

1 **Supplementary to Volatile Oxidation Products and Secondary**
2 **Organosiloxane Aerosol from D₅ + OH at Varying OH Exposures**

3 Hyun Gu Kang¹, Yanfang Chen², Jiwoo Jeong², Yoojin Park³, Thomas Berkemeier¹, Hwajin Kim^{2,4}

4 ¹Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany

5 Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 08826 Seoul,
6 South Korea

7 ³Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University, 03760 Seoul,
8 South Korea

9 ⁴Institute of Health and Environment, Graduate School of Public Health, Seoul National University, 08826 Seoul, South
10 Korea

11 *Correspondence to:* Hwajin Kim (khj0116@snu.ac.kr) and Thomas Berkemeier (t.berkemeier@mpic.de)

12 **S1 Experiment and Set Up Details**

13 **S1.1 PAM-OFR**

14 Fig. S1 shows the experiment set up. During these experiments, the laboratory room temperatures and pressures were 17 – 21
15 °C and ~1020 hPa (1 atm) respectively. In this manuscript, we used 1 atm for unit conversions and in KinSim. We passed
16 different flow ratios of dry and humid zero air through the passivated 15 mL glass bulb to get the desired experiment humidity
17 conditions. Mass flow controllers (MFC, MC and MCS series, Alicat Scientific, Tucson, AZ, USA) controlled the input air
18 flow rates. Air coming out of the PAM-OFR and instrument outlets went to the exhaust or through scrubbers to minimize O₃
19 and aerosol exposure in the room. Ultra-high purity N₂ from a gas cylinder (Sinyang Oxygen Company, Seoul, South Korea)
20 regulated to 30 psig purged the UV lamps.

21

22 The PAM-OFR was connected to an O₃ monitor (Model UV-100, 2B Technologies, Boulder, CO, USA) via the outlet side
23 port. For the 120 s τ_{res} experiment, a pump was attached to the outlet side port for additional flow. The PTR-MS inlet and the
24 aerosol sampling line was connected at the OFR outlet center port (Fig. S1). We used perfluoroalkoxy alkane (PFA) tubing
25 (6.35 mm (1/4") OD, 4.35 mm ID, Sungjin Rubber Industrial, Seoul, South Korea) for the connections to the OFR inlet. The
26 OFR was equipped with conductive Teflon flow rings at both the inlet and the outlet side ports, and the D₅ and humid air were
27 injected through the inlet side port.

28

29 We used D₅ (97 %, CAS#541-02-6, Sigma-Aldrich, Saint Louis, MO, USA) as the VOC precursor and stored the D₅ in a
30 refrigerator (~1 °C) when not in use. A syringe pump (Fusion 4000, Chemyx, Stafford, TX, USA) equipped with a 10 uL gas-
31 tight microliter syringe (Model 1801, Hamilton, Reno, NV, USA) continuously injected D₅ into the PAM-OFR. The syringe

32 fed into the passivated glass bulb through a polytetrafluoroethylene-faced (PTFE) septa (13 mm, Scilab, Seoul, South Korea)
33 at room temperature. At the injection speeds and air flow rates used, we did not visually observe any D₅ build-up in the bulb.
34

35 For cleaning, making atomizer solutions, and generating humid air for the PAM-OFR, we used Type 1 deionized water (DI
36 water, >18.2 MΩ cm resistivity at 25 °C) from a purification system (Milli-Q Direct 16, Merck, Darmstadt, Germany). We
37 rinsed the microliter syringe between experiments with acetone and DI water and dried them at room temperature in the fume
38 hood. The passivated glass bulb was also rinsed with acetone and DI water and heated in a drying oven before the experiments.
39

40 Zero air came from a generator (Model 8301P, Acoem Ecotech, Victoria, Australia) coupled with a catalytic converter set to
41 520 °C (Model HTO-1000HC, Acoem Ecotech, Victoria, Australia). The zero air also passed through scrubbers filled with
42 activated molecular sieves (4 Å 4 – 8 mesh, Sigma-Aldrich, Saint Louis, MO, USA), NaMnO₄ oxidizing media (Purafil SP,
43 Purafil, Doraville, GA, USA), and activated carbon (Purakol, Purafil, Doraville, GA, USA). Lastly, the zero air went through
44 a filtered air supply (Model 3074B, TSI, Shoreview, MN, USA) prior to injection to the PAM-OFR and the Nafion humidifier
45 (FC-100-80-6MKK, Perma Pure, Lakewood, NJ, USA).
46

47 To assess the OH_{exp} range, we conducted an offline calibration on the PAM-OFR with calibration CO gas (UnionGas,
48 Gyeonggi-do, South Korea) with a Serinus 30i CO analyzer (Acoem Ecotech, Victoria, Australia). We used humidity
49 conditions close to that of the experiments (Fig. S2). We used the D₅ siloxane trace as a direct measure of OH_{exp} during the
50 experiments themselves and found the OH_{exp} assessed with D₅ to be consistent with the offline calibration with CO. We did
51 not operate the CO analyzer during the experiments to avoid the risk of siloxanes fouling its catalytic converter (Dewil et al.,
52 2006).

53 **S1.2 Aerosol Sampling Line**

54 The aerosol sampling line was connected at the PAM-OFR center outlet port and lead to the SMPS. The sampling line consisted
55 of a O₃ denuder and a Nafion dryer (PD-200T-12MSS, Perma Pure, Lakewood, NJ, USA) with conductive connections and
56 fittings in between. We installed the O₃ denuder in the sampling line to prevent O₃ damage to the SMPS, and it was a diffusion
57 denuder filled with hopcalite pellets (3 mm, Purelyst MD-101, Pure Sphere, Chungcheongnam-do, South Korea). The custom-
58 made diffusion denuder was cylindrical in shape at 52 cm long and 6.5 cm in diameter, and the wet particles would pass
59 through a 12.7 mm (1/2") ID center line made of stainless mesh. Prior to experiments, we passed filtered compressed air
60 through the O₃ denuder at 10 L min⁻¹ for ~30 min to remove any loose particles.
61

62 We assessed the O₃ removal by comparing the concentrations entering and exiting the O₃ denuder filled with fresh hopcalite
63 pellets. The flow rate through the O₃ denuder matched that of experiments (3.0 L min⁻¹), and we used the same O₃ monitor
64 used on the PAM-OFR. To generate O₃, humid air was fed into the OFR with 185 nm lights on without siloxanes or seed, and

65 the OFR outputted 2.1 ppm of O₃. We found that the denuder would remove ~90 % of the O₃ by concentration at these test
66 conditions.

67

68 We used the particle loss calculator (von der Weiden et al., 2009) with the dimensions of the aerosol sampling line to calculate
69 the size dependent losses in the line (Fig. S3). Given that we did not know at what point when the SOSiA was formed in the
70 PAM-OFR, we only applied the particle loss in the aerosol sampling line to correct the Y_{SOSiA} . The particle loss corrections to
71 the Y_{SOSiA} were done by applying the particle loss at the experiment SOSiA volume mode with that from the calculator.

72

73 To prevent siloxane contamination from conductive silicone tubing (Timko et al., 2009; Yu et al., 2009; Asbach et al., 2016),
74 we used conductive PFA tubing (6.35 mm (1/4") OD, 4.76 mm (3/16") ID, Fluorotherm Polymers, Parsippany, NJ, USA) and
75 stainless-steel compression fittings for the connections in the aerosol sampling line. In this experiment set up, we only used
76 conductive silicone tubing (12 cm, 9.53 mm (0.375") OD, 4.8 mm (0.19") ID, TSI, Shoreview, MN, USA) at the inlet of the
77 SMPS and for connections between the SMPS components.

78 **S1.3 Condensational Sink and Condensation Lifetime**

79 We followed the instructions in Section 3.3 of Palm et al. (2016) to calculate the condensational sink (CS, m^{-2}) and low-volatile
80 organic compound (LVOC) condensation lifetimes (τ_{CS}, s), where we used the particle number size distribution from the SMPS.
81 In Eq. (S1), r is the wet particle radius (m), N is the particle number size distribution (m^{-3} at each particle diameter), and β is
82 the dimensionless Fuchs-Sutugin correction factor (Seinfeld and Pandis, 2006). In Eq. (S2), we used the same gas diffusion
83 coefficient (D_g) used by Palm et al. (2016) of $7 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$, which represents LVOC. In Eq. (S3), α is the dimensionless
84 accommodation coefficient that is assumed to be 1 (Liu et al., 2019).

85

$$86 CS = \int_0^{\infty} r\beta(r)N(r)dr = \sum_0^{\infty} r\beta(r)N(r) \quad (\text{S1})$$

87

$$88 \tau_{CS} = \frac{1}{4\pi \times CS \times D_g} \quad (\text{S2})$$

89

$$90 \beta(r) = \frac{Kn+1}{0.377Kn+1 + \frac{4}{3}\alpha^{-1}Kn^2 + \frac{4}{3}\alpha^{-1}Kn} \quad (\text{S3})$$

91

92 To obtain β , we calculated the dimensionless Knudsen number (Kn), the mean free path (λ_g , m), and the gas average speed
93 (v_{avg} , m s⁻¹) for LVOC at each r . In Eq. (S6), T refers to the temperature (K) in the PAM-OFR and R is the gas constant ($R =$
94 $8.3145 \text{ kg m}^2 \text{ s}^{-2} \text{ K}^{-1} \text{ mol}^{-1}$). Since particles were dried before being detected by the SMPS, we obtained r in Eq. (S1) and (S4)

95 by multiplying the dry particle radius with the growth factor (*GF*), which is the ratio of the wet particle diameter versus when
96 the particle is dry (Fig. S5).

97

98
$$Kn = \frac{\lambda_g}{r} \quad (S4)$$

99

100
$$\lambda_g = \frac{3D_g}{v_{avg}} \quad (S5)$$

101

102
$$v_{avg} = \sqrt{\frac{8RT}{\pi M}} \quad (S6)$$

103

104 We found *GF* with Eq. (S7), where κ is the dimensionless hygroscopicity parameter and α_w is the dimensionless water activity
105 approximated via $\alpha_w = RH\% / 100$. For κ , Palm et al. (2016) used a value representing that of SOA ($\kappa = 0.13$), but Janechek et
106 al. (2019) found SOSiA to be non-hygroscopic ($\kappa = 0.01$). Consequently, we calculated the *CS* for both the LVOC and SOSiA
107 cases, with molecular weights (*M*) of LVOC, 0.200 kg mol⁻¹, and of D₅, 0.370 kg mol⁻¹. The calculated *GF* for both cases are
108 shown in Fig. S5 and Table S3.

109

110
$$\kappa = (GF^3 - 1)(1 - \alpha_w)\alpha_w^{-1} \quad (S7)$$

111

112 The PAM-OFR has an estimated LVOC eddy diffusion wall loss lifetime (τ_{wall}) of 400 s (Palm et al., 2016), while the calculated
113 τ_{CS} ranged up to ~2 s when using the particle size distribution measured during experiments (Table S3). Palm et al. (2016)
114 recommended using the average of the particle size distributions entering and exiting the OFR, which would double the
115 aforementioned τ_{CS} since we did not use seed aerosol. Either case, we expected the loss of LVOC to the walls to had been
116 small since $\tau_{CS} \ll \tau_{wall}$.

