen trace gas emissions from soils worldwide, J. Geophys. Res., 101, 1361–1377, 592 https://doi.org/10.1029/95JD02028, 1996.
- 593 Qin, Z., Zhuang, Q., and Zhu, X.: Carbon and nitrogen dynamics in bioenergy ecosystems: 1.
- 594 Model development, validation and sensitivity analysis, GCB Bioenergy, 6, 740–755,
- 595 https://doi.org/10.1111/gcbb.12107, 2014.

- Qin, Z., Zhuang, Q., and Zhu, X.: Carbon and nitrogen dynamics in bioenergy ecosystems: 2.
 Potential greenhouse gas emissions and global warming intensity in the conterminous United
- 597 Potential greenhouse gas emissions and global warming intensity in the conterminous United 598 States, GCB Bioenergy, 7, 25–39, https://doi.org/10.1111/gcbb.12106, 2015.
- 599 Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N₂O): The Dominant
- 600 Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125,
- 601 https://doi.org/10.1126/science.1176985, 2009.
- Repo, M. E., Susiluoto, S., Lind, S. E., Jokinen, S., Elsakov, V., Biasi, C., Virtanen, T., and
- Martikainen, P. J.: Large N₂O emissions from cryoturbated peat soil in tundra, Nature Geosci, 2, 180, 102 https://doi.org/10.1028/ngco434.2000
- 604 189–192, https://doi.org/10.1038/ngeo434, 2009.
- 605 Risk, N., Snider, D., and Wagner-Riddle, C.: Mechanisms leading to enhanced soil nitrous oxide
- fluxes induced by freeze-thaw cycles, Can. J. Soil. Sci., 93, 401-414,
- 607 https://doi.org/10.4141/cjss2012-071, 2013.
- 608 Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar
- Northern Hemisphere during the international polar year 2007-2009: a synthesis, Permafrost
 Periglac. Process., 21, 106–116, https://doi.org/10.1002/ppp.689, 2010.
- 611 Röver, M., Heinemeyer, O., and Kaiser, E.-A.: Microbial induced nitrous oxide emissions from
- an arable soil during winter, Soil Biology and Biochemistry, 30, 1859–1865,
- 613 https://doi.org/10.1016/S0038-0717(98)00080-7, 1998.
- 614 Saikawa, E., Schlosser, C. A., and Prinn, R. G.: Global modeling of soil nitrous oxide emissions
- from natural processes, Global Biogeochem. Cycles, 27, 972–989,
- 616 https://doi.org/10.1002/gbc.20087, 2013.
- Schlesinger, W. H.: An estimate of the global sink for nitrous oxide in soils, Glob Change Biol,
 19, 2929–2931, https://doi.org/10.1111/gcb.12239, 2013.
- Schuur, E. A. G. and Abbott, B.: High risk of permafrost thaw, Nature, 480, 32–33,
 https://doi.org/10.1038/480032a, 2011.
- 621 Shan, J., Sanford, R. A., Chee-Sanford, J., Ooi, S. K., Löffler, F. E., Konstantinidis, K. T., and
- 622 Yang, W. H.: Beyond denitrification: The role of microbial diversity in controlling nitrous oxide
- reduction and soil nitrous oxide emissions, Glob Change Biol, 27, 2669–2683,
- 624 https://doi.org/10.1111/gcb.15545, 2021.
- Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., and Janssens, I.: Sensitivity of
 decomposition rates of soil organic matter with respect to simultaneous changes in temperature
 and moisture, J. Adv. Model. Earth Syst., 7, 335–356, https://doi.org/10.1002/2014MS000358,
 2015.
- 629 Smith, K. A., Thomson, P. E., Clayton, H., Mctaggart, I. P., and Conen, F.: Effects of
- 630 temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils,
- 631 Atmospheric Environment, 32, 3301–3309, https://doi.org/10.1016/S1352-2310(97)00492-5,
- **632** 1998.

