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Abstract.  

In this study, we developed a novel algorithm based on the collocated Moderate Resolution Imaging 

Spectroradiometer (MODIS) thermal infrared (TIR) observations and dust vertical profiles from the Cloud-Aerosol 

Lidar with Orthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosol optical depth at 10 µm 

(DAOD10μm) and the coarse-mode dust effective diameter (Deff) over global oceans. The accuracy of the Deff retrieval 25 

is assessed by comparing the dust lognormal volume particle size distribution (PSD) PSD corresponding to retrieved 

Deff with the in-situ measured dust particle size distributions (PSDs)PSDs from the AER-D, SAMUM-2 and 

SALTRACE field campaigns through case studies. The new DAOD10μm retrievals were evaluated first through 

comparisons with the collocated DAOD10.6μm retrieved from the combined Imaging Infrared Radiometer (IIR) and 

CALIOP observations from our previous study (Zheng et al. 2022). The pixel-to-pixel comparison of the two DAOD 30 

retrievals indicates a good agreement (R~0.7) and a significant reduction of (~50%) retrieval uncertainties largely 

thanks to the better constraint on dust size. In a climatological comparison, the seasonal and regional (5°×2°) mean 

DAOD10um retrievals based on our combined MODIS and CALIOP method are in good agreement with the two 

independent Infrared Atmospheric Sounding Interferometer (IASI) products over three dust transport regions (i.e., 

North Atlantic (NA; R = 0.9), Indian Ocean (IO; R = 0.8) and North Pacific (NP; R = 0.7)).  35 

Using the new retrievals from 2013 to 2017, we performed a climatological analysis of coarse mode dust Deff over 

global oceans. We found that dust Deff over IO and NP are up to 20% smaller than that over NA. Over NA in summer, 

we found a ~50% reduction of the number of retrievals with Deff > 5 μm from 15°W to 35°W and a stable trend of Deff 

average at 4.4 μm from 35°W throughout the Caribbean Sea (90°W). Over NP in spring, only ~5% of retrieved pixels 
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with Deff > 5 μm are found from 150°E to 180°, while the mean Deff remains stable at 4.0 μm throughout eastern NP. 40 

To our best knowledge, this study is the first to retrieve both DAOD and coarse-mode dust particle size over global 

oceans for multiple years. This retrieval dataset provides insightful information for evaluating dust long-wave 

radiative effects and coarse mode dust particle size in models. 

1 Introduction 

Mineral dust (referred to as “dust”) lifted by strong surface winds in arid and semi-arid regions (Ginoux et al., 2012) 45 

is the most abundant type of atmospheric aerosol in terms of dry mass (Kinne et al., 2006; Goudie, 1983). Once aloft, 

dust particles with a broad size range (from 0.001 to 100 μm) can be transported carried by winds for long-range 

transport onfrom local scales to intercontinental and furtherto hemispherical scales, exerting far-reaching impacts on 

the climate system (Shao et al., 2011; Choobari et al., 2014; Yu et al., 2013; Tegen and Fung, 1994; Uno et al., 2009). 

For example, dust significantly influences the earth system’s radiative budget by interacting with both shortwave (SW) 50 

solar and longwave (LW) terrestrial radiations, known as the direct radiative effects (DRE). Previous studies have 

found that on a global mean basis, the dust DRE at the top of the atmosphere (TOA) is generally negative in SW (i.e., 

a cooling effect) but positive (i.e., a warming effect) in LW, although dust SW DRE can be positive over bright 

surfaces (Kok et al. 2017, Li et al. 2021, Di Biagio et al., 2021, Song et al. 2018, 2022). Despite this qualitative 

understanding, the quantification of dust net DRE (i.e., SW DRE + LW DRE) remains highly uncertain, in part due 55 

to the great spatiotemporal heterogeneity of dust properties such as dust loading, optically represented by dust aerosol 

optical depth (DAOD) (Huneeus et al., 2011), particle size distribution (PSD) (Kok et al. 2017, Adebiyi and Kok, 

2020a), particle shape, and refractive indices (RI) (Li et al., 2021). The dust-radiation interactions perturb the surface 

energy balance and atmospheric heating rate and hence the thermodynamic structure of the atmosphere (Helmert et 

al., 2007), which in turn affects boundary layer dynamics and cloud formation processes (Amiri-Farahani et al., 2017; 60 

Grogan et al., 2016; Zhang et al., 2007).  

 

Satellite remote sensing is uniquely capable of measuring the spatiotemporal variation of dust properties on regional 

to global scales and over years and decades. Many methods have been developed to retrieve the column-integrated 

AOD in the visible spectrum (AODVIS) (e.g., 550 nm) from passive satellite observations in the visible (VIS) and near-65 

infrared (NIR) spectrum, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) (Levy et al., 2013, 

Hsu et al., 2013) and the Multi-angle Imaging Spectroradiometer (MISR) (Kahn et al., 2010). It should be noted that 

these retrievals obtain the total AOD contributed by not only dust but also other types of aerosols. As a result, the 

fraction of dust AOD (DAOD) in VIS (DAODVIS) needs to be further separated from the total AODVIS for dust-focused 

studies. Some methods rely on model simulations of DAODVIS/AODVIS (Gkikas et al., 2021) or non-dust AODVIS 70 

(Ridley et al., 2016). Others are based on the contrasting properties of dust in comparison with other aerosols, such as 

its larger size manifested as a smaller Angstrom Exponent and a smaller fine-mode fraction (Kaufman et al., 2005, Yu 

et al., 2009, 2021) and significant spectral gradient in the absorption from deep blue to the VIS (Ginoux et al., 2010, 

Pu and Ginoux, 2018). In addition, the active spaceborne Lidars with VIS-NIR channels, such as the Cloud-Aerosol 

Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 75 
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Observations (CALIPSO) mission and the Cloud-Aerosol Transport System (CATS), can be used to estimate the 

vertical distribution of DAODVIS based on the observed particulate depolarization ratios (Yu et al., 2015b; Proestakis 

et al., 2018). By utilizing these retrieval methods, several studies further developed decade-long satellite data records 

of DAODVIS (Gkikas et al., 2022; Song et al., 2021), which are frequently used for dust studies such as estimations of 

dust DRE, interannual variability and trends of dust, and global dust cycles (Song et al., 2022; Logothetis et al., 2021; 80 

Kok et al., 2021b).  

 

The VIS-NIR dust observations are useful, but they do not provide direct measurements of DAOD at LW and have 

weak sensitivity to coarse particles (particle diameter (Dp) > 1 μm) (Ryder et al., 2019). Extending observed DAOD 

from the VIS-NIR to TIR spectra depends strongly on dust PSD and RI assumptions (Song et al., 2018). Therefore, 85 

TIR observations are an indispensable complement with several unique advantages. Dust dominated by coarse mode 

particles  is arguably the only predominant particle that can cause strong radiative signatures in the TIR spectrum 

(Desouza-Machado et al., 2006). Therefore, using TIR observation has an inherent advantage of directly retrieving 

DAOD , in contrast to the VIS-NIR observations in which empirical methods need to be developed to separate 

dustwithout contributions from other types of aerosols. Zheng et al. (2022) showed that direct TIR observations could 90 

significantly reduce uncertainties in DAODTIR and LW DRE associated with dust PSD and RI assumptions.  Moreover, 

previous studies revealed that super-coarse dust particles (Dp > 20 μm) are ubiquitously detected from numerous in-

situ measurements in both source regions and transport regions (Weinzierl et al., 2017; Denjean et al., 2016; Ryder et 

al., 2013b; Ryder et al., 2018), which however is excluded or underestimated in most dust transport models (Checa-

Garcia et al., 2021; Wu et al., 2020; Zhao et al., 2022). How many and how frequently can super-coarse dust particles 95 

be carried in long-range transport? The lack of observational data with finer spatiotemporal coverage prevents us from 

further revealing their transport patterns. TIR satellite observations with great sensitivity to super coarse particles can 

potentially fill this knowledge gap. 