117 S1.4 PTR-MS Inlet and Settings

118 The PTR-MS inlet was made of SilcoNert 2000-coated (SilcoTek, Bellefonte, PA, USA) stainless steel inlet tubing (1.59 mm
119 (1/16") OD, 1.0 mm (0.040") ID) at 1.2 m in length. The PTR-MS was connected immediately at the center outlet of the OFR
120 with SilcoNert 2000-coated fittings (Swagelok, Solon, OH, USA) and conductive PFA tubing (Fluorotherm Polymers,
121 Parsippany, NJ, USA). We set the flow rate into the PTR-MS inlet to 0.43 L min⁻¹ using its built-in inlet flow controller and
122 inlet pressure controller. The PTR-MS inlet was equipped with a heating hose set to 60 °C and a dust filter to prevent clogging,
123 especially at the high SOSiA masses. The single stage filter holder was made of PFA (Savillex, Eden Prairie, MN, USA) and
124 held a 25 mm PTFE filter (5 µm pore, Synspec, Groningen, Netherlands) that was replaced daily.

125

126 The mass spectrometer extraction time and maximum flight times were 2.0 and 20.0 μ s respectively, with the maximum mass
127 at m/z 632.0. The mass spectra were integrated and recorded every 1000 ms. For the PTR-MS mass scale calibration, we used
128 $(\text{H}_2^{18}\text{O})\text{H}^+$ (m/z 21.0221), $(\text{H}_2\text{O})_2\text{H}^+$ (m/z 37.0284), $(\text{C}_6\text{H}_4\text{I})\text{H}^+$ (m/z 203.9431), and $(\text{C}_6\text{H}_4\text{I}_2)\text{H}^+$ (m/z 330.8475) during the data
129 analysis. We used ionTOF 4.0 to control the instrument and PTR-MS Viewer 3.4.4 (Ionicon Analytik, Innsbruck, Austria) to
130 process the PTR-MS mass spectra.

131 **S1.5 PTR-MS Mass Spectra Interpretation**

132 D_5 has isotopologues (Fig. 1) whose ion masses overlap with those of VOP. Additionally, large alcohols fragment during the
133 PTR (Brown et al., 2010), and the reported siloxanol ($\text{D}_4\text{T-OH}$) or siloxanediol ($\text{D}_3\text{T}_2-(\text{OH})_2$) may have fragmented if they
134 behave like saturated organic alcohols. Since we did not have siloxanol calibration standards, we opted to use the -OH
135 fragmentation behavior of organic alcohols to assess the qualitative trends of the proposed VOP.

136

137 We used the -OH fragment of $\text{D}_4\text{T-OH}$ at m/z 355, the -OH fragment of $\text{D}_3\text{T}_2-(\text{OH})_2$ at m/z 357, and the -OH fragment of D_3T_2-
138 OH-OCHO at m/z 385 to assess the relative trends of these VOP (Table S4). However, the signal at m/z 355 overlaps with the
139 - CH_3 fragment of $\text{D}_5(\text{C}_9\text{H}_{27}\text{O}_5\text{Si}_5^+)$, as noted by Coggon et al. (2018). As for m/z 357, this signal overlaps with an isotopologue
140 of the - CH_3 fragment of D_5 and the -OH fragment of $\text{D}_4\text{T-OH}$. To retrieve the signal of $\text{D}_4\text{T-OH}$ and $\text{D}_3\text{T}_2-(\text{OH})_2$, we subtracted
141 the fragment and/or isotopologue signals from the total signal at the designated ion masses. For m/z 355, we subtracted the -
142 CH_3 fragment of D_5 using the 355/371 ratio of D_5 found prior to the experiment. For m/z 357, we subtracted the $\text{C}_9\text{H}_{27}\text{O}_5\text{Si}_5^+$
143 isotopologue signal fraction.

144

145 For the quantification of D_5 , we opted to use the main D_5 ion ($\text{C}_{10}\text{H}_{30}\text{Si}_5\text{H}^+$) at m/z 371, as opposed to the - CH_3 fragment ion
146 at m/z 355. Coggon et al. (2018) used the D_5 fragment ion for their ambient air measurements due to higher ion counts there.
147 $\text{C}_9\text{H}_{27}\text{O}_5\text{Si}_5^+$ had a higher ion count than $(\text{C}_{10}\text{H}_{30}\text{Si}_5)\text{H}^+$ during our calibrations and experiments as well, but the D_5
148 concentrations in these experiments were sufficiently high for quantification at m/z 371. Additionally, Since the -OH fragment
149 ion of $\text{D}_4\text{T-OH}$ has the same elemental composition of the - CH_3 fragment of D_5 , we chose the m/z 371 D_5 ion to avoid potential
150 overlaps in the D_5 quantification.

151

152 The PTR-MS is limited in the species it can detect and resolve. The PTR-MS configuration restricts the volatility range of
153 identifiable species, where species are not fragmented during the PTR or lost on the surfaces of the instrument and inlet.
154 Moreover, the PTR is known to fragment peroxides (Li et al., 2022), which limits their detection. Saturated alcohols larger
155 than ethanol and unsaturated alcohols are also known to undergo fragmentation during ionization in the PTR-MS (Brown et
156 al., 2010; Demarcke et al., 2010). Consequently, we cannot rule out that some D_5 VOP fragments are being misattributed in
157 the trends that we report.

158

159 For example, methanediol ($\text{CH}_2(\text{OH})_2$) is the hydrated form of HCHO and has been observed to largely fragment to a $-\text{H}_2\text{O}$ PTR ion that overlaps at m/z 31 (Franco et al., 2021). Although $\text{CH}_2(\text{OH})_2$ may be formed in the gas phase through $\text{HCHO} + \text{H}_2\text{O}$ via HCOOH catalysis (Hazra et al., 2013), the gaseous compound is thought to have evaporated after forming heterogeneously (Franco et al., 2021). Franco et al. (2021) also fitted the gaseous unimolecular dehydration ($\text{CH}_2(\text{OH})_2 \rightarrow \text{HCHO} + \text{H}_2\text{O}$) rate coefficient $k_{\text{CH}_2(\text{OH})_2}$ to be $8.5 \times 10^{-5} \text{ s}^{-1}$, which gives the species a unimolecular dehydration lifetime of 0.14 days, which is longer than the residence time of the PAM-OFR. The dominant products from $\text{CH}_2(\text{OH})_2 + \text{OH}$ are HCOOH and HO_2 via the decomposition of the RO_2 , and so this diol is practically an intermediate between HCHO and HCOOH .

166

167 Given the humid PAM-OFR conditions, $\text{CH}_2(\text{OH})_2$ may have been present, and the $-\text{OH}$ fragment ion may have led to the
168 over-quantification of HCHO; the fragmentation of $\text{CH}_2(\text{OH})_2$ during the PTR needs to be characterized to constrain this
169 uncertainty. However, Franco et al. (2021) found that $\text{CH}_2(\text{OH})_2 + \text{OH}$ has a rate coefficient of $k_{\text{CH}_2(\text{OH})_2+\text{OH}} = \sim 7.5 \times 10^{-12} \text{ cm}^3$
170 s^{-1} , and so we expected $\text{CH}_2(\text{OH})_2$ to have a OH-oxidation lifetime less than that of τ_{res} at the $[\text{OH}]$ in the PAM-OFR.
171 Consequently, we did not expect the $\text{CH}_2(\text{OH})_2$ -OH fragment interference to the HCHO quantification to be large.

172 S2 SOSiA Mass Density (ρ_{SOSiA})

173 In a separate series of experiments, we collected SOSiA filter samples from the PAM-OFR on pre-weighed PTFE filters (47
174 mm, 2 μm pore, PT48P-KR, MTL, Minneapolis, MN, USA), where we also operated the SMPS. Then, we stored the filter
175 samples in a desiccator placed inside of a temperature and humidity-controlled micro-balance room for a day. We used a semi-
176 micro balance ($\pm 0.1 \text{ mg}$, ME204, Mettler Toledo, Columbus, OH, USA) to weigh the filters and calculated the mean ρ_{SOSiA}
177 by dividing the masses of SOSiA collected over integrated SMPS volumes.

178

179 From five filter samples, we found a mean (\pm standard error) ρ_{SOSiA} of $1.07 \pm 0.04 \text{ g cm}^{-3}$. We note that existing publications
180 used discrepant ρ_{SOSiA} values, which are summarized in Table S9. That range includes those representing SOA (Charan et al.,
181 2022) or D_5 itself (Janechek et al., 2019). Wu and Johnston (2017) did not explicitly state the ρ_{SOSiA} they used. Han et al. (2022)
182 used particle size and mass data from an SMPS and an AMS to get ρ_{SOSiA} of $1.6 - 1.8 \text{ g cm}^{-3}$ for SOSiA from different siloxane
183 precursors. Avery et al. (2023) used the SOSiA elemental ratios from the AMS with the method described by Kuwata et al.
184 (2012) to obtain ρ_{SOSiA} of $1.59 - 1.78 \text{ g cm}^{-3}$.

185

186 For reference, Fytas and Wang (1984) measured the density of several methylphenylsiloxane oligomers, which ranged from
187 0.99 – 1.10 g cm^{-3} , while He et al. (1988) used a polydimethylsiloxane density parameterization based on molecular weight
188 that maximizes to 0.97 g cm^{-3} . Dee et al. (1992) measured the densities of polydimethylsiloxane oligomers and found values
189 between 1 to 1.14 g cm^{-3} . One of the silanols formed in the siloxane degradation process is dimethylsilanediol (DMSD,

190 $\text{C}_2\text{H}_8\text{O}_2\text{Si}$), and Mazzoni et al. (1997) calculated DMSD to have a density of 1.023 g cm^{-3} at 20°C using a group contribution
191 method. Lamers et al. (2021) found that dimethylsiloxane oligomers of varying lengths would have densities of $\sim 1 \text{ g cm}^{-3}$.
192

193 While the ρ_{SOSiA} we measured are in line with literature siloxane/silanol densities, they are lower than those reported by Han
194 et al. (2022) and Avery et al. (2023). Some of the difference between their and our ρ_{SOSiA} measurements may be explained by
195 the different experiment conditions, such as OH_{exp} , since aerosol density is expected to increase with higher oxygenation
196 (Kuwata et al., 2012; Nakao et al., 2013). Moreover, Han et al. (2022), Avery et al. (2023), and this study each used different
197 methods to measure ρ_{SOSiA} .

