
Note to Editor 

Due to unforeseen changes in my computer environment between the initial submission and these 
revisions, there were differences in the latexdiff that I was unable to resolve, along with small issues with 
the Copernicus template. I appreciate you patience. The latexdiff erroneously lists most of the citations as 
differences. Also, the final sections (code availability, contributions, acknowledgements) are missing their 
headings. I am hopeful that these can be resolved working with a latex expert on the editing team. 

 

The authors would like to thank the reviewers for their detailed, insigh�ul, and relevant comments. They 
have iden�fied important considera�ons and have improved the manuscript. Please see point-by-point 
responses to RC1 and RC2 below. 

RC 1 

- The title and sections of the writeup refers to smoke-specific exposure but this paper focuses on total 
PM5 exposure, including wildland fire smoke. Recent work has provided estimates of smoke-specific 
PM2.5 exposure (e.g., Aguilera et al., 2023 and Childs et al., 2022). I recommend that the authors discuss 
whether smoke-specific exposures can be identified with their method. While the authors do attempt to 
remove effects of other PM2.5 sources in their health analysis, the choice of 15 μg/m3 is not adequately 
justified, given that significant spatial variability exists in non-fire smoke sources and concentrations 
across California. 

The reviewer is correct that the core methods presented are focused on total PM2.5 exposure. They 
were developed with wildfire condi�ons in mind, and tuned to those events, but ul�mately provide total 
PM2.5. We agree with the reviewer that the �tle is misleading and suggest the following alterna�ve. "A 
model for rapid PM2.5 exposure es�mates in wildfire condi�ons using rou�nely-available data - rapidfire 
v0.1.3". 

The �tle has been updated. 

The health analysis is presented as a demonstra�on of u�lity; however, we agree that it can be made 
more useful by accoun�ng for spa�otemporal variability of non-fire PM2.5 in California. Therefore, we 
have developed a conserva�ve baseline PM2.5 by taking three recent lower fire ac�vity years (2016, 
2019, and 2022) and calcula�ng the 90th percen�le of daily PM2.5 by month and county based on 
AirNow monitors. Comparing these results to our more simplis�c 15 ug/m3 across the board es�mate, 
they are surprisingly similar. For the two �me periods highlighted in the paper (November 2018 and 
August-October 2020), the 90th percen�le method results in an es�mated 254 and 652 excess deaths 
respec�vely, compared to 266 and 615 from the previous method. 

The updated text is at line 245. Figures 10 and 11 are also updated to reflect the new calcula�on. 

Aguilera et al., 2023 and Childs et al., 2022 both employ the NOAA Hazard Mapping System's (HMS) 
human-analyzed smoke plume extents to segregate days into smoke/non-smoke. While the HMS 
approach is reasonable, it is suscep�ble to false-posi�ves when smoke is visible in satellite imagery but 
not present at ground level. In the future, we would like to explore the use of speciated monitoring data 
to beter characterize and par��on smoke-influenced days. 



 

- The abstract refers to studies employing multiple data sets that are costly. It may be helpful to the 
reader to include a discussion and specific references to such studies in the Introduction. 

The costly part of developing exposure es�mates is in the labor required. A primary goal of this work is in 
developing tools that make upda�ng exposure calcula�ons for new cohorts and �me periods a more 
automated process. Significant effort may be required to gather, format, and preprocess inputs. We have 
eliminated the word "expensive" from the abstract as it is generally redundant with "�me consuming." 

This is also in reference to chemical transport modeling, and specifically a response to our experience 
with modeling the 2017 Northern California wildfires as part of the NASA Health and Air Quality Applied 
Sciences Team (see O'Neill et al., 2021). In this case, methods were developed as part of a research 
project, but it is difficult to reproduce those methods for new �me periods without tools. That is an issue 
we are trying to address with this suite of tools. 

- Table 1 lists Northern California fires, but Figure 1 shows all California fires. Why are Southern California 
fires not included in the table? It appears that the domain of the analysis and evaluation includes all of 
California, and this should be updated to be consistent. Relatedly, does the area burned represent 
Northern California or some other spatial domain? It may be more relevant to include the area burned 
for the fires studied in this work. 

