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Abstract. Siloxanes are composed of silicon, oxygen, and alkyl groups and are emitted from consumer chemicals. Despite 12 

being entirely anthropogenic, siloxanes are being detected in remote regions and are ubiquitous in indoor and urban 13 

environments. Decamethylcyclopentasiloxane (D5) is one of the most common cyclic congeners, and smog chamber and 14 

oxidation flow reactor (OFR) experiments have found D5 + OH to form secondary organosiloxane aerosol (SOSiA). However, 15 

there is uncertainty about the reaction products, and the reported SOSiA mass yields (YSOSiA) appear inconsistent. To quantify 16 

small volatile oxidation products (VOP) and to consolidate the YSOSiA in the literature, we performed experiments using a 17 

Potential Aerosol Mass OFR while varying D5 concentration, humidity, and OH exposure (OHexp). We use a proton transfer 18 

reaction time-of-flight mass spectrometer to quantify D5, HCHO, and HCOOH, and detect other VOP, which we tentatively 19 

identify as siloxanols and siloxanyl formates. We determine molar yields of HCHO and HCOOH between 52 – 211 % and 45 20 

– 127 %, respectively. With particle size distributions measured with a scanning mobility particle sizer, we find YSOSiA to be < 21 

10 % at OHexp < 1.3 × 1011 s cm-3 and ~20 % at OHexp corresponding to that of the lifetime of D5 at atmospheric OH 22 

concentrations. We also find that YSOSiA is dependent on both organic aerosol mass loading and OHexp. We use a kinetic box 23 

model of SOSiA formation and aging (aging-VBS model) to reconcile the YSOSiA values found in this study and the literature. 24 

The model uses a volatility basis set (VBS) of the primary oxidation products as well as an aging rate coefficient in the gas 25 

phase, kage,gas, of 2.17 × 10-11 cm3 s-1, and an aging rate coefficient in the particle phase, kage,particle, which is ten times smaller. 26 

The combination of primary VBS and OH-dependent oxidative aging predicts SOSiA formation much better than a standard-27 

VBS parameterization  that does not consider aging (R2 = 0.970 vs. 0.847). The need for an ageing-dependent parameterization 28 

to accurately model SOSiA formation shows that concepts developed for secondary organic aerosol precursors, which are able 29 

to form low-volatile products at low OHexp, do not necessarily apply to D5 + OH. The resulting yields of HCHO and HCOOH 30 

and the parameterization of YSOSiA may be used in larger scale models to assess the implications of siloxanes on air quality. 31 

 32 
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 34 
Graphical Abstract: Schematic of the kinetic box model. 35 
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1 Introduction 54 

Organosiloxanes are molecules composed of silicon-oxygen bonds with alkyl groups on the silicons and encompass linear and 55 

cyclic species, some of which have vapor pressures on par with volatile organic compounds (VOC). Siloxanes are entirely 56 

anthropogenic pollutants (Rücker and Kümmerer, 2015) commonly used in consumer and industrial chemical products (Seltzer 57 

et al., 2021a; Gkatzelis et al., 2021) and their emissions are projected to increase in the coming decades (Tansel and Surita, 58 

2017). Decamethylcyclopentasiloxane (D5, C10H30O5Si5), where “D” refers to units of (CH3)2SiO, is a ubiquitous cyclosiloxane 59 

in the ambient environment. 60 

 61 

Siloxanes can be detected in the indoor environment (Tang et al., 2015; Tran and Kannan, 2015; Arata et al., 2021; Katz et al., 62 

2021; Kaikiti et al., 2022; Wang et al., 2022), near landfills (Schweigkofler and Niessner, 1999), and sewage treatment sites 63 

(Lee et al., 2014; Horii et al., 2019). Siloxanes are also found in outdoor urban air (Xiang et al., 2021), and organosilicon 64 

compounds have been found in varying amounts in ambient particulates in China (Lu et al., 2019; Cheng et al., 2021; Meng 65 

et al., 2021; Song et al., 2022; Xu et al., 2022) and the United States (Milani et al., 2021). 66 

 67 

Siloxanes are suspected to be environmentally persistent or “pseudo persistent” (Howard and Muir, 2010; Xiang et al., 2021), 68 

but this long-lifetime assessment is disputed (Graiver et al., 2003; Whelan and Kim, 2021). Reaction rate coefficients of D5 69 

with atmospheric oxidants have been reported, and Atkinson (1991) found D5 to be effectively unreactive with atmospheric 70 

concentrations of O3 (kD5+O3 < 3 × 10-20 cm3 s-1) and NO3 radicals (kD5+NO3 < 3 × 10-16 cm3 s-1) at ~298 K. While D5 is reactive 71 

with OH and Cl, Alton and Browne (2020) calculated that the removal of D5 by Cl radicals would only be a few percent of 72 

that by OH radicals at typical ambient oxidant concentrations. 73 

 74 

Atkinson (1991), Safron et al. (2015), Xiao et al. (2015), Kim and Xu (2017), and Alton and Browne (2020) have measured 75 

kD5+OH at ~298 K to be 1.55 × 10-12, 2.6 × 10-12, 2.46 × 10-12, 1.46 × 10-12, and 2.1 × 10-12 cm3 s-1, respectively. These 76 

measurements are summarized in Table S1. Xiao et al. (2015) derived kD5+OH computationally as 2.90 × 10-12 cm3 s-1. In this 77 

paper, we use kD5+OH = 2.0 × 10-12 cm3 s-1, which is a rounded average of the empirically determined rate coefficients. This 78 

kD5+OH corresponds to a D5 atmospheric lifetime of ~4 days via removal by OH, assuming a daily average OH concentration 79 

([OH]avg) of 1.5 × 106 cm-3. 80 

 81 

D5 is expected to suppress O3 formation in urban environments. Carter et al. (1993) performed a series of chamber experiments 82 

mimicking urban air conditions and found that D5 siloxane would inhibit ozone formation by suppressing the OH radical. In 83 

contrast, formaldehyde (HCHO) is known to contribute to O3 formation (Derwent et al., 1996). Fu et al. (2020) predicted the 84 

formation of HCHO as a product of D5 + OH at low NO/HO2 conditions using quantum chemical calculations and kinetics 85 

modelling, but an experimental yield of HCHO from D5 + OH has not been reported. Atkinson (1991) proposed HCHO as a 86 
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product of the siloxane alkoxyl radical (RO) pathway, assuming an analogous mechanism to that of VOC. Sommerlade et al. 87 