198 S3 PTR-MS Calibration

199 For HCHO, we used a paraformaldehyde permeation tube (CAS#30525-89-4, VICI Metronics, Poulsbo, WA, USA) and a
200 calibration gas generator (Model 150 Dynacalibrator, VICI Metronics, Poulsbo, WA, USA) set to 70°C to produce HCHO
201 calibration gas with ultra-high purity N_2 as the carrier gas. To achieve a steady output, we conditioned the permeation tube in
202 the calibration gas generator for a week at the temperature and carrier gas flow rate to be used during the calibration. The
203 HCHO calibration gas was diluted dynamically to achieve target concentrations with zero/humid air and MFCs, and we
204 corrected the HCHO quantification for humidity using Eq. (S8) from Vlasenko et al. (2010), where k_{rev} is the fitted reverse
205 PTR rate coefficient ($\text{cm}^3 \text{ s}^{-1}$), $[\text{H}_2\text{O}]_{\text{dry}}$ is the H_2O concentration (cm^{-3}) in the drift tube when sample air is dry, $[\text{H}_2\text{O}]$ is the
206 water concentration (cm^{-3}) in the drift tube when sample air is humid, and Δt is the drift tube reaction time ($9.4 \times 10^{-5} \text{ s}$).
207

$$\frac{\text{Sensitivity}_{\text{meas}}}{\text{Sensitivity}_{\text{dry}}} = \frac{[\text{H}_2\text{O}]_{\text{dry}}(1 - e^{-k_{\text{rev}}[\text{H}_2\text{O}]\Delta t})}{[\text{H}_2\text{O}](1 - e^{-k_{\text{rev}}[\text{H}_2\text{O}]_{\text{dry}}\Delta t})} \quad (\text{S8})$$

209
210 To obtain $[\text{H}_2\text{O}]_{\text{dry}}$, we followed the method described in Vlasenko et al. (2010), where we fitted a quadratic polynomial (Eq.
211 (S9)) to $(\text{H}_2\text{O})_2\text{H}^+$ (ncps) against the sample air absolute humidity (Fig. S6.B3). Then, we took the fitted y-intercept (≈ 4000)
212 and linearly approximated the corresponding absolute humidity at 2 \times y-intercept, which comes to be $\sim 0.005 \text{ mol/mol}$. Lastly,
213 we converted the $[\text{H}_2\text{O}]_{\text{dry}}$ mixing ratio to cm^{-3} using the drift tube pressure (2.30 mbar) and temperature (80°C).
214

$$I_{(\text{H}_2\text{O})_2\text{H}^+} = A + Bx + Cx^2 \quad (\text{S9})$$

215
216
217 For HCOOH, a 1 % (w/w) aqueous solution of HCOOH (>98.0 %, CAS#64-18-6, Tokyo Chemical Industry, Tokyo, Japan)
218 was injected into the VOC bulb with a syringe pump and zero/humid air flowing through the bulb. Like Baasandorj et al.
219 (2015), we found the PTR-MS sensitivity at m/z 47 to be affected by humidity, with sensitivity decreasing with higher RH at

220 137 Td. Consequently, we adjusted the HCOOH quantification for H₂O cluster effects with the method outlined in Baasandorj
221 et al. (2015). We fitted the parameters in Eq. (S10), where x is $I_{(\text{H}_2\text{O})2\text{H}^+}/I_{(\text{H}_2\text{O})\text{H}^+}$.

222

223
$$\text{Sensitivity} = A \times (B_1 \exp(C_1 x) + B_2 \exp(C_2 x)) \quad (\text{S10})$$

224

225 **S4 Odum 2-product Model**

226 Eq. (S11) shows the Odum 2-product parameterization (Odum et al., 1996) for aerosol mass yields, in this case for SOSiA.
227 Janechek et al. (2019) and Charan et al. (2022) fitted their data, and we also parameterize the experimental Y_{SOSiA} with the 2-
228 product model in Eq. (S11) for comparison. The partitioning coefficient (K , m³ µg⁻¹) is the inverse of the saturation mass
229 concentration C^* (µg m⁻³), C_{OA} is the OA mass loading (µg m⁻³), and α is the product yield for each corresponding K . The
230 fitted values and the literature comparison is shown in Fig. S7, and the Y_{SOSiA} have been adjusted for $\rho_{\text{SOSiA}} = 1.07$ g cm⁻³.

231

232
$$Y_{\text{SOSiA}} = C_{\text{OA}} \left(\frac{\alpha_1 K_1}{1 + K_1 C_{\text{OA}}} + \frac{\alpha_2 K_2}{1 + K_2 C_{\text{OA}}} \right) \quad (\text{S11})$$

233

234 We fit the 2-product model with the ρ_{SOSiA} -adjusted data from Han et al. (2022), Avery et al. (2023), and all literature values
235 combined, including those we report. The existing literature values and fit 2-product model parameters are summarized in
236 Tables S9 and S10. As shown in Fig. 4, the 2-product model parameters provided by Charan et al. (2022) are consistent with
237 those of Han et al. (2022) and Avery et al. (2023) at ambient surface C_{OA} (0-30 µg m⁻³) with low Y_{SOSiA} . However, the 2-
238 product model fit of Janechek et al. (2019) predicts less volatile products, resulting in higher Y_{SOSiA} at those C_{OA} . Our 2-product
239 model fit predicts more volatile products, which is consistent with that of Charan et al. (2022), Han et al. (2022), and Avery et
240 al. (2023).

241

242 However, for the high C_{OA} cases, the literature diverges with experimental Y_{SOSiA} ranging from 10 to 100 % at ~200 µg m⁻³,
243 and our Y_{SOSiA} yield curve lies between the curves from the literature (Fig. S7). The intercorrelation of OH_{exp} with Y_{SOSiA} is
244 also visible in Fig. S7, where the higher Y_{SOSiA} measurements occur not only when C_{OA} is high, but also as OH_{exp} increases
245 (color scale). The 2-product model here does not explicitly account for chemical aging with OH_{exp}, so we use the aging-VBS
246 approach.

247 **S5 Modeling RO₂ Pathways with KinSim**

248 A potential explanation for the Y_{SOSiA} discrepancies in the literature is the RO₂ fate, where high [OH] in OFR experiments may
249 have pushed the RO₂ fate towards a pathway that forms more condensing species. However, Alton and Browne (2022) found

250 in their chamber that $\text{RO}_2 + \text{HO}_2$, $\text{RO}_2 + \text{NO}$, and unimolecular pathways would yield similar fractions of siloxanol and formate
251 ester, suggesting these pathways make similar products, likely through RO; Alton and Browne (2022) suggests that the
252 dominant products of $\text{RO}_2 + \text{HO}_2$ are RO, OH, and O_2 , instead of ROOH.

253
254 In OFR185, the $\text{RO}_2 + \text{OH}$ pathway is feasible due to high [OH] and the atmospheric relevance of this pathway is debated
255 (Peng and Jimenez, 2020). However, Fittschen (2019) suggests that $\text{RO}_2 + \text{OH}$ is an atmospherically-relevant pathway in low-
256 NO_x environments, and the dominant product is expected to be RO (+ HO_2). That being said, Assaf et al. (2018) found that the
257 dominant product of $\text{RO}_2 + \text{OH}$ is ROOOH for RO_2 with more than 3 carbon atoms, but we are unaware of any documentation
258 of siloxane RO_2 forming ROOOH. The dominance of RO products across RO_2 fates leading to comparable aerosol mass yields
259 has been reported with monoterpene nitrate oxidation as well (Day et al., 2022).

260
261 To assess the RO_2 fates in these experiments, we adopted analogous reactions from the literature and added those RO_2 fates
262 into an OFR mechanism template (Peng and Jimenez, 2020) for KinSim 4.16, a chemical kinetics simulator (Peng and Jimenez,
263 2019). Table S5 shows the additional RO_2 reactions and rate coefficients appended to the OFR mechanism. The results suggest
264 that $\text{RO}_2 + \text{HO}_2$ and $\text{RO}_2 + \text{OH}$ pathways dominated across the experiments, but we encountered an issue reconciling the
265 measured OH_{exp} using Eq. (2) and the OH_{exp} from KinSim.

266
267 To input the 254 and 185 nm photon fluxes (I_{254} and I_{185}) in KinSim, we followed the recommendations in Rowe et al. (2020)
268 with $I_{254\text{max}} = 3.0 \times 10^{15} \text{ cm}^{-2} \text{ s}^{-1}$ and $I_{185\text{max}}:I_{254\text{max}} = 0.0664$. Next, we multiplied $I_{254\text{max}}$ and $I_{185\text{max}}$ by 0.1 to account for the
269 shrink wrap lamp covers and by the ratios of the experiment irradiance and O_3 outputs versus the maximum values at 8V
270 (Table S6). However, we found that with the above photon flux inputs, KinSim calculated the OH_{exp} to be too high and $[\text{D}_5]_{\text{final}}$
271 to be too low, although the modeled $[\text{O}_3]$ were consistent with measurements (Fig. S9).

272
273 Given that we were interested in probing the RO_2 fates, we multiplied I_{185} and I_{254} by a factor of 0.1 to bring the OH_{exp} and
274 $[\text{D}_5]_{\text{final}}$ in line with measurements. We used I_{185} of $3 \times 10^{11} - 2 \times 10^{12}$ and I_{254} of $1 \times 10^{12} - 3 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$ in the case where
275 I_{185} and I_{254} are multiplied by a factor of 0.1, and the initial fluxes are summarized in Table S6. However, this adjustment led
276 to the output $[\text{O}_3]$ being underestimated. To assess the impact of the adjustment on RO_2 fates, we modelled both cases where
277 I_{185} and I_{254} are and are not adjusted (Fig. S10).

278
279 In both UV flux cases, KinSim found $\text{RO}_2 + \text{HO}_2$ and $\text{RO}_2 + \text{OH}$ to be the dominant reaction pathways across the experiments
280 (Fig. S10). A potential explanation for the OH_{exp} discrepancy is the formation of secondary products that are also reactive with
281 OH, which are not included in OHR_{ext} calculated with injected D_5 . Since we observed the formation of OH-reactive species
282 like HCHO and the proposed VOP appear to be removed with OH_{exp} , we suspect that the KinSim mechanism is incomplete,
283 and that a more complete mechanism with subsequent OH-reactive species should improve the KinSim calculations.

284

285 For these experiments, we expected $\text{RO}_2 + \text{HO}_2$ and $\text{RO}_2 + \text{OH}$ to have been the dominant pathways across the experiments,
286 based on the findings by Alton and Browne (2022) and the KinSim calculations. Avery et al. (2023) also found similar RO_2
287 fates with KinSim for their experiments, and the common product of these pathways is RO. We note that the inclusion of VOP
288 into the OFR mechanism or when calculating OHR_{ext} may be needed to reconcile measured OH_{exp} and model expectations.
289 Peng and Jimenez (2020) suggest that using measured OH_{exp} is preferred over modelled values due to uncertainties in the OFR
290 residence time, mixing, and OH recycling. We also used RO_2 reactions and rate coefficients in the OFR mechanism based on
291 those of organics, and that the RO_2 fates are subject to change as the $\text{D}_5 + \text{OH}$ system is further constrained.

292 **References**

293 Alton, M. W. and Browne, E. C.: Atmospheric Chemistry of Volatile Methyl Siloxanes: Kinetics and Products of Oxidation
294 by OH Radicals and Cl Atoms, *Environ Sci Technol*, 54, 5992–5999, <https://doi.org/10.1021/acs.est.0c01368>, 2020.

295

296 Alton, M. W. and Browne, E. C.: Atmospheric Degradation of Cyclic Volatile Methyl Siloxanes: Radical Chemistry and
297 Oxidation Products, *ACS Environmental Au*, <https://doi.org/10.1021/acsenvironau.1c00043>, 2022.

