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Abstract. The assumption of nighttime ozone chemical equilibrium (NOCE) is widely usedemployed for
retrieval-ofretrieving the Ox-HOx components in the mesopause from rocket and satellite measurements.
In this work, the recently developed analytical criterion of determining the NOCE boundary is apphied
{tused (1) to study efthe connection of this boundary with O and H spatiotemporal variability basingbased
on the-3D modeling of chemical transport-+edeling, and (2ii) to retrieve and analyze the spatiotemporal
evolution of the NOCE boundary in 2002-2021 from the SABER/TIMED data set. It was revealed, first,
that the NOCE boundary weH-reproduces well the transition zone dividing deep and weak diurnal
photochemical oscillations of O and H at-the-low-and-middle-latitudescaused by the diurnal variations of
solar radiation. Second, the NOCE boundary is sensitive to sporadic abrupt changes in the middle

atmosphere dynamics, in particular, due to powerful sudden stratospheric warmings leading to the events
of an elevated (up to ~80 km) stratopause, which took place in January-FebruaryMarch 2004, 2006, 2009,
2010, 2012, 2013, 2018, and 2019. Third, the space-time evolution of this eharacteristiescharacteristic
expressed via pressure-hetght altitude contains a clear signal of 11-year solar cycle in the range-ef55°S-
55°N range. In particular, averagethe mean annual-the NOCE boundary averaged in this range of latitudes
anticorrelates well with Fyg 7 index with the coefficient 6£-0.9695. Moreover, it shows a weak linear trend
of 49the 56.2+3642.2 m/decade.

1 Introduction

The mesopause (80-100 km) is an interesting region of Earth’the Earth’s atmosphere possessing
quite a number of unique phenomena and processes which can be considered as sensitive
indicators/predictors of global climate change and anthropogenic influences on atmospheric composition
(e.g., {Thomas et al., 1989))-). Here, the summer temperature at middle and high latitudes-n-the-summer
reaches its lowest values (down to 100K (Schmidlin, 1992)). The temperatures below 150K lead to water

vapour condensation and formation of the highest altitude clouds en-Earthin the Earth’s atmosphere, the

so-called Polar Mesospheric Clouds or Noctilucent Clouds; consisting primarily of water ice (Thomas,
1991). In eppesiteturn, the temperature of the winter mesopause is essentially higher, so there is a strong
negative temperature gradient between the summer and winter hemispheres. At these altitudes,
atmospheric waves withof various spatiotemporal scales are observed, in particular, internal gravity
waves coming from the lower atmosphere. Destruction of gravity waves leads to strong turbulence that
affects the atmospheric circulation and ultimately manifests itself in the mentioned temperature structure

of this region.

Many layer phenomena in the mesopause are connected-withrelated to the photochemistry of the
O«-HOy components (O, Os, H, OH, and HO,). HerethereThere is a narrow (in height) transition region
2
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where photochemistry behavierbehaviour transforms rapidly from “deep” diurnal oscillations, when the
difference between daytime and nighttime values of the Ox-HO, components can richreach several orders
of magnitude, to weak photochemical oscillations. As thea result, above this region, there-takesplace-O
and H aeceumulation—and—thelraccumulate to form the corresponding layers. This layer formation

manifestingmanifests itself in the appearance of a secondary ozone maximum and airglow layers of OH

and O excited states. Thus, Ox-HOyx photochemistry in the mesopause is responsible for the presence of
important (first of all, from a practical point of view) indicators observed in the visible and infrared
ranges, which are widely used for ground-based and satellite monitoring of climate changes and
waveswave activity. Moreover, Ox-HOy photochemistry provides the total chemical heating rate of this
region, influences the radiative cooling and other useful airglows (for example, by O, excited states),
vehvesis involved in the plasma-chemical reactions and formation of layers of the ionosphere-layers.
The mentioned transformation of Ox-HOx behavierbehaviour with height may happensoccur via the
nonlinear response of Ox-HOy photochemistry to the diurnal variations of solar radiation in the form of
subharmonic (with periods of 2, 3, 4, and more days) or the-chaotic oscillations (e.g., Sonnemann and
Fichtelmann, 1997; Feigin et al., 1998). This unique phenomenon was predicted many years ago (&g
Sonnemann and Fichtelmann, 1987) and investigated theoretically by models with-taking into account ef
different transport processes (e-g--Sonnemann and Feigin, 1999; Sonnemann et al., 1999; Sonnemann and
Grygalashvyly, 2005; Kulikov and Feigin, 2005; Kulikov, 2007; Kulikov et al., 2020). It was revealed, in
particular, that the appearance—of—nonlinear response is controlled by—the vertical eddy diffusion
(Sonnemann and Feigin, 1999; Sonnemann et al., 1999), so that 2-day oscillations can only survive at the
real diffusion coefficients, but the eddy diffusion in zonal direction leads to the appearance of_the so-
called reaction-diffusion waves in the form of propagating phase fronts of 2-day oscillations (Kulikov and
Feigin, 2005; Kulikov et al., 2020). Recently, the satellite data processing feundrevealed the first
evidence thatof the existence of 2-day photochemical oscillations-exist in the real mesopause (Kulikov et
al., 2021).