(1993) suggested that HCHO may arise from siloxane RO decomposition and from ROOH rearrangement in the presence of 88 

acids and H2O. Alton and Browne (2022) predicted HCHO as a product of RO2 rearrangement in the case of D3 siloxane. 89 

Because HCHO is a secondary product, the O3 formation potential of D5 may differ between source and downwind locations. 90 

 91 

Formic acid (HCOOH) is a common acid catalyst in the atmosphere (Hazra et al., 2014)  and a particle-nucleating species (Yu, 92 

2000). Studies have identified some HCOOH sources in the atmosphere (Millet et al., 2015; Franco et al., 2021), however, 93 

HCOOH is suspected to have unidentified anthropogenic sources in the troposphere (Millet et al., 2015; Chen et al., 2021)  as 94 

some urban sources remain unaccounted for (le Breton et al., 2012; Yuan et al., 2015). Chandramouli and Kamens (2001) 95 

proposed that the RO2 initially formed from D5 + OH makes a siloxanyl formate (D4T-OCHO, where “T” refers to CH3SiO) 96 

that reacts with H2O to a siloxanol (D4T-OH) and HCOOH. However, we are unaware of experimental HCOOH yields reported 97 

for D5 + OH.  98 

 99 

Whelan et al. (2004) used known siloxane chemistry in a partitioning model to assess the atmospheric fate of siloxanes and 100 

found that silanols are the predominant oxidation products. These silanols are generally water soluble and either removed from 101 

the atmosphere via wet deposition, or undergo a pH-dependent process of hydrolysis, forming smaller and smaller silanols 102 

(Whelan et al., 2004). Eventually, the small silanols are converted to SiO2, H2O, and CO2 through photolytic reactions in water 103 

or biological processes in soil (Spivack et al., 1997; Stevens, 1998; Graiver et al., 2003). 104 

 105 

The intermediate products between D5 and those small silanols are less well studied. The intermediates may be composed of 106 

a variety of alcohols, aldehydes, and hydroperoxides if the reaction mechanisms of D5 behave in a similar manner to that of 107 

organics, with oligomers in the condensed phase (Chen et al., 2023). However, there is evidence that siloxanes do not 108 

necessarily follow such reaction mechanisms (Sommerlade et al., 1993; Alton and Browne, 2020, 2022), so there is a need to 109 

understand the formation of volatile oxidation products (VOP) and secondary aerosol. 110 

 111 

Secondary aerosol mass yield (Y, Eq. 1) is defined as the ratio of produced aerosol mass (Δm(SOSiA)) to reacted precursor 112 

mass (Δm(D5)), which we adopt here for secondary organosiloxane aerosol (SOSiA). Reports about secondary aerosol 113 

formation from D5 siloxane are conflicting, with some experiments reporting much higher YSOSiA than others. For instance, Wu 114 

and Johnston (2017) and Janechek et al. (2019) saw maximum YSOSiA of 23 % and 50 %, respectively, in their photo-oxidation 115 

chamber and oxidation flow reactor (OFR) experiments, albeit at different OH exposures (OHexp). Charan et al. (2022) found 116 

a YSOSiA of 158 % with their OFR at an OHexp of 3.2 × 1012 s cm-3. Avery et al. (2023) reported a wide range of YSOSiA (2 – 146 117 

%) from their PAM-OFR experiments. 118 

 119 
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𝑌𝑌SOSiA = ∆𝑚𝑚(SOSiA)
∆𝑚𝑚(D5)

      (1) 120 

 121 

In contrast, Charan et al. (2022) reported almost negligible YSOSiA (< 5 %) from their chamber studies where [OH] was on the 122 

order of ~106 cm-3, which is closer to [OH] found in ambient conditions (Peng and Jimenez, 2020). Han et al. (2022) conducted 123 

OFR experiments and found that YSOSiA would be 2 % at [OH] of 4.6 × 108 cm-3 or OHexp of 5.5 × 1010 s cm-3. The variation of 124 

YSOSiA reported in the literature suggests that oxidation conditions need to be considered to accurately parameterize YSOSiA, 125 

especially given that D5 is being considered in air quality models as a part of volatile chemical product inventories (Pennington 126 

et al., 2021; Seltzer et al., 2021a, b). In this study, we aim to develop parameterizations that reconcile the reported YSOSiA for 127 

use in such air quality models. 128 

2 Method and Materials 129 

2.1 Experiments 130 

The Aerodyne Research (Billerica, MA, USA) PAM-OFR (Kang et al., 2007) has a volume of 13.3 L and is made of chromated 131 

aluminum (Xu and Collins, 2021). We operated the PAM-OFR in “OFR185” mode (Peng and Jimenez, 2020), where 185 nm 132 

lamps that also emit 254 nm light (GPH436T5VH, LightSources, Orange, CT, USA) generate OH and O3 with injected H2O 133 

vapor from a Nafion humidifier (FC-100-80-6MKK, Perma Pure, Lakewood, NJ, USA). There were two of these 185 nm 134 

lamps placed across from each other in clear fused quartz sleeves. The 185 nm lamps were wrapped with covers at even 135 

intervals to reduce the UV intensity so that 90 % of the lamp surface was covered. We operated the PAM-OFR at residence 136 

times (τres) of 120 and 180 s with flow rates of 6.65 and 4.43 L min-1, respectively. Additional details about the experiment 137 

setup are summarized in Fig. S1 and Sect. S1. 138 

 139 

We used the D5 siloxane trace measured from the proton transfer reaction mass spectrometer (PTR-MS) to calculate OHexp 140 

with Eq. (2), where kD5+OH = 2.0 × 10-12 cm3 s-1. [D5]0 and [D5]final are the D5 concentrations before and after the exposure to 141 

OH. 142 

 143 

OHexp = − 1
𝑘𝑘D5+OH

× 𝑙𝑙𝑙𝑙 �[D5]final
[D5]0

�      (2) 144 

 145 

Prior to experiments, we checked the background particle and D5 concentrations with the scanning mobility particle sizer 146 

(SMPS) and PTR-MS. In all experiments, the background particle number concentrations were < 10 cm-3, and the background 147 

[D5] were below the limit of detection (3σ = 80 ppt). Then, we injected D5 with a syringe pump while monitoring the PTR-148 