Thank you. We corrected the cap�on and Table 1. The annual acres represent all of California and large 
fires from Southern California have been added to the table. 

- Table 2 – It would ease users in running the software to suggest including additional details in table 2 
including the data type and resolution and key parameters for each rapidfire function. 

Thank you for the sugges�on. We have added the spa�al resolu�on to Table 2. For the key parameters 
for each rapidfire func�on, we refer the reader to the func�on documenta�on available in the package. 
(e.g., ?rapidfire::get_airsis_daterange) 

- L98 – Monitors included in AirNow encompass a range of measurement methods. It may be more 
accurate to compare performance of the EBAM to a specific monitor type. The authors should also 
consider addressing recent concerns about substantial bias in T640 monitoring instruments at high 
concentrations. Why are AirNow data used rather than data from EPA AQS, which have higher quality? 

The EBAM comparison studies used a BGI Inc. PQ-200 (Trent 2006) and Met One Instruments BAM 
(Schweizer et al. 2016). We added this informa�on in the text at line 97. Then, the T640 monitors are 
op�cally based federal equivalent method (FEM) monitors and recent work of Long et al. (2023) highlight 
concerns with both posi�ve and nega�ve measurement ar�facts when comparing T640 results with FRM 
filter based measurements. Inves�ga�ng the California permanent monitoring network shows that there 
were approximately 2-9 T640 monitors in use in southern and eastern/central California depending on 
the study year. Otherwise, most permanent monitors (> 100) are either beta atenua�on based or 
gravimetric. Also, in some cases purple air sensors were in the vicinity of these T640 monitors. One of 
the benefits of using machine learning with mul�ple datasets is ideally the capitalizing of strengths and 
reduc�on of issues associated with these disparate datasets. We agree though that if this is an issue with 
the T640’s, their use as FEM’s could be compromised during periods of high PM2.5 concentra�ons from 



wildfire smoke. The rapidfire package can be easily modified to remove these monitors if a user desires; 
however, we felt their inclusion was beneficial because they provide cri�cal informa�on in loca�ons of 
high aerosol loading where rou�ne monitors do not exist. 

Finally, the reason that AirNow is used as a data source, rather than AQS, which includes the finalized, 
human-quality-controlled data is data latency. Data are available in AirNow within hours, while it can be 
many months before the same �me period is available in AQS. For most applica�ons, AQS should be 
used; however, a goal of rapidfire is to have good PM2.5 es�mates within one month. A reasonable and 
straigh�orward extension of the tools would be to develop a func�on to harvest AQS instead of AirNow 
for applica�ons that are not �me sensi�ve. 

Russell W. Long, Shawn P. Urbanski, Emily Lincoln, Maribel Colón, Surender Kaushik, Jonathan D. Krug, 
Robert W. Vanderpool & Mathew S. Landis (2023) Summary of PM2.5 measurement ar�facts associated 
with the Teledyne T640 PM Mass Monitor under controlled chamber experimental condi�ons using 
polydisperse ammonium sulfate aerosols and biomass smoke, Journal of the Air & Waste Management 
Associa�on, 73:4, 295-312, DOI: 10.1080/10962247.2023.2171156 

- Low-cost sensor data – PurpleAir monitor data are routinely corrected (e.g., Barkjohn et al., 2022) to 
more closely agree with reference-grade monitors. The authors should consider applying a correction, or 
explain why this was not performed. 

We have elected to minimally correct our inputs, instead relying on the random forests model to capture 
interac�ons. The primary correc�on factor in Barkjohn et al. is rela�ve humidity, which is included as a 
feature in our model. Similarly, we are not deriving a PM2.5 es�mate from AOD but including boundary 
layer height and RH in our model. In other words, the value we use from PurpleAir is an indicator of 
PM2.5, and is not used as PM2.5 directly. We have added language in this sec�on to address this (line 
135). 

- L125 – The authors may want to address the recent switch to paid access to PurpleAir data by the 
provider. 

Thank you for the sugges�on. We have added a note at line 130. The change in policy occurred as we 
were developing this manuscript and was incredibly frustra�ng. 