298

299 Asbach, C., Kaminski, H., Lamboy, Y., Schneiderwind, U., Fierz, M., and Todea, A. M.: Silicone sampling tubes can cause
300 drastic artifacts in measurements with aerosol instrumentation based on unipolar diffusion charging, *Aerosol Science and*
301 *Technology*, 50, 1375–1384, <https://doi.org/10.1080/02786826.2016.1241858>, 2016.

302

303 Assaf, E., Schoemaecker, C., Vereecken, L., and Fittschen, C.: Experimental and theoretical investigation of the reaction of
304 RO_2 radicals with OH radicals: Dependence of the HO_2 yield on the size of the alkyl group, *Int J Chem Kinet*, 50, 670–680,
305 <https://doi.org/https://doi.org/10.1002/kin.21191>, 2018.

306

307 Atkinson, R.: Kinetics of the gas-phase reactions of a series of organosilicon compounds with hydroxyl and nitrate(NO_3)
308 radicals and ozone at 297 \pm 2 K, *Environ Sci Technol*, 25, 863–866, <https://doi.org/10.1021/es00017a005>, 1991.

309

310 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J.,
311 and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase
312 reactions of organic species, *Atmos Chem Phys*, 6, 3625–4055, <https://doi.org/10.5194/acp-6-3625-2006>, 2006.

313

314 Avery, A. M., Alton, M. W., Canagaratna, M. R., Krechmer, J. E., Sueper, D. T., Bhattacharyya, N., Hildebrandt Ruiz, L.,
315 Brune, W. H., and Lambe, A. T.: Comparison of the Yield and Chemical Composition of Secondary Organic Aerosol

316 Generated from the OH and Cl Oxidation of Decamethylcyclopentasiloxane, ACS Earth Space Chem,
317 <https://doi.org/10.1021/acsearthspacechem.2c00304>, 2023.

318

319 Baasandorj, M., Millet, D. B., Hu, L., Mitroo, D., and Williams, B. J.: Measuring acetic and formic acid by proton-transfer-
320 reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences, *Atmos Meas Tech*, 8, 1303–
321 1321, <https://doi.org/10.5194/amt-8-1303-2015>, 2015.

322

323 Brown, P., Watts, P., Märk, T. D., and Mayhew, C. A.: Proton transfer reaction mass spectrometry investigations on the effects
324 of reduced electric field and reagent ion internal energy on product ion branching ratios for a series of saturated alcohols, *Int*
325 *J Mass Spectrom*, 294, 103–111, <https://doi.org/https://doi.org/10.1016/j.ijms.2010.05.028>, 2010.

326

327 Charan, S. M., Huang, Y., Buenconsejo, R. S., Li, Q., Cocker III, D. R., and Seinfeld, J. H.: Secondary organic aerosol
328 formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations, *Atmos Chem*
329 *Phys*, 22, 917–928, <https://doi.org/10.5194/acp-22-917-2022>, 2022.

330

331 Coggon, M. M., McDonald, B. C., Vlasenko, A., Veres, P. R., Bernard, F., Koss, A. R., Yuan, B., Gilman, J. B., Peischl, J.,
332 Aikin, K. C., DuRant, J., Warneke, C., Li, S.-M., and de Gouw, J. A.: Diurnal Variability and Emission Pattern of
333 Decamethylcyclopentasiloxane (D5) from the Application of Personal Care Products in Two North American Cities, *Environ*
334 *Sci Technol*, 52, 5610–5618, <https://doi.org/10.1021/acs.est.8b00506>, 2018.

335

336 Day, D. A., Fry, J. L., Kang, H. G., Krechmer, J. E., Ayres, B. R., Keehan, N. I., Thompson, S. L., Hu, W., Campuzano-Jost,
337 P., Schroder, J. C., Stark, H., DeVault, M. P., Ziemann, P. J., Zarzana, K. J., Wild, R. J., Dubè, W. P., Brown, S. S., and
338 Jimenez, J. L.: Secondary Organic Aerosol Mass Yields from NO₃ Oxidation of α -Pinene and Δ -Carene: Effect of RO₂ Radical
339 Fate, *J Phys Chem A*, 126, 7309–7330, <https://doi.org/10.1021/acs.jpca.2c04419>, 2022.

340

341 Dee, G. T., Ougizawa, T., and Walsh, D. J.: The pressure-volume-temperature properties of polyethylene, poly(dimethyl
342 siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight, *Polymer (Guildf)*, 33, 3462–
343 3469, [https://doi.org/https://doi.org/10.1016/0032-3861\(92\)91104-A](https://doi.org/https://doi.org/10.1016/0032-3861(92)91104-A), 1992.

344

345 Demarcke, M., Amelynck, C., Schoon, N., Dhooghe, F., Rimetz-Planchon, J., van Langenhove, H., and Dewulf, J.: Laboratory
346 studies in support of the detection of biogenic unsaturated alcohols by proton transfer reaction-mass spectrometry, *Int J Mass*
347 *Spectrom*, 290, 14–21, <https://doi.org/https://doi.org/10.1016/j.ijms.2009.11.005>, 2010.

348

349 Dewil, R., Appels, L., and Baeyens, J.: Energy use of biogas hampered by the presence of siloxanes, *Energy Convers Manag*,
350 47, 1711–1722, [https://doi.org/https://doi.org/10.1016/j.enconman.2005.10.016](https://doi.org/10.1016/j.enconman.2005.10.016), 2006.

351

352 Fittschen, C.: The reaction of peroxy radicals with OH radicals, *Chem Phys Lett*, 725, 102–108,
353 [https://doi.org/https://doi.org/10.1016/j.cplett.2019.04.002](https://doi.org/10.1016/j.cplett.2019.04.002), 2019.

354

355 Franco, B., Blumenstock, T., Cho, C., Clarisse, L., Clerbaux, C., Coheur, P.-F., de Mazière, M., de Smedt, I., Dorn, H.-P.,
356 Emmerichs, T., Fuchs, H., Gkatzelis, G., Griffith, D. W. T., Gromov, S., Hannigan, J. W., Hase, F., Hohaus, T., Jones, N.,
357 Kerkweg, A., Kiendler-Scharr, A., Lutsch, E., Mahieu, E., Novelli, A., Ortega, I., Paton-Walsh, C., Pommier, M., Pozzer, A.,
358 Reimer, D., Rosanka, S., Sander, R., Schneider, M., Strong, K., Tillmann, R., van Roozendael, M., Vereecken, L., Vigouroux,
359 C., Wahner, A., and Taraborrelli, D.: Ubiquitous atmospheric production of organic acids mediated by cloud droplets, *Nature*,
360 593, 233–237, <https://doi.org/10.1038/s41586-021-03462-x>, 2021.

361

362 Fytas, G. and Wang, C. H.: Studies of siloxane oligomers by depolarized Rayleigh scattering, *J Am Chem Soc*, 106, 4392–
363 4396, <https://doi.org/10.1021/ja00328a017>, 1984.

364

365 Han, C., Yang, H., Li, K., Lee, P., Liggio, J., Leithead, A., and Li, S.-M.: Secondary organic aerosols from OH oxidation of
366 cyclic volatile methyl siloxanes as an important Si source in the atmosphere, *Atmos Chem Phys*, 22, 10827–10839,
367 <https://doi.org/10.5194/acp-22-10827-2022>, 2022.

368

369 Hazra, M. K., Francisco, J. S., and Sinha, A.: Gas Phase Hydrolysis of Formaldehyde To Form Methanediol: Impact of Formic
370 Acid Catalysis, *J Phys Chem A*, 117, 11704–11710, <https://doi.org/10.1021/jp4008043>, 2013.

371

372 He, X. W., Widmaier, J. M., Herz, J. E., and Meyer, G. C.: Competition between polycondensation of α,ω -dihydroxy
373 polydimethylsiloxane and its condensation with alkoxy silane: A kinetic approach, *Eur Polym J*, 24, 1145–1148,
374 [https://doi.org/https://doi.org/10.1016/0014-3057\(88\)90100-0](https://doi.org/10.1016/0014-3057(88)90100-0), 1988.

375

376 Janecek, N. J., Marek, R. F., Bryngelson, N., Singh, A., Bullard, R. L., Brune, W. H., and Stanier, C. O.: Physical properties
377 of secondary photochemical aerosol from OH oxidation of a cyclic siloxane, *Atmos Chem Phys*, 19, 1649–1664,
378 <https://doi.org/10.5194/acp-19-1649-2019>, 2019.

379

380 Kim, J. and Xu, S.: Quantitative structure-reactivity relationships of hydroxyl radical rate constants for linear and cyclic volatile
381 methylsiloxanes, *Environ Toxicol Chem*, 36, 3240–3245, [https://doi.org/https://doi.org/10.1002/etc.3914](https://doi.org/10.1002/etc.3914), 2017.

382

383 Kuwata, M., Zorn, S. R., and Martin, S. T.: Using Elemental Ratios to Predict the Density of Organic Material Composed of
384 Carbon, Hydrogen, and Oxygen, *Environ Sci Technol*, 46, 787–794, <https://doi.org/10.1021/es202525q>, 2012.

385

386 Lamers, B. A. G., de Waal, B. F. M., and Meijer, E. W.: The iterative synthesis of discrete dimethylsiloxane oligomers: A
387 practical guide, *Journal of Polymer Science*, 59, 1142–1150, [https://doi.org/https://doi.org/10.1002/pol.20200649](https://doi.org/10.1002/pol.20200649), 2021.

388

389 Li, H., Almeida, T. G., Luo, Y., Zhao, J., Palm, B. B., Daub, C. D., Huang, W., Mohr, C., Krechmer, J. E., Kurtén, T., and
390 Ehn, M.: Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH
391 peroxides, *Atmos Meas Tech*, 15, 1811–1827, <https://doi.org/10.5194/amt-15-1811-2022>, 2022.

392

393 Liu, X., Day, D. A., Krechmer, J. E., Brown, W., Peng, Z., Ziemann, P. J., and Jimenez, J. L.: Direct measurements of semi-
394 volatile organic compound dynamics show near-unity mass accommodation coefficients for diverse aerosols, *Commun Chem*,
395 2, 98, <https://doi.org/10.1038/s42004-019-0200-x>, 2019.

396

397 Mazzoni, S. M., Roy, S., and Grigoras, S.: Eco-Relevant Properties of Selected Organosilicon Materials, in: *Organosilicon*
398 Materials, edited by: Chandra, G., Springer Berlin Heidelberg, Berlin, Heidelberg, 53–81, [https://doi.org/10.1007/978-3-540-68331-5_3](https://doi.org/10.1007/978-3-540-
399 68331-5_3), 1997.

400

401 Nakao, S., Tang, P., Tang, X., Clark, C. H., Qi, L., Seo, E., Asa-Awuku, A., and Cocker, D.: Density and elemental ratios of
402 secondary organic aerosol: Application of a density prediction method, *Atmos Environ*, 68, 273–277,
403 <https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.11.006>, 2013.

404

405 Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/Particle Partitioning and Secondary
406 Organic Aerosol Yields, *Environ Sci Technol*, 30, 2580–2585, <https://doi.org/10.1021/es950943+>, 1996.

