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Abstract. Urban smoke exposure events from large wildfires have become increasingly common in California and throughout

the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is

limited by the availability of high-quality, spatially-resolved estimates of aerosol concentrations. Methods for assigning aerosol

exposure often employ multiple data sets that are time consuming to create and difficult to reproduce. As these events have

gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has increased. The rapidfire5

R package (version 0.1.3) provides a suite of tools for developing exposure assignments using data sets that are routinely

generated and publicly available within a month of the event. Specifically, rapidfire harvests official air quality monitoring,

satellite observations, meteorological modeling, operational predictive smoke modeling, and low-cost sensor networks. A

machine learning approach (random forests regression) is used to fuse the different data sets. Using rapidfire, we produced

estimates of ground-level 24-hour average particulate matter for several large wildfire smoke events in California from 2017-10

2021. These estimates show excellent agreement with independent measures from filter-based networks.

1 Introduction

Changes in climate in the western United States, and elsewhere, are driving larger, more intense fires with greater smoke

impacts on larger populations (Burke et al., 2021), and these trends are projected to continue (Hurteau et al., 2014). The

wildfire seasons of 2020 and 2021 produced some of the highest concentrations of particulate matter less than 2.5 microns in15

diameter (PM2.5) ever observed in monitoring stations around California, some for several days or weeks. Despite reductions

in ambient PM2.5 driven by air pollution regulations, areas of the western United States are seeing increasing concentrations

due to wildfire smoke impacts (McClure and Jaffe, 2018).

There are widespread concerns about potential health consequences of wildfire exposures on vulnerable populations as the

smoke increasingly reaches populated areas. From 2008-2012, it was estimated that over 10 million individuals in the US20

experienced unhealthy air quality levels (average daily fire-PM2.5 > 35 µgm−3) associated with exposure to wildfire for more

than 10 days (Rappold et al., 2017). This number is expected to have risen several-fold in the decade since given the increase

in wildfire events across the continent (Childs et al., 2022). Additionally, long-range transport of wildfire PM2.5 has been
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associated with adverse health effects in susceptible populations thousands of miles away (Kollanus et al., 2016, Le et al.

(2014)).25

Wildfire smoke is associated with premature deaths (Johnston et al., 2012, Chen et al. (2021a)), and significant cardiovascular

(Chen et al., 2021b) and respiratory morbidity (Reid et al., 2016), including asthma exacerbations. Certain subpopulations are

more susceptible to the health impacts of air pollution and wildfire smoke, including the elderly, pregnant women, and those

with underlying health conditions such at asthma (Chen et al., 2021b). Few studies have examined long-term health outcomes

in relation to chronic exposures to high concentrations of wildfire smoke. Prenatal wildfire smoke exposure has been linked30

to adverse birth outcomes, including preterm birth (Heft-Neal et al., 2022), and lower birth weight (Holstius et al., 2012,

Abdo et al. (2019)), especially with exposure in the second or third trimester. In contrast to studies of ambient air pollution,

associations between wildfire smoke and adverse birth outcomes did not differ by race, ethnicity, or income, but differed

by baseline smoke exposure. Many epidemiologic studies have linked early life air pollution exposure to increased autism

spectrum disorder risk (Volk et al., 2011, Volk et al. (2013), Dutheil et al. (2021)) and to cognitive functioning impairments35

(Loftus et al., 2020, Clifford et al. (2016), Loftus et al. (2019), Chiu et al. (2016)).

Evidence suggests that wildfire PM2.5 could induce higher toxicity than other ambient air PM2.5 (Wegesser et al., 2009, Kim

et al. (2018), Wegesser et al. (2010), Franzi et al. (2011)) and is associated with about 10 times higher increase in hospital

admissions for respiratory health than PM2.5 from other sources (Aguilera et al., 2021a), including in young children (Aguilera

et al., 2021b). With climate predictions for increased occurrence and severity of wildfires, there is a growing need to understand40

which populations are at highest risk and PM2.5 concentrations of concern to inform adverse health mitigation strategies. Yet,

many gaps remain in our understanding of the linkages between wildfire smoke and human health (Black et al., 2017). A

critical challenge is in characterizing personal or population exposures during high-intensity events. There are many methods

for estimating exposure to ambient pollution, including spatial interpolation of measured values, chemical transport modeling,

remote sensing, land-use regression modeling, data fusion and machine learning, and combinations of all of these approaches45

(e.g., Reid et al. (2015), Zhang et al. (2020), Al-Hamdan et al. (2014), Cleland et al. (2020), Hoek et al. (2008)). The rapidly

changing conditions during wildfire smoke events can confound otherwise high-performing approaches (O’Neill et al., 2021).

There are several barriers to the adoption of existing methods for exposure assignment. These can include data availability for

the study location, data latency, and high-performance computing requirements. The combination of increasing frequency of

smoke events and the proliferation of smoke exposure human health studies drives a need for exposure modeling that is quick50

and inexpensive.

There has been a rapid proliferation of low-cost sensors for air quality within the past decade. While these sensors do not

measure PM2.5 with the same fidelity as the regulatory monitoring conducted by federal and local air quality agencies, they

represent a new resource for PM2.5 assessment with relatively dense spatial coverage. Many low-cost PM2.5 sensors operate with

similar principles, using a laser to count particles that scatter light in the optical range, with sensitivities peaking for aerosols55

with median scattering diameter < 0.3 µm (Ouimette et al., 2022). Recent studies have shown the value of incorporating low-

cost sensor networks into PM2.5 exposure modeling (Bi et al., 2020).

Past work has shown that a data fusion approach that combines ground-based air quality monitors, transport modeling that
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incorporates wildfire emissions, satellite observations, and meteorological variables can be effective in predicting PM2.5 exposure

during large wildfire events (Zou et al., 2019, and O’Neill et al. (2021)) and prescribed fires (Huang et al., 2021).60

We developed methods and a suite of tools for rapidly predicting PM2.5 exposure, particularly during wildfire smoke events,

using readily available data with low latency (less than one month). The tools are contained within a package written in the

R programming language called rapidfire (relatively accurate particulate information derived from inputs retrieved easily).

rapidfire adapts and builds upon the methods of Zou et al. (2019) and O’Neill et al. (2021), replacing retrospective chemical

transport modeling and other data sets developed for research with smoke forecast modeling and “off-the-shelf” data sets that65

are routinely available and easily acquired. A major addition is the incorporation of low-cost sensor data. This paper describes

the data sets and algorithms used in the rapidfire package and presents an example case study during five recent extreme

wildfire seasons in California.