While regular remote sensing measurements of most Ox-HOx components are still limited, the
indirect methods based on the physicochemical assumptions are useful tools te—meniterfor monitoring

these trace gases. In many papers,—the O and H distributions were retrieved from the daytime and
nighttime rocket and satellite measurements of the ozone and the volume emission rates of OH(v), O(*S),
and Oz(alAg) (e-g+-Good, 1976; Pendleton et al., 1983; McDade et al., 1985; McDade and Llewellyn,
1988; Evans et al., 1988; Thomas, 1990; Llewellyn et al., 1993; Llewellyn and McDade, 1996; Mlynczak
et al., 2007, 2013a, 2013b, 2014, 2018; Smith et al., 2010; Xu et al., 2012; Siskind et al., 2008, 2015).

The retrieval technique is based on the assumption of the-ozone photochemical/chemical equilibrium and
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physicochemical model of the corresponding airglow, which describe the relatiensrelationship between

local O and H values and-the measurement data.

The daytime photochemical ozone equilibrium is a good approximation everywhere in the
mesosphere — lower thermosphere (MLT) region (Kulikov et al., 2017) due to ozone photodissociation,
whereas the applicability of the assumption of nighttime ozone chemical equilibrium (NOCE) is limited:
there is an altitude boundary upperabove which NOCE is satisfied withto an accuracy better than 10%.
Below this boundary, the ozone equilibrium is disturbed essentially and cannot be used. Good (1976)
supposed that NOCE is fulfilled above 60 km, whereas other papers apply the NOCE starting from 80
km, independent of latitude and season. However, studies of NOCE within the framework of the 3D
chemical-transport models (Belikovich et al., 2018; Kulikov et al., 2018a) revealed that the NOCE
boundary ef-NOCE-varies within the range of 81-87 km, depending on latitude and season. Bue-teln
view of the practical recessityneed to determine the local altitude position of this boundary, Kulikov et al.
(2018a) presented a simple criterion lecalizing-ofdetermining the equilibrium boundary using only the
data provided by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry)
instrument onboard the TIMED (Thermosphere lonosphere Mesosphere Energetics and Dynamics).
UsingMaking use of this criterion, Kulikov et al. (2019) retrieved the annual evolution of the NOCE
boundary from the SABER data. It was revealed that thea two-month averaged NOCE boundary

essentially depends on season and latitude and can rise up to ~ 86 km. Moreover, the analysis of the
NOCE boundary in 2003-2005 showed that this characteristic was sensitive to unusual dynamics of
stratospheric polar vortex during the 2004 Arctic winter-2004, which was named asa remarkable winter in
the 50-year record of meteorological analyses (Manney et al., 2005). Moreover, Belikovich et al. (2018)
found by 3D simulation that the excited OH layer weH-repeats well spatiotemporal variability of the

NOCE boundary. These results tetallowed us to speculate that the NOCE boundary can be considered as
an important indicator of mesepause’mesopause processes.

The main goals of this paper are (1) to investigate the cennection-ofrelationship between the NOCE

boundary according to the mentioned criterion withand O and H variability with the use of the 3D
chemical transport model, and (2) to retrieve and analyze the spatiotemporal evolution of the NOCE
boundary in 2002-2021 from the SABER/TIMED data set. In the next section, we present the used model.
In Section 3, we briefly describe sherthy-the criterion to-determineof determining the NOCE boundary
local height and study how this height relates-withis related to the features of O and H distributions from

the 3D model. Section 4 explains the methodology of determining the NOCE boundary from satellite
data. Section 5 presents the main results obtained from SABER/TIMED data,—which—are discussed in

Section 6.
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2 3D model

We use the 3D chemical transport model of the middle atmosphere developed by the Leibniz
Institute of Atmospheric Physics (e-g5—Sonnemann et al., 1998; Korner and Sonnemann, 2001,
Grygalashvyly et al., 2009; Hartogh et al., 2004, 2011). The three-dimensional fields of temperature and
winds were adopted by Kulikov et al. (2018b) from the Canadian Middle Atmosphere Model (Scinocca et
al., 2008) for the year 2000 with an updated frequency of 6 hours. To exclude unrealistic jumps in the

evolution of calculated chemical characteristics, a-linear smoothing between two subsequent updates of
these parameters is applied. The model takes into account 3D advective transport and vertical diffusive
transport (both, turbulent and molecular). The Walcek-scheme (Walcek, 2000) and the implicit Thomas
algorithm (Morton and Mayers, 1994) are used for advective and diffusive transport, respectively. The
model grid includes 118 pressure-height levels (from the ground to ~135 km), 32 and 64 levels in latitude
and longitude, respectively. The chemical part considers 22 constituents (O, O(*D), O3, H, OH, HO,,
H,0,, H,0O, N, NO, NO,, NO3, N,0O, CH,, CH;, CHs, CH30,, CH30, CH,0, CHO, CO, CO,), 54 two-
and three-body reactions, and 15 photo-dissociation reactions. The model uses pre-calculated
dependeneiesdependences of dissociation rates on the-altitude and solar zenith angle (Kremp et al., 1999).
For-theThe chemistry ealeulation—we—applyis calculated by the Shimazaki scheme (Shimazaki, 1985)

atfor the integration time of 9 sec.