407

408 Otkjær, R. V., Jakobsen, H. H., Tram, C. M., and Kjaergaard, H. G.: Calculated Hydrogen Shift Rate Constants in Substituted
409 Alkyl Peroxy Radicals, *J Phys Chem A*, 122, 8665–8673, <https://doi.org/10.1021/acs.jpca.8b06223>, 2018.

410

411 Palm, B. B., Campuzano-Jost, P., Ortega, A. M., Day, D. A., Kaser, L., Jud, W., Karl, T., Hansel, A., Hunter, J. F., Cross, E.
412 S., Kroll, J. H., Peng, Z., Brune, W. H., and Jimenez, J. L.: In situ secondary organic aerosol formation from ambient pine
413 forest air using an oxidation flow reactor, *Atmos Chem Phys*, 16, 2943–2970, <https://doi.org/10.5194/acp-16-2943-2016>, 2016.

414

415 Peng, Z. and Jimenez, J. L.: KinSim: A Research-Grade, User-Friendly, Visual Kinetics Simulator for Chemical-Kinetics and
416 Environmental-Chemistry Teaching, *J Chem Educ*, 96, 806–811, <https://doi.org/10.1021/acs.jchemed.9b00033>, 2019.

417

418 Peng, Z. and Jimenez, J. L.: Radical chemistry in oxidation flow reactors for atmospheric chemistry research, *Chem. Soc. Rev.*,
419 49, 2570–2616, <https://doi.org/10.1039/C9CS00766K>, 2020.

420

421 Rowe, J. P., Lambe, A. T., and Brune, W. H.: Technical Note: Effect of varying the $\lambda=185$ and 254nm photon flux ratio on
422 radical generation in oxidation flow reactors, *Atmos Chem Phys*, 20, 13417–13424, <https://doi.org/10.5194/acp-20-13417-2020>, 2020.

424

425 Safron, A., Strandell, M., Kierkegaard, A., and Macleod, M.: Rate Constants and Activation Energies for Gas-Phase Reactions
426 of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical, *Int J Chem Kinet*, 47, 420–428,
427 [https://doi.org/https://doi.org/10.1002/kin.20919](https://doi.org/10.1002/kin.20919), 2015.

428

429 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 1203 pp., 2006.

430

431 Timko, M. T., Yu, Z., Kroll, J., Jayne, J. T., Worsnop, D. R., Miake-Lye, R. C., Onasch, T. B., Liscinsky, D., Kirchstetter, T.
432 W., Destaillats, H., Holder, A. L., Smith, J. D., and Wilson, K. R.: Sampling Artifacts from Conductive Silicone Tubing,
433 *Aerosol Science and Technology*, 43, 855–865, <https://doi.org/10.1080/02786820902984811>, 2009.

434

435 Vlasenko, A., Macdonald, A. M., Sjostedt, S. J., and Abbatt, J. P. D.: Formaldehyde measurements by Proton transfer reaction
436 – Mass Spectrometry (PTR-MS): correction for humidity effects, *Atmos Meas Tech*, 3, 1055–1062,
437 <https://doi.org/10.5194/amt-3-1055-2010>, 2010.

438

439 von der Weiden, S.-L., Drewnick, F., and Borrmann, S.: Particle Loss Calculator – a new software tool for the assessment of
440 the performance of aerosol inlet systems, *Atmos Meas Tech*, 2, 479–494, <https://doi.org/10.5194/amt-2-479-2009>, 2009.

441

442 Wu, Y. and Johnston, M. V: Aerosol Formation from OH Oxidation of the Volatile Cyclic Methyl Siloxane (cVMS)
443 Decamethylcyclopentasiloxane, *Environ Sci Technol*, 51, 4445–4451, <https://doi.org/10.1021/acs.est.7b00655>, 2017.

444

445 Xiao, R., Zammit, I., Wei, Z., Hu, W.-P., MacLeod, M., and Spinney, R.: Kinetics and Mechanism of the Oxidation of Cyclic
446 Methylsiloxanes by Hydroxyl Radical in the Gas Phase: An Experimental and Theoretical Study, *Environ Sci Technol*, 49,
447 13322–13330, <https://doi.org/10.1021/acs.est.5b03744>, 2015.

448

449 Yu, Y., Liz Alexander, M., Perraud, V., Bruns, E. A., Johnson, S. N., Ezell, M. J., and Finlayson-Pitts, B. J.: Contamination
450 from electrically conductive silicone tubing during aerosol chemical analysis, *Atmos Environ*, 43, 2836–2839,
451 <https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.02.014>, 2009.

452

453 Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of secondary organic aerosol formation, *Chem Soc Rev*,
454 41, 6582, <https://doi.org/10.1039/c2cs35122f>, 2012.

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482 **Table S1. Summary of literature D₅ + OH rate coefficients and measurement methods.** We used the empirical values to calculate the
 483 average k_{D_5+OH} . GC-FID: gas chromatography-flame ionization detector. GC-MS: gas chromatography-mass spectrometry. CIMS:
 484 chemical ionization mass spectrometry.

Reference	Method	k_{D_5+OH} at ~298 K (cm ³ s ⁻¹)
Atkinson (1991)	CH ₃ NO ₂ + UV in 6400 L Teflon chamber, GC-FID, rate relative to cyclohexane.	1.55×10^{-12}
Safron et al. (2015)	O ₃ /H ₂ O + UV in 140 mL quartz chamber, GC-MS, rate relative to cyclohexane.	2.6×10^{-12}
Xiao et al. (2015)	O ₃ /H ₂ O + UV in 140 mL quartz chamber, GC-MS, rate relative to trimethylpentane.	2.46×10^{-12}
	Computed with Spartan 10 and Merck Molecular Force Field molecular mechanics.	2.90×10^{-12}
Kim and Xu (2017)	O ₃ /H ₂ O + UV in 134 L SilcoNert-coated stainless steel chamber, GC-MS, rate relative to n-hexane.	1.46×10^{-12}
Alton and Browne (2020)	O ₃ /H ₂ O + UV in 1000 L Teflon chamber, CIMS, rate relative to propionic acid/MEK.	2.1×10^{-12}
Average		2.0×10^{-12}

485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501

502 **Table S2. Summary of PAM OFR experiment conditions.**

Experiment	τ_{res} (sec)	Lamp Voltage	RH (%)	T (°C)	O ₃ (ppm)	Irradiance ($\mu\text{W cm}^{-2}$)	Volume mode (nm)	Surface mode (nm)	Aerosol sampling line loss (%)	Particle number concentration (cm ⁻³)
1	180	2.4	33.2 7 ± 0.07	22.4 4 ± 0.07	2.18 ± 0.02	0.95 ± 0.05	68.5	57.3	8.49	9.17×10^4
2	180	2.4	33.5 3 ± 0.07	21.0 9 ± 0.09	2.37 ± 0.02	0.93 ± 0.05	85.1	66.1	6.74	1.21×10^5
3	180	2.4	32.4 5 ± 0.03	19.8 4 ± 0.16	2.29 ± 0.03	0.83 ± 0.08	82	66.1	6.96	1.34×10^5
4	180	2.4	82.4 7 ± 0.20	20.3 9 ± 0.12	1.80 ± 0.02	0.56 ± 0.05	98.2	79.1	5.82	3.24×10^5
5	180	2.4	81.9 6 ± 0.11	21.3 7 ± 0.08	1.98 ± 0.03	0.84 ± 0.08	131	101.8	4.33	3.83×10^5
6	180	2.4	82.3 4 ± 0.11	21.5 7 ± 0.06	1.82 ± 0.02	0.61 ± 0.03	151.2	121.9	3.80	3.83×10^5
7	180	8.0	28.6 7 ± 0.30	21.6 6 ± 0.22	12.62 ± 0.15	12.36 ± 0.11	88.2	71	6.52	1.60×10^5
8	180	8.0	28.8 2 ± 0.16	21.6 3 ± 0.22	10.65 ± 0.12	9.37 ± 0.11	140.7	113.4	4.02	1.84×10^5
9	180	8.0	28.5 8 ± 0.17	23.0 8 ± 0.19	11.04 ± 0.05	9.80 ± 0.07	187.7	145.9	3.15	2.14×10^5

10	180	8.0	75.6 2 ± 0.51	21.6 1 ± 0.29	8.88 ± 0.08	12.18 ± 0.08	121.9	101.8	4.67	4.62×10^5
11	180	8.0	74.9 1 ± 0.33	23.0 3 ± 0.18	8.00 ± 0.06	9.68 ± 0.06	151.2	117.6	3.80	5.18×10^5
12	180	8.0	75.6 4 ± 0.34	23.4 0 ± 0.20	8.03 ± 0.04	9.67 ± 0.10	194.6	151.2	3.04	6.64×10^5
13	120	2.4	30.5 7 ± 0.13	20.1 5 ± 0.14	1.69 ± 0.01	0.87 ± 0.03	51.4	42.9	11.7	6.30×10^4
14	120	2.4	28.9 7 ± 0.07	21.1 6 ± 0.08	1.62 ± 0.01	0.84 ± 0.06	55.2	47.8	10.7	5.56×10^4
15	120	2.4	28.4 8 ± 0.05	21.1 0 ± 0.06	1.54 ± 0.01	0.69 ± 0.05	57.3	49.6	10.4	4.39×10^4

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519 **Table S3. Summary of experiment condensational sinks, LVOC condensation lifetimes, and growth factors calculated with the**
520 **particle size distribution exiting the PAM-OFR as described in Section S1.3.**

Parameters	SOA, LVOC			SOSiA, D_5		
	$\kappa = 0.13, M = 0.200 \text{ kg mol}^{-1}$			$\kappa = 0.01, M = 0.370 \text{ kg mol}^{-1}$		
Experiment	CS (m ⁻²)	τ_{CS} (s)	Growth Factor	CS (m ⁻²)	τ_{CS} (s)	Growth Factor
1	18237	0.62335	1.0212	13283	0.85585	1.0017
2	28655	0.39672	1.0214	20968	0.54217	1.0017
3	27584	0.41214	1.0204	20183	0.56327	1.0016
4	126160	0.090109	1.1724	73844	0.15395	1.0154
5	221320	0.051365	1.1673	132820	0.085589	1.0149
6	284510	0.039958	1.1711	172260	0.065996	1.0153
7	48329	0.23523	1.0171	35800	0.31754	1.0013
8	100390	0.11324	1.0173	75748	0.15008	1.0014
9	180880	0.062851	1.0171	138940	0.081818	1.0013
10	240210	0.047326	1.1196	153930	0.073853	1.0102
11	372690	0.030503	1.1155	243900	0.046611	1.0099
12	661010	0.017198	1.1197	437730	0.025971	1.0102
13	8963.6	1.2683	1.0187	6506.9	1.7471	1.0015
14	8894.4	1.2781	1.0174	6483.8	1.7533	1.0014
15	7333.8	1.5501	1.0170	5353.1	2.1237	1.0013

521

522

523

524

525

526

527

528

529

530

531

532

533

534 **Table S4. Proposed PTR-MS VOP ions and identities. Here, “D” refers to units of $(CH_3)_2SiO$ and “T” to CH_3SiO .**