MS, with major ions at m/z 371 and m/z 355. We performed the experiments with target [D5]0 of 50, 100, or 200 ppb. With 149 

these target [D5]0, we get external OH reactivities (OHRext) of 2.5 – 9.8 s-1 at 298 K and 1 atm (Peng and Jimenez, 2020). 150 
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 151 

When the D5 trace stabilized near the target [D5]0, we began the experiment by turning on the UV lamps in the PAM-OFR to 152 

either 2.4 or 8.0 V. We waited 30 minutes for the UV lamps to stabilize and for the PAM-OFR walls to equilibrate with gaseous 153 

species. The YSOSiA (Eq. (1)) were calculated using the average SOSiA mass concentration from four SMPS cycles following 154 

those 30 minutes. We obtained Δm(D5) as the difference between [D5]0 and [D5]final. At the end of an experiment, we turned 155 

off the UV lamps to check the D5 trace return.  156 

 157 

To clean the PAM-OFR between experiments, we stopped the syringe pump and removed the syringe from the glass bulb 158 

while keeping the humid air flow through into the PAM-OFR. We turned on the PAM-OFR UV lamps and connected the 159 

outlet directly to the exhaust, until D5 and particle number concentrations we below the limit of detection. We used Igor Pro 9 160 

(Wavemetrics, Portland, OR, USA) for data post-processing and visualization. 161 

2.2 Instrumentation 162 

2.2.1 PTR-MS 163 

To measure D5 and VOP, we used a PTR-MS (PTR-TOF 1000, Ionicon Analytik, Innsbruck, Austria) equipped with the 164 

extended volatility range (EVR) option (Piel et al., 2021), where the wetted inlet components and the drift tube are passivated 165 

with a silicon coating. The PTR-MS also had ion transfer lens between the drift tube and time-of-flight mass spectrometer 166 

(Jordan et al., 2009). An internal permeation source (PerMaSCal) emitted a steady stream of 1,3-diiodobenzene into the mass 167 

spectrometer for mass calibration scale adjustments. Additional PTR-MS details are in Sect. S1. 168 

 169 

To reduce H2O clusters at high humidities, we operated the PTR-MS at 137 Td (Udrift = 600 V, Td = Townsend, 1 Td = 10-17 170 

V cm2) for quantification. The drift tube pressure and temperatures were set to 2.30 mbar and 80 °C. For the reagent ion source, 171 

we set the Us, Uso, and the H2O flow rate to 150 V, 80 V, and 6.00 sccm respectively. The ion source hollow cathode discharge 172 

current was set to 5.0 mA. The PTR-MS drift tube was 9.6 cm long, and at 137 Td, the (H2O)H+ reaction time (Δt) was 94 µs 173 

(de Gouw et al., 2003). We calculated the primary reagent ion signal, (H2O)H+, by multiplying the signal of its isotope, 174 

(H2
18O)H+, by 500. 175 

 176 

We used the PTR-MS data for the quantification of D5 (m/z 371), HCHO (m/z 31), and HCOOH (m/z 47), where the primary 177 

reagent ion counts were normalized to 106 counts per second (ncps). For D5, we used a calibration gas cylinder (Apel-Riemer 178 

Environmental, Miami, FL, USA) containing D5 to calibrate the PTR-MS. We also calculated the normalized measurement 179 

sensitivity (ncps ppb-1) of D5, HCHO, and HCOOH using Eq. (3) adapted from de Gouw and Warneke (2007). I(VOC)H+ and 180 

I(H2O)H+ are the ion counts of the protonated VOC and the reagent ion respectively. Additional details on the mass spectra 181 

interpretation and quantification are in Sect. S1.5 and S3. 182 
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 183 

   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =

𝐼𝐼(VOC)H+
𝐼𝐼(H2O)H+

×106

[VOC]
     (3) 184 

 185 

We tested the instrument sensitivity response with humidity by keeping the species concentrations constant while changing 186 

the sample air humidity. The sensitivity of D5 at m/z 371 was not heavily affected by humidity at 137 Td, and we did not 187 

correct for humidity in the D5 quantification (Fig. S5). On the other hand, HCHO and HCOOH sensitivities varied with 188 

humidity, and we corrected their sensitivities as detailed in Sect. S3. Prior to experiments, we tuned the micro channel plate 189 

(MCP) to prevent signal bias against higher mass ions (Müller et al., 2014). We adjusted the MCP voltage in steps to increase 190 

the signal strength at m/z 331, a PerMaSCal ion, until the relative signal increase was < 20 %. 191 

2.2.2 Scanning Mobility Particle Sizer 192 

An SMPS (Model 3938, TSI, Shoreview, MN, USA) equipped with an impactor (0.0508 cm) measured the particle mobility 193 

diameter size distribution between diameters of 14.3 to 723.4 nm. The SMPS consisted of a Model 3082 Electrostatic 194 

Classifier, a Model 3081A Differential Mobility Analyzer (DMA), a Model 3088 Soft X-ray Neutralizer, and a Model 3756 195 

Ultrafine Condensation Particle Counter. We set the SMPS sheath flow at 3.0 L min-1 and the aerosol flow rate at 0.3 L min-1, 196 

and the DMA voltage ranged from 10.6 to 9921.4 V. The SMPS scanned for 150 s, followed by a 5 s retrace and 10 s purge 197 

while recording on a 3 min cycle. We referred to the manufacturer’s recommendations when deciding the above SMPS settings 198 

(TSI Inc., 2012), and a sample particle size distribution from experiment 12 (Table 1) is shown in Fig. S4. 199 

 200 

For the YSOSiA calculations, we converted the SMPS integrated particle volumes into mass using a SOSiA mass density (ρSOSiA) 201 

of 1.07 g cm-3 for all experiments. We obtained this ρSOSiA from PAM-OFR experiments separate from the ones described here, 202 

where we weighed the masses of SOSiA collected on filters and particle volumes with the SMPS. Additional details on ρSOSiA 203 

are available in Sect. S2. 204 

2.3 Volatility Distribution Parameterization 205 

Janechek et al. (2019) and Charan et al. (2022) fitted their YSOSiA data to the Odum two-product model (Odum et al., 1996) and 206 

we follow the same methodology for comparison with the literature (Sect. S4). Similarly, we fit the standard volatility basis 207 

set (VBS) parameters α (Donahue et al., 2006) in Eq. (4) to the measured Δm(SOSiA) using the measured Δm(D5), where αi is 208 

the product mass yield for volatility bin i.  209 

 210 

∆𝑚𝑚(SOSiA) = ∆𝑚𝑚(D5) × ∑ 𝛼𝛼𝑖𝑖

1+
𝐶𝐶𝑖𝑖
∗

𝐶𝐶OA

𝑛𝑛
𝑖𝑖=1      (4) 211 

 212 
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In the experiments, the organosiloxane aerosol mass loading (COA) was equivalent to the SOSiA mass concentrations. As the 213 

produced aerosol mass in the experiments ranged from 3.7 to ~1000 μg m-3, we use six logarithmically spaced effective 214 

saturation mass concentration (C*) bins ranging from 0.1 to 10000 μg m-3
 at 298 K to cover the low and high-volatility products. 215 