3 The NOCE criterion

The nighttime ozone chemistry at the mesopause heights is determined mainly by two reactions R1-
R2 (e.g., Allen et al., 1984), see Table 1. Fhus;The secondary ozone loss via the O + O3 — 20, reaction

becomes important above ~ 95 km (Smith et al., 2009). Kulikov et al. (2023) verified with simulated and

measured data that this reaction does not influence the NOCE boundary determination and may be

skipped. Thus, the ozone equilibrium concentration (05°?) corresponding to the instantaneous balance

between_the production and loss terms is as follows:

eq — k1002M

0
3 k2H

, 1)
where M is air concentration, and k,_, are the corresponding rate constants of the reactions (see Table 1).

As mentioned above, the NOCE criterion was developed in Kulikov et al. (2018a). The main idea is
that the local values of 05 and 0;°? are close to-each-other(03(t) ~ 05°7(t)), when 7, < 7(,eq, Where

To, IS the ozone lifetime and 7,,eq is the local time scale of 0;°?:

5
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o, = —, 2

kz'H

= 039q = 0 -
3eq == |d03eq/dt| - H|%(%)| [ (3)

To

As shown in Kulikov et al. (2018a), 7(,eq can be determined from a simplified photochemical model

describing the Ox-HOx evolution in the mesopause region (Feigin et al., 1998), so the criterion forvalidity
of the NOCE validity can be written in the form:

To kq-k40,%-M? ks+k 1
Cr=—0r =gl B (1 _Kthe) 1, (4)
T03eq kz k3 kz'H'Og

where k; are the corresponding reaction constants from Table 1. Calculations with the global 3D
chemistry-transport model of the middle atmosphere showed (Kulikov et al. 2018a) that the criterion
To,/To,ea < 0.1 well-defines well the boundary of the area where [03/05°7 — 1| < 0.1.

Kulikov et al. (2023) presented the theory of chemical equilibrium of a certain trace gas n. Strictly
mathematically, the cascade of the-sufficient conditions for n;(t) = n;¢?(t) was derived considering its
lifetime, equilibrium concentration, and time dependences of these characteristics. In case of the
nighttime ozone, it was proved that-the 7, /75,ea < 1 is the main condition for NOCE validity and the
criterion 7o, /7p,ea < 0.1 limits thea possible difference between O; and 05°? to be—nenot more than

~10%. Moreover, Kulikov et al. (2023) slightly corrected the expression for the criterion (4):

kl‘OZ'M
k2

1
kz'H'03

ks+keg
k3

Cr=2

(ks M- 0, (1—22€) 4 k- 05) - <0.1. ()

OtherOne more important condition for 0; ~ 057 at the time moment ¢ is:

t -1
eleon ™03 5 1 (6)

where t;,, is the time of the beginning of the night. H-means-the-nighttime-data-measured-near-the-The
ozone equilibrium concentration jumps at sunset should—be—excluded—from—considerationdue to the

shutdown of photodissociation. Thus, the condition (6) shows that it takes time for the ozone

concentration to reach a new equilibrium. Kulikov et al. (2023) revealed that, at the solar zenith angle y >

95°, the condition (6) is fulfilled +r-almost in all cases- and the condition (5) becomes the main criterion
for NOCE validity. In addition, Kulikov et al. (2023) demonstrated with the use of a 3-D model that the

criterion (5) almost ideally reproduces the NOCE boundary found by direct comparison of 0 and 0;%?

concentrations, see Figure 1 in Kulikov et al. (2023).

Figures 1-3 demonstrate model examples of O and H time-height variations above different points
jnover three months. In order to focus eur—attention on diurnal oscillations, the concentrations are

normalized by mean daily values, eorrespendinghywhich were calculated as a function of altitude. These
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daily average O and H values were different for each altitude. One can see in all panels of these Figures;
first-below-81-87-km;figures ”deep” diurnal oscillations that occur below 81-87 km. Due to the shutdown

of sources at night and high rates of the main HOx and O sinks nonlinearly dependent on air concentration

(Konovalov and Feigin, 2000), the variables change during each night within athe range of several orders
of magnitude with low values of timestime evolution. Above 83-88 km, the situation differs essentially
from the previous case. One can see the-relatively weak diurnal oscillations. These regimes of O and H
behavierbehaviour are #a-consistent-each-other, i.e. deep H diurnal oscillations correspond to the same
dynamics in O, and so on. There exists a few--km thick layer (transition zone) dividing deep and weak
oscillations whichwhose height position is—dependeddepends on latitude and season. In particular, in
summer_the middle latitude transition is higher than in winter. Figures 1-3 show also the magenta lines

pointing the NOCE boundary in accordance tewith the criterion (5) (Cr = 0.1). One can see that the

NOCE criterion almost perfectly reproduces the features of the transition zone. Thus, our criterion is not
only thea useful technical characteristic to retrieve O from satellite data, but it also points theto an

important dynamical process in_the Ox-HOy photochemistry.

4 Boundary-ofthe-NOCE boundary from satellite data

We use-the version 2.0 of the SABER data product (Level2A) for the simultaneously measured
hetght-profiles of pressure (p), altitude (z), temperature (T), Oz (at 9.6 um), and total volume emission
rates of OH* transitions at 2.0 (VER) within the 0.0001-0.02 mbar pressure interval (altitudes

approximately 75-105 km) in 2002-2021. We consider only nighttime data when the solar zenith angle
> 95°.