 

Notwithstanding the advantages, retrieving dust properties in TIR, particularly the dust particle size, usually 100 

represented by effective radius or diameter, is challenging. In the past, TIR dust retrieval algorithms were primarily 

based on observations from space-borne hyperspectral atmospheric sounders, such as the Advanced Infrared Radiation 

Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI). The important advantages of 

hyperspectral observations for dust retrieval are that they can provide multiple atmospheric window channels that are 

most sensitive to dust aerosols with little gas absorption and less sensitive to atmospheric gas absorption (Peyridieu et 105 

al., 2010; Capelle et al., 2018; Capelle et al., 2014; Peyridieu et al., 2013). On the other hand, these algorithms have 

two major limitations. First, the altitude of a dust layer and, therefore, its temperature profile affect the outgoing TIR 

radiance at TOA with a similar magnitude as DAOD (Pierangelo et al., 2004). As a result, dust altitude must be part 

of the state vector to be retrieved together with DAOD in a stand-alone hyperspectral TIR dust retrieval algorithm, 

which makes retrieving dust particle size from limited information contents highly challenging (Pierangelo et al., 110 

2005). Second, the relatively large footprint of hyperspectral sounders (~15 km) makes cloud masking and clearing a 

daunting task. As a result, the retrieval results are prone to cloud contamination (Song et al. 2018, Zheng et al. 2022).  
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A recent study by Zheng et al. (2022) (hereafter referred to as Z22) opened a new avenue for TIR-based dust retrievals 

by retrieving ten years of TIR DAOD at 5-km resolution over the global oceans based on combined CALIOP and 115 

Infrared Imaging Radiometer (IIR, a collocated higher-spatial-resolution TIR imager) observations. Both CALIOP 

and IIR are onboard the CALIPSO satellite. The smaller (compared to AIRS and IASI) footprint size of IIR and the 

collocated CALIOP lidar make cloud masking much easier and more reliable than stand-alone hyperspectral 

algorithms. Moreover, the highly detailed and accurate dust vertical distribution provided by CALIOP not only makes 

the TIR DAOD retrieval more straightforward and accurate, but also allows for additional retrievals on dust particle 120 

size. Lastly, the collocated CALIOP Lidar also provides estimated DAODVIS, which opens potential applications for 

the observational synergistic VIS and TIR DAOD. Furthermore, unlike the passive VIS-NIR observations that are 

available at the daytime only, the combined VIS Lidar and TIR observations are also accessible at night, which allows 

further applications for investigating the diurnal variability of dust properties (Yu, Y. et al., 2021; Chédin et al., 2020). 

However, Z22 found that an accurate radiative closure between the simulated TIR radiance and observed TIR radiance 125 

for clear sky backgrounds is only possible for nighttime observations as there is an unresolved bias at daytime. In 

addition, because it used a single-band (i.e., the 10.6 µm IIR band) retrieval method, the algorithm allows for retrieving 

DAOD only.  

 

To overcome the limitations in Z22 and further advance the TIR dust retrievals for coarse-mode dust size, in this 130 

study, instead of IIR, we use three MODIS TIR window bands (centred at 8.55 μm, 11.02 μm and 12.03 μm) for dust 

retrievals for the following reasons. The detector noise of MODIS in warm scenes (e.g., dust-laden sky) is 0.02-0.03 

K, which is lower than that of IIR at 0.1-0.15 K (Madhavan et al., 2016). As a result, we can achieve a better radiative 

closure between radiative transfer simulation and MODIS observations in the clear sky, a premise for TIR-based dust 

retrieval, at all three TIR channels in both daytime and nighttime (details in Section 2.3). It first allows us to adopt the 135 

split-window technique (Zhang et al., 2006; Paepe and Dewitte, 2009) to reduce retrieval uncertainties compared with 

Z22 (detailed in Section 5.1). Moreover, by leveraging the information contents from all three bands, we can retrieve 

not only DAOD at 11 μm, further scaled to 10 μm (referred to as “DAOD10μm”), but also the dust particle size 

represented by effective diameter (referred to as “Deff”). Lastly, the daytime retrievals enable comparisons with VIS-

NIR-based retrievals, such as MODIS, CALIOP and AERONET.  140 

 

In the rest of the article, we introduce the collocated MODIS and CALIOP observation and the radiative transfer model 

in section 2. The implementation of the retrieval algorithm is detailed in section 3. Section 4 demonstrates the 

DAOD10μm and Deff retrievals of three dust cases observed at Cape Verde and in the Caribbean Sea and compares them 

with ground-based and in-situ airborne measurements. Section 5 presents the climatological analysis of five-year 145 

retrievals of DAOD10μm compared with Z22 IIR-based and IASI-based retrievals and Deff in terms of the seasonal and 

regional variation from 2013 to 2017. The discussions and conclusions are summarized in section 6. 



5 
 

2 Data and model  

2.1 MODIS and CALIOP observations 

In this study, dust properties, namely DAOD10µm and Deff, are retrieved from collocated Aqua-MODIS and CALIOP 150 

observations. MODIS onboard the Aqua satellite, as a member of the A-train constellation, provides observations 

from 36 spectral bands ranging from VIS to TIR with near-daily global coverage and relatively high spatial resolution 

(i.e., 250 m to 1 km at nadir). MODIS is equipped with onboard calibrators that enable stable calibration uncertainties 

within ± 0.03 K for TIR bands (Xiong et al., 2009). This study primarily uses the MODIS Level-1B calibrated 

upwelling radiances at TOA at three TIR spectral bands centered at 8.55 μm, 11.02 μm and 12.03 μm, respectively. 155 

The TIR “window” bands mostly avoid contaminations from atmospheric gas absorptions and are sensitive to dust 

optical properties in different orders (Z22). For better interpretation, the calibrated radiances are further converted to 

equivalent brightness temperature (BT) computed based on Planck’s law, and the corresponding spectral response 

functions at the three selected TIR bands (see Figure 4b (black dash lines) in Section 3.2).  

 160 

CALIPSO, launched in 2006, has also been a member of the A-train constellation that shares a similar and tightly 

controlled Sun-synchronous polar orbit with Aqua MODIS until August 2018. CALIOP aboard CALIPSO is a two-

wavelength (532 and 1064 nm) polarization-sensitive Lidar with three receiver channels (one measuring the 1064 nm 

backscatter intensity and two measuring orthogonally polarized components of the 532 nm backscatter). Unlike Aqua 

MODIS, CALIOP has a much smaller spatial coverage due to its narrow cross-track footprint of around 70 m in 165 

diameter. However, the 333-m along-track footprint with 30-to-60-m vertical resolution allows CALIOP to provide 

detailed vertical structures of aerosols and clouds (Winker et al., 2009).  