For reference, D5 liquid has a vapor pressure of 20.4 Pa at 298 K or C* = 3.05 × 106 μg m-3 (Lei et al., 2010). 216 

 217 

As the experiments were performed for a range of OHexp, the products between experiments may have varied due to 218 

multigenerational aging (Zhao et al., 2015). To account for aging and parameterize YSOSiA as a function of OH exposure, we 219 

also analyse the yield data using a kinetic box model with four chemical reactions (R1–R3) written in MATLAB (MathWorks, 220 

Natick, MA, USA). 221 

 222 

D5 + OH → ∑ αi × prod(i)   (kD5+OH = 2.0×10-12 cm3 s-1) (R1) 223 

(1- fi) × prod(i) + OH → (1- fi) × prod(i-1) (kage,gas, i = 2, …, 6)  (R2) 224 

fi × prod(i) + OH → fi × prod(i-1)     (0.1 × kage,gas, i = 2, …, 6)  (R3) 225 

 226 

Eq. (R1) describes the initial oxidation of D5 and formation of RO2, which immediately forms products of varying volatility 227 

(Eq. (R2)). Here, prod(i) refers to the sum of products (gas + particle) in volatility bin i, which are formed with a molar 228 

branching ratio αi. We assume that prod(i) have the same molecular weights (g mol-1) as D5, and so the αi are equivalent to the 229 

product mass yields at OHexp → 0. In the model, a fraction fi of each oxidation product partitions instantaneously from the gas 230 

phase to the particle phase according to absorptive partitioning theory (Donahue et al., 2006) (Eq. 5). 231 

 232 

𝑓𝑓𝑖𝑖 = � 1

1+
𝐶𝐶𝑖𝑖
∗

𝐶𝐶OA

�        (5) 233 

 234 

Eqs. (R2) and (R3) describe how OHexp causes volatility to decrease (Robinson et al., 2007). This decrease in volatility via 235 

“bin-hopping” (Sommers et al., 2022) occurs at a rate proportional to the chemical aging rate coefficient for gaseous species 236 

(kage,gas, cm3 s-1), with the oxidation of particle-phase products being ten times slower than that of the gas. Note that we assume 237 

that products in the lowest-volatility bin cannot be removed from that bin and that the highest-volatility bin does not receive 238 

product with aging (i = 2, …, 6). The [OH] are set by dividing the experimental OHexp from Eq. 2 by the PAM-OFR residence 239 

times. 240 

 241 

We use kage,gas and kage,particle as aggregate chemical aging rate coefficients, not specific to any species or volatility bin. Studies 242 

on chamber experiments (Robinson et al., 2007) and ambient measurements (Sommers et al., 2022) applied chemical aging 243 

only to the gas phase as heterogeneous aging is relatively slower. However, studies have found that the high oxidant 244 
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concentrations in OFRs would appreciably oxidize OA within experiment timescales (Kessler et al., 2012; Kroll et al., 2015). 245 

To accommodate OH uptake to the bulk phase, we follow the approach used by Zhao et al. (2015) and assume that the effective 246 

particle-phase aging rate coefficient (kage,particle) is equivalent to 10 % of the gas-phase aging rate coefficient (kage,gas). The 247 

timescales and atmospheric relevance of heterogeneous oxidation in OFRs are areas of ongoing research (Zhao et al., 2019; 248 

Peng and Jimenez, 2020), but for now we opt to fit a single chemical aging rate coefficient to reduce dimensionality. We use 249 

the Monte Carlo genetic algorithm (Berkemeier et al., 2017) to fit kage,gas and the six coefficients αi. 250 

3 Results and Discussion 251 

3.1 Volatile Organic Products (VOP) 252 

3.1.1 Siloxanol and Formate Ester Trends 253 

Fig. 1 shows the PTR-MS mass spectra for experiment 12 (Table 1), where [D5]0 and OHexp were high. The PTR-MS signals 254 

before and after D5 is oxidized are displayed relative to the protonated D5 ion at m/z 371 to identify changes more easily in the 255 

mass spectra. Using the mass spectra and species reported by Alton and Browne (2022), we attribute the indicated ions in Fig. 256 

1 to siloxanol (D4T-OH), siloxanediol (D3T2-(OH)2), siloxanyl formate (D4T-OCHO), and siloxanolyl formate (D3T2-OH-257 

OCHO). Here, “D” and “T” refers to units of (CH3)2SiO and CH3SiO respectively. The multifunctional VOP are reported to 258 

arise from multiple steps of oxidation (Alton and Browne, 2022). 259 

 260 

D5 siloxane loses a methyl group during the PTR, which forms a large signal at m/z 355. The isotopologues of the -CH3 261 

fragment of D5 overlap with fragments of VOP, which complicates the VOP identification. To separate the signal of the VOP, 262 

we use the ratios of the D5 signal and its -CH3 signals prior to oxidation. The red and pink shaded areas in the inset of Fig. 1 263 

refer to the enhancement in signal over that of the -CH3 fragment of D5, which we attribute to the -OH fragments of D4T-OH 264 

and D3T2-(OH)2, respectively. We use the masses of the -OH fragments of the siloxanols as large alcohols dissociate during 265 

the PTR (Brown et al., 2010). 266 

 267 

As we did not have calibration standards to quantify these VOP, we calculate the relative molar yields of the VOP to that of 268 

protonated D5 siloxane at m/z 371 to study the trends of siloxane VOP (Fig. 2). The y-axes in Fig. 2 are the relative molar 269 

yields (ncps/ncps), which refers to the change in signal attributed to a VOP over that of m/z 371. Δm371 refers to the change 270 

in the signal at m/z 371 before and after OH oxidation. In the right-side panels for each VOP in Fig. 2, the relative molar yield 271 

of VOP decreases with increasing OHexp (x-axes). This decrease in VOP signal is consistent with these gaseous products 272 

undergoing further oxidation or increased gas-particle partitioning due to higher COA at higher OHexp. 273 