- 633 Strauss, J., Biasi, C., Sanders, T., Abbott, B. W., Von Deimling, T. S., Voigt, C., Winkel, M.,
- 634 Marushchak, M. E., Kou, D., Fuchs, M., Horn, M. A., Jongejans, L. L., Liebner, S., Nitzbon, J.,
- 635 Schirrmeister, L., Walter Anthony, K., Yang, Y., Zubrzycki, S., Laboor, S., Treat, C., and
- Grosse, G.: A globally relevant stock of soil nitrogen in the Yedoma permafrost domain, Nat
- 637 Commun, 13, 6074, https://doi.org/10.1038/s41467-022-33794-9, 2022.
- Takakai, F., Desyatkin, A. R., Lopez, C. M. L., Fedorov, A. N., Desyatkin, R. V., and Hatano,
- 639 R.: CH₄ and N₂O emissions from a forest-alas ecosystem in the permafrost taiga forest region, 640 r_{12} solution r_{12} $r_{$
- eastern Siberia, Russia, J. Geophys. Res., 113, n/a-n/a, https://doi.org/10.1029/2007JG000521,
 2008.
- 642 Teepe, R., Vor, A., Beese, F., and Ludwig, B.: Emissions of N₂O from soils during cycles of
- freezing and thawing and the effects of soil water, texture and duration of freezing: N_2O
- emissions in freeze-thaw cycles of soils, European Journal of Soil Science, 55, 357–365,
- 645 https://doi.org/10.1111/j.1365-2389.2004.00602.x, 2004a.
- 646 Teepe, R., Brumme, R., Beese, F., and Ludwig, B.: Nitrous Oxide Emission and Methane
- 647 Consumption Following Compaction of Forest Soils, Soil Sci. Soc. Am. J., 68, 605–611,
 648 https://doi.org/10.2136/sssaj2004.6050, 2004b.
- Ullah, S. and Moore, T. R.: Biogeochemical controls on methane, nitrous oxide, and carbon
 dioxide fluxes from deciduous forest soils in eastern Canada, J. Geophys. Res., 116, G03010,
 https://doi.org/10.1029/2010JG001525, 2011.
- Van Bochove, E., Bertrand, N., and Caron, J.: In Situ Estimation of the Gaseous Nitrous Oxide
- 653 Diffusion Coefficient in a Sandy Loam Soil, Soil Science Society of America Journal, 62, 1178–
- 654 1184, https://doi.org/10.2136/sssaj1998.03615995006200050004x, 1998.
- 655 Voigt, C., Lamprecht, R. E., Marushchak, M. E., Lind, S. E., Novakovskiy, A., Aurela, M.,
- Martikainen, P. J., and Biasi, C.: Warming of subarctic tundra increases emissions of all three
- 657 important greenhouse gases carbon dioxide, methane, and nitrous oxide, Glob Change Biol, 23,
- 658 3121–3138, https://doi.org/10.1111/gcb.13563, 2017.
- Wagena, M. B., Bock, E. M., Sommerlot, A. R., Fuka, D. R., and Easton, Z. M.: Development of
- a nitrous oxide routine for the SWAT model to assess greenhouse gas emissions from
- agroecosystems, Environmental Modelling & Software, 89, 131–143,
- 662 https://doi.org/10.1016/j.envsoft.2016.11.013, 2017.
- Wagner-Riddle, C., Hu, Q. C., Van Bochove, E., and Jayasundara, S.: Linking Nitrous Oxide
 Flux During Spring Thaw to Nitrate Denitrification in the Soil Profile, Soil Sci. Soc. Am. J., 72,
- 665 908–916, https://doi.org/10.2136/sssaj2007.0353, 2008.
- 666 Wang, J., Huang, Q., Li, Y., Tu, X., Chen, Z., Elrys, A. S., Cheng, Y., and Ma, L.: A shift from
- 667 nitrification to denitrification-dominated N₂O emission in an acidic soil following organic
- amendment, Biol Fertil Soils, 59, 117–122, https://doi.org/10.1007/s00374-022-01680-7, 2023.