 

In this study, the dust contribution to a vertical column of attenuated backscatter is needed as we focus on retrieving 

dust. Although the CALIOP operational aerosol product (i.e., the Vertical Feature Mask (VFM) product) determines 170 

the aerosol sub-type for each aerosol layer (Kim et al., 2018), it does not provide the quantitative dust backscatter 

profile for dust and non-dust aerosols mixed in the column. Therefore, we apply the estimated particulate 

depolarization ratio (DPR) profile along with the total attenuated backscatter profile from the Version-4 Level-2 

CALIOP aerosol profile product ("LID_L2_05kmAPro-Standard-V4" (Liu et al., 2019)) to derive the dust aerosol’s 

vertical distribution for DAOD10μm and Deff retrieval. The VFM product is further used for filtering out the mis-175 

included non-dust aerosol profiles (see Appendix B for detail).  

2.2 AMSR-E and MERRA-2 auxiliary data 

The surface characteristics (i.e., surface emissivity and temperature) and the atmospheric profiles (i.e., temperature T, 

pressure P, water vapor Qv and ozone O3) are crucial for obtaining an accurate radiative transfer simulation in TIR at 

TOA (Scott and Chedin, 1981). Unlike the hyperspectral observations with the capability to retrieve the instantaneous 180 

atmospheric states, our retrieval requires inputs of these auxiliary data from third-party sources.  
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The atmospheric profiles T, P, Qv and O3, are obtained from Version 2 Modern-Era Retrospective analysis for 

Research and Applications (MERRA-2) assimilated products (Gelaro et al., 2017). Specifically, The MERRA-2 

“inst3_3d_asm_Nv” product provides 3-hourly instantaneous atmospheric profiles at 72 pressure levels with a gridded 185 

horizontal resolution of 0.625° longitude by 0.5° latitude. Detailed information can be found in Gelaro et al. (2017). 

To assign the gridded MERRA-2 data to the simulations for the collocated MODIS and CALIOP (referred to as 

“MODIS-CALIOP”) observations, we first obtain the geolocation and time of all grid cells of MERRA-2 data. Then, 

we find the spatially and temporally closest grid cell with each MODIS-CALIOP pixel.  

 190 

As the retrieval is implemented over oceans only, which is explained in Section 2.3, we obtain the level-2 sea surface 

temperature (SST) retrieved based on the Advanced Microwave Scanning Radiometer - Earth Observing System 

Sensor (AMSR-E) onboard Aqua (ceased operation in December 2011), and its successor (launched in May 2012), 

the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard GCOM-W1 that follows Aqua’s orbit. The 6.9-

GHz and 10.7-GHz channels from AMSR-E and AMSR2 are used for SST retrieval (Wentz and Meissner, 2000). 195 

Previous studies demonstrated that the SST retrievals over heavy dust-loading regions using TIR observations are 

underestimated due to the radiative impact of dust (Luo et al., 2019). However, microwave radiation has mostly no 

interaction with dust and, therefore, can avoid dust impacts and achieve better SST retrieval accuracy over dusty 

regions (O’carroll et al., 2019).  In this study, the SST at 56 km resolution from AMSR-E and AMSR-2 is collocated 

with MODIS-CALIOP. Specifically, the SST from AMSR-E and AMSR2 are used for retrievals before August 2011 200 

and after June 2012, respectively, while there will be no retrievals during the observational gap between ASMR-E and 

ASMR2. For the surface emissivity, we use the emissivity models (listed in Table 1) provided in version-2 Community 

Radiative Transfer Model (CRTM) (Van Delst, 2011), which is described in Section 2.3.  

 

Finally, for each MODIS-CALIOP observation, the collocated MERRA-2 atmospheric profiles, AMSR-E/AMSR2 205 

SST, and the internal surface emissivity model are used as the input for the radiative transfer simulation. All the 

satellite products, variables and auxiliary data are listed in Table 1. 

 
Table 1: Values of variables from multi-source satellite sensors and auxiliary datasets that are used in this study 

Satellite 

sensors 
Product names Variable names Value is used 

MODIS 

MYD021KM 

(CloudSat_MODIS_AUX) 
EV_1KM_Emissive 

Radiances (BTs)  

at 8.5 μm, 11μm, 12μm 

MYD06 

(CloudSat_MOD06_AUX) 

Cloud_Phase_Optical_Properties 

(For daytime) 
Clear (0) 

Viewing zenith angle All 

CALIOP 
LID_L2_05kmAPro-Standard-

V4-20 

CAD_score -100 to -90 

Particulate_Depolarization_Ratio_Profile_532 All 

Extinction_QC_Flag_532 0,1,16,18 

Total_Backscatter_Coefficient_532 All 
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Atmospheric_Volume_Description 

Three dust subtypes  

(dust, polluted dust, 

dusty marine) 

CAL_IIR_L2_Track-Standard-

V4-20 

Was_Cleared_Flag_1km 
No single-shot cloud 

(0) 

TGeotype Open Water (1700) 

AMSR-E 

AMSR2 

AMSR_E_L2_Ocean 

RSS_AMSR2_ocean_L3_daily 
SST (sea surface temperature) All 

Auxiliary 

data 
Product names Variable names Value is used 

MERRA-2 Inst3_3d_asm_Nv H, P, T, QV, O3 All 

CRTMv2.3 Nalli.IRwater.EmisCoeff Surface emissivity All 

 210 

2.3 The radiative transfer models  

The foundation of a LUT-based retrieval method is an accurate radiative transfer model. For the radiative transfer 

simulation of terrestrial TIR radiation under clear atmospheric conditions, atmospheric gaseous absorption is critical. 

In this study, we use the version-2 CRTM developed by the US Joint Center for satellite data Assimilation (JCSDA) 

as the foothold for our retrieval (Chen et al., 2012; Han, 2006). The transmittance coefficients in CRTM are first 215 

trained by applying regression algorithms to the line-by-line integrated transmittances for numerous atmospheric 

profiles (McMillin et al., 2006). Afterward, the gaseous absorption component can achieve an accuracy as high as the 

line-by-line transmittance but consumes far less computational time (Ding et al., 2011). As CRTM also supports 

MODIS’s sensor coefficients, it is an optimal tool for simulating the atmospheric gaseous absorptions at the three 

selected MODIS TIR bands for our retrieval (Liang et al., 2016; Wang et al., 2016).  220 

 

Although it is straightforward to use CRTM to handle the gas absorptions in the TIR, we found it difficult to use it to 

handle the scattering and absorption of dust due to the configuration and structure of the code. In this study, we use 

the Discrete Ordinate Radiative Transfer code (DISORT) to handle the dust aerosol scattering and absorption 

calculation (Stamnes et al., 1988). To combine CRTM and DISORT, we first use CRTM to simulate atmospheric 225 

gaseous absorptions (output as the atmospheric optical depth) with input MERRA-2 atmospheric profiles. Afterward, 

the CRTM-simulated atmospheric optical depth with and without the vertical distribution of dust optical properties 

served as inputs for DISORT to simulate cloud-free dust-laden BTs and cloud-free clean (i.e., cloud-free and aerosol-

free) BTs at the three MODIS TIR bands at TOA, respectively.  

 230 

Prior to implementing the retrieval, the uncertainties contributed by the auxiliary data, the radiative transfer simulation, 

and the observational errors must be evaluated. Thus, we conduct the radiative closure benchmark between the CRTM-

DISORT calculated and the MODIS-observed BTs under cloud-free and clean (without dust) conditions, which is 

detailly presented in Appendix A. Given that the error of the radiative closure benchmark over land and polar regions 
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can reach up to 10 K due to the uncertainties from the assumed surface emissivity and temperatures (Z22), this study 235 

focuses on retrievals over oceans within 60°S and 60°N only.  