 274 
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In the left-side panels for each VOP in Fig. 2, the relative signals of the VOP (y-axes) decreases with increasing OHexp (color 275 

scale). Then, assuming [OH] is consistent throughout the PAM-OFR, that D5 + OH is the rate-limiting step in VOP formation, 276 

and that removal via gas-particle partitioning is negligible, we can consider a simplified D5 + OH chemical mechanism, (R4) 277 

and (R5).  278 

 279 

D5 + OH → ∑ γi VOPi  (kD5+OH = 2.0 × 10-12 cm3 s-1)  (R4) 280 

VOPi + OH →   (kVOPi+OH)    (R5) 281 

 282 

In Eq. (R4), γi is the relative molar yield of a given VOPi found by extrapolating Δm(VOPi)/Δm371 (y-axes in Fig. 2) to OHexp 283 

→ 0 . With ordinary differential equations (ODE) from these reactions (Eq. (7) and (8)) and experimental inputs, we fit γi and 284 

the VOPi + OH rate coefficient (kVOPi+OH, cm3 s-1). The fits are shown as black lines in the right-side panels of each VOP in 285 

Fig. 2. 286 

 287 
𝑑𝑑[D5]
𝑑𝑑𝑑𝑑

= −𝑘𝑘D5+OH[D5][OH]      (7) 288 

 289 
𝑑𝑑[VOP𝑖𝑖]

𝑑𝑑𝑑𝑑
= 𝛾𝛾i𝑘𝑘D5+OH[D5][OH] − 𝑘𝑘VOP𝑖𝑖+OH[VOP𝑖𝑖][OH]    (8) 290 

 291 

The fitted kVOPi+OH for each VOP are on the order of ~10-12 cm3 s-1 (Table S7), but faster than kD5+OH, which suggests that these 292 

VOP have atmospheric lifetimes shorter than that of D5. Alton and Browne (2022) have estimated these VOP to be volatile 293 

with quantitative structure activity relationship models. However, there are uncertainties in those models, and the VOP may 294 

have lower saturation mass concentrations than expected. Moreover, the chemical mechanism might be more complex than 295 

the one outlined with the simple reactions (R4) and (R5). Consequently, we present these kVOPi+OH as estimates for secondary 296 

chemistry in this simplified reaction scheme, and future work using quantitative measurements should improve the calculated 297 

lifetimes of these intermediate D5 + OH products in the atmosphere. 298 

3.1.2 Formaldehyde (HCHO) Yields 299 

As shown in Table S8 and Fig. 3, the experimental molar yields of HCHO (YHCHO, ΔHCHO/ΔD5 in ppb/ppb) exceed 100 % at 300 

low OHexp and decrease with higher OHexp. We attribute the decreasing YHCHO with increasing OHexp to HCHO removal by OH 301 

in the PAM-OFR. HCHO has a lifetime of 0.91 days at [OH]avg = 1.5 × 106 cm-3 (Atkinson et al., 2006) or 78 s at [OH] = 1.5 302 

× 109 cm-3. In such high [OH] conditions, some HCHO is oxidized while being produced, which is consistent with the 303 

decreasing YHCHO with increasing OHexp (Fig. 3a1). Thus, we use the ODE from Eqs. (7) and (8) and a fixed kHCHO+OH = 8.5 × 304 

10-12 cm3 s-1 at 298 K to obtain the molar yield of HCHO as OHexp → 0, which we denote as γHCHO. 305 

 306 
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We fit γHCHO to be 269 % (black line in Fig. 3a2), assuming a constant [OH] in the PAM-OFR, that HCHO is rapidly formed 307 

from D5 + OH, and that HCHO removal via partitioning or reactive uptake is negligible. This γHCHO is consistent with the 308 

modeled yields of those for VOC used by Millet et al. (2006), who used γHCHO from chemical models ranging from 60 – 230 309 

% for a variety of VOC. Thus, D5 has a comparable γHCHO to that of isoprene or aromatic VOC. 310 

 311 

Fu et al. (2020) proposed a mechanism for D3 siloxane, where high YHCHO is produced under low NO/HO2 conditions. In that 312 

mechanism, RO2 rearrangement and RO H-shift rate coefficients become progressively faster as the D3 siloxane backbone is 313 

oxidized, and HCHO is produced at each rearrangement step. The γHCHO exceeding 100 % in these D5 experiments is consistent 314 

with HCHO production over multiple rapid oxidation steps. The results we report suggests that a similar HCHO production 315 

mechanism exists for D5. 316 

 317 

Mao et al. (2009) found that models under-predicted tropospheric HCHO during their aircraft campaign studying Asian 318 

pollution outflows into the Pacific ocean. This discrepancy between the measurements and calculations was pronounced near 319 

the surface and up to 2 km. They proposed that there is some missing OH reactivity, and that the unaccounted species would 320 

be reactive with OH and yield HCHO when oxidized. Based on the D5 experiments present here, the inclusion of siloxane 321 

species may reduce the HCHO formation gap; Coggon et al. (2021) already noted that including volatile chemical products in 322 

their model would increase HCHO production. 323 

 324 

The large formation of HCHO may entail that D5 siloxane could contribute to O3 formation, albeit indirectly. We were unable 325 

to observe O3 enhancement due to the high concentrations of O3 produced from the PAM-OFR internal chemistry itself and 326 

the lack of NOx. Given that kD5+OH is relatively slow compared to that of other common anthropogenic VOC, we suspect that 327 

the oxidation of D5 will occur downwind of urban sources in low-NOx conditions or in cases of air stagnation. Whether D5 has 328 

a net positive or negative effect on O3 formation in these VOC/NOx scenarios needs to be assessed with models. To get a rough 329 

estimate of O3 production, we consider a case where 20 ppt of D5 react with OH to form 40 ppt of HCHO, which also fully 330 

react. This D5 concentration is within the range reported by Coggon et al. (2018) in ambient urban air. The molar maximum 331 

incremental reactivity (MIR) of HCHO under high-NOx conditions is ~20 % (Carter et al., 1995), which makes HCHO a 332 

prominent precursor for tropospheric O3. By multiplying the MIR with the HCHO reacted with OH, we can estimate an O3 333 