2 Methods

In this study, datasets and algorithms are applied to time periods of large California wildfires from 2017-2021. Table 170

summarizes some of the major California wildfires and the area burned for the year. Figure 1 shows the wildfire locations,

as detailed by the California Department of Forestry and Fire Protection’s Fire and Resource Assessment Program (FRAP).

Extreme fire weather conditions fueled the October 2017 wine country wildfires (~81 ha) in the Napa and Sonoma counties

of central coastal California (Mass and Ovens, 2019) and over 7 million people were impacted by unhealthy levels of smoke

(O’Neill et al., 2021). 2018 began in July with wildfires such as the Carr, Ferguson, and Mendocino Complex (Mueller et al.,75

2020) and extended through November with the Camp and Woolsey wildfires. 2019 was a relatively low activity fire year

in comparison, but the Kincade wildfire (~31 ha) again impacted the wine country in Oct-Nov. The 2020 wildfire season

was relatively quiet until the middle of August when widespread lightning ignited many wildfires across central and northern

California, including the coastal range south of San Francisco. 2021 burned about two-thirds the acres as in 2020, but over a

longer duration, starting about a month earlier in July. These different patterns and level of smoke impacts are seen in Figure 280

which shows 24-hour average PM2.5 concentrations from permanent and temporary monitors across the state of California and

satellite imagery of the smoke and satellite hot spot detections.

Table 1. Modeled time periods and major California wildfires. Annual area burned in California is from the US National Interagency Fire

Center (NIFC; https://www.nifc.gov/fire-information/statistics)

Year Time Period Major California Fires Annual California Area Burned (ha)

2017 October Atlas, Nuns, Pocket, Redwood Valley, Tubbs 513,000

2018 July 15 - September 15; November Carr, Mendocino, Ferguson, Camp, Woolsey 738,000

2019 October 15 - November 15 Kincade 105,000

2020 August - October
August, Apple, Creek, Dolan, Dome, LNU Lightning,

North, SCU Lightning, Bobcat 1,657,000

2021 August - October Antelope, Caldor, Dixie, Monument, River 905,000
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Figure 1. Locations of burned areas in California, 2017-2021.

2.1 Input Data Sets

Input data for rapidfire consist of ground-based monitors from three sources, aerosol optical depth from satellite instruments,

and modeled meteorological and air quality data. Table 2 summarizes these data sources and the rapidfire functions used to85

access them and/or the location where the data can be obtained.

Table 2. Data sources used in rapidfire and the rapidfire function to access them or the location where sample data are available.

Data Source rapidfire function or location where available spatial resolution

AirNow Permanent PM2.5 Monitoring Data rapidfire::get_airnow_daterange point locations

IWFAQRP Temporary PM2.5 Monitoring Data rapidfire::get_airsis_daterange point locations

PurpleAir Air Sensor Data rapidfire::openaq_get_averages point locations

MAIAC Aerosol Optical Depth rapidfire::maiac_download 1 km

Example Smoke modeling data DOI:10.5281/zenodo.7942846 4 km

North American Regional Analysis (NARR) Meteorology rapidfire::get_narr 32 km
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Figure 2. Temporal and area views of smoke impacts across California. Panels on the left show 24-hour PM2.5 concentrations from

permanent and temporary monitors in California for July – November for 2017-2021. Data are color-coded by air quality index. Panels

on the right show visible satellite imagery of smoke and satellite fire hot spot detections across California from NASA Worldview for

October 13, 2017 during the wine country wildfires; November 9, 2018 during the Camp and Woolsey wildfires; October 27, 2019 during

the Kincade wildfire; September 9, 2020 after widespread lightning ignition of wildfires in northern and central California; and August 19,

2021 when many wildfires were burning in northern California and the Sierras.
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2.1.1 Permanent and Temporary Air Quality Monitoring Data

Hourly PM2.5 observations are available from monitoring stations across the United States via the AirNow program, which is a

partnership of the U.S. Environmental Protection Agency (EPA), National Oceanic and Atmospheric Administration, National

Park Service, NASA, Centers for Disease Control, and tribal, state, and local air quality agencies (https://www.airnow.gov/).90

Within California, about 117-141 monitors were operating during the study period. These permanent monitors are a mixture

of federal reference method or federal equivalent method instruments; instruments of sufficient quality such that the data are

used by EPA to determine attainment and non-attainment of the National Ambient Air Quality Standards (NAAQS).

During wildfires, temporary monitors are also deployed by the Interagency Wildland Fire Air Quality Response Program

(IWFAQRP, (Congress.gov, 2019)) and the California Air Resources Board (CARB). These monitors are Environmental Beta95

Attenuation Monitors (EBAM; Met One Instruments, Inc.). As discussed in O’Neill et al. (2021), laboratory (Trent, 2006)

and field (Schweizer et al., 2016) studies evaluating EBAM performance with federal reference method monitors (BGI Inc.,

PQ-200, and Met One Instruments BAM) found correlations greater than 0.9 with a tendency of the EBAM to overestimate

PM2.5 especially when relative humidity was greater than 40% (Schweizer et al., 2016). Though not as accurate as the AirNow

monitors, they are deployed in regions where smoke impacts are significant and permanent monitoring is sparse or absent.100

The locations of permanent and temporary monitors as of September 1, 2021 are shown in Figure 3a. The permanent monitors

are concentrated in the coastal and valley regions where larger populations of people are located, while temporary monitors

are focused in areas of complex terrain where most wildfires and smaller communities without air quality monitoring data are

located.

Hourly PM2.5 concentrations from both the permanent and temporary monitors were acquired using the rapidfire::105

get_airnow_daterange and rapidfire:: get_airsis_daterange functions. These wrap the monitor_subset

function from the PWFSLSmoke R package [Mazama Science]. rapidfire:: recast_monitors was then used to

calculate daily 24-hr averages from the hourly data. At least 16 hours are required to produce an average. The daily average

data from both the permanent and temporary monitors were combined into a single data set. 30% of this monitor data set

was withheld for development and evaluation of the rapidfire model results. The remaining 70% were used to develop model110

variograms using rapidfire:: create_airnow_variograms. These PM2.5 observations were then log-transformed

and interpolated to estimate concentrations at locations away from the monitors using ordinary kriging (Wackernagel, 1995),

providing a spatially complete dataset for use in the rapidfire data fusion.