 

3 Description of the retrieval algorithm 

In this section, we detailly describe the retrieval algorithm that is summarized in Figure 1, covering the collocation of 

MODIS and CALIOP observations and the process of cloud masking and dust detection, the a priori dust properties, 240 

and the design of the LUT method and the uncertainty estimation.  
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Figure 1: The flow chart of the retrieval process of DAOD10μm and Deff using collocated MODIS-CALIOP observations. 
 

The first step of the retrieval is to identify high-quality cloud-free dust-laden observations. Due to the different spatial 245 

coverage of MODIS and CALIOP, the retrieval requires collocated data from both sensors. The collocation process 

and the following cloud masking and dust detection and vertical distribution processing are similar to Z22 and are 

presented in detail in Appendix B. It should be noted that CALIOP has relatively smaller signal-to-noise ratios during 
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daytime than nighttime, owing to the influence of solar contamination on the Lidar signal (Mcgill McGill et al., 2007). 

Nevertheless, by applying identical selection criteria for high-quality cloud-free dust vertical profiles in both daytime 250 

and nighttime, we can ensure that the data quality of the selected CALIOP cloud-free dust profiles remains consistent 

across both periods.  

3.1 A priori dust properties 

In addition to the vertical distribution, the retrieval needs to assume dust bulk optical properties. In this section, we 

introduce the dust PSD, dust shapes, and dust RI that are used to calculate the bulk optical properties (i.e., the 255 

extinction efficiency (Qext), single scattering albedo (SSA) and asymmetry factor (g-factor)).  

3.1.1 Monomodal dust coarse-mode particle size distribution 

Dust PSD is commonly presented by a two-mode (i.e., fine mode (Dp < 1.0 μm) and coarse mode (Dp > 1.0 μm)) 

lognormal size distribution (Dubovik et al., 2002). As the fine mode dust has a negligible effect on TIR observation, 

we assume a normalized (i.e., total volume concentration equals unity) monomodal lognormal volume size distribution 260 

to represent the coarse-mode dust PSD, which is defined as  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 1
√2𝜋𝜋𝜎𝜎

exp [− 𝑑𝑑𝑑𝑑2 (𝑑𝑑/𝑑𝑑𝑚𝑚)
2𝜎𝜎2

]                         (1) 

where 𝐷𝐷 is the volume-equivalent sphere geometric diameter for spheroidal dust particle assumption (see Section 

3.1.2), 𝐷𝐷𝑚𝑚 is the geometric volume median diameter, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 is the volume PSD, and 𝜎𝜎 is the standard deviation. Note 

that the sensitivity of 𝜎𝜎 to the TIR radiative signature at TOA is negligible compared with that of AOD and 𝐷𝐷𝑚𝑚 265 

(Pierangelo et al., 2005) (see Figure S5). Therefore, to simplify the retrieval, we first set 𝜎𝜎 = 0.7 (i.e., ln(2.0)) as it 

is a good representation for the coarse-mode dust PSDs in both in-situ measurements and satellite retrievals (Capelle 

et al., 2018; Ryder et al., 2018). We further use the effective diameter defined by Hansen and Travis (1974) to represent 

the monomodal PSDs with dependence on 𝐷𝐷𝑚𝑚 as  

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = ∫ 𝑑𝑑3𝑑𝑑(𝑑𝑑)𝑑𝑑𝑑𝑑∞
0
∫ 𝑑𝑑2𝑑𝑑(𝑑𝑑)𝑑𝑑𝑑𝑑∞
0

                               (2) 270 

where 𝑛𝑛(𝐷𝐷) is the dust number concentration converted by the volume distribution with 𝜎𝜎 = 0.7 and varied 𝐷𝐷𝑚𝑚. 

 

Note that in-situ measurements of dust PSD show that the coarsest record of dust particles over the transport regions 

(i.e., over oceans) was measured during the Fennec campaign in June 2011 (Ryder et al., 2013a), with an estimated 

Dm at around 10.0 μm. Therefore, for the retrieval, we define the minimum and maximum dust coarse-mode PSDs 275 

with their representations of Dm from 1 μm to 12 μm and Deff from 0.8 μm to 9.2 μm, (see Figure S1). Dust PSDs 

within this range are used for calculating the dust bulk optical properties as inputs for building the LUT of DAOD10μm 

and Deff.  

3.1.2 Dust refractive indices and dust shape 

The RI of dust, determined by dust mineral compositions, has a profound impact on dust scattering properties and 280 

therefore the retrieval results (Sokolik and Toon, 1999). Ideally, the dust RI should be retrieved simultaneously with 
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other properties of dust. However, given the highly limited information content from the three MODIS TIR bands, a 

retrieval of dust RI is not possible, at least in this study. It should be noted that most previous studies also used pre-

assumed dust RI, often one or two simple global constants, in their retrievals including widely used operational aerosol 

retrieval products (Capelle et al., 2018; Zhou et al., 2020).   285 

 

Nevertheless, in this study, we try to incorporate the spatial variability of dust RI in our retrieval by using two newly 

developed datasets. One is a state-of-the-art dust RI database developed by Di Biagio et al. (2017) (referred to as the 

“Di-Biagio RI”), which provides dust RIs retrieved based on surface soil samples collected in nineteen arid and semi-

arid sites from worldwide dust source regions. The Di-Biagio RI database provides the observational basis for 290 

accounting for the regional dependence of dust RI. The other is the fractional contribution over oceans supplied by 

various dust source regions from the DustCOMM-2021 dataset developed by Kok et al. (2021a), which is used to 

assign dust RIs from different source regions to the observed dust aerosol over oceans. Details of the dust RI 

assignments are presented in Appendix C. 

 295 

Dust particles have irregular and non-spherical shapes, which vary greatly from case to case and from location to 

location (Scheuvens and Kandler, 2014). Using spherical assumptions for non-spherical dust in remote sensing would 

cause significant uncertainty (Huang et al., 2020; Dubovik et al., 2002; Nousiainen and Kandler, 2015). It is essential 

to adopt a quantified non-sphericity to represent dust optical properties better. However, characterizing the complex 

morphology of dust particles remains challenging. Previous studies used different assumptions of dust particle shape 300 

to evaluate the sensitivity of dust optical properties to the morphology, such as spheroid (Dubovik et al., 2006), 

ellipsoid (Meng et al., 2010) and polyhedral (Liu et al., 2013).  

 

The non-sphericity of the aspherical shape is often represented by the aspect ratio, defined as the ratio of the longest 

particle dimension to the intermediate particle dimension. The higher the aspect ratio, the greater the non-sphericity. 305 

The spheroid shape assumption is a first-order approximation of dust non-sphericity (Mishchenko et al., 1997; 

Dubovik et al., 2002) and is widely used for non-spherical aerosol retrievals (Levy et al., 2013; Kahn et al., 2010). To 

seek a broader application of this study to others, we stick to the spheroid assumption with the size-independent aspect 

ratio distribution from Dubovik et al. (2006) for the retrieval. Nonetheless, the retrieval based on a more advanced 

non-spherical dust optical properties database, such as the hexahedral shape (Saito et al., 2021), will be evaluated in 310 

future studies.  