formation potential of 8 ppt from D5 in urban air. 334 

3.1.3 Formic Acid (HCOOH) Yields 335 

We find molar yields of HCOOH (YHCOOH, ΔHCOOH/ΔD5 ppb/ppb) between 45 – 127 %, as shown in Fig. 3b, although a 336 

trend with OHexp is not obvious (Fig. 3b).We assume HCOOH loss via OH oxidation to be minor given the rate coefficient of 337 

kHCOOH+OH = 4.5 × 10-13 cm3 s-1 at 298 K (Atkinson et al., 2006), which corresponds to 17 days of OHexp at [OH]avg = 1.5 × 106 338 

cm-3
 or an OH-oxidation lifetime of 440 s in our highest OHexp experiment. In addition to D4T-OCHO hydrolysis, HCOOH 339 
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may have been produced by heterogeneous reactions of HCHO at the surface of the SOSiA or the OFR walls in these humid 340 

experiments. In the atmosphere, HCOOH is presumed to form heterogeneously from HCHO and methanediol (HOCH2OH) in 341 

the presence of wet particles (Franco et al., 2021). 342 

 343 

The YHCOOH from D5 + OH we report are higher than the values from isoprene + OH (Link et al., 2020) or monoterpene + OH 344 

reported by Friedman and Farmer (2018), who quantified the YHCOOH of 7 monoterpenes at varying OHexp without NOx. The 345 

range of YHCOOH from these references is shown as shaded areas in Fig. 3b2. The YHCOOH from D5 is on par with the humid 346 

isoprene ozonolysis cases reported by Link et al. (2020). Friedman and Farmer (2018) also used a PAM-OFR, but with 254 347 

nm UV lamps in dry conditions (~1 % RH), and Link et al. (2020) used a reaction chamber, which limits a direct comparison 348 

with our results. Nevertheless, Friedman and Farmer (2018) found YHCOOH of 0.64 – 8.5 % at OHexp = 2.0 × 1011 s cm-3. Aside 349 

from the different precursor VOC and mechanism, Friedman and Farmer (2018) may have encountered less heterogenous 350 

production of HCOOH due to the dry OFR conditions. Our laboratory findings suggest that D5 siloxane should be considered 351 

as an atmospheric HCOOH source. 352 

3.2 SOSiA Mass Yields 353 

3.2.1 Volatility Basis Set Parameterization 354 

The Odum two-product model does not reconcile the YSOSiA in the literature in the high COA range (Sect. S4), so we apply a 355 

VBS model. Fig. 4a shows the fitted aerosol mass yield curve (black line) using a standard-VBS model (Eq. (4)), but the YSOSiA 356 

(y-axis) appears to depend on both COA (x-axis) and OHexp (color scale). To address whether accounting for the varying OHexp 357 

in these experiments would improve the VBS model outputs, we fit the produced SOSiA mass using a standard-VBS model 358 

(Eq. (4)) and a kinetic model with VBS and chemical aging rate coefficients (“aging-VBS model”, Eqs. (R1) – (R3)) based on 359 

OHexp and [D5]0 (Table 1). We fit kage,gas in Eq. (R2) to be 2.17 × 10-11 cm3 s-1. The fitted VBS parameters are summarized in 360 

Table S11. 361 

 362 

In both the standard and aging-VBS model fits (blue and red, respectively in Fig. 4b), ~95 % of the D5 + OH product mass is 363 

in the gas phase at a COA of 10 µg m-3. The high fraction of gaseous products is consistent with low YSOSiA in the lower OHexp 364 

experiments, whereas additional oxidation in the higher OHexp experiments leads to a shift towards products that partition into 365 

the particle phase, thus increasing YSOSiA. Secondary organic aerosol (SOA) often exhibits a maximum yield as a function of 366 

OHexp, after which the yield decreases due to fragmentation becoming dominant at high OHexp (Isaacman-VanWertz et al., 367 

2018). We do not find such a maximum in the range of OHexp studied, which suggests that an even higher YSOSiA could have 368 

been found at higher OHexp. Moreover, SOSiA is reported to be non-hygroscopic compared to SOA (Janechek et al., 2019), 369 

and we do not see an obvious relationship between the experiment humidity conditions and aerosol formation. 370 

 371 
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Figs. 4c and 4d show comparisons of the standard and aging-VBS with experimental SOSiA mass concentrations and YSOSiA. 372 

We see an improvement in the R2 with the aging-VBS over the standard-VBS model, suggesting that incorporating OHexp into 373 

the yield parameterization improves model outcomes. Fig. 5 illustrates compares the standard-VBS model with the aging VBS 374 

for a range of OHexp, showing that product volatility gradually decreases with increasing OHexp in the ageing VBS model. The 375 

high volatility of the initial products is consistent with the lack of the rapid formation of low-volatile species, like highly 376 

oxygenated molecules, known to form SOA (Isaacman-VanWertz et al., 2018). 377 

3.2.2 Reconciling Literature YSOSiA 378 

To address the variation in the literature YSOSiA and to generate parameters for air quality models, we fit the parameters in the 379 

aging-VBS model with all available data in the literature and those from our experiments. Given that the literature used 380 

differing ρSOSiA to calculate YSOSiA from SMPS data, we adjust the YSOSiA and COA reported in the literature to that of the ρSOSiA 381 

used here (ρSOSiA = 1.07 g cm-3). Similarly, we re-calculate the OHexp in the literature using Eq. (2) and the [D5]0 and [D5]final 382 

values.  383 

 384 

Fig. 6 shows experimental values (markers) and model outputs (contours) of YSOSiA (panels a1 and a2) and SOSiA mass 385 

concentrations (panels b1 and b2) as a function of [D5]0 and OHexp. Figs. 6a1 and 6b1 are generated using the aging-VBS 386 

model fit using only data from experiments presented in this study, while Figs. 6a2 and 6b2 show a fit including data from the 387 

literature. The aging-VBS model is able to capture the increasing YSOSiA with increasing [D5]0 and OHexp. At a given [D5]0, 388 

YSOSiA and the SOSiA mass concentration increase with higher OHexp. Fig. 6a2 shows that the relatively high YSOSiA (> 50 %) 389 

is feasible at OHexp > 1012 s cm3. Moreover, the aging-VBS model predicts that YSOSiA is almost negligible (< 5 %) under 390 

atmospheric concentrations of D5 and OHexp. 391 

 392 

Fig. S8 shows that the aging-VBS model used here leads to a much higher correlation between modelled and experimental 393 

values for SOSiA mass concentration compared to the same analysis with a standard-VBS model (R2 = 0.956 vs. R2 = 0.745). 394 