2.1.2 Low-cost Sensors

There has been a proliferation of low-cost sensors that estimate PM2.5 deployed by the public across the world in the last115

decade. We used data from the PurpleAir network, which had grown to over 6500 outdoor sensors in California as of the end

of 2021. Figure 1b shows the locations of PurpleAir sensors reporting data on September 1, 2021. Coverage in populated areas

is extensive.
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Figure 3. Map of permanent and temporary California monitor locations (left) and PurpleAir outdoor sensor locations (right); September 1,

2021.

While PurpleAir estimates of PM2.5 concentration have been shown to be biased, and are dependent on humidity and aerosol

type (Barkjohn et al., 2021), they still correlate with PM2.5 observed at FEM monitors and provide invaluable spatial and120

temporal information that is not available with the relatively sparse network of monitors. Because these sensors are not quality

controlled or validated, and their siting may be suspect, care must be taken when using them in modeling.

For time periods since February 2021, rapidfire acquires PurpleAir archive data using the OpenAQ application programming

interface (API). OpenAQ is a non-profit data platform that aggregates air quality data from around the world (OpenAQ,

2023). rapidfire:: openaq_find_sites is first run to find all sensors within a specified geographic boundary. Then,125

rapidfire:: openaq_get_averages can be used to download data for those sensors over the specified time period. At

the time of publication, PurpleAir data from prior to February 2021 were not available via OpenAQ. For earlier time periods,

rapidfire queries data directly from the PurpleAir API. rapidfire:: pa_find_sensors is used for finding all available

outdoor PurpleAir sensors within a geographic bounding box. Then, rapidfire:: pa_sensor_history can be run to

acquire hourly PM2.5 concentration estimates from each sensor. Note that access to historical data via the PurpleAir API now130

requires an API key and there is a cost for requesting larger amounts of data. There is no cost to access the data via OpenAQ.

We employ a spatial test to remove sensors that are significantly different from their neighbors. rapidfire:: purpleair_

clean_spatial_outliers removes any sensors that are more that two standard deviations away from the median of all

sites within 10km. PurpleAir estimates used in data fusion were log-transformed and then interpolated using ordinary kriging.

While it is common to apply a correction to PurpleAir data to better correlate with PM2.5 from standard monitors, we elected135
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not to do so. The data fusion model described below incorporates relative humidity and other meteorological parameters and

is, in essence, applying a correction specific to the region and time period of the modeling domain.

2.1.3 Satellite Aerosol Optical Depth

Satellite aerosol optical depth (AOD) is a measure of the total columnar aerosol light extinction from the satellite sensor

to the ground. AOD is indirectly related to PM2.5, with the relationship depending on aerosol type, humidity, and aerosol140

vertical profile (Li et al., 2015). We used AOD from the Multi-Angle Implementation of Atmospheric Correction (MAIAC)

project (Lyapustin et al., 2011). MAIAC is an advanced algorithm that uses time series analysis and additional processing to

improve aerosol retrievals, atmospheric correction, and, importantly, cloud detection from the MODerate-resolution Imaging

Spectroradiometers (MODIS) onboard NASA’s Terra and Aqua satellites. Past work has shown that thick smoke is often

mistaken for clouds in the standard MODIS algorithms (van Donkelaar et al., 2011), which hampers their use in wildfire145

conditions. The MAIAC algorithm reduces, but does not eliminate, those errors.

The rapidfire:: maiac_download function can be used to acquire the 1-km daily atmosphere product (MCD19A2)

which contains AOD. Clouds prevent the retrieval of AOD, and there are sometimes clouds present even in the hot, dry

conditions during California wildfires. The data fusion algorithm requires a complete data set, so a placeholder value must

be used to gap-fill in locations under clouds. Previous work has used model-simuluated AOD, along with meteorological150

variables in a data fusion approach to gap-fill satellite-observed AOD (Zou et al., 2019). For this work, where clouds cover

less of the domain, we took a simpler approach. Missing AOD values were filled using a three-stage focal average, available

in rapidfire:: maiac_fill_gaps_complete, and illustrated in Figure 4. In the first stage, a focal mean of a 5-by-5

pixel square (5 km) is used. In the second stage, the window is increased to 9-by-9 and to 25-by-25 in the final stage. Any

values that are still missing after the final stage are filled with the median value for the entire scene.155

2.1.4 Smoke Modeling

Air quality models provide near-surface estimates of PM2.5 on an output grid. We processed daily average PM2.5 concentration

values acquired from the BlueSky smoke prediction system (Larkin et al., 2009) developed by the USDA Forest Service (USFS)

which first became operational in 2002 and has undergone significant development in recent years. The USFS runs over 30

simulations a day predicting near-surface 1-hr average PM2.5 concentrations from wildland fire across the US at a variety of160

spatial extents and resolutions using the HYSPLIT dispersion model (Stein et al., 2015). For this work we extracted BlueSky

data from the California and Nevada Smoke and Air Committee (CANSAC; https://cansac.dri.edu/) domain that encompass

California and Nevada for the months of July-November, years 2017-2021. In 2018 and 2019 the domain was at a 2-km

resolution, and for 2019-2021 the domain was at a 1.33-km resolution. On some days, the model did not run successfully. For

those days, data were backfilled by using the second or third day of a previous day’s 72-hr model run. We chose this air quality165

dataset because it is available operationally, is of a high spatial resolution, and is focused specifically on modeling smoke

aerosols from wildland fires; however, other air quality modeling could be substituted.
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Figure 4. Illustration of MAIAC AOD gap filling showing the original scene and results of three sequential focal mean imputations (denoted

Fill 1, Fill 2, Fill 3)

Smoke prediction systems need to make many more assumptions than retrospective analyses and these assumptions, such as

vegetation type and fuel loading, fire size and behavior, persistence of fire activity into the future, and using a meteorological

forecast all have considerable implications for the quantity of emissions released from fires, and how those emissions transport170

and undergo chemical reactions in the atmosphere (O’Neill et al., 2022, Kennedy et al. (2020) , Larkin et al. (2012)). These
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assumptions and associated uncertainties can result in orders of magnitude spread in the estimated downwind PM2.5 concentrations

(Li et al., 2020). Despite these issues, these systems are useful in providing information about potential smoke impacts (Lahm

and Larkin, 2020), and the data are more available and can provide the underlying consistent dataset necessary to represent near-

surface PM2.5 concentrations for successful applications of machine learning and health impact analyses. Further, retrospective175

studies are not routinely available for long-term time periods (5-10 years or more) and maturing air quality forecasting systems

when coupled with machine learning approaches such as provided here can provide the consistent high-quality datasets needed

for health impact analyses.