 

By assuming dust particles with spheroidal shape, we calculate the dust single-particle optical properties for each a 

priori dust RI using the T-matrix method (Mishchenko et al., 1996). Afterward, the bulk optical properties are 

integrated according to the pre-assumed dust PSDs and the spheroidal dust aspect ratio distributionss of spheroidal 315 

dust.  
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3.2 The look-up table and the uncertainty estimation 

The DAOD10µm and Deff are retrieved from three MODIS TIR bands using a LUT method. To illustrate the LUT, we 

use CRTM-DISORT to simulate the cloud-free clean BT at 11 μm (referred to as “BT11”), spectral BT differences 

(BTD) between 11 μm and 12 μm (referred to as “BTD11-12”) and that between 8.5 μm and 12 μm (referred to as 320 

“BTD08-12”), by giving a typical tropical atmospheric profile with a dust layer distributed at the mid-level troposphere 

(i.e., 2-6 km, see Figure S6). Afterward, with the a priori dust Deff, dust RI, and dust spheroidal aspect ratios, the 

calculated dust bulk optical properties based on the T-matrix method can be used as inputs in CRTM-DISORT to 

simulate cloud-free dust BT11, BTD11-12 and BTD08-12. With the input DAOD at 11 μm (DAOD11μm) ranging from 0.0 

to 1.0 and Deff ranging from 0.8 μm to 9.2 μm (see Figure S1 for corresponding dust PSDs), we build a LUT consisting 325 

of BT11, BTD8-12 and BTD11-12 as shown in Figure 2a. The assumed dust RI for the LUT is from Algeria in Northeast 

Africa. Example LUTs corresponding to other dust RIs are shown in Figures S7 and S8.  

 

Considering the higher dust extinction signal expected at 10 μm compared to 11 μm (see Figure 2b and Pierangelo et 

al. (2004)), we scale DAOD11μm to DAOD10μm based on the Qe spectral behavior following 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷11𝜇𝜇𝜇𝜇
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷10𝜇𝜇𝜇𝜇

= 𝑄𝑄𝑄𝑄11𝜇𝜇𝜇𝜇
𝑄𝑄𝑄𝑄10𝜇𝜇𝜇𝜇

. As a 330 

result, our final retrieval products contain DAOD10μm and Deff. 
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Figure 2: (a) The example of the LUT of BTD8-12 (y-axis), BTD11-12 (x-axis) and BT11 (colour-filled contours) corresponding 335 
to DAOD11μm ranging from 0.0 to 1.0 (dashed lines) and Deff ranging from 0.8 μm to 8.2 μm (solid lines) and the Algeria 
dust RI from Di-Biagio Database. At the point of DAOD = 0.0, the BTD8-12 and BTD11-12 correspond to the cloud-free clean 
scenario. (b) The β-ratio to 11 μm calculated based on Deff ranging from 0.8 μm to 8.2 μm and the Algeria dust RI within 
the TIR spectrum between 7.5 μm and 13.5 μm. (c) Same as (b) but the β-ratio to 8.5 μmThe zoom-in area of the black 
rectangle in (b).  340 
 

The variation of BTDs and BT11 with DAOD11μm and Deff is determined by the dust Qe, SSA and g-factor at the three 

TIR bands. To better understand the variations of BTDs in the LUT, we introduce the so-called β-ratio, defined as 

follows. 

𝛽𝛽(𝜆𝜆1/𝜆𝜆2) = 𝑄𝑄𝑒𝑒(𝜆𝜆1)[1−𝜔𝜔(𝜆𝜆1)𝑔𝑔(𝜆𝜆1)]
𝑄𝑄𝑒𝑒(𝜆𝜆2)[1−𝜔𝜔(𝜆𝜆2)𝑔𝑔(𝜆𝜆2)]

                       (3) 345 

where 𝑄𝑄𝑄𝑄 is the extinction efficiency, 𝜔𝜔 is the SSA, and 𝑔𝑔 is the asymmetry factor. The 𝛽𝛽-ratio was often used to 

represent the spectral difference of dust “effective absorption” (i.e., absorption and backward scattering) in the TIR 

spectrum in many studies on dust, volcanic ash and ice cloud retrieval (Pavolonis et al., 2013; Pavolonis et al., 2015; 

Garnier et al., 2013). Because the variation of BT11 in Figure 2a serves as the single-band dust radiative signature, we 
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present the β-ratio with respect to 11 μm (i.e., 𝜆𝜆2 = 11 𝜇𝜇𝜇𝜇 in Eq.(3)) for varied Deff, as shown in Figure 2b. The β-350 

ratios for wavelength ranging from 12 μm to 11 μm over the whole range of the input Deff are lower than one. It means 

that the dust “effective absorption” at 11 μm is always more significant than that at 12 μm, regardless of the size 

variation. In contrast, the cloud-free clean BT at 11 μm is higher than that at 12 μm due to the less atmospheric 

absorptions at 11 μm as described in Appendix A. Consequently, in Figure 2a, the BTD11-12 decreases with increasing 

DAOD11μm regardless of how Deff changes.  355 

 

On the other hand, the BTD8-12 is more sensitive to Deff than to DAOD. First, the cloud-free and clean BT at 8.5 μm 

is similar to that at 12 μm due to similar gas absorption. However, the dust “effective absorption” at 8.5 μm is larger 

than that at 12 μm when Deff is relatively small (e.g., 1.0 μm < Deff < 3.03.2 μm) in Figure 2b2c, there are negative 

trends of BTD8-12 with increasing DAOD in Figure 2a. In contrast, in Figure 2b2c, the dust “effective absorption” at 360 

8.5 μm is weaker than that at 12 μm when Deff is relatively large (e.g., Deff > 5.04.5 μm), leading to positive trends of 

BTD8-12 with increasing DAOD in Figure 2a. In between, the sensitivity of BTD8-12 to DAOD can be nearly zero when 

dust Deff is moderate (e.g., Deff = 3.6 μm in Figure 2a). As such, the radiative signature of DAOD and Deff can be 

separated using BTD8-12 and BTD11-12, allowing the simultaneous retrieval of both parameters based on the three 

MODIS TIR bands. 365 

 

Besides the dust particle size (e.g., Deff), dust “effective absorption” at the three TIR bands also depends on the LW 

dust RI, especially the β-ratio from 12 μm to 8.5 μm (see Figure S7). . The dust RI directly changes the spectral 

behavior of the dust “effective absorption” and reshapes the LUT of BTD8-12 and BTD11-12 (see Figures S7 S8 and 

S8S9). Due to the limited observational signature, the retrieval of dust RI is unachievable in this study. The retrieval 370 

uncertainty associated with the assumption of dust RI thus needs to be assessed. In addition, the errors resulting from 

radiance observation itself and radiative transfer modeling (Figure A1 in Appendix A) also need to be factored in.  

 

We implement the retrieval algorithm in three steps to find an optimal retrieval with the assessed uncertainties. Firstly, 

we define a cost function ξ of the normalized distance between the simulated BT and BTDs in the LUT and the 375 

observed BT and BTDs as  

ξ(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 1
3
�
�𝐵𝐵𝐵𝐵11𝑠𝑠𝑠𝑠𝜇𝜇−𝐵𝐵𝐵𝐵11𝑜𝑜𝑜𝑜𝑠𝑠�

2

𝜎𝜎112
+

�𝐵𝐵𝐵𝐵𝐷𝐷11−12𝑠𝑠𝑠𝑠𝜇𝜇 −𝐵𝐵𝐵𝐵𝐷𝐷11−12𝑜𝑜𝑜𝑜𝑠𝑠 �
2

𝜎𝜎11−122 +
�𝐵𝐵𝐵𝐵𝐷𝐷8−12𝑠𝑠𝑠𝑠𝜇𝜇 −𝐵𝐵𝐵𝐵𝐷𝐷8−12𝑜𝑜𝑜𝑜𝑠𝑠 �

2

𝜎𝜎8−122 �                     (4) 

The subscript of 11,11-12 and 8-12 represents the BT at the 11μm band, BTD11-12 and BTD8-12, respectively. The 

superscript of sim and obs represents the BT or BTD obtained by simulations and observations, respectively. The σ 

represents the standard deviation of the uncertainty assessed through the clear-sky radiative closure (see Figure A1), 380 

which represents the summation of errors from the observation and simulation using a priori atmosphere states.  The 

first term on the right-hand-side of Eq. (4) represents the normalized distance between the observed and the simulated 

BT at the 11μm band. The second and the last term represents the summation of the normalized distance between the 

observed and the simulated BTD11-12 and BTD8-12, respectively.  