Ion Formula	Ion Unit Mass (<i>m/z</i>)	Description
$(HCHO)H^+$	31	Formaldehyde
$(HCOOH)H^+$	47	Formic acid
$(C_9H_{27}O_5Si_5)^+$	355	D_5 (-CH ₃) or D_4T-OH (-OH) fragment ion
$(C_8H_{25}O_6Si_5)^+$	357	$D_3T_2-(OH)_2$ (-OH) fragment ion
$(C_{10}H_{30}O_5Si_5)H^+$	371	D_5 dominant isotope
$(C_9H_{28}O_6Si_5)H^+$	373	D_4T-OH dominant isotope or H_2O cluster of <i>m/z</i> 355
$(C_8H_{26}O_7Si_5)H^+$	375	$D_3T_2-(OH)_2$ dominant isotope
$(C_9H_{25}O_7Si_5)^+$	385	$D_3T_2-OH-OCHO$ (-OH) fragment ion
$(C_{10}H_{28}O_7Si_5)H^+$	401	$D_4T-OCHO$ dominant isotope

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556 **Table S5. Reactions and rate coefficients added to the KinSim OFR mechanism template. The rate coefficients (k) have units of cm^3**
 557 **s^{-1} and s^{-1} for bimolecular and unimolecular reactions respectively.** Ziemann and Atkinson (2012) notes that the rates of $\text{RO}_2 + \text{RO}_2$
 558 varies by orders of magnitude depending on the structure of the RO_2 and that the products are uncertain. Here, we assumed that
 559 the initial RO_2 from $\text{D}_5 + \text{OH}$ is analogous to secondary alkyl RO_2 . Alton and Browne (2022) proposes the majority product of $\text{RO}_2 +$
 560 HO_2 is RO . The $\text{RO}_2 + \text{OH}$ rate is for the propylperoxy radical (Fittschen, 2019). For isomerization, we used a value in the range of
 561 calculated 1,5 H-shift rates in alkanes, which can vary by orders of magnitude depending on the molecule's functionalization (Otkjær
 562 et al., 2018).

Reference	Reaction	Products	k
Alton and Browne (2022)	$\text{RO}_2 + \text{HO}_2$	$\text{RO} + \text{O}_2 + \text{OH}$ (90 %) ROOH (10 %)	1.7×10^{-11}
Ziemann and Atkinson (2012)	$\text{RO}_2 + \text{RO}_2$	$\text{ROH} + \text{R}=\text{O}$ $2\text{RO} + \text{O}_2$ $\text{ROOR} + \text{O}_2$	5×10^{-15}
Fittschen (2019)	$\text{RO}_2 + \text{OH}$	ROOOH $\text{RO} + \text{HO}_2$	1.4×10^{-10}
Alton and Browne (2022)	RO_2 rearrangement	$\text{RO} + \text{HCHO}$	8.0×10^{-3}
Otkjær et al. (2018)	RO_2 isomerization	$\text{R}'\text{O}_2$	1×10^{-3}
Atkinson et al. (2006)	$\text{HCHO} + \text{OH}$	$\text{HO}_2 + \text{CO}$	8.5×10^{-12}
Atkinson et al. (2006)	$\text{CO} + \text{OH}$	$\text{HO}_2 + \text{CO}_2$	1.5×10^{-13}

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580 **Table S6. Input UV fluxes (cm⁻² s⁻¹) for KinSim.**

Experiment	[O ₃] matched		OH _{exp} matched	
	I ₁₈₅	I ₂₅₄	I ₁₈₅	I ₂₅₄
1	3.441×10^{12}	2.375×10^{13}	3.441×10^{11}	2.375×10^{12}
2	3.741×10^{12}	2.325×10^{13}	3.741×10^{11}	2.325×10^{12}
3	3.615×10^{12}	2.075×10^{13}	3.615×10^{11}	2.075×10^{12}
4	4.038×10^{12}	1.400×10^{13}	4.038×10^{11}	1.400×10^{12}
5	4.442×10^{12}	2.100×10^{13}	4.442×10^{11}	2.100×10^{12}
6	4.083×10^{12}	1.525×10^{13}	4.083×10^{11}	1.525×10^{12}
7	1.992×10^{13}	3.090×10^{14}	1.992×10^{12}	3.090×10^{13}
8	1.681×10^{13}	2.343×10^{14}	1.681×10^{12}	2.343×10^{13}
9	1.743×10^{13}	2.450×10^{14}	1.743×10^{12}	2.450×10^{13}
10	1.992×10^{13}	3.045×10^{14}	1.992×10^{12}	3.045×10^{13}
11	1.795×10^{13}	2.420×10^{14}	1.795×10^{12}	2.420×10^{13}
12	1.801×10^{13}	2.418×10^{14}	1.801×10^{12}	2.418×10^{13}
13	5.534×10^{12}	2.175×10^{13}	5.534×10^{11}	2.175×10^{12}
14	5.304×10^{12}	2.100×10^{13}	5.304×10^{11}	2.100×10^{12}
15	5.042×10^{12}	1.725×10^{13}	5.042×10^{11}	1.725×10^{12}

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596 **Table S7. Fit first generation relative molar yield (γ_i) and $k_{VOPi+OH}$ of proposed VOP identities. Here, “D” refers to units of $(CH_3)_2SiO$
597 and “T” to CH_3SiO .**

Proposed VOP	γ_i	$k_{VOPi+OH} (cm^3 s^{-1})$
D ₄ T-OCHO (<i>m/z</i> 401)	0.0514	4.57×10^{-12}
D ₃ T ₂ -OH-OCHO (<i>m/z</i> 385)	0.518	5.26×10^{-12}
D ₃ T ₂ -(OH) ₂ (<i>m/z</i> 357)	0.343	5.73×10^{-12}
D ₄ T-OH (<i>m/z</i> 355)	1.11	7.53×10^{-12}

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624 **Table S8. Experimental molar yields of HCHO and HCOOH. As these species are formed in the OFR at an unknown point, there**
 625 **may be some loss through oxidation with OH. Consequently, the OH_{exp} determined with D₅ may not represent the OH_{exp} these VOP**
 626 **experienced.**

Experiment	$\Delta\text{HCHO}/\Delta\text{D}_5$ (ppb/ppb)	$\Delta\text{HCOOH}/\Delta\text{D}_5$ (ppb/ppb)
1	1.79 ± 0.55	0.94 ± 0.15
2	1.35 ± 0.29	0.69 ± 0.09
3	1.21 ± 0.28	0.52 ± 0.09
4	1.52 ± 0.28	0.90 ± 0.09
5	1.28 ± 0.23	0.83 ± 0.09
6	0.96 ± 0.13	0.62 ± 0.05
7	1.06 ± 0.21	0.68 ± 0.05
8	1.18 ± 0.18	0.80 ± 0.07
9	0.88 ± 0.09	0.60 ± 0.04
10	0.69 ± 0.28	1.27 ± 0.11
11	0.55 ± 0.17	0.84 ± 0.06
12	0.52 ± 0.10	0.68 ± 0.04
13	2.11 ± 1.18	0.98 ± 0.37
14	1.11 ± 0.43	0.49 ± 0.12
15	1.15 ± 0.37	0.45 ± 0.12

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641 **Table S9. Summary of low-NO_x SOSiA experiments in the literature. The *Ysosia* and *Coa* from the literature were multiplied by**

642 1.07/(ρ_{SOSiA} used in the reference) to compare with the values from this study. Wu and Johnston (2017) did not provide a ρ_{SOSiA} nor

643 an OH_{exp}, and so we assumed their ρ_{SOSiA} to be the same used here ($\rho_{\text{SOSiA}} = 1.07 \text{ g cm}^{-3}$) and calculated OH_{exp} using their estimated

644 [OH] and residence time. Moreover, we converted the ΔD s they report from ppb to $\mu\text{g m}^{-3}$ with 370.8 g mol⁻¹, 298 K, and 1 atm to

645 calculate their *Ysosia*. Janechek et al. (2019) conducted experiments with and without ammonium sulfate (AS) seed and found that

646 the SOSiA mass concentration would increase with the addition of seed aerosol. However, Janechek et al. (2019) do not explicitly state

647 whether the *Ysosia* in their Table 1 is from those seeded cases. Charan et al. (2022) does not provide a summary of *Coa*, so we calculated

648 them using the values in their Table 1 at 1 atm, and we included the *Ysosia* from their oxidation flow tube with and without the

649 particle wall loss corrections. Han et al. (2022) provided a range of ρ_{SOSiA} of 1.6-1.8 g cm⁻³ for a variety of cyclosiloxane precursors,

650 and we used a value of 1.7 g cm⁻³ for the ρ_{SOSiA} adjustment.

Reference	Experiment Set Up	<i>Ysosia</i> (%)	OH _{exp} (s cm ⁻³)	<i>Coa</i> ($\mu\text{g m}^{-3}$)	Seed	ρ_{SOSiA} (g cm ⁻³)
Wu and Johnston (2017)	PFA photo-oxidation chamber (50 L, $\tau_{\text{res}} = 15$ min)	7.9	9×10^{10}	1.2	None	N/A, assumed to be the same used here.
		9.9	9×10^{10}	3.3	None	
		12.7	9×10^{10}	5.6	None	
		14.3	9×10^{10}	8.0	None	
		15.8	9×10^{10}	12.0	None	
		13.8	9×10^{10}	2.3	AS	
		15.1	9×10^{10}	3.2	AS	
		17.5	9×10^{10}	4.5	AS	
		21.8	9×10^{10}	9.6	AS	
		23.1	9×10^{10}	12.6	AS	
Janechek et al. (2019)	PAM-OFR (13.3 L, $\tau_{\text{res}} = 2.7$ or 3.8 min)	30	4.8×10^{12}	219.7	N/A	0.959
		24	2.3×10^{12}	84.0	N/A	
		22	1.6×10^{12}	107.1	N/A	
		50	5.1×10^{12}	180.7	N/A	
		24	2.7×10^{12}	68.4	N/A	
Charan et al. (2022)	FEP chamber (19 m ³)	1.5	9×10^{10}	20.	AS	1.52
		5.7	8×10^{10}	44.	AS	
		0	6×10^{10}	0	AS	
		2.6	3×10^{10}	19.	AS	
Charan et al. (2022)	Caltech photo-oxidation flow tube ($\tau_{\text{res}} = 671$ s)	1.9/1.1	1.4×10^{10}	1.3	None	1.52
		2.9/1.8	1.5×10^{11}	19	None	
		9.2/6.0	3.3×10^{11}	67	None	
		6.7/4.6	1.5×10^{11}	70.	None	
		19/14	7.8×10^{11}	336	None	
		32/24	1.0×10^{12}	643	None	