Kulikov et al. (2018a) noted that the term k, - H - O5 in the expression for the NOCE criterion can
be rewritten in the form dependeddepending on measurable characteristics only with the use of the
corresponding OH(v) model by Mlynczak et al. (2013a):

k,-H-0; =VER/A(T,M,0), (7)

where A(T, M, 0) is athe function in square brackets ef-eguatienin Eq. (3) in the paper by Mlynczak et al.
(2013a) with the parameters corrected by Mlynczak et al. (2018):

A(T,M,0) = 0.47-118.35/(215.05 + 2.5.10=5 . 9. 4+ 336.10=88 . o220/F 1 3.10=10,
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0.47-118.35 0.34-117.21

2 ) 220 + -13 -13 -10
215.05 + 2.5-10711.0, + 3.36:10713.¢ T -N,+3-10710.0 178.06 + 4.8:1077-03 +7:107°%-Np+ 1.5-107°7-0

+

0.47-117.21:(20.05 + 4.2:10712.0, + 4-10713.N,)
220 _(&

(215.05 + 2.5:10711.0, + 3.36:1013-¢' T -N,+ 3-10710.0)-(178.06 + 4.8:10713-0, + 7-:10713-N, + 1.5-10710.0)

This function is the result of the combination of the equations of physicochemical OH* balance in the v =
8 and v = 9 states. It depends on the constants of the processes describing sources and sinks enat the
corresponding levels, in particular, the OH(v) removal #on collisions with O, N,, and O. Below 86-87
km, A(T,M,0) = A(T,M,0 = 0) = A(T, M) because-efdue to relativity small O concentrations. Thus,
by combining Egs. (5) and (7), the NOCE criterion for SABER data can be recast in the following form:

kl'OZ'M

ks+kg
ke

VER > VER,;;,(T,M) = 20 - (ky -0, M- (1 - ) +ky03) AT, M>————(8).  (9)

Due to the strong air—-concentration-_dependence; VER,,;, decreases rapidly with height. In
particular, at 105 km, VER > VER,,;,. At 75 km, the relationship is the-inverse. We determine the local
position of the NOCE boundary (pressure level p@peql and altitude level z@zeql) according to the
criterion (89), where VER = VER,,;,(T,M). We ecarried—out—special—verificationverified that the
approximation A(T, M, 0) = A(T, M) is valid near the NOCE boundary. With the use of annual SABER
data, we calculated simultaneous datasets of A(T,M) and A(T,M,0). In the second case, we used O
retrieved-© from the same SABER data. The maximum and mean differences between A(T, M) and
A(T,M, 0) were found to be ~ 2% and ~ 0.1%, respectively.

The total range of latitudes according to the satellite trajectory over a month iswas ~(83.5°S -
83.5'N). This range was divided into 20 bins and all singlelocal values of pgzp.,’ and zzz,," falling into
one bin during a month or a year were averaged, respectively. For-cenvenience—In particular, several

thousand values of peql and zeql fall into one bin during a month. Following Mlynczak et al. (2013a),

averages were determined by binning the data of a certain day by local hour and then averaging over the

hour bins that contain data to obtain the daily average value. Then we calculated monthly mean values of

Pagleqand z.,™_and annually mean values of p.,”_and z.,”_(hereafter, the indexes «m» and «y»

indicate the monthly and annually average, respectively). Then, for convenience, the values of p,,™and
Peq” Were recalculated into the pressure-heights{pseudoheights)—=2% altitudes heqm and heqy . The
dependence of z@ﬁheqm'y on the—pressurep,,™” was takenadopted from Mlynczak et al. (2013a,
2014%):

heq” = —Hg "10g (Peq™” /Do) Hy = 5.753474, py = 11430.49428 hPa. (10)

Note that the use of both, geometrical and pressure coordinates is a rather common approach when

analyzing long-term evolution of the obtained data, especially, when the data is the result of averaging
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over time and space. In particular, Liibken et al. (2013) demonstrated the importance of distinquishing

between trends on pressure and geometrical altitudes in the mesosphere, since the second includes the

atmospheric shrinking effect and is more pronounced. Grygalashvyly et al. (2014) analyzed the linear

trends in OH* peak height and revealed a remarkable decrease at geometrical altitudes, which is almost

absent at pressure altitudes.

Kulikov et al. (2023) studied the systematic uncertainty of the retrieved NOCE boundary height.
Following the typical analysis presented, for example, in Mlynczak et al. (2013a, 2014), the uncertainty
was obtained by calculating the root-sum-square of the individual sensitivity of the retrieved
charaeteristicscharacteristic to the perturbation of Og, T, rates of reactions, and parameters of the A

function. The systematic error of z;z2NOCE pressure altitude h,,™ and z.;—variesgeometrical altitude

Zgq " _varied in the range of 0.1-0.3 km, whereas the random error iswas negligible due to averaging

Hover time and space.