 385 
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Secondly, by using Eq. (4), we acquire a solution when the normalized distance is within the range of the evaluated 

uncertainty (ξ < 1).  In addition, as mentioned in Appendix C, each observation would possibly assume more than 

one dust RI for retrieval. Therefore, we build multiple LUTs corresponding to multiple RIs and implement the retrieval 

with all of them. All the solutions that satisfy ξ < 1 in these LUTs are collected.  

 390 

Finally, the optimal retrieval results of DAOD and Deff are defined as the average of the collected solutions 

corresponding to multiple a priori dust RIs weighted by their corresponding cost function ξ as 𝑤𝑤 = 1 − ξ. The 

weighted standard deviation thus represents the estimated retrieval uncertainty as  

𝑆𝑆𝑤𝑤 = �∑ 𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑤𝑤����)2𝑁𝑁
𝑖𝑖=1 (𝑁𝑁 − 1) ∑ 𝑤𝑤𝑠𝑠 𝑁𝑁

𝑠𝑠=1
𝑁𝑁

�                             (5) 

where 𝑥𝑥𝑖𝑖 is the ith solution of DAOD or Deff, 𝑤𝑤𝑖𝑖 is the weight of ξ for the ith solution, 𝑁𝑁 is the number of non-zero 395 

weights, and 𝑥𝑥𝑤𝑤���� is the weighted mean of the collected solutions (Heckert and Filliben, 2003; Hao and Mendel, 2013). 

In this step, the uncertainties associated with the assumptions of a priori dust RI and the clear-sky radiative closure 

are taken into account by the weighted average and the weighted standard deviation. 

 

After the retrieval, the quality assurance (QA) flag is assigned as 0 for successfully retrieved results. The retrieval 400 

with less than two solutions satisfying ξ < 1 is rejected and is assigned with QA flag as 1. By implementing the 

retrieval for the five-year MODIS-CALIOP observations from 2013 to 2017, which will be analyzed in detail in 

Section 5, we present the seasonal distribution of cloud-free dust samples (Ndust), successfully retrieved dust samples 

(Nretrieval; QA flag = 0), and the retrieval success rate (Nretrieval / Ndust), which reaches to 90%-100% over dust transport 

regions, as shown in Figure S109.  405 

 

In summary (Figure 1), we obtain the cloud-free dust aerosol vertical profiles using the CALIOP cloud mask, dust 

detection and vertical-scaling method introduced in Appendix B. Afterward, the a priori dust properties presented in 

Section 3.1 serve as inputs for CRTM-DISORT to build the LUT of DAOD and Deff. Lastly, we retrieve DAOD11μm 

further scaled to DAOD10μm and Deff by averaging the solutions that satisfy ξ < 1 weighted by ξ and estimate the 410 

corresponding retrieval uncertainty based on the corresponding ξ-weighted standard deviation. Both the column 

integrated DAOD10μm and the vertically resolved extinction coefficients at 10 μm inferred by the CALIOP dust vertical 

distribution are provided in our retrieval. 

 

4 Evaluation of CALIOP-MODIS retrievals with in-situ measurements – case studies  415 

In this section, we evaluate the retrieval, especially Deff, by comparing it with the in-situ measured dust PSDs through 

case studies. In recent decades, most dust-aerosol-focused field campaigns have taken place in North Africa and North 

Atlantic, while there are limited in-situ measurements of dust PSD over the Indian Ocean and North Pacific (Li et al., 

2000; Quinn et al., 2002; Clarke et al., 2004), which all took place before the launch of CALIOP in June 2006. 

Additionally, due to the narrow spatial coverage of CALIOP orbit tracks (i.e., 70 m cross-track footprint (Winker et 420 

Formatted: Normal
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al., 2010)), it is difficult to find cases that our retrievals can be well-collocated with the North Pacific in-situ 

measurements in space and time. Consequently, in this study, we compare the dust PSDs corresponding to the retrieved 

Deff with the in-situ measured dust PSDs over the North Atlantic.  

4.1 A case study for transported Saharan dusts over Cape Verde in summer  

In this sectionFirst of all, we implementimplemented the retrieval to on a dust plume originating from North Africa 425 

and being transported over the North Atlantic on August 16th, 2015. We use this case to evaluate the retrieved 

DAOD10μm and Deff through comparisons with the in-situ measured dust particle size and the collocated AERONET 

(Aerosol Robotic NETwork) version 3 measurements (Holben et al., 1998; Dubovik et al., 2000; Dubovik et al., 2006; 

Giles et al., 2019). 

4.1.1 Evaluation of retrieved DAOD10μm 430 

Figure 3a shows the total attenuated backscatter at 532 nm from CALIOP for the dust case observed on August 16th, 

as shown from left (South) to right (North) with the geolocation highlighted in the upper left sub-panel. The CALIOP 

orbit passed nearby Cape Verde (16.733°N, 22.935°W) around 03:34 UTC with nighttime observations for the dust 

plume. Figure 3b shows the corresponding spatial variation of total AOD532nm (blue dots) and DAOD532nm (red dots) 

estimated with a Lidar ratio of 44 sr and uncertainty of ±10 sr as described in Appendix B. The mean DAOD532nm 435 

(1.1) is ~83% to the mean total AOD532nm (1.33), indicating that “pure” dust aerosols dominate this offshore dust 

plume. Therefore, as a “golden standard”, the measured AERONET AOD at Cape Verde for this dust plume can be 

approximated as DAOD to assess the CALIOP DAOD and the corresponding retrieved DAOD10μm. Unfortunately, 

although AERONET at Cape Verde observed a maximum AOD event at 18:10 on Aug 16th, as shown in Figure 3d, it 

does not provide any nighttime measurement for this case. 440 
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Figure 3: The nighttime case on August 16th, 2015. (a) The CALIOP total attenuated backscatter at 532 nm on August 

16th, 2015, over the downwind region of the Sahara Desert (the orbit at upper left). (b) The CALIOP total AOD (blue 

dots), CALIOP DAOD (red dots), and the retrieved DAOD10μm (green dots) of the cloud-free dust-laden profiles. The gray 445 
shadow area represents the part of the dust plume (16°N-18°N) observed by CALIOP that is matched with the 

AERONET measurement based on the HYSPLIT back trajectories as shown in Figure 4 (c) The retrieved Deff (black 

dots) of the cloud-free dust-laden profiles with the estimated uncertainty (cyan error bars). (d) The time series of the 

AERONET level-2 AOD at 675 nm (blue dot line), 440 nm (green dot line) and 532 nm (orange dot line, interpolated) at 

AERONET Cape Verde from 08-15-2015 to 08-16-2015. The black dash lines indicate the time that AERONET measured 450 
the same dust plume observed by CALIOP later, proven by the HYSPLIT back trajectories as shown in Figure 4. (e) The 

scatter plot of DAOD10μm versus DAOD532nm for the whole dust case. The grey error bars represent the uncertainties of 

DAOD10μm (vertical) and DAOD532nm (horizontal). The black line represents the robust linear regression with correlation 

coefficient (R), slope, intercepts, and p-value (P). 