2.1.5 Meteorology

Meteorological conditions can help explain the relationships between our inputs and observed PM2.5. For example, the PurpleAir180

sensor is sensitive to relative humidity. AOD is sensitive to humidity and planetary boundary layer height. Following Zou

et al. (2019), we included several meteorological variables in our model, including daily average temperature, winds, humidity,

boundary layer height, and daily rainfall. These variables were acquired from the North American Regional Reanalysis (NARR)

data set (Mesinger et al., 2006).

2.2 Data Fusion185

We developed event specific models using random forests regression (RF). RF is a technique that uses a large number of

randomly generated regression trees (Breiman, 2001). Each tree is constructed using a random subset of the training data and

each node uses a random subset of the potential predictive variables. New values are estimated as the mean prediction of

the individual trees. For each RF run, 500 trees were grown. A single tuning parameter, the number of variables selected at

each node (mtry), was varied between 2 and 5. The model was trained using 10-fold cross-validation, witholding 30% of the190

monitoring data for tuning. Internally, rapidfire:: develop_model uses the randomForest R package.

For the final model, 10 predictor variables were used (Table 3). PM2.5 from the monitors was used as both a predictor and a

target variable. Given a list of locations and dates, the final result from rapidfire:: predict_locs is a table with the

10 input variables plus the resulting modeled PM2.5 for each location and date.

3 Results and Discussion195

3.1 Model Evaluation and Comparison with Measurements

To demonstrate the performance of the rapidfire system we developed models for five large wildfire smoke events from 2017-

2021 in Northern California (Table 1). Six quantitative analysis metrics are used to evaluate model performance (Table 4). The

model was assessed in two ways.

First, a 10-fold cross-validation was performed on the permanent and temporary monitors. For each fold, 10% of the monitoring200

data was withheld prior to interpolation. For this analysis, we also developed models with three simpler methods: 1) ordinary
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Table 3. Predictor variables used in the rapidfire RF model.

Variable Name Description Units

PM25_log_ANK Monitors Log-transformed, interpolated PM2.5 from permanent and temporary monitors µg m−3

PM25_log_PAK PurpleAir Log-transformed, interpolated PM2.5 estimates from PurpleAir sensors µg m−3

PM25_bluesky BlueSky Daily average ground-level PM2.5 predictions from BlueSky smoke model µg m−3

MAIAC_AOD AOD Gap-filled daily AOD from MAIAC unitless

air.2m Temperature Daily average ambient temperature at 2m above ground level from NARR K

uwnd.10m Wind u Daily average u component of wind at 10m above ground level from NARR m s−1

vwnd.10m Wind v Daily average v component of wind at 10m above ground level from NARR m s−1

rhum.2m Humidity Daily average relative humidity at 2m above ground level from NARR %

apcp Precipitation Daily total precipitation amount from NARR cm

hpbl PBL Height Daily average height of the planetary boundary layer from NARR m

kriging (OK) interpolation of AirNow monitors, 2) OK interpolation of PurpleAir sensors, and 3) multiple linear regression

(MLR) using the same inputs as those used for the rapidfire modeling.

Second, rapidfire predictions using the full data set were compared against 24-hr filter-based measurements from the Interagency

Monitoring of PROtected Visual Environments (IMPROVE) network and Chemical Speciation Network (CSN).205

Table 4. Definitions of quantitative analysis metrics.

Metric Equation

r2
∑

i(Ŷi − Ȳ )2∑
i(Yi − Ȳ )2

Root Mean Square Error (RMSE)
√

1− r2SDY

Median Bias med(Ŷi −Yi)

Normalized Bias (%) 100 ∗med(
Ŷi −Yi

Yi
)

Median Error med(
Ŷi −Yi

Yi
)

Normalized Error (%) 100 ∗med(abs(
Ŷi −Yi

Yi
))

The cross-validation results for rapidfire are shown in Figure 5. The vast majority of results are on along the 1:1 line. There

is a large dynamic range, with concentrations ranging from less than 1 to over 1,000 micrograms per meter cubed. The model

overestimates at the lowest concentrations and sometimes underestimates the highest concentrations, especially in 2017. The

relative paucity of low-cost sensors in 2017 may have contributed to poorer performance in that year.

Model performance statistics for the cross-validation using the four methods are shown in Table 5. For these wildfire events,210

rapidfire provides good correlation with low error and bias, offering improvement over classical MLR or interpolation of the

ground monitors alone. The high density of monitors in this region helps the interpolation approaches perform well; all of the
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Figure 5. Cross-validation results by year against measured PM2.5 from AirNow monitors.

methods are available within the rapidfire package. These results are similar to results from recent data fusion studies. Cleland

et al. (2020) applied bias correction and data fusion methods to estimate PM2.5 impacts during the 2017 wine country wildfires

with a resulting correlation of 0.71. They found that temporary monitors in the more rural areas were critical at improving215

results. Similarly, Zou et al. (2019) applied several machine learning approaches including random forest, to improve PM2.5

estimates across the Pacific Northwest (PNW) Aug-Sept 2017, with correlations ranging from 0.45 to 0.59. Note that the PNW

region is much more sparsely populated with monitors than California.

Table 5. Performance metrics for four modeling methods

Model R2 RMSE Median Bias Normalized Bias Median Error Normalized Error

rapidfire 0.87 16.1 -0.08 -0.76 -0.008 18.0

MLR 0.84 17.6 0.01 0.11 0.001 22.6

AirNow OK 0.80 19.5 -0.03 -0.26 -0.002 23.4

PurpleAir OK 0.80 19.4 1.69 15.2 0.152 41.1

Complete rapidfire results were also compared with available observations from the IMPROVE, and CSN networks. Both

IMPROVE and CSN collect 24-hr integrated filter-based measurements of speciated particulate matter every third day (Solomon220
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Figure 6. Map of CSN and IMPROVE monitoring stations used to validate model results.

et al., 2014). IMPROVE PM2.5 mass is determined gravimetrically. CSN no longer performs gravimetric mass analysis, but

PM2.5 is estimated by reconstructing total mass from the major components of PM2.5: ammonium sulfate, ammonium nitrate,

soil, organic matter, elemental carbon, and sea salt.