5 NOCE boundary in 2002-2021 from SABER/TIMED data: main results

FiguresFigure 4-7—demonstrate_demonstrates the contour—map—of—space-time evolution of
pseudoheightz2%the pressure altitude h,,™ in 2002-2021 and-examples-of 222 time-eveolution;in all

latitude bins. Figures 5 (left column) show the mean (for 2002-2021) annual cycle ardof h,,™ at four

specific latitudes and Figures 6 (left column) present the Fourier spectra at differentthese latitudes—H-can
be-seen obtained from the data in Figure 4. Note, first, that above ~55°S58°S,N, there are data gaps due

tespecified by the satellite sensing geometry. For example, in 2002-2014, at 66.8-75.15°S,N 1#2002-

20%4-measurements eevercovered 6 months per year only. In 2015, because of slight ehanrgechanges in
the satellite geometry, there appeared additional months-appeared. This is especially noticeable above

~66°S,N and manifests itself by extension of the variation range of z;z2%h,," at these latitudes in 2015-
2021. Second, the variation range of zz-2¢h,,™, annual cycle and spectrum of harmonic oscillations
dependdepends essentially on the latitude. Near the equator, zzz2¢h,,” varies in the 81-83 km range
mainly and there are two main harmonics with periods of 1/2 and 1 year in the spectrum. At low latitudes,
the variation range of z;2%h,," narrows down to a minimum (~82:2-83:2 km at 16.7-20.05°S,N}-that),
which is accompanied bywith the appearance of a wide spectrum of harmonics with periods of 1/5, 1/4,
1/3, 1/2, and 1 year. At middle latitudes, the range of z2%h,,™ variation monotonically increases up to

~81.5-85.5 km with latitude and the harmonic with_a period of 1 year becomes the main mode in the
spectrum of oscillations. At both, low and middle latitudes, there is no signal from quasi-biennial
oscillations but one can see a remarkable amplitude of a harmonic with a period of ~10 years, which can
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be associated with a manifestation of 11-year solar cycle.-Nete It is interesting that the mentioned features

are typical for both hemispheres. At high latitudes, z@ﬁheqm varies in the range of 79-86.5 km. At these
latitudes, #one can seensee the main difference between nerththe northern and seuthsouthern
hemispheres: the sharp falls and rises of the rerthnorthern boundary of NOCE by several km (up to 3-4
km) appearing in January-FebruaryMarch 2004, 2006, 2009, 2010, 2012, 2013, 2018 and 2019 and
absentingthat are absent at seuthsouthern latitudes.

Analyzing—theFigure—6,—one—can—noteThe analysis of Figures 5-6 demonstrates the following

redistribution in the annual cycle with increasing latitude from equator to polar latitudes. Near the

equator, the annual cycle has two maxima in June — July and in December — January. The first one is
more pronounced. That is why there are two main harmonics with periods of 1/2 and 1 year in the
spectrum. At low latitudes, one maximum (summer) remairs—in—place—anddoes not change, while the
other begins—to-appreachapproaches the first_one. As thea result, the wide-spectrum of harmonics takes

plaeeis wide. At middle latitudes, the maxima gradually merge so that the 1 year-harmonic becomes the

main one.

Figures-8-9-demenstrate-the-Figure 7 (left) demonstrates a contour map of the space-time evolution
of the average annual zzz"*—————(<=z"*>hereafterthe-angle-brackets-are-used-to-dencte-the

values—averaged—n-thme—and-space)pressure altitude heqy in 2002-2021-and—examples—ef-. Figure 8
presents the time evolution of this characteristic at different latitudes. BasingBased on Eeurier’the Fourier

spectra presented in Figure—7Figures 6 (left column), we can suppose that, at low and middle latitudes,

the interannual variation of <2z 2%>h,,” is caused by the 11-year solar cycle mainly. Figure 69 (left)
presents the correlation coefficient of <z 2> h,,”with F,,, index (solar radio flux at 10.7 cm, see the
red curve in Figure 810) as a function of latitude. One can see good anticorrelation (with a coefficient
from -0.7472 to -0.992) between ~55°S and ~55°N. At high latitudes, the absolute value of the correlation
coefficient decreases sharply t#pdown to ~0.5658 in the south and to ~0.1 in the north. BlseThe blue curve
in Figure 1210 shows latitude-averaged %&\heqy in the range of 55°S-55°N. In this case, the

anticorrelation with F,, » index is close to ideal (coefficient ~ -0.9695).

With the use of multiple linear regression_in the 55°S-55°N range:

<222 >(h,,” (year) = const + a - year + B - F;y;(year), (811)

we determined a slow (up to 10 m/year) linear trend infvz@&\iheqy as a function of latitude-in-the

trend-up-to-10-mfyear, but with high-uncertaintythe uncertainties essentially larger than the trend values.

10
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Applying the regression analysis to latitude-averaged %&-heqy (blue curve in Figure 11)-ghvesl10)
gave us a more statistically significant value of the trend: 4.92+35.62+4.22 m/year.