 455 

Due to the different observation times and locations between CALIOP and AERONET, to compare their AODs, we 

present the ensemble back trajectories simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model (Stein et al., 2015) from the passing-by times of the MODIS-CALIOP orbits and the AERONET 

Cape Verde as shown in Figure 4. Note that the vertical distribution of the dust plume is concentrated around 3 2 km 

to 4 km (see Figure 3a). Therefore, the HYSPLIT back trajectories are initiated at 3 2.5 km and 4 3 km. In Figure 4a, 460 

the HYSPLIT back trajectories of CALIOP between 16°N to 18°N show that the dust plume was seen by AERONET 

Cape Verde at 18:10 on Aug 15th (see Figure 4b). Bearing in mind that the AOD of the dust plume may change after 

the the 10-hour transport from AERONET Cape Verde to the CALIOP orbit track, we found that the CALIOP 

DAOD532nm (1.32±0.3 averaged from 16°N to 18°N, Figure 3b) is consistent with the AERONET AOD532nm 

(interpolated, Figure 3d) of 1.47 within its uncertainty. 465 

 

In addition, both back trajectories from CALIOP (including trajectories > 18°N) and AERONET show similar 

transport patterns from east to west with initial emission (i.e., back trajectories’ height reaches 0 km in Figure 4b) 

from the source regions (black dash regions in Figure 4a) in Algeria and Mali in both horizontal and vertical view. 

Thus, we can assign the Di-Biagio RIs from Algeria and Mali as the a priori dust RI for retrieval. The retrieved 470 

DAOD10μm (green dots in Figure 3b) shows a reasonable correlation with DAOD532nm (R = 0.75 in Figure 3e). Because 

of the spectral difference between TIR and VIS, the HYSPLIT-matched mean DAOD10μm (0.73) is ~55% of the value 

of DAOD532nm (1.32). For the entire case, DAOD10μm is ~57% (k = 0.57 in Figure 3e) of DAOD532nm. Note that both 

ratios are within the empirical range of the TIR-to-VIS DAOD ratio from 28% to 65% (Peyridieu et al., 2013), 

depending on the assumptions of dust PSD, dust RI and dust non-spherical shape.  475 
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Figure 4: The distribution of the spatial (a) and the vertical (b) ensemble HYSPLIT back trajectories on the CALIOP 

dust case on 08-16-2015 (cyan rectangle solid lines) and the AERONET Cape Verde observation for the dust case on 08-

15-2015 (blue dot solid lines). The black star and circle represent the geolocation of Di-Biagio RI collected over Algeria 

and Mali, respectively. The red star denotes the geolocation of the AERONET Cape Verde site. 480 
 

4.1.2 Comparison of Deff with AER-D in-situ measurements  

In this section, we evaluate the Deff retrieval by comparing the Deff-corresponding monomodal PSD with those deduced 

from the lognormal-fitted dust PSD measured during the AERosol Properties – Dust (AER-D) campaign from Aug 

7th to Aug 25th, 2015, over the outflow region of North Africa around Cape Verde (Ryder et al., 2018). We also 485 

compared with the AERONET-version-3 Level-2 two-mode PSD (referred to as “AERONET PSD”) on Aug 16th at 

Cape Verde (Dubovik et al., 2006) (see Figure 5b). The AER-D campaign provides measured dust PSD and the 

corresponding uncertainty for dust within the Sahara Air Layer (SAL) (see Figure 5a) and in the marine boundary 

layer from various airborne instruments (Ryder et al., 2018). In this case, as the CALIOP-observed dust plume is well 
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confined within 2-5 km (Figure 3a), we choose the AER-D SAL campaign mean log-fit size distribution (referred to 490 

as “AER-D PSD”), which is measured within 1.2-4.8 km (Ryder et al., 2018), in our comparison. 

 

 
Figure 5: (a) The volume lognormal (dVdlnD) AER-D PSD (black) with gray shadow area indicating the min-to-max range 

of the measurement uncertainty obtained from Ryder et al. (2018). (b) The normalized dVdlnD of AER-D (black), the 495 
retrieved coarse mode PSD corresponding to Deff = 4.55 μm (blue) and the AERONET PSD (green). (c-e) The Qe ratio to 

10 μm (c), SSA (d), g-factor (e) calculated based on the AER-D PSD (black) with min-to-max uncertainty (grey shadow), 

retrieved coarse mode PSD (blue) with the retrieval uncertainty (blue dash curve for the lower bound; blue dash-dot curve 

for the upper bound) and AERONET PSD (green). 

 500 

Figure 3c shows the retrieved Deff for the dust case. We found that the spatial variation of Deff is generally positively 

correlated with that of DAOD10μm and with a mean value of 4.55 μm with the uncertainty ranging from 3.33 μm to 

5.76 μm. Therefore, we obtain the monomodal PSD corresponding to Deff = 4.55 μm to compare with the normalized 

AER-D PSD and the AERONET PSD. In Figure 5b, the AEROENT-retrieved coarse mode PSD is systematically 
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smaller than that of AER-D, while the monomodal PSD with Deff = 4.55 μm agrees well with the AER-D coarse mode 505 

PSD, although the fine mode of AER-D PSD is not compared because not relevant for LW.  

 

For a perhaps more relevant comparison of the three PSDs in coarse mode, we compare their corresponding optical 

properties, namely the dust Qe ratio at 10μm, SSA and g-factor in the TIR spectrum ranging from 8 μm to 13 μm (See 

Figures 5c to 5e). The reason for using the dust Qe ratio at 10 μm is that the retrieved DAOD10μm provides a constraint 510 

of dust extinction at 10 μm, while the dust PSD further determines the spectral Qe ratio of other TIR wavelength to 

10 μm. We found that the spectral Qe ratio, SSA and g-factor calculated based on the monomodal PSD used in our 

retrievals are consistent with that calculated based on AER-D PSD. It demonstrates that although our monomodal PSD 

lacks fine mode dust, the retrieved Deff can still provide almost identical dust optical properties in TIR as the AER-D 

PSD has based on the constraint from the retrieved DAOD10μm. In other words, the combination of DAOD10μm and 515 

Deff with comparable accuracy as in-situ measurements but better spatiotemporal coverage is a valuable tool for 

reducing the global mean LW dust DRE uncertainties due to DAOD and dust particle size.  

 

On the other side, all three optical properties calculated based on the AERONET PSD are bias low compared with 

that based on AER-D and the retrieved PSD. As the fine-mode PSD has a negligible impact on dust optical properties 520 

in TIR, the result suggests that the AERONET coarse-mode PSD is highly likely to be underestimated in terms of 

size, which has been pointed out in several studies comparing AERONET PSD with other in-situ measurements 

(Müller et al., 2010; Müller et al., 2012; Mcconnell et al., 2008; Adebiyi et al., 2023). Due to the difficulties of 

comparing the PSD from the column-integrated retrieval to that from the lofted-layer measurement (Toledano et al., 

2019), the possible reasons are as-of-yet not well-explained, which require detail investigations in the future.  525 

4.2 Evaluation of Deff with SAMUM-2 and SALTRACE in-situ measurements  

Noting that limiting the validation of Deff with one case may be biased. To better demonstrate the reliability of the Deff 

retrieval, we compare the retrieved Deff with in-situ measured dust PSDs from two additional field campaigns. One is 

from the second field experiment of the Saharan Mineral Dust Experiment project (SAMUM-2) in the Cape Verde 

area during January to February 2008 (Weinzierl et al., 2011). The other is the Saharan Aerosol Long-Range Transport 530 

and Aerosol–Cloud-Interaction Experiment (SALTRACE) that is taken place over the North Africa, the Atlantic 

Ocean, and the Caribbean from June to July 2013 (Weinzierl et al., 2016).  