Figure 6 shows the CSN and IMPROVE monitor locations along with the identifiers used in this study. The rapidfire modeling

shows excellent agreement with individual CSN and IMPROVE monitors as shown in Figure 7 and Table 6. This is somewhat225

surprising, as they represent a challenging test of the method. The 24-hr filter data are 100% independent of the model inputs

and, for IMPROVE especially, located far from other monitors in remote locations with complex terrain. However, the lower

dynamic range of the data helps to explain the lower RMSE compared to the cross-validation analysis above. Because the

IMPROVE sampler clogs in very heavy smoke situations, the highest concentrations in this data set are less than 200µgm−3.

The network is also relatively sparse and sampling is only every third day.230

Table 6. Performance metrics for rapidfire at AirNow, IMPROVE, and CSN sites

Network R2 RMSE Median Bias Normalized Bias Median Error Normalized Error

CSN 0.87 5.18 0.42 3.93 1.96 15.3

IMPROVE 0.81 8.47 2.48 46.5 3.19 49.6
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Figure 7. Model comparison against measured PM2.5 at IMPROVE and CSN monitors

3.2 Characterizing rapidfire results across California

The results are plotted across California for two wildfire seasons: August - October, 2020 (Figure 8) and August - October, 2021

(Figure 9). In each case, daily average PM2.5 reaches values greater than 200µgm−3, with very strong spatial and temporal

variability. The 2020 case shows three widespread peaks, in August, September, and October. In the 2021 case, concentrations

were highest in northern locations in August, while values were higher further south in September and early October. These235

two cases highlight the complexity of these smoke events, which are controlled by multiple wildfires burning in and around the

state simultaneously.
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Figure 8. rapidfire PM2.5 estimates for August - October, 2020. Each box on the map shows the time series for a point at the centroid of the

box and the larger plot shows all of those time series’ overlaid.

Figure 9. rapidfire PM2.5 estimates for August - October, 2021. Each box on the map shows the time series for a point at the centroid of the

box and the larger plot shows all of those time series’ overlaid.
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3.3 Excess mortality

As a demonstration of the utility of the rapidfire system, we adapted the methods of (Johnston et al., 2012) to estimate statewide

mortality attributable to excess PM2.5 during the wildfire seasons of 2017-2021. Excess mortality was estimated daily at the240

census tract level as:

Mortality attributable to PM2.5 exposure=

n∑
d=1

P ×M × (PM2.5,d −PM2.5,b)×RRSI (1)

where PM2.5,d is daily average PM2.5 concentration predicted by rapidfire at census tract centroids, with minimum and

maximum values of 15 and 200 µgm−3. Much of California has a relatively high baseline average PM2.5 concentration during

non-fire conditions. We developed a conservative non-fire baseline PM2.5,b concentration value by taking three lower fire245

activity years (2016, 2019, and 2022) and calculating the 90th percentile of daily PM2.5 by month an county based on AirNow

monitors. Predictions were capped at 200 µgm−3, as the PM2.5 dose-response curve flattens at higher exposures (Pope III

et al., 2011). M is the county-level, daily average mortality rate, which was acquired from the Centers for Disease Control’s

WONDER database (CDC, 2023), for the year 2016 (a recent, low-fire year). P is the census tract population from the 2020

Census (Census, 2021). RRSI is the relative risk function for multiple-cause mortality due to short-term PM2.5 exposure. The250

value of RRSI was 0.11% per 1 µgm−3 increase in PM2.5 concentration (Johnston et al., 2012).

Figure 10 shows the California-wide daily excess mortality calculated from the increment of PM2.5 concentrations above

PM2.5,b. The most significant impacts are seen in 2018 and 2020. In November 2018, the Camp wildfire produced massive

PM2.5 emissions that transported throughout the Sacramento and San Joaquin Valleys and persisted under stagnant weather

conditions. The nearly two-week period of high concentrations across a broad region of relatively high population density led255

to an estimated 266 excess deaths. The historic 2020 fire season was even more dramatic. Beginning in August, smoke from

fires burning around the state contributed to an estimated 615 excess deaths across a three-month period. Incorporating the

error in the rapidfire predictions, the range of excess deaths is 209-339 in the November 2018 period and 457-1072 in the 2020

three-month period. The spatial distribution of excess mortality for 2020 is shown in Figure 11. Impacts are shown by census

tract. Though census tracts vary greatly in size, they have similar populations, with a minimum of 1,200 and and maximum of260

8,000. Elevated excess mortality was widespread in the northern half of the state, especially away from the coast.

4 Discussion

4.1 Model input importance

Although the random forest model uses all of the provided predictor variables, the most explanatory variables are selected more

often at each node. The relative importance of each variable can be visualized by calculating SHapley Additive exPlanations265

(SHAP) (Lundberg and Lee, 2017). SHAP quantifies the contribution of each predictor variable to the final model prediction.

Figure 12 shows input values plotted versus SHAP for November 1-10, 2018. A single prediction, for CSN site 107-1001 on
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Figure 10. California-wide estimated daily excess mortality from PM2.5 concentrations above 15µg m−3 for the period July-November,

2017-2021.

November 10, 2018, is highlighted. The SHAP values show the contributions to the final predicted concentration value from

each of the model inputs. The individual component features of the model behave as expected from atmospheric dynamics. In

the highlighted case, PM2.5 was high in the permanent and temporary monitors (Monitors), the sensor network (PurpleAir),270

and the smoke model (BlueSky). AOD was also elevated. By contrast, the planetary boundary layer (PBL Height) was low, as

were wind speeds, humidity, and precipitation. Air temperature was moderate. The magnitude of the SHAP values in Figure

12 quantify the relative importance of the different inputs. The ground-base networks, both official monitoring and low-cost

sensors are the most important variables in the model, followed by the BlueSky smoke model, planetary boundary height, and

AOD. The remaining meteorological variables have a small, but coherent impact.275

4.2 Application for health studies

The rapidfire modeling has been applied, and is being applied, in several epidemiological studies. The ability to produce

wildfire-associated PM2.5 measures in a timely manner (about one month post event) allows time-critical planning and implementation

for epidemiological studies. For example, when each of the recent large wildfires produced smoke plumes that covered

urban areas of Northern California, the rapidfire modeling was used to determine the time periods and geographical areas280

where populations were most impacted by wildfire smoke. This information was used in two local studies, the Bio-Specimen
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Figure 11. July-November 2020 excess mortality by census tract from PM2.5 concentrations above 15µg m−3

Assessment of Fire Effects (B-SAFE) wildfire pregnancy cohort study and the WHAT-Now CA wildfire cohort study, to recruit

participants from highly-affected areas to collect information and biological specimens to analyze later for wildfire-associated

compounds and biologic responses as indicators of potential for downstream health impacts. Both studies also related the

wildfire-associated PM2.5 from rapidfire modeling to reported symptoms and health outcomes of the cohort participants. In285

B-SAFE, the timing and concentrations of PM2.5 are being linked to birth outcomes of the children gestationally exposed to

wildfires for the initial study, and in follow-up studies on respiratory, developmental, and other child conditions. Specimens

collected in B-SAFE for those with higher versus lower modeled wildfire-associated PM2.5 are also being compared across

various measures (e.g., metals, contaminants, cytokines) to better understand differences by degree of exposure. In WHAT-

Now CA, PM2.5 is being examined in association with respiratory outcomes. Both studies are planning to follow these exposed290

cohorts forward to examine later health outcomes.