Figures—13-16-demonstrateFigure 11 demonstrates the eenteur—map—ef-space-time evolution of
realthe geometrical altitude 6f-NOGEbeundaryz,,™ in 2002-2021-examples-ofztime-evelution; in all

latitude bins. Figures 5 (right column) show the mean (for 2002-2021) annual cycle and-of z,,™ at four

specific latitudes and Figures 6 (right column) present the Fourier spectra at differentthese latitudes:
Comparing obtained from the data in Figure 11. Comparison with Figures 4-7—t-can-be-seenfirst—z;

and 5-6 (left columns) shows that z,,™ repeats many qualitative features of the space-time evolution of

Zez22pressure altitude h,,™. In particular, in the direction from the equator to the poles, the variation
range of zzzz,,™ first decreases updown to 1 km at 16°-25°S,N;_and then expandingexpands to several
km at middle and high latitudes. tr-Figure-15,-0reOne can see the same redistribution of the annual cycle

with latitude, as-H-was-mentioned-in-Figure-6similarly to the pressure altitude case. Near the equator, the
annual cycle possesses two maxima occurring in June — July and in December — January. At low

latitudes, one maximum continues te-be-in summer, whereas the other shifts irte-theto spring. At middle

latitudes, the maxima gradually coalesce forming a single summer maximum. At-nerth high_northern

latitudes, there are the same local sharp variations of the NOCE boundary in January-February 2004,
2006, 2009, 2010, 2012, 2013, 2018 and 2019, which are absent at seuthsouthern latitudes.-Second One
can see from Figure 5 that, on the average, zzzz.,™ is lower than z7%—The-difference 2" —z

eq

vaﬁa%ien—range—ef—iz@duﬁﬂg—the—yeapis—m%emeqm by abeut-10.5-41 km, depending on latitude. Fhird;

theOne can see from Figure 6 that the z,,™ spectra of harmonic oscillations are similar to zz2the h,,™

spectra except for nethe absence of a signal of the 11-year solar cycle.

Figures17-18-demenstrate-the-Figure 7(right) demonstrates a contour map of space-time evolution
of the annually average anpual-z;—(<-zzz—>)geometrical altitude z,,” in 2002-2021-and-examples
of-. Figure 12 presents the time evolution of this eharacteristiescharacteristic at different latitudes. One

can see;at-aH-atitudes; that there is no clear evidence of 11-year solar cycle manifestation at all latitudes.
This is confirmed by the calculation of the correlation coefficient of <zzz—>z.,” with F,; index as a
function of latitude (see Figure 19).9 (right)). Moreover, the latitude-averaged (in the range of 55°S-
55°Ny—=<—=—>) z.,” has a correlation coefficient equal to -~-0.5455.

With-As in the case of heqy, we found with the use of multiple linear regression as-in-the-case-of

< Zgzt>—we-determined-the slow (up to ~-10 m/year) and statistically insignificant linear trend in
11
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<Zgg>0f zeqy as a function of Iatltude—m—ﬂ&e—Paﬂge—e%é—Séé—N—ésee—ﬁgafe—ZQ)—@He—eaH—see—a

Applying. Moreover, the regression analysis teof latitude-averaged <—zz—>-gives-us-the-trend-equal-to—-
4:48+6-73-mlyear-z,,” also revealed a statistically insignificant trend.

6 Discussion

The NOCE boundary is an important technical eharacteristicscharacteristic for the—correct
application of the NOCE approximation to retrieve the nighttime distributions of minor chemical species
of MLT. Remind-alsethat-BelikevichKulikov et al. (2019) repeated the O and H retrieval by Mlynczak
et al. (2018) found-by-3D-simulationfrom the SABER data for the year 2004. It was revealed that the

application of the NOCE condition below the boundary obtained according to the criterion could lead to a

great (up to 5-8 times) systematic underestimation of O concentration below 86 km, whereas it was

insignificant for H retrieval. The results presented in Figures 4, 5 and 11 demonstrate that-the-, except for

high northern latitudes, there is a stable annual cycle of the NOCE boundary. The monthly mean

boundary can rise up to geometrical altitudes of 82-83 km (~(5.2-6.2)-10° hPa) at low latitudes and up to
84-85 km (~(3.7-4.4)-10° hPa) at middle and high latitudes. Thus, the SABER O data below these
altitudes/pressures may be essentially incorrect and the retrieval approaches without using the NOCE

condition (e.q., Panka et al., 2018) should be more appropriate.

Note that the NOCE condition was used not only for O and H derivation from satellite data. This

assumption is a useful approach helping (i) to study hydroxyl emission in the MLT region with simulated

and measured data, in particular, OH* mechanisms, morphology and variability caused, for example, by

atmospheric tides and gravity wave activity (e.q., Marsh et al., 2006; Nikoukar et al., 2007; Xu et al.,
2010, 2012; Kowalewski et al., 2014; Sonnemann et al., 2015); (ii) to analyze the MLT response to

sudden stratospheric warmings (SSWs) (e.q., Smith et al., 2009): (iii) to derive exothermic heating rates

of MLT (e.q., Mlynczak et al., 2013b); (iv) to analytically simulate the mesospheric OH* layer response

to gravity waves (e.qg., Swenson and Gardner, 1998); and (v) to derive the analytical dependence of

excited hydroxyl layer w

obtatned—results—from—the—point—ofviewnumber density and peak altitude on atomic oxygen and
temperature (e.q., Grygalashvyly et al., 2014; Grygalashvyly, 2015). Perhaps some results require

revision or reanalysis taking the NOCE boundary into account. For example, Smith et al. (2009) used the

NOCE condition to analyze the ozone perturbation in the MLT, in particular, during the SSW at the

beginning of 2009 (the central day was January 24). Our preliminary results of processing the SABER
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and simulated data in January 2009 show that the NOCE boundary above 70°N may jump from ~80 km to