- L138 – While MAIAC is a good choice for this application, the authors should clarify that smoke plumes 
may also be mistaken for clouds in MAIAC (See for example Ye et al 2022). The authors may also wish to 
address how the rapidfire system can be updated in light of the upcoming end of life of the MODIS 
instruments. 

Thank you, this is a good point. All AOD algorithms can mistake thick smoke for clouds, and we have 
added language to this sec�on (line 146). 

The rapidfire system is designed to be modular. It would be straigh�orward to write new func�ons to 
deal with another AOD data source, such as VIIRS. We have added language to the discussion sec�on to 
address this (line 301). 

 



- AOD gap filling – authors should test the effect of this imputation choice vs others (See e.g. Li et al., 
2020) on the accuracy of the result. Consider including a binary flag in model training to denote pixels 
that are imputed. How were the imputation windows selected? How frequently are the different windows 
applied? 

Li et al., 2020 have done excellent work to produce high-quality, fully gap-filled AOD. However, the 
required effort to develop these is significant and thus does not fit with the goal of rapidfire, which is to 
produce good es�mates of PM2.5 with off-the-shelf inputs that can be easily retrieved and used with 
minimal preprocessing. Even perfect AOD is an imperfect representa�on of ground-level PM2.5 during 
wildfire events. 

A full assessment of the imputa�on method chosen is beyond the scope of this response (and the �me 
provided to respond), but it is a good sugges�on. We have added a sec�on in the Limita�ons sec�on on 
the improvements that can be made to assess and improve AOD imputa�on (as well as moving to MAIAC 
collec�on 6.1). This begins at line 328. 

- L183 – a large number of additional hyperparameters may be tuned for RandomForest. Which values 
were used for the other parameters, and how were the values selected? 

The random forest algorithm provides good results in default se�ngs (Fernandez-Delgado et al., 2014) 
and is less tunable than other algorithms (Probst et al., 2018), which is one of its biggest advantages. 
Probst found that tuning the number of candidate variables at each split (i.e., mtry) provides the biggest 
improvement on average among possible hyperparameters. While there may be small gains available by 
further tuning other hyperparameters, we did not engage in that exercise. We used the default values for 
minimal node size, sampling scheme, and spli�ng rules. 

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers 
to solve real world classifica�on problems?. The journal of machine learning research, 15(1), 3133-3181. 

Probst, P., Boulesteix, A., & Bischl, B. (2018) Tunability: importance of hyperparameters of machine 
learning algorithms. Journal of machine learning research, 20(53). 

- L183 - Were interpolations rerun for each fold to exclude the hold-out monitors? Overall, more detail is 
needed on the cross-validation approach. 

Before developing the model, a random 30% of the monitor data was withheld as test data. Then, 
interpola�ons were created from the remaining 70% (training). The hyperparameter mtry was tuned 
using a 10-fold cross-valida�on on the training data. Those interpola�ons were not rerun for each 
subset. Once the model was developed, an addi�onal 10-fold cross-valida�on was done to assess 
performance. For this exercise, interpola�ons were rerun for each fold, leaving out monitors in the test 
data set. For tests against independent data (e.g., IMPROVE and CSN), all monitor data was included and 
interpolated for use in predic�ng PM25. 

We have reworked this model valida�on sec�on (lines 197-218) for clarity. 

- Table 5 – The authors should provide additional detail about the alternate models used and how they 
were trained. 

 



In essence, each of the alternate models are subsets of presented model. Two are interpola�on by 
ordinary kriging (AirNow monitors and PurpleAir sensors) using the same approach as used in developing 
the RF model. The final is a linear regression using the same inputs as the RF model. They were not 
trained but simply fit. Incidentally, we also tested other methods, such as XGBoost but did not find 
significant improvement over the RF model. It would be beneficial for others with machine learning 
exper�se to further improve upon these methods. 

- L209 - Are these cross validation results or are the authors using the model training data for the 
comparison? Scatter plots should be shown for the cross-validation including interpolations with holdout 
set. 

This was erroneous. The results in Table 5 are now the correct cross valida�on results, while Table 6 uses 
the complete data set. The plot (Figure 5) has been updated to show cross-valida�on results, including 
interpola�ons with data withheld. 