Other local studies, including existing cohorts not focused on wildfire exposure, like the MARBLES (Markers of Autism Risk

in Babies: Learning Early Signs) pregnancy cohort study of younger siblings of children with autism (Hertz-Picciotto et al.,

2018), also used the rapidfire modeling in order to identify mothers and infants exposed to wildfire smoke while pregnant and

examine specimens being collected as part of the protocol for differences. Further, outcomes of these children, who are at higher295

risk of autism and other neurodevelopmental conditions, will be compared across those wildfire-exposed and unexposed.
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Figure 12. SHAP dependence plot at CSN and IMPROVE sites for November 1-10, 2018. Units for feature values depend on the variable

and are listed in Table 3. BlueSky data were log-transformed in this plot for clarity.

Rapidfire modeling will be used to determine the time periods and geographical areas where populations were and will be

most impacted by future wildfire smoke events for other statewide air pollution studies, including one funded by the EPA

(EPA STAR 84048401) that will link air pollution measures, including wildfire-specific air pollution, to birth outcomes and

neurodevelopmental disorders, and work with the most affected communities to distribute education, materials, and tools for300

mitigating exposures.

4.3 Advantages over existing methods

There are many methods to produce spatially-resolved estimates of PM2.5 for use in exposure studies. The advantages of

rapidfire include reliance on only off-the-shelf inputs with low latency, inclusion of data sets that provide improvements for

wildland fire smoke, and an extensible framework with an open code base. If a new smoke event occurred, all inputs would be305

accessible and PM2.5 modeling could be completed within one month. At present, only the NARR meteorological data is not

available in near-real-time. In future work, this could be replaced by a daily operational model and the rapidfire predictions

could be produced one day after an event. The addition of a low-cost sensor network has also significantly improved resulting

predictions. The rapidfire algorithm and code base has been designed to be modular so new inputs can be included as they

become available. For example, the MAIAC AOD may become unavailable as the MODIS instrument reaches end of life. A310

new function could be added to deal with AOD from another data source.
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4.4 Limitations and future directions

The rapidfire modeling approach has some limitations. The model requires high-quality training data to produce a high-quality

result. In areas without accurate PM2.5 measurements at point locations within the modeling domain, there is no way to create a

reliable regression, though this is true for all statistical air quality models. In this study, the monitors from the AirNow network315

served that purpose. However, AirNow is only present in the US, and the current rapidfire functions require data sets that are

not all globally available. These data sets could be replaced by others to cover a specific region, and new handling functions

could be added to rapidfire to support those data sets as needed.

The rapidfire methods are designed with wildfire smoke events in mind. They are best suited for regional-scale modeling at

spatial resolutions of 1-km or larger. This is appropriate for smoke events, which are driven by a regional source that impacts320

a broad swath. rapidfire would be less suitable for modeling exposure to PM2.5 from emission sources at very fine spatial

scales, such as near-road emissions. Also, rapidfire is currently limited to estimates of total PM2.5 only. Estimates of PM2.5

composition, or specific wildfire contribution, are not supported with the currently available inputs, though this is an area of

future work.

The random forests regression method has historically been seen as a black box, with potential for good prediction, but limited325

ability to provide insight into the drivers of the model prediction and the underlying physical phenomena. However, the advent

of new metrics for explaining machine learning models, such as SHAP, makes these models more useful and transparent.

Several improvements could be made to enhance the algorithm and potentially improve performance. The recently released

collection 6.1 of MAIAC AOD provides better spatial coverage and more accurate results in conditions of heavy smoke

compared to collection 6.0 (Ye et al., 2022). The relatively simplistic gap-filling approach applied to AOD should be reviewed,330

especially for use in cloudier conditions. Additional transport models with modern fire emissions processing and broad

coverage, such as HRRR-Smoke (https:/rapidrefresh.noaa.gov/hrrr/HRRRsmoke/) could be tested. Other machine learning

algorithms such as eXteme Gradient Boosting (XGBoost) should be explored.

5 Conclusions

The rapidfire R package was developed to model relatively accurate particulate information derived from inputs retrieved335

easily. It incorporates off-the-shelf data sets that are produced operationally and with low latency (< 1 month) within a machine

learning framework. rapidfire takes advantage of the recent burgeoning of low-costs sensors around the world, in addition

to traditional air pollution data sources such as ground-based monitoring networks and satellite-derived aerosol products.

The rapidfire code is available for use and contribution at https://github.com/raffscallion/rapidfire. We demonstrated rapidfire

modeling for five recent wildfire seasons in California and validated results against fully independent filter-based measurements340

of PM2.5. rapidfire showed excellent performance, predicting PM2.5 under heavy smoke with high accuracy, even at remote and

elevated sites. An example calculation of conservative excess mortality from high PM2.5 exposure in California showed large

impacts, including an estimated 615 excess deaths in California over a three month period of intense wildfire smoke in 2020.

rapidfire PM2.5 estimates are currently being used in several health effects studies in California. In the future, we hope to

20



expand the methods to include data sets that are of even lower latency. At present, the input that becomes available the slowest345

is the NARR meteorology, which is available at the end of each month. There are several candidate meteorological data sources

that are available daily, which would allow for next-day estimates of PM2.5. These low-latency estimates would be useful for

rapid deployment, recruitment, and sample collection in epidemiologic studies.

. The current version of rapidfire is available from the project website: https://github.com/raffscallion/rapidfire under the licence GPLv3. The

exact version of the model used to produce the results used in this paper (v0.1.3) is archived on Zenodo (DOI: 10.5281/zenodo.7888562), as350

are input data and scripts to run the model and produce the plots for all the simulations presented in this paper (DOI: 10.5281/zenodo.7942846).

. Sean Raffuse wrote the rapidfire package, performed analysis, and wrote the manuscript. Susan O’Neill provided BlueSky data, contributed

text and editing to the manuscript, and advised throughout. Rebecca Schmidt led the studies that used rapidfire and contributed text to the

manuscript.