- 669 Wang, T., Yang, D., Yang, Y., Piao, S., Li, X., Cheng, G., and Fu, B.: Permafrost thawing puts
- the frozen carbon at risk over the Tibetan Plateau, Sci. Adv., 6, eaaz3513,
- 671 https://doi.org/10.1126/sciadv.aaz3513, 2020.
- Wen, Y., Chen, Z., Dannenmann, M., Carminati, A., Willibald, G., Kiese, R., Wolf, B.,
- 673 Veldkamp, E., Butterbach-Bahl, K., and Corre, M. D.: Disentangling gross N₂O production and
- 674 consumption in soil, Sci Rep, 6, 36517, https://doi.org/10.1038/srep36517, 2016.
- 675 Wrage, N., Velthof, G. L., Laanbroek, H. J., and Oenema, O.: Nitrous oxide production in
- 676 grassland soils: assessing the contribution of nitrifier denitrification, Soil Biology and
- 677 Biochemistry, 36, 229–236, https://doi.org/10.1016/j.soilbio.2003.09.009, 2004.
- 678 Wu, X., Zang, S., Ma, D., Ren, J., Chen, Q., and Dong, X.: Emissions of CO₂, CH₄, and N₂O
- 679 Fluxes from Forest Soil in Permafrost Region of Daxing'an Mountains, Northeast China,
- 680 IJERPH, 16, 2999, https://doi.org/10.3390/ijerph16162999, 2019.
- Kiao, R., Ran, W., Hu, S., and Guo, H.: The response of ammonia oxidizing archaea and bacteria in relation to heterotrophs under different carbon and nitrogen amendments in two agricultural
- soils, Applied Soil Ecology, 158, 103812, https://doi.org/10.1016/j.apsoil.2020.103812, 2021.
- Yan, Y., Ganjurjav, H., Hu, G., Liang, Y., Li, Y., He, S., Danjiu, L., Yang, J., and Gao, Q.:
 Nitrogen deposition induced significant increase of N₂O emissions in a dry alpine meadow on
 the central Qinghai–Tibetan Plateau, Agriculture, Ecosystems & Environment, 265, 45–53,
 https://doi.org/10.1016/j.agee.2018.05.031, 2018.
- Yang, W. H. and Silver, W. L.: Net soil–atmosphere fluxes mask patterns in gross production
 and consumption of nitrous oxide and methane in a managed ecosystem, Biogeosciences, 13,
 1705–1715, https://doi.org/10.5194/bg-13-1705-2016, 2016.
- Yang, Z., Ou, Y. H., Xu, X., Zhao, L., Song, M., and Zhou, C.: Effects of permafrost degradation
 on ecosystems, Acta Ecologica Sinica, 30, 33–39, https://doi.org/10.1016/j.chnaes.2009.12.006,
 2010.
- Yu, T. and Zhuang, Q.: Quantifying global N₂O emissions from natural ecosystem soils using
 trait-based biogeochemistry models, Biogeosciences, 16, 207–222, https://doi.org/10.5194/bg16-207-2019, 2019.
- 697 Yu, T. (2016). Quantifying the global N₂O emissions from natural ecosystems using a
- 698 mechanistically-based biogeochemistry model, MS thesis,
- 699 http://docs.lib.purdue.edu/dissertations/AAI10145857/
- 700 Zhang, Y., Zhang, F., Abalos, D., Luo, Y., Hui, D., Hungate, B. A., García-Palacios, P.,
- 701 Kuzyakov, Y., Olesen, J. E., Jørgensen, U., and Chen, J.: Stimulation of ammonia oxidizer and
- denitrifier abundances by nitrogen loading: Poor predictability for increased soil N_2O emission,
- 703 Glob Change Biol, 28, 2158–2168, https://doi.org/10.1111/gcb.16042, 2022.

- Zhou, Y., Hagedorn, F., Zhou, C., Jiang, X., Wang, X., and Li, M.-H.: Experimental warming of
 a mountain tundra increases soil CO₂ effluxes and enhances CH₄ and N₂O uptake at Changbai
- 706 Mountain, China, Sci Rep, 6, 21108, https://doi.org/10.1038/srep21108, 2016.
- 707 Zhuang, Q., Romanovsky, V. E., and McGuire, A. D.: Incorporation of a permafrost model into a
- 708
 large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil
- thermal dynamics, J. Geophys. Res., 106, 33649–33670, https://doi.org/10.1029/2001JD900151,
 2001.
- 711 Zhuang, Q., McGuire, A. D., Melillo, J. M., Clein, J. S., Dargaville, R. J., Kicklighter, D. W.,
- 712 Myneni, R. B., Dong, J., Romanovsky, V. E., Harden, J., and Hobbie, J. E.: Carbon cycling in
- 713 extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a
- modeling analysis of the influences of soil thermal dynamics, Tellus B, 55, 751–776,
- 715 https://doi.org/10.1034/j.1600-0889.2003.00060.x, 2003.
- 716
- 717
- 718
- 719
- 720
- 721
- 722
- 723

Figure A1. Annual N_2O emissions from pan-Arctic terrestrial ecosystems from 1969 to 2019 in base scenario with boundaries.

728

729

730

732

733

Figure A2. Average soil water filled pore space in the pan-Arctic terrestrial ecosystems from1969 to 2019.

736