- Table 6 and Figure 5 – If I understand correctly that these are used to show the results at locations and 
times where the model was trained, the authors should not show performance metrics or scatters for the 
AirNow monitors, since they will be impacted by overfitting and do not represent the performance of the 
model in a meaningful way. It would be appropriate to show addition detail of this nature for the cross 
validation, however. It is highly surprising that the performance for CSN and IMPROVE validation is better 
than the cross validation shown in table 5. Much additional detail is needed to understand how this could 
be possible, such as by addressing comments on the cross-validation approach mentioned above and by 
providing further details on the specifics of the data used in each step. The authors may wish to include 
descriptive statistics and/or scatter plots for the distribution of the data used in cross validation 
compared with that used in the independent tests. A 5-fold decrease in RMSE from cross validation (Table 
5) to the independent test (Table 6) is difficult to believe. 

Thank you to the reviewer for highligh�ng some weaknesses in our approach. We have performed an 
updated valida�on exercise and present updated results. Figure 5 now presents the results of our cross-
valida�on. We have removed the AirNow monitors from Table 6. 

We redeveloped cross-valida�on results for Table 5 using a consistent �me period and approach for each 
model. These updated results are more in line with the results of the final model versus CSN and 
IMPROVE shown in Table 6. The RMSE for IMPROVE/CSN are s�ll lower than the cross-valida�on results; 
however, most of that difference can be explained by the lower dynamic range of the IMPROVE and CSN 
data. The highest values in the AirNow data are around 1000 ug/m3, while the highest values within the 
IMPROVE/CSN data are ~ 150 ug/m3. Ar�ficially removing AirNow data with values above 150 ug/m3 
results in a RMSE of 6, in line with CSN and IMPROVE. This is a limita�on of the IMPROVE data, 
especially, as the sampler clogs at the highest concentra�ons. 

- Code: While I am not able to comprehensively bug check the code provided, it is important to note that I 
was unable to successfully install and run the software out of the box. Specific issues that should be 
addressed include: (1) automatically install dependencies from github as required instead of requiring the 
user to figure out how to do so, (2) dplyr, which is required for sample scripts test_processing.R, should 
be loaded in the script, and (3) bluesky_at_airnow is not exported in NAMESPACE but is called in 
test_processing.R. The authors may want to fully test the software in a new, clean environment to 
identify any other issues users might encounter. 



 

Thank you for your atempt and thank you especially for providing such specific feedback! We have 
made the necessary updates to the package and tested that it can be installed from a clean environment. 
The test_processing.R script was a ves�ge of earlier work and was removed. 

- Technical comments 

- The use of PM, PM2.5, and PM5 throughout should be clarified. Are these meant to denote distinct 
concepts? They appear to be used interchangeably. 

This has been corrected. 

P1, L17 – increasing concentrations “due to wildfire smoke impacts.” 

Thank you. Corrected. 

- P1, L19-20 – There seems to be a word missing in the sentence. 

Corrected. 

-L23 – A citation would be appropriate for the suspected several-fold increase in PM5 from smoke 

Thank you. Reference added. 

-L114 – Update the count for 2023 or update to past tense (“had grown”). Is this as of the beginning, end, 
or some other point of 2021? 

Updated and clarified. 

-Figure 4 – Authors should explain the meaning of “Fill 1”, “Fill 2”, and “Fill 3” in the figure legend or 
update the label. 

Clarified. 

-L200 – Are the authors suggesting that monitors are so dense that a basic interpolation method might 
work better? This statement seems unclear. 

This sec�on has been rewriten. 