. The authors declare no competing interests.355

. This work was funded by a Joint Venture Agreement between The United States Department of Agriculture, Forest Service and the

University of California Davis (16-JV-11261987-091). IMPROVE is a collaborative association of state, tribal, and federal agencies, and

international partners. US Environmental Protection Agency is the primary funding source, with contracting and research support from the

National Park Service. The Air Quality Research Center at the University of California, Davis is the central analytical laboratory, with ion

analysis provided by Research Triangle Institute, and carbon analysis provided by Desert Research Institute. Partial funding provided by the360

US Forest Service Pacific Northwest Research Station. We thank Dr. Yufei Zou for his prior work applying machine learning to wildland

fire and his helpful suggestions for this manuscript. The views expressed in this publication are those of the authors and do not represent the

policies or opinions of any U.S. government agency.

21



References

Abdo, M., Ward, I., O’Dell, K., Ford, B., Pierce, J. R., Fischer, E. V., and Crooks, J. L.: Impact of wildfire smoke on adverse pregnancy365

outcomes in Colorado, 2007–2015, International journal of environmental research and public health, 16, 3720, 2019.

Aguilera, R., Corringham, T., Gershunov, A., and Benmarhnia, T.: Wildfire smoke impacts respiratory health more than fine particles from

other sources: observational evidence from Southern California, Nature communications, 12, 1493, 2021a.

Aguilera, R., Corringham, T., Gershunov, A., Leibel, S., and Benmarhnia, T.: Fine particles in wildfire smoke and pediatric respiratory health

in California, Pediatrics, 147, 2021b.370

Al-Hamdan, M. Z., Crosson, W. L., Economou, S. A., Jr, M. G. E., Estes, S. M., Hemmings, S. N., Kent, S. T., Puckett, M., Quattrochi,

D. A., Rickman, D. L., Wade, G. M., and McClure, L. A.: Environmental public health applications using remotely sensed data, Geocarto

International, 29, 85–98, https://doi.org/10.1080/10106049.2012.715209, 2014.

Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected

with the PurpleAir sensor, Atmospheric Measurement Techniques, 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021.375

Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a

Large Spatial Scale, Environmental Science & Technology, 54, 2152–2162, https://doi.org/10.1021/acs.est.9b06046, pMID: 31927908,

2020.

Black, C., Tesfaigzi, Y., Bassein, J. A., and Miller, L. A.: Wildfire smoke exposure and human health: Significant gaps in research for

a growing public health issue, Environmental Toxicology and Pharmacology, 55, 186–195, https://doi.org/10.1016/j.etap.2017.08.022,380

2017.

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.

Burke, M., Driscoll, A., Heft-Neal, S., and Wara, M.: The Changing Risk and Burden of Wildfire in the United States, PNAS, 118, 1–6,

https://doi.org/10.1073/pnas.2011048118, 2021.

CDC: National Vital Statistics System, Mortality, Tech. rep., Centers for Disease Control and Prevention, National Center for Health385

Statistics, accessed at http://wonder.cdc.gov/ucd-border.html on 2023-01-03, 2023.

Census, U.: 2020 Census Redistricting Data (P.L. 94-171), accessed at https://www.census.gov/geographies/mapping-files/time-

series/geo/tiger-line-file.2020.html on 2023-01-03, 2021.

Chen, G., Guo, Y., Yue, X., Tong, S., Gasparrini, A., Bell, M. L., Armstrong, B., Schwartz, J., Jaakkola, J. J., Zanobetti, A., et al.: Mortality

risk attributable to wildfire-related PM2· 5 pollution: a global time series study in 749 locations, The Lancet Planetary Health, 5, e579–390

e587, 2021a.

Chen, H., Samet, J. M., Bromberg, P. A., and Tong, H.: Cardiovascular health impacts of wildfire smoke exposure, Particle and fibre

toxicology, 18, 1–22, 2021b.

Childs, M. L., Li, J., Wen, J., Heft-Neal, S., Driscoll, A., Wang, S., Gould, C. F., Qiu, M., Burney, J., and Burke, M.: Daily Local-

Level Estimates of Ambient Wildfire Smoke PM2.5 for the Contiguous US, Environmental Science & Technology, 56, 13 607–13 621,395

https://doi.org/10.1021/acs.est.2c02934, pMID: 36134580, 2022.

Chiu, Y.-H. M., Hsu, H.-H. L., Coull, B. A., Bellinger, D. C., Kloog, I., Schwartz, J., Wright, R. O., and Wright, R. J.: Prenatal particulate air

pollution and neurodevelopment in urban children: examining sensitive windows and sex-specific associations, Environment international,

87, 56–65, 2016.

22

https://doi.org/10.1080/10106049.2012.715209
https://doi.org/10.5194/amt-14-4617-2021
https://doi.org/10.1021/acs.est.9b06046
https://doi.org/10.1016/j.etap.2017.08.022
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1073/pnas.2011048118
https://doi.org/10.1021/acs.est.2c02934


Cleland, S. E., West, J. J., Jia, Y., Reid, S., Raffuse, S., O’Neill, S., and Serre, M. L.: Estimating Wildfire Smoke Concentrations during the400

October 2017 California Fires through BME Space/Time Data Fusion of Observed, Modeled, and Satellite-Derived PM2.5, Environmental

Science & Technology, 54, 13 439–13 447, https://doi.org/10.1021/acs.est.0c03761, 2020.

Clifford, A., Lang, L., Chen, R., Anstey, K. J., and Seaton, A.: Exposure to air pollution and cognitive functioning across the life course–a

systematic literature review, Environmental research, 147, 383–398, 2016.

Congress.gov: S.47 - 116th Congress (2019-2020): John D. Dingell, Jr. Conservation, Management, and Recreation Act, https://www.405

congress.gov/bill/116th-congress/senate-bill/47/text, 2019.

Dutheil, F., Comptour, A., Morlon, R., Mermillod, M., Pereira, B., Baker, J. S., Charkhabi, M., Clinchamps, M., and Bourdel, N.: Autism

spectrum disorder and air pollution: A systematic review and meta-analysis, Environmental Pollution, 278, 116 856, 2021.

Franzi, L. M., Bratt, J. M., Williams, K. M., and Last, J. A.: Why is particulate matter produced by wildfires toxic to lung macrophages?,

Toxicology and applied pharmacology, 257, 182–188, 2011.410

Heft-Neal, S., Driscoll, A., Yang, W., Shaw, G., and Burke, M.: Associations between wildfire smoke exposure during pregnancy and risk of

preterm birth in California, Environmental Research, 203, 111 872, 2022.