~90-95 km due to a short-time abrupt temperature fall above 80 km during this SSW. Thus, one can

assume that the NOCE condition is not a good approximation for the description of ozone variations

directly in the process of SSWs. This case will be studied in a separate work. Note also that after the SSW

of January 2009 there began a long-time (several tens of days) event of elevated (up to ~80-85 km)

stratopause (see, e.q., Figure 1 in Smith et al. (2009)), which led to the corresponding increase of

temperature above 80 km. The occurrence of this event and its duration are in a good correlation with

sharp lowering of the NOCE boundary at high northern latitudes (see Figures 4 and 11). Moreover, all
abrupt changes of the NOCE boundary at these latitudes in January-March of other pessible-applications
of-thisfeature-years (2004, 2006, 2010, 2012, 2013, 2018, and 2019) can be also associated with the

elevated stratopause events in these yvears (see Garcia-Comas et al. (2020) and references there).

Ihe—eamed—eat—an&%m—rex%musual—behaw%ef—Accordlnq to the used chemical-transport
model, the NOCE boundary 2

2013,2018reproduces well the transition zone dividing deep and 2@%9—A4-Hhese44m&peﬂedsﬂare4mewn

stratopause-eventsweak diurnal oscillations of O and H (see Gareia-Comas—et-al—(2020)-and-references

there)—Thus—we-can-speculate-that-Figures 1-3). We verified this feature with the annual run of SD-
WACCM-X model for the year 2017 provided by the NCAR High Altitude Observatory

(https://doi.org/10.26024/5b58-nc53). Despite the low time resolution of the downloaded data (3-hour

averaging), we obtained the results (see Figure 13) similar to Figures 1-3. Note also that both models give

the same consistence between the altitudes of the NOCE boundary ef-NOCE-is-sensitive-to-sporadic
abrupt-changes—in-the-dynamics—of-the—middle—atmosphereand the mentioned transition zone at high

latitudes in spring and autumn.

The space-time evolution of the NOCE boundary expressed in terms of pseudeheightspressure
altitudes contains a clear signal of the 11-year solar cycle in the range-o6f-55°S-55°N_range, which is

suppressed mainly at high latitudes. The weak correlation of zzz2%h,,” with Fy,, index at seuth-high
southern latitudes may be caused by the mentioned data gaps due-tespecified by the satellite sensing

geometry. The same reason and distortions by sudden-stratospheric-warming;SSWs evidently; determine
no correlation at rerth-high northern latitudes. Thus, zzz"%-at low and middle latitudes heqy_can be

considered as a sensitive indicator of solar activity. FheBelow, we present a simple and short explanation

for this. Let us consider the NOCE criterion (9) at the pressure level p,,:

13
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VER(Peq) = VERmin (T, M(peq)).

In a zero approximation

k107 (Peq)'M(peq)'<k4'02 (peq)‘M(Peq)'(l—kslgk6)+k2‘03 (Peq)>'A(TJM(peq))

VERmn = 20 - - =
2
20 - K1k (02(Peq)M(Peq ) A(T.M(Peq))  kyka(Peg/T)*A(TDeq) _ exP(470/T)Peg*A(T Deq)
ko k, T8.2 1
where A(T,peq) =
0.47-118.35 0.34-117.21

Peq Peq+17806+4810 13.0, Mpeq+710 13., Mpeq+
215.05 +2.5:10711:0, /M -2+ 3.36:10~ 13eTN/M o / /M e

T
0.47-117.21-(20.05 + 4.2-107 2.0, /M pﬂ+ 4-10713.N, /M- peq)

220
(215.05 + 2.5-10~11.0 /Mpeq+33610 130T .Ny/M - peq)(17806+4810 1302/Mpeq+710 13N, /ML

Peq

Our analysis of A(T, p,,)_shows that this function can be approximately rewritten as A(T,p.,) =

const

Peg: So, one can see that VER,,;,,_is strongly dependent on T. Moreover, it anticorrelates

const +
const+——

with T. Gan et al. (2017) and Zhao et al. (2020) analyzed the simulated and measured data and revealed a

clear correlation between the MLT temperature above 80 km and the 10.7-cm solar radio flux. Moreover,

the dependence of the correlation coefficient of T_with F;,,_index on latitude in the 55°S-55°N range

given in Figure 9 in the paper by of Zhao et al. (2020) is consistent with our Figure 9 (left panel), taking

into account the sign of the correlation. Thus, we can conclude that the found anticorrelation of the NOCE

boundary h,,” with solar activity is caused by the strong connection with temperature, which, in turn, is

in a good correlation with the F;, -, index. A detailed analysis of the reasons why the solar cycle deesnot
manifestweakly manifests itself in the spatio-temporal variability of z.—+requires-a-separatestudy-z,,” is
not so simple and is beyond the scope of this work.