		49/35	1.1×10^{12}	993	None	
		157/109	3.2×10^{12}	3969	None	
		158/110	3.2×10^{12}	4046	None	
		138/102	3.1×10^{12}	1276	None	
		128/94	3.3×10^{12}	1176	None	
Han et al. (2022)	Environment and Climate Change Canada OFR (16 L, $\tau_{\text{res}} = 2$ min)	2	5.5×10^{10}	0.5	None	1.6-1.8
		2	1.4×10^{11}	1.8	None	
		11	3.5×10^{11}	16.9	None	
		27	5.0×10^{11}	48.9	None	
		35	6.0×10^{11}	68.7	None	
		46	6.9×10^{11}	97.7	None	
		61	9.0×10^{11}	169.7	None	
		70	1.2×10^{12}	228.8	None	
		75	1.3×10^{12}	253.6	None	
		79	1.7×10^{12}	282.7	None	
		80	1.9×10^{12}	273.6	None	
		2	5.5×10^{12}	0.8	AS	
		1	1.4×10^{12}	2.0	AS	
Avery et al. (2023)	PAM-OFR (13.3 L, $\tau_{\text{res}} = 130$ s)	2	1.15×10^{12}	3.84	None	1.78
		16	2.42×10^{12}	28.47	None	1.67
		37	3.77×10^{12}	66.89	None	1.64
		42	4.55×10^{12}	76.12	None	1.61
		82	5.23×10^{12}	149.44	None	1.60
		104	6.21×10^{12}	189.02	None	1.60
		146	8.23×10^{12}	267.47	None	1.59

651

652

653

654

655

656

657

658

659 **Table S10. Odum 2-product model fit values. These 2-product parameterizations do not account for OH_{exp}. Janechek et al. (2019)**
 660 **and Charan et al. (2022) state the values below, and Charan et al. (2022) provided 2 fits: with/without particle wall-loss corrections.**
 661 **Han et al. (2022) and Avery et al. (2023) did not provide 2-product parameterizations, so we fit their data that was adjusted to ρ_{SOSIA}**
 662 **= 1.07 g cm⁻³; the original ρ_{SOSIA} are in Table S9. We also performed a fit with all values, including those in the literature.**

Reference	α_1	α_2	K_1	K_2
Janechek et al. (2019) ($\rho_{SOSIA} = 0.959 \text{ g cm}^{-3}$)	0.14	0.82	1.05	0.00207
Charan et al. (2022) ($\rho_{SOSIA} = 1.52 \text{ g cm}^{-3}$)	0.056/0.044	7.7/5.5	0.022/0.027	$4.3 \times 10^{-5}/6.0 \times 10^{-5}$
Han et al. (2022) ($\rho_{SOSIA} = 1.07 \text{ g cm}^{-3}$)	0.4598	1.284	1.432×10^{-2}	8.546×10^{-4}
Avery et al. (2023) ($\rho_{SOSIA} = 1.07 \text{ g cm}^{-3}$)	5.301	9.756	3.161×10^{-4}	4.209×10^{-4}
This paper ($\rho_{SOSIA} = 1.07 \text{ g cm}^{-3}$)	0.2266	0.6864	0.01478	9.611×10^{-4}
All Values ($\rho_{SOSIA} = 1.07 \text{ g cm}^{-3}$)	0.3774	1.743	0.02482	2.486×10^{-4}

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681 **Table S11. Fit VBS product mass yields (α_i) and chemical aging rate coefficients ($k_{age,gas}$).** The $k_{age,gas}$ is for the aging-VBS model
 682 where OH_{exp} is explicitly parameterized with the and “bin-hopping” as described in Section 3.2. We performed fits using the data
 683 from our experiments and all values, which includes those in the literature. For α_i smaller than 10^{-5} , we marked them as 0.

C^*	0.1	1	10	100	1000	10000	$k_{age,gas}$
This study α_i (no aging)	8.467×10^{-4}	0	0.1193	0	0.7043	0.1756	N/A
This study α_i (aging)	1.237×10^{-4}	2.320×10^{-3}	1.373×10^{-2}	8.674×10^{-2}	2.913×10^{-5}	0.8971	2.169×10^{-11}
All values α_i (no aging)	7.412×10^{-2}	0	0	0	0.6599	0.2660	N/A
All values α_i (aging)	8.328×10^{-5}	1.562×10^{-3}	9.242×10^{-3}	5.839×10^{-2}	2.319×10^{-5}	0.9307	1.086×10^{-11}

684

685

686

687

688

689

690

691

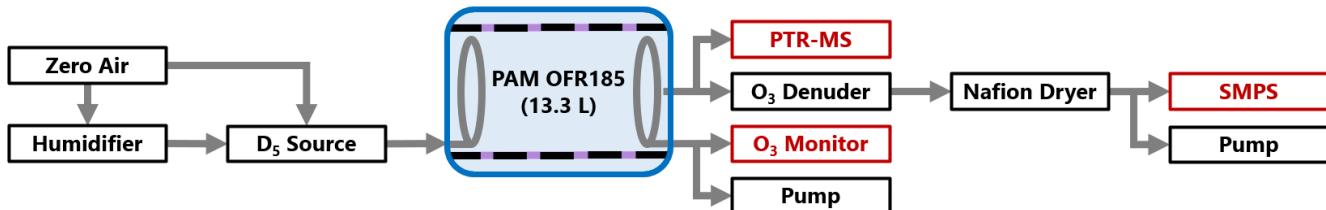
692

693

694

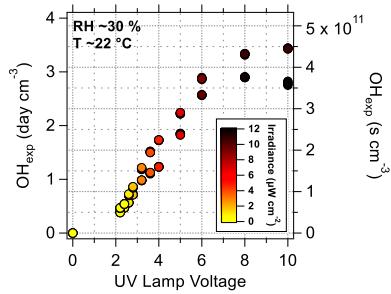
695

696

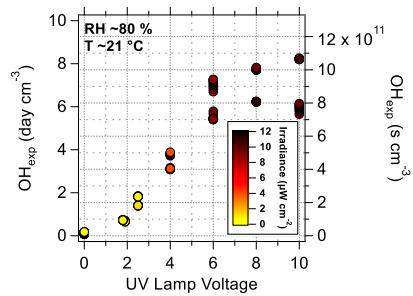

697

698

699


700

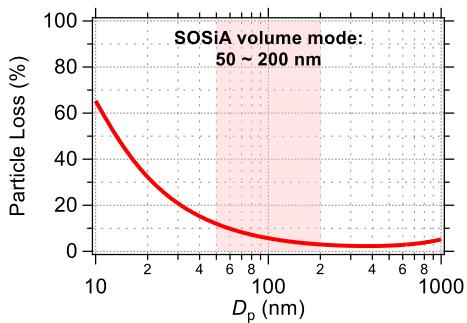
701



702
 703 **Figure S1. PAM-OFR experiment set up.** The D_5 source was a syringe pump injecting into a passivated glass bulb. The side ports
 704 were equipped with conductive Teflon flow rings on both ends of the PAM-OFR. We covered 90 % of the 185 nm UV lamps to
 705 achieve lower irradiances and OH_{exp} . We conducted experiments at $\tau_{res} = 120$ s with 6.65 L min^{-1} or 180 s with 4.43 L min^{-1}
 706 respectively.

707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719

720

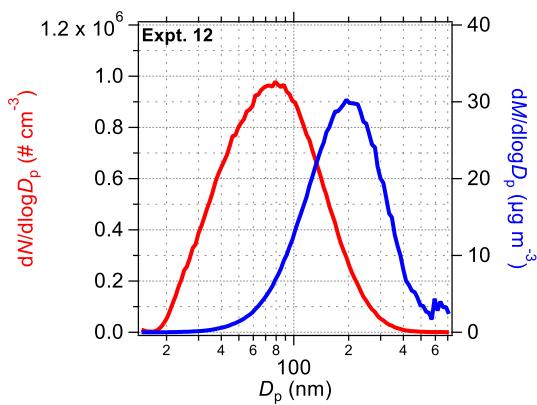


721

722 **Figure S2. Offline OH_{exp} calibrations with CO at low and high humidity conditions. The OH_{exp} measured during experiments with**
 723 **D_5 were consistent with the offline calibration values.**

724

725

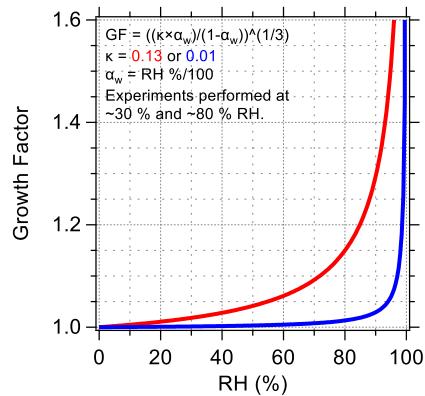


726

727 **Figure S3. Calculated particle losses with diameters** (von der Weiden et al., 2009) **using the dimensions of the aerosol sampling line.**
728 **The shaded area refers to the aerosol volume modes found during experiments.**

729

730

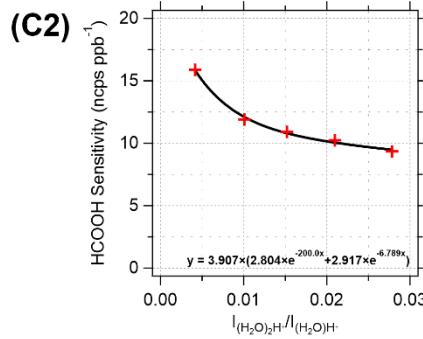
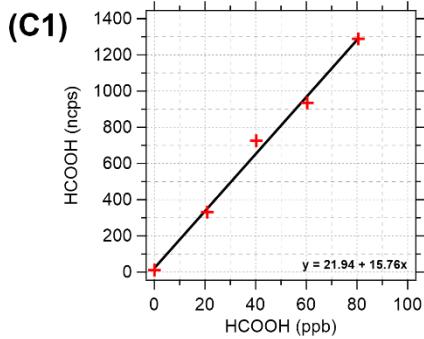
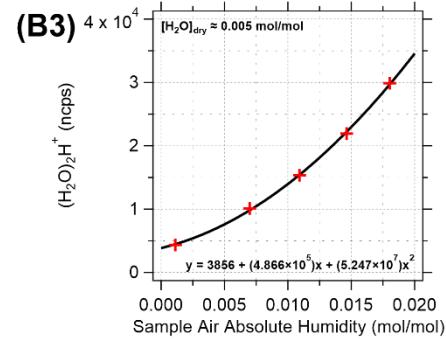
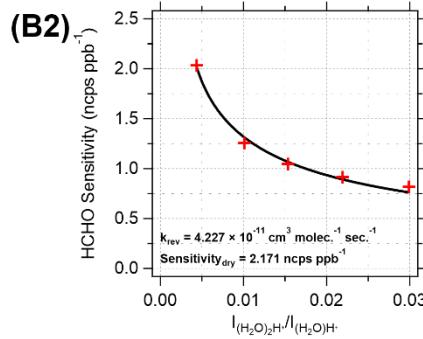


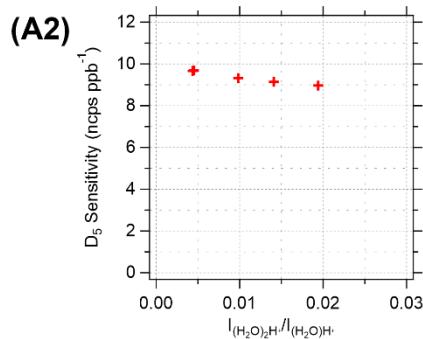
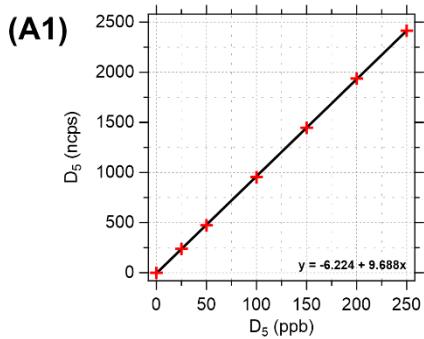
731

732 **Figure S4. SOSiA particle size distribution for experiment 12, where $[D_5]_0$ and OH_{exp} were high.**

733

734

735

736 **Figure S5. Particle growth factor vs. RH (%) for $\kappa = 0.13$ and 0.01 .** Palm et al. (2016) used the SOA hygroscopicity factor ($\kappa = 0.13$),
 737 while Janechek et al. (2019) found SOSiA to be non-hygroscopic ($\kappa = 0.01$).