 

RC2 

- Model uncertainty and “noise floor”:  The paper is generally rigorous in comparing rapidfire modeled 
PM2.5 to measurements (and those comparisons suggest good agreement), but more loose in its 
discussion and justification of how those modeled numbers were and can be translated to “smoke” and 
to the public health endpoints reported as examples in this paper. Is there a reasonable way to define an 
upper and lower bound for the rapid modeled concentrations? Is there a “floor” for those concentration 
numbers beyond which there’s just model “noise”? This can be significant because even small 
concentration increments, applied over large populated areas in the downstream public health impact 
methods, can result in substantial excess deaths, so we want to make sure we keep model noise from 
adding to those death numbers to the extent possible. Above that “noise floor”, how do we come up with 



ranges for those otherwise impossibly precise numbers being reported? For example, was the range 
around the 615 excess deaths reported for that intense 3-month period during the summer of 2020 
something on the order of 600-630, or more like 500-700?  Further, how does that range change based 
on how good the agreement was between the rapidfire model and the other data sources? Even if there’s 
no good answer for this at the moment, that could be more clearly articulated and discussed to 
strengthen the manuscript. 

Thank you for both your compliments and your insigh�ul comments. We looked at r squared and 
normalized error as a func�on of PM2.5 concentra�on thresholds and found that the model begins to 
show skill at a threshold of about 10 ug/m3, with R^2 values less than 0.5 for data below that threshold. 
Normalized error reaches its floor at about 15 ug/m3. Thus, any value below about 10 ug/m3 is mostly 
model noise. As we are interested in smoke condi�ons, where concentra�ons varied from 20 - 1,000 
ug/m3, we feel this is acceptable. However, the point that small increments can have large impacts on 
calculated excess deaths is well taken, and the uncertainty in the number of excess deaths includes, not 
only the PM2.5 es�mate, but also the rela�ve risk func�on, which is fixed in our study at 0.11% per 
ug/m3 increase in PM2.5. A full accoun�ng of the uncertain�es in the excess deaths es�mate is beyond 
the scope of this paper, but we have added some bounds based on our RMSE. For the two intense 
periods men�oned in the paper, these produce ranges of 450-1070 excess deaths in the 2020 period and 
200-340 in the November 2018 period. We have added some language discussing this at line 257. 

 

- Smoke vs. PM2.5: As RC1 notes, and related to the general “noise floor” issue above, 15ug/m^3 was 
selected as a threshold for distinguishing between smoke and PM2.5 in this paper’s example, but 
background PM2.5 varies substantially in CA, higher for example in the Central Valley and metro areas, 
and much lower in many rural parts of the state. While it is understandable as a simplifying assumption 
to demonstrate the capabilities and potential of the rapidfire package, the authors could make it clearer 
that custom baselines may need to be used to get more realistic PM2.5 to smoke translation. They should 
make clear that these could substantially affect excess deaths, especially on the low end for areas with 
high populations. A sensitivity analysis would be the most robust way to address this issue. They might 
even consider providing an approach in the code for doing so, potentially based on an automated 
ingestion of existing spatial inventory data for non-fire PM2.5 sources. 

Thank you. Please see our response to RC1 above. The 15 ug/m3 threshold we selected was, in fact, 
quite conserva�ve rela�ve to typical concentra�ons for most of California for most �me periods. 
However, you are correct that it is an underes�mate for some loca�ons and �mes. The slightly more 
precise but s�ll conserva�ve threshold outlined above (county-wide, 90th percen�le monthly 
concentra�on) produced very similar results. We also produced a sensi�vity analysis using our 
measurement error as explained above. Adding these sensi�vity analyses into the code would be an 
excellent extension of the package, but the mortality calcula�ons are not yet part of rapidfire. 

- Low-cost sensor correction: Please elaborate on whether the Purple air data was corrected as it is on 
the Fire and Smoke Map (https://fire.airnow.gov/), or if not, how you determined that wasn’t important 
to do. Does the package include a way to do that? 

 



We have elected to minimally correct our inputs, instead relying on the random forests model to capture 
interac�ons. The primary correc�on factor in Barkjohn et al. is rela�ve humidity, which is included as a 
feature in our model. Similarly, we are not deriving a PM2.5 es�mate from AOD but including boundary 
layer height and RH in our model. In other words, the value we use from PurpleAir is an indicator of 
PM2.5, and is not used as PM2.5 directly. We have added language in this sec�on to address this at line 
135. 

- Code: Attempted to install the package and ran into the same issues as RC1 with dependencies and the 
code not being able to find the BlueSky files. As a result, this review could not include a replication of the 
reported results. 

Thank you for trying. We have updated the package in the hopes of addressing this. 

 