Figures—6-and-15-present-Figure 5 illustrates an interesting peculiarity. At middle latitudes, the
summer zwﬁheqm and #z5z.,™ are remarkably (ferby several kilometers) higher than_the winter ones,

while the opposite relationship could be expected. Due to more effective daytime HOx photoproduction at
these altitudes, the summer H values at the beginning of rightsthe night are higher than the ones in
winter. So, the summer ozone lifetimes should be lessshorter and the NOCE condition ef-NOCE-is more

favorablefavourable than in winter. Nevertheless, the same ratio between the summer and winter-the
NOCE boundaries at middle latitudes was revealed in Belikovich et al. (2018) and Kulikov et al. (2018a),

where the boundary of this equilibrium was determined by direct comparison of 0; and 0;°¢
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concentrations from results of 3-B3D chemical-transport models. Based on the results #of Section 3,
enewe can assume that the discussed effect is connected with the height position of the transition zone,
which demonstrates the same variation (see Figures 1-3). Kulikov et al. (2023) derived the equations

describing pure chemical O and H nighttime evolution:

=2k M0y H—=2ky H- 0
2
d_H:_2.k4.M.02.M.H_
dt ks O

(3012
)

Neglecting the second term in the first equation as a secondary one, this system can be solved analytically
selved, so that the nighttime evolution times of O and H are-as-foHews:

=_0 __1 (o _ _k5+k6)_ _
T0_|d0/dt|_2'k4'M'02 (H)tztbn (1 k3 (t tbn)v

(13
)
= H = 1 . ks . 2 _ k3 _ . _
T = lanjatl T zka M0, kst (H)tztbn (k5+k6 1) (t — ton),
(1214
)
where t;,, is the time of the beginning of the night, (%) is the O /H ratio 8/H-at the beginning of the
t=tpn

night. Note that k5 is essentiathymuch larger than k< + k, (see Table 1). BasingBased on the daytime O
and H distributions in the mesopause region obtained in Kulikov et al. (2022), we calculated 8/H-i-the
ratio of the summer and0/H_to the winter- O/H (see Figure 14). During the summer, this+atioO/H at

middle latitudes is remarkably less than in winter_in both, northern and southern hemispheres, whereas

the air concentration increases-and the rate of reaction R4 (see Table 1) increase due to a decrease in

temperature. As thea result, the summer 7, and 7 are essentially fessshorter than their winter values-that

explain, which explains the summer rise of the transition zone and the NOCE boundary.

Finally, let us briefly discuss other qualitative indicators of the NOCE boundary, which could be
found in the SABER database. As mentioned above, Kulikov et al. (2019) showed that the nighttime O

SABER profiles are correct above the NOCE boundary, whereas the H profiles hold within the whole

pressure interval. Kulikov et al. (2021) demonstrated that, in the altitude range of 80-85 km, many H

profiles have a sharp jump in concentration when it increases from ~ 10’ cm™ to ~ 10% cm®. Our analysis
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with the criterion (9) shows that the altitude of these jumps can be used as a rough indicator of the NOCE

boundary.

7 Conclusions

The NOCE criterion is not only thea useful technical eharacteristics-toretrieve-O-characteristic for

the retrieval of O from satellite data, but it also reproduces the transition zone position; which

eividesseparates deep and weak diurnal oscillations of O and H at low and middle latitudes.

Fhe-At middle latitudes, the summer boundary of NOCE is remarkably (by several kilometers)

higher than the winter one, which is accompanied with the same variation of the transition zone. This

effect is explained by the markedly lower values of the O and H nighttime evolution times in summer

than in winter by virtue of the lower values of the O/H ratio at the beginning of the night and air

concentration increase.

The NOCE boundary according_to the criterion is sensitive to sporadic abrupt changes in the

dynamics of the middle atmosphere.

The NOCE boundary at low and middle latitudes expressed in pseudoheightpressure altitudes

contains a clear signal of 11-year solar cycle and can be considered as_a sensitive indicator of solar

activity.

Data availability. The SABER data are obtained from the website (https://saber.gats-inc.com). The data
of solar radio flux at 107 cm in  2002-2021 were downloaded  from
http://www.wdcb.ru/stp/solar/solar_flux.ru.html and https://www.spaceweather.gc.ca/forecast-

prevision/solar-solaire/solarflux/sx-5-en.php.
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679  Table 1. List of reactions with corresponding reaction rates (for three-body reactions [cm® molecule™

680 s '], for two-body reactions [cm® molecule™ s™']) taken from Burkholder et al. (2020).

Reaction Rate constant

R1 | O+0;+M — O3z+M k, = 6.1-1073%(298/T)?**
R2 | H+O3 - O,+0OH k, = 1.4-10"Pexp(—470/T)
R3 | O+HO,— O,+OH k; = 3- 10 '1exp(200/T)
R4 | H+Oy+ M— HO,+M k, = 5.3-10732(298/T)'®
R5 | H+HO,— Oy*H, ks = 691012
R6 | H+HO, — O+H,0 ke = 161012
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786 | Figure 12. Lineartrendin—<-—z7*>Time evolution of annually mean geometrical altitude z.,” at
787 | different latitudes-derived-from-multiregression-analysis.-.
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Figure 13. O and H time-height variations above different points

correspondingly. Dark bars mark

daytime, light bars mark nighttime. Black lines point the NOCE boundary altitude according to criterion (5)

transport model CMAM. Concentrations are normalized by mean daily values
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Figure 14. Logarithm of the ratio of (O/H),,_and (0/H),_distributions obtained with the use of daytime

seasonally mean distributions of O and H averaged in 2003-2015. (0O/H),,_was determined from the
SABER data measured in December, January, and February. (O/H), was determined from the SABER
data measured in June, July, and August.
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