The better correlation suggests that the volatility distribution evolves with OHexp and that chemical aging should be considered 395 

when evaluating the volatility distribution of SOSiA from D5 + OH. 396 

 397 

We note that, in reality, bulk-phase chemistry is more complex than logarithmic shifts in volatility with OHexp and not fully 398 

captured in the above aging-VBS parameterization. For example, Wu and Johnston (2017), Avery et al. (2023), and Chen et 399 

al. (2023) characterized D5 + OH SOSiA with mass spectrometry and found spectra indicative of oligomers. The formation of 400 

oligomers may reduce the bulk volatility by more than one bin and change the gas-particle equilibrium timescales (Berkemeier 401 

et al., 2020). Here, we incorporated kage,gas and a simple “bin-hopping” approach to illustrate that a change in the volatility 402 

distribution with OHexp can adequately reconcile the YSOSiA variation in the literature. Future work with more sophisticated 403 

chemical models should close that gap further. 404 

https://doi.org/10.5194/egusphere-2023-1033
Preprint. Discussion started: 12 June 2023
c© Author(s) 2023. CC BY 4.0 License.



14 
 

4 Conclusions and Atmospheric Implications 405 

With a PAM-OFR, PTR-MS, and SMPS, we studied the formation of VOP and SOSiA under various OHexp conditions. Using 406 

a simplified VOP oxidation scheme (Eqs. (R5) and (R6)), we find that the VOP of tentatively identified siloxanols and formate 407 

esters have shorter OH-oxidation lifetimes than their precursor D5 (Table S7). In addition, we find the mass yield of HCHO of 408 

D5 comparable to that of isoprene or aromatics (Millet et al., 2006), suggesting that D5 siloxane is a potential O3-contributing 409 

species in downwind scenarios. We find the mass yield of HCOOH ranging from 45 – 127 %, which suggests that D5 + OH is 410 

a source of atmospheric HCOOH. 411 

 412 

An aging-VBS model incorporating OHexp and chemical aging adequately describes gas-particle partitioning at atmospheric 413 

OHexp and COA. Based on these experiments, low-NOx YSOSiA should be < 10 % under commonly observed atmospheric OHexp 414 

< 5 × 1011 s cm-3 (Fig. 6a1). The first-generation products of D5 + OH are likely volatile, but their volatility decreases with 415 

increasing OHexp (Fig. 5). This shift in volatility suggests that further oxidation of secondary products would reduce the 416 

volatility enough to form SOSiA. Unlike α-pinene (Isaacman-VanWertz et al., 2018) or other precursors for secondary organic 417 

aerosol (SOA), D5 + OH does not appear to produce low-volatile species within a single oxidation step. Instead, additional 418 

OHexp is needed to form aerosol, which suggests that multiple oxidation steps lead to gradual decrease of product volatility. 419 

Hence, concepts that can be successfully applied to SOA formation may not accurately capture SOSiA formation, for which 420 

models must consider chemical aging. In the atmosphere, SOSiA from D5 + OH may be easier to detect downwind of urban 421 

sources due to the higher OHexp and dilution/removal of competing OH-reactive species. 422 

 423 

Based on KinSim calculations (Sect. S5), we expect that the RO2 fate is dominated by RO2 + HO2 and RO2 + OH, which is 424 

consistent with the calculations performed by Avery et al. (2023). However, we note that the reaction rate coefficients of RO2 425 

and its subsequent products are uncertain for D5, and we cannot directly address the atmospheric relevance of these calculated 426 

RO2 fates at this time. To improve YSOSiA parameterizations for the atmosphere, there is a need to study the impact NOx has on 427 

siloxane RO2 chemistry, given that siloxanes are likely emitted from urban sources where [NOx] is high. In such scenarios, 428 

RO2 + NOx is likely an important fate (Peng et al., 2019; Newland et al., 2021). Han et al. (2022) found that the addition of 429 

N2O into their OFR would reduce YSOSiA, although the cause is unclear. However, Charan et al. (2022) did not find YSOSiA to 430 

change with NOx in their chamber experiments, which is consistent with rapid RO formation across RO2 fates. Quantifying 431 

secondary species across RO2 fates and identifying their subsequent oxidation reactions may also be useful to adapt the D5 432 

oxidation mechanism into chemical kinetics models. 433 

 434 

The high [OH] used in OFRs may induce faster radical reactions and dimerization near the particle surface (Zhao et al., 2019), 435 

which affects particle composition and equilibrium timescales. Dimers and oligomers have been found in SOSiA (Wu and 436 

Johnston, 2017; Avery et al., 2023; Chen et al., 2023), and how oligomerization in the D5 + OH SOSiA system evolves the 437 
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volatility distribution and particle properties is currently not considered in the aging-VBS model. Moreover, high degrees of 438 

oxidation should lead to fragmentation and increasing volatility (Isaacman-VanWertz et al., 2018), which is also not considered 439 

in the aging-VBS model. Hence, multiphase modeling to evaluate SOSiA chemistry and translate experimental findings to 440 

atmospheric conditions remains a direction for future research. 441 

Appendix A Abbreviations  442 

COA: organic aerosol mass loading 443 

C*: effective saturation mass concentration 444 

D5: decamethylcyclopentasiloxane 445 

EVR: extended volatility range 446 

ID: inner diameter of tubing 447 

I254, I185: flux of 254 and 185 nm photons 448 

OA: organic aerosol  449 

OD: outer diameter of tubing 450 

OFR: oxidation flow reactor 451 

OH: hydroxyl radical 452 

[OH]avg: 24 hour average daily hydroxyl radical concentration 453 

OHexp: hydroxyl radical exposure 454 

OHRext: external hydroxyl radical reactivity 455 

O3: ozone 456 

ncps: normalized counts per second 457 

NOx: nitric oxide and nitrogen dioxide 458 

PAM: potential aerosol mass 459 

PTR: proton transfer reaction 460 

PTR-MS: proton transfer reaction mass spectrometer 461 

RH: relative humidity 462 

RO: alkoxyl radical 463 

RO2: peroxyl radical 464 

SMPS: scanning mobility particle sizer 465 

SOA: secondary organic aerosol 466 

SOSiA: secondary organosiloxane aerosol 467 

UV: ultraviolet radiation 468 

VBS: volatility basis set 469 
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VOP: volatile oxidation products 470 