738

739

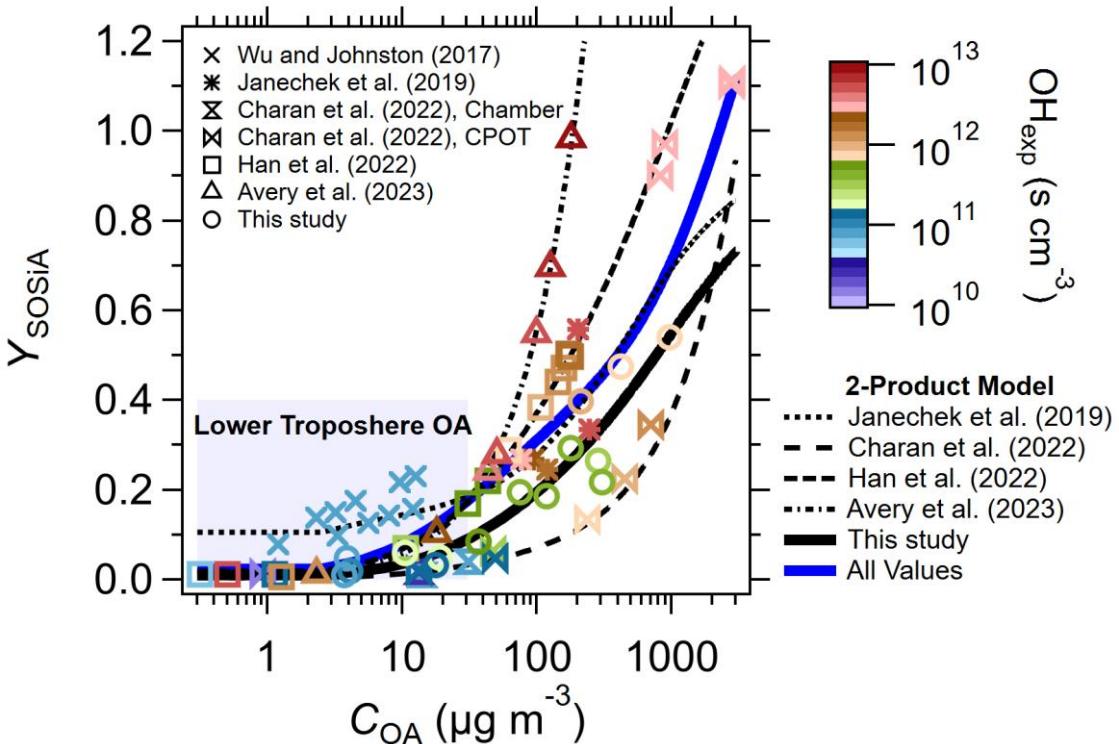
740

741 Figure S6. (A1, B1, C1) Calibration curves of D₅, HCHO, and HCOOH. The PTR-MS response was linear under these concentration
 742 ranges. (A2, B2, C2) Sensitivity variation with humidity. We found the D₅ sensitivity at *m/z* 371 under 137 Td to be consistent with
 743 changing humidity and did not apply a correction for the quantification. (B3) Polynomial fit to determine the H₂O mixing ratio
 744 contribution from the PTR-MS ion source.

745

746

747


748

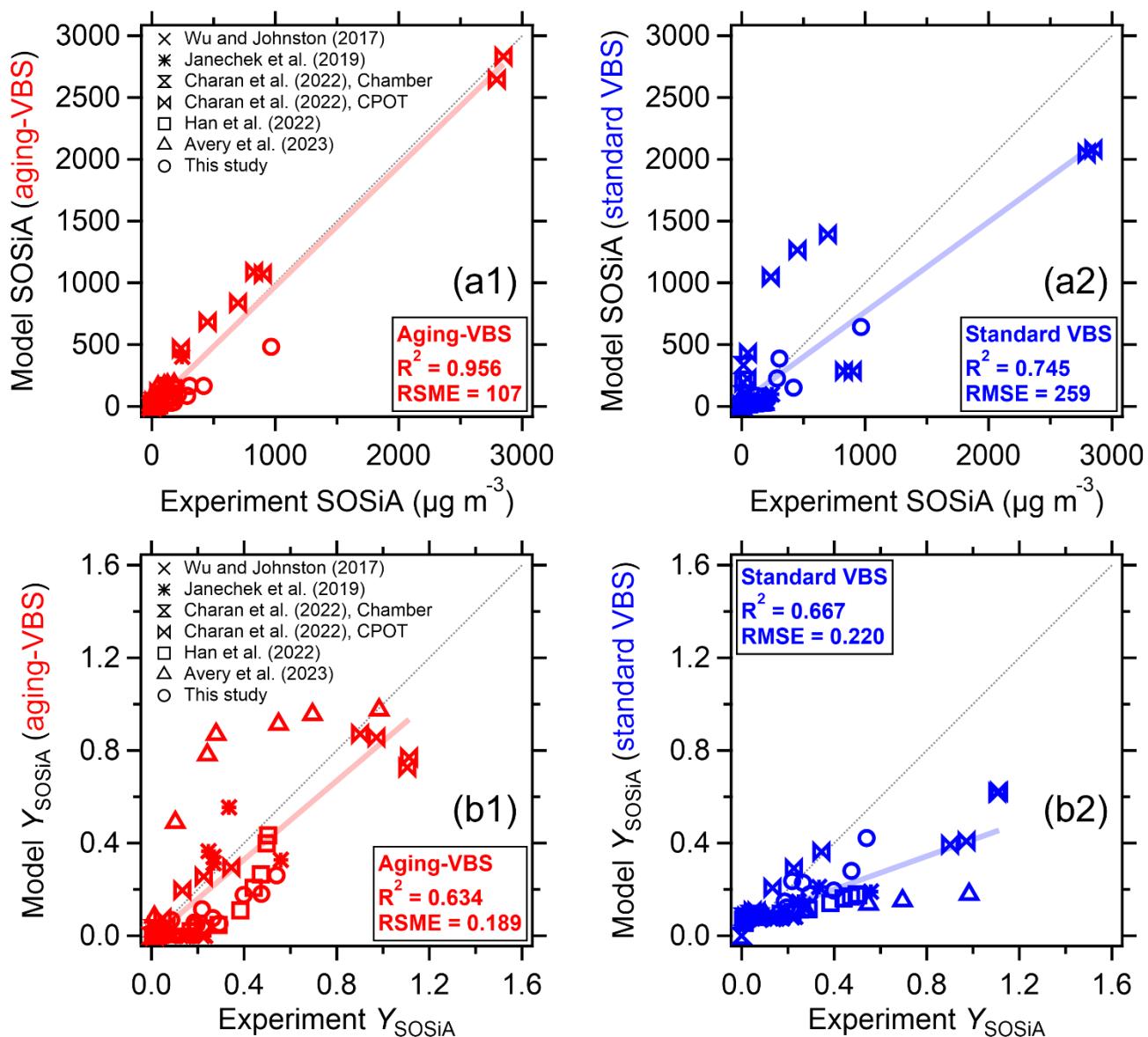
749

750

751

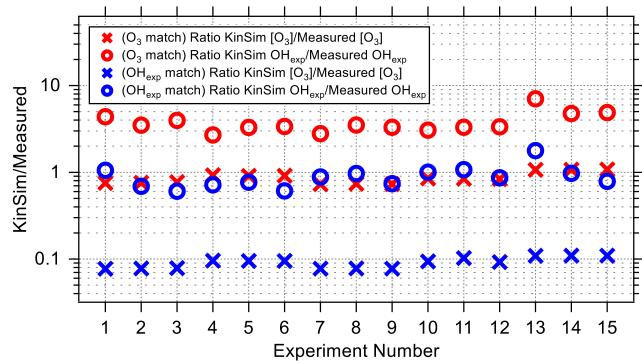
752

753
 754 **Figure S7 Comparison of Odum 2-product model parameterizations between this study and the literature. The blue line is from the**
 755 **fit with all data, including those we report.** The shaded area indicates the range of ambient OA concentrations commonly observed in the
 756 **lower troposphere (Porter et al., 2021).** The figure shows the particle wall loss-corrected values from Charan et al. (2022). Han et al. (2022)
 757 and Avery et al. (2023) did not provide 2-product parameterizations, so we fitted the values using their ρ_{SOSIA} -adjusted data (Table S10). Wu
 758 and Johnston (2017) did not have measurements of OH_{exp} or D_5 and instead provided estimates. The OH_{exp} (color scale) are those reported
 759 by the literature.


760

761

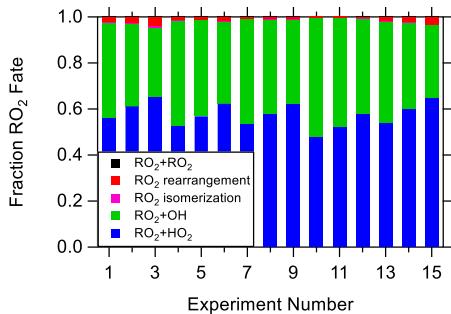
762


763

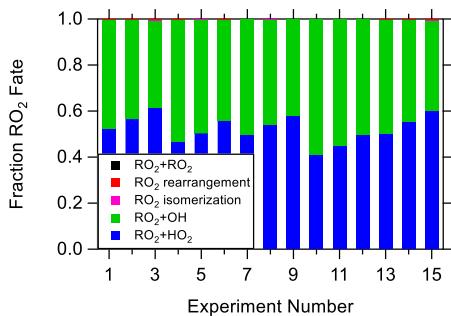
764

767 **Figure S8. Comparison of the (a) SOSiA mass and (b) Y_{SOSiA} from the (1) aging-VBS and (2) standard-VBS parameterizations fit**
 768 **with values we report and those in the literature (Table S11). The R^2 and root mean square error (RMSE) of the aging-VBS model**
 769 **SOSiA is better than that of the standard VBS.**

774



775


776 **Figure S9.** Ratio of the KinSim model outputs vs. measurements for each experiment. The “OH_{exp} match” and “O₃ match” refers to
 777 the cases where the UV flux is and is not adjusted so that the KinSim outputs of OH_{exp} and O₃ are in line with measurements
 778 respectively.

779

780

781

782

783 **Figure S10.** KinSim estimations of RO₂ fates across experiments. The top panel has I_{254} and I_{185} multiplied by 0.1 (OH_{exp} matched),
 784 while the bottom does not (O₃ matched). In either case, KinSim calculated the RO₂ fates in all experiments to be dominated by the
 785 RO₂ + HO₂ and RO₂ + OH pathways.

786

787