Hertz-Picciotto, I., Schmidt, R. J., Walker, C. K., Bennett, D. H., Oliver, M., Shedd-Wise, K. M., LaSalle, J. M., Giulivi, C., Puschner, B.,

Thomas, J., et al.: A prospective study of environmental exposures and early biomarkers in autism spectrum disorder: design, protocols,

and preliminary data from the MARBLES study, Environmental health perspectives, 126, 117 004, 2018.415

Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., and Briggs, D.: A review of land-use regression models to assess

spatial variation of outdoor air pollution, Atmospheric environment, 42, 7561–7578, https://doi.org/10.1016/j.atmosenv.2008.05.057,

2008.

Holstius, D. M., Reid, C. E., Jesdale, B. M., and Morello-Frosch, R.: Birth weight following pregnancy during the 2003 Southern California

wildfires, Environmental health perspectives, 120, 1340–1345, 2012.420

Huang, R., Lal, R., Qin, M., Hu, Y., Russell, A. G., Odman, M. T., Afrin, S., Garcia-Menendez, F., and O’Neill, S. M.: Application and

evaluation of a low-cost PM sensor and data fusion with CMAQ simulations to quantify the impacts of prescribed burning on air quality

in Southwestern Georgia, USA, Journal of the Air & Waste Management Association, 71, 815–829, 2021.

Hurteau, M., Westerling, A., Wiedinmyer, C., and Bryant, B.: Projected Effects of Climate and Development on California Wildfire Emissions

through 2100, Environmental Science and Technology, 48, 2298–2304, https://doi.org/10.1021/es4050133, 2014.425

Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M., and Brauer, M.:

Estimated global mortality attributable to smoke from landscape fires, Environmental health perspectives, 120, 695–701, 2012.

Kennedy, M. C., Prichard, S. J., McKenzie, D., and French, N. H.: Quantifying how sources of uncertainty in combustible biomass propagate

to prediction of wildland fire emissions, International journal of wildland fire, 29, 793–806, 2020.

Kim, Y. H., Warren, S. H., Krantz, Q. T., King, C., Jaskot, R., Preston, W. T., George, B. J., Hays, M. D., Landis, M. S., Higuchi, M.,430

et al.: Mutagenicity and lung toxicity of smoldering vs. flaming emissions from various biomass fuels: implications for health effects from

wildland fires, Environmental health perspectives, 126, 017 011, 2018.

Kollanus, V., Tiittanen, P., Niemi, J. V., and Lanki, T.: Effects of long-range transported air pollution from vegetation fires on daily mortality

and hospital admissions in the Helsinki metropolitan area, Finland, Environmental Research, 151, 351–358, 2016.

Lahm, P. and Larkin, N.: The Interagency Wildland Fire Air Quality Response Program., Magazine for Environmental Managers, 2020.435

Larkin, N. K., O’Neill, S. M., Solomon, R., Raffuse, S., Strand, T., Sullivan, D. C., Krull, C., Rorig, M., Peterson, J., and Ferguson, S. A.:

The BlueSky smoke modeling framework, International journal of wildland fire, 18, 906–920, 2009.

23

https://doi.org/10.1021/acs.est.0c03761
https://www.congress.gov/bill/116th-congress/senate-bill/47/text
https://www.congress.gov/bill/116th-congress/senate-bill/47/text
https://www.congress.gov/bill/116th-congress/senate-bill/47/text
https://doi.org/10.1016/j.atmosenv.2008.05.057
https://doi.org/10.1021/es4050133


Larkin, N. K., Strand, T. M., Drury, S. A., Raffuse, S. M., Solomon, R. C., O’Neill, S. M., Wheeler, N., Huang, S., Roring, M., and Hafner,

H. R.: Phase 1 of the Smoke and Emissions Model Intercomparison Project (SEMIP): Creation of SEMIP and evaluation of current models.

Final report to the Joint Fire Science Program Project 08-1-6-10., 2012.440

Le, G. E., Breysse, P. N., McDermott, A., Eftim, S. E., Geyh, A., Berman, J. D., and Curriero, F. C.: Canadian forest fires and the effects of

long-range transboundary air pollution on hospitalizations among the elderly, ISPRS international journal of geo-information, 3, 713–731,

2014.

Li, J., Carlson, B. E., and Lacis, A. A.: How well do satellite AOD observations represent the spatial and temporal variability of PM2.5

concentration for the United States?, Atmospheric Environment, 102, 260–273, https://doi.org/10.1016/j.atmosenv.2014.12.010, 2015.445

Li, Y., Tong, D., Ngan, F., Cohen, M., Stein, A., Kondragunta, S., Zhang, X., Ichoku, C., Hyer, E., and Kahn, R.: Ensemble PM2. 5 forecasting

during the 2018 camp fire event using the HYSPLIT transport and dispersion model, Journal of Geophysical Research: Atmospheres, 125,

e2020JD032 768, 2020.

Loftus, C. T., Hazlehurst, M. F., Szpiro, A. A., Ni, Y., Tylavsky, F. A., Bush, N. R., Sathyanarayana, S., Carroll, K. N., Karr, C. J., and

LeWinn, K. Z.: Prenatal air pollution and childhood IQ: Preliminary evidence of effect modification by folate, Environmental research,450

176, 108 505, 2019.

Loftus, C. T., Ni, Y., Szpiro, A. A., Hazlehurst, M. F., Tylavsky, F. A., Bush, N. R., Sathyanarayana, S., Carroll, K. N., Young, M., Karr, C. J.,

et al.: Exposure to ambient air pollution and early childhood behavior: a longitudinal cohort study, Environmental research, 183, 109 075,

2020.

Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, Advances in neural information processing systems,455

30, 2017.

Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy, R., and Reid, J.: Multiangle implementation of atmospheric

correction (MAIAC): 2. Aerosol algorithm, Journal of Geophysical Research: Atmospheres, 116, 2011.

Mass, C. F. and Ovens, D.: The Northern California wildfires of 8–9 October 2017: The role of a major downslope wind event, Bulletin of

the American Meteorological Society, 100, 235–256, 2019.460

McClure, C. and Jaffe, D.: US Particulate Matter Air Quality Improves Except in Wildfire-prone Areas, PNAS, 115, 7901–7906,

https://doi.org/10.1073/pnas.1804353115, 2018.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
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