YHCHO: formaldehyde molar yield from D5 471 

YHCOOH: formic acid molar yield from D5 472 

YSOSiA: SOSiA mass yield from D5 473 

γ: molar yields extrapolated to when OHexp → 0 474 

ρSOSiA: SOSiA aerosol mass density 475 

τres: residence time 476 
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Table 1. Summary of SOSiA mass yields (YSOSiA) with aerosol sampling line corrections assuming ρSOSiA = 1.07 g cm-3 for all 861 
experiments. [H2O] is the molar mixing ratio of H2O in air. For COA and [D5], the errors are the standard deviation of the data points 862 
averaged, while for YSOSiA, they are calculated with error propagation. For reference, at 25 °C and 1 atm, 1 ppb of D5 is ~15 µg m-3 863 
and one day equivalent of OHexp is ~1.3 × 1011 s cm-3 at a daily [OH]avg of 1.5 × 106 cm-3. 864 

Experiment YSOSiA  

(%) 

[H2O]  

(%) 

COA 

(µg m-3) 

OHexp 

(s cm-3) 

[OH] 

(cm-3) 

[D5]0  

(ppb) 

1 – [D5]final/[D5]0 

1 5.9 ± 0.9 0.892 10.5 ± 0.7 1.73 × 1011 9.59 × 108 43.4 ± 1.3 0.292 

2 4.9 ± 0.6 0.828 19.0 ± 0.6 1.90 × 1011 1.06 × 109 85.7 ± 2.5 0.316 

3 3.3 ± 0.6 0.742 17.7 ± 0.5 1.26 × 1011 6.99 × 108 165.8 ± 4.5 0.222 

4 19.5 ± 1.5 1.95 75.2 ± 1.9 4.66 × 1011 2.59 × 109 44.0 ± 1.7 0.606 

5 29.3 ± 2.7 2.06 179.2 ± 3.1 3.80 × 1011 2.11 × 109 78.3 ± 3.2 0.532 

6 26.5 ± 1.8 2.09 286.2 ± 7.1 3.12 × 1011 1.73 × 109 157.8 ± 3.6 0.464 

7 8.6 ± 0.5 0.733 36.8 ± 1.3 5.76 × 1011 3.20 × 109 43.8 ± 1.3 0.684 

8 18.6 ± 1.7 0.736 118.6 ± 5.6 4.00 × 1011 2.22 × 109 78.9 ± 3.2 0.550 

9 21.8 ± 1.1 0.797 304.5 ± 2.8 4.19 × 1011 2.33 × 109 166.8 ± 4.1 0.567 

10 39.8 ± 2.2 1.93 212.9 ± 8.1 9.01 × 1011 5.00 × 109 43.8 ± 1.4 0.835 

11 47.4 ± 1.9 2.08 420.2 ± 3.0 7.78 × 1011 4.32 × 109 76.5 ± 2.2 0.789 

12 54.0 ± 2.4 2.15 965.7 ± 25 7.39 × 1011 4.10 × 109 156.9 ± 3.9 0.772 

13 4.7 ± 1.7 0.712 3.9 ± 0.3 8.70 × 1010 7.25 × 108 37.9 ± 1.6 0.160 

14 1.9 ± 0.4 0.718 4.1 ± 0.3 1.09 × 1011 9.10 × 108 80.8 ± 2.3 0.196 

15 1.1 ± 0.3 0.704 3.7 ± 0.7 8.29 × 1010 6.91 × 108 162.8 ± 4.9 0.153 
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 867 
Figure 1. Example PTR-MS mass spectra from experiment 12 and proposed VOP ions. The signal intensities, before (black) and after 868 
(grey) oxidation, are each normalized to the signal intensity of the D5 ion at m/z 371, which is set to 1. The multifunctional species (blue, 869 
pink) are expected to be formed through multiple steps of OH-oxidation. The red and pink areas in the inset each refer to the enhancement 870 
in signal attributed to D4T-OH and D3T2-(OH)2 over that of the -CH3 fragment of D5 and isotope signals, respectively. 871 
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 873 
Figure 2. Relative molar yields of selected VOP. Molar yields as a function of OHexp and D5 consumed in experiments for (a1, a2) D4T-874 
OCHO, (b1, b2) D3T2-OH-OCHO, (c1, c2) D3T2-(OH)2, and (d1, d2) D4T-OH. We did not have a calibration for the suspected VOP, so the 875 
y-axes are relative molar yields (ncps/ncps) calculated with the change in signal attributed to each VOP and that of D5 at m/z 371. The 876 
relative molar yields decrease with OHexp, which is used to fit their OH-oxidation rate coefficients and γi (black lines). 877 
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 880 

Figure 3. Experimental molar yields of selected VOP: (a) HCHO and (b) HCOOH as functions of OHexp. The blue shaded area in (b) 881 
is the range of YHCOOH (< 10 %) measured by Friedman and Farmer (2018) with monoterpenes under low RH and low NOx conditions. The 882 
pink shaded area refers to YHCOOH from isoprene + OH chamber experiments (Link et al., 2020) at lower OHexp. 883 
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 885 
Figure 4. Application of standard-VBS and aging-VBS models to experimental data. (a) YSOSiA as a function of COA, where the YSOSiA 886 
appears to be correlated with OHexp. (b) VBS product mass yields for each volatility bin. For the aging-VBS, the values are those of the first-887 
generation products. (c) Comparison of SOSiA mass concentrations from the aging-VBS and standard-VBS models against measurements. 888 
(d) Comparison of YSOSiA from the aging-VBS and standard-VBS models against measurements, where the aging-VBS model has a higher 889 
R2. 890 
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 894 
Figure 5. Evolution of the volatility distribution with OHexp. The standard-VBS model parameterization (blue bars) is dominated by the 895 
C* = 1 000 µg m-3 volatility bin. In the aging-VBS model, the first-generation volatility distribution is dominated by the highest volatility 896 
bin (C* = 10 000 µg m-3) but decreases with increasing OHexp (red bars). 897 
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 903 
Figure 6. Comparison of experiments, model results, and literature values. (a) YSOSiA and (b) SOSiA mass concentrations as a function 904 
of [D5]0 and OHexp. The aging VBS-model is fit using experimental data from (1) this study and (2) including those in the literature. SOSiA 905 
formation generally increases with [D5]0 and OHexp. The aging-VBS can capture the broad range of YSOSiA reported in the literature. 906 
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