4.2.1 Comparison of Deff with SAMUM-2 – A case over Cape Verde in winter 

To compare with the SAMUM-2 campaign, we perform the retrieval for a nighttime dust case observed eastward Cape 

Verde on Jan 28, 2008, as shown in Figure 6. Figure 6a shows the dust case is a low-altitude-level case up to ~ 2 km, 535 

consistent with the dust sampling of the experimental flights on January 28th in SAMUM-2 (see Table 2 and Figure 9 

in Weinzierl et al. (2011)). As shown in Figure 6b, the mean retrieved Deff is 3.68 μm, which is further used to construct 

the corresponding PSD for the comparison with SAMUM-2 dust PSD (see Figure 6c). In this case, we implement the 

retrieval using the RI assignments introduced in Section 3.1.2 and Appendix C instead of performing HYSPLIT back 
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trajectories to identify dust source regions. In addition, this wintertime dust case has lower dust loading (not shown) 540 

than the summertime case in Section 4.1, leading to a lower information content for retrieving Deff (see Figure 2a). 

Therefore, there is a mean retrieval uncertainty of 2.0 μm larger than the summertime case.  

 
Figure 6: (a) The CALIOP total attenuated backscatter at 532 nm on January 28th, 2008, over the downwind region of the 

Sahara Desert (the orbit at upper left). (b) The retrieved Deff (black dots) of the cloud-free dust-laden profiles with the 545 
retrieval uncertainty (cyan error bars). (c) The volume lognormal (dVdlnD) SAMUM-2 PSD (black) with gray shadow area 

indicating the range of the measurement value from 3- to 97- percentile obtained from Weinzierl et al. (2011). (d) The 

normalized dVdlnD of SAMUM-2 (black) and the retrieved coarse mode PSD corresponding to Deff = 3.68 μm (blue). (e-g) 

The Qe ratio to 10 μm (e), SSA (f), g-factor (g) calculated based on the SAMUM-2 PSD (black) with its uncertainty (grey 

area) and the retrieved coarse mode PSD (blue) with the retrieval uncertainty (blue dash curve for the lower bound; blue 550 
dash-dot curve for upper bound). 

 

In Figure 6d, we found that the monomodal PSD corresponding to the mean retrieved Deff agrees with SAMUM-2 

PSD by having the peak between the third and fourth modes of SAMUM-2 PSD. Due to the limitation of the fixed 

assumption of the lognormal volume distribution’s standard deviation, the monomodal PSD overestimates dust with 555 

Dp from 4 to 13 μm but underestimates dust with Dp > 13 μm. Because of that, the Qe ratio, SSA and g-factor 

corresponding to the monomodal PSD have slight differences from that of the SAMUM-2 PSD in the TIR spectral 

region. However, the dust TIR optical properties of the two PSDs are generally consistent after considering their 

uncertainties. It shows the Deff retrieval’s capability to capture the seasonal differences of dust size in the Cape Verde 

area revealed by the AER-D and SAMUM-2 filed campaigns. 560 
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4.2.2 Comparison of Deff with SALTRACE – A dust case transport throughout North Atlantic from June 12th 
to June 23rd, 2013 

In order to evaluate the Deff retrieval at long-range transport regions and demonstrate the variation of Deff during the 

transport, we compare our results with the dust Deff measured during the SALTRACE field experiment that studied a 

Lagrangian dust plume over both Cape Verde (SALTRACE-E) and Barbados (SALTRACE-W) on June 17th and June 565 

22rd, 2013. 

 

First of all, we perform the retrieval on a series of MODIS-CALIOP observations from June 16th within the Cape 

Verde area to June 23rd over the Caribbean Sea, as shown in Figure 7. In Figure 7a, the dust plume was vertically 

distributed between 2 km to 6 km, with the mean retrieved Deff at 4.8 μm (Figure 7a2) on June 16th. From June 18th to 570 

20th, the dust plume was transported to the mid-Atlantic (~43°W) and decreased the layer height from 2-5 km to 2-4 

km (Figures 7b1 and 9c1). Meanwhile, the mean retrieved Deff reduced from 4.3 μm to 4.0 μm (Figures 7b2 and 7c2). 

Figures 7d1 to 7f1 show that the dust plume traveled toward the Caribbean Sea from June 21st to June 23rd, maintaining 

the layer height between 1.5 km and 3.5 km and the retrieved Deff at ~3.9 μm (Figures 7d2 to 7f2). During the transport, 

the dust loading is also decreasing (see Figures 7a1 to 7f1), leading to lower information content for retrieving Deff 575 

(see Figure 2a) and, therefore, relatively higher retrieval uncertainty (error bars in Figures 7a2 to 7f2).  
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Figure 7: (a1 to f1) The CALIOP total attenuated backscatter at 532 nm on June 16th (a1), 18th (b1), 20th (c1), 21st (d1), 22nd 

(e1), 23rd (f1), 2013 (the orbit at upper left). (a2 to f2) The retrieved Deff (black dots) of the cloud-free dust-laden profiles 580 
with the retrieval uncertainty (cyan error bars) corresponding to a1 to f1. 

 

To prove that the MODIS-CALIOP observations snapshotted the transport processes of the same dust case that 

SALTRACE observes, we present the HYSPLIT back trajectories started from the MODIS-CALIOP observation on 

June 23rd over the Caribbean Sea, as shown in Figure 8. We set the dust layer heights at 2 km and 3.5 km at the starting 585 

point (see Figure 8b) to serve as the vertical boundaries of the observed dust plume on June 23rd (Figure 7f1). Figure 

8a shows that the dust event originated from the North African source regions identified during SALTRACE (see 

Figure 5 in Weinzierl et al. (2016)) before June 13th
. In addition, the dust case has transport trajectories overlapping 

with the MODIS-CALIOP observed dust plumes presented in Figure 7. Comparing Figure 8b with Figures 7a1 to 7f1, 
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we found that the vertical height of the dust plume varies between 2 km and 6 km during transport, which agrees with 590 

the vertical dust distribution observed by MODIS-CALIOP. Therefore, we conclude that the MODIS-CALIOP dust 

cases observe the same dust case as SALTRACE. However, we notice that the MODIS-CALIOP observational times 

are not perfectly consistent with the back trajectory times, implying that the retrievals presented in Figure 7 may not 

be the properties of the same air mass in the dust event as observed by SALTRACE. Thus, we do not expect a perfect 

agreement between our retrieved Deff and the SALTRACE measurements. 595 

 

Figure 8: The distribution of the spatial (a) and the vertical (b) ensemble HYSPLIT back trajectories on the CALIOP 

dust case from 2013-06-23 back to 2013-06-12 (cyan rectangle solid lines). The white solid curves represent the MODIS-

CALIOP orbit tracks that observed the dust cases presented in Figure 7, which are highlighted in red curves. (c) The Deff 600 
versus the longitudes of the MODIS-CALIOP retrievals in Figure 7 (blue dots), the SALTRACE-E at Cape Verde (red 

dot) and the SALTRACE-W at Barbados (green dot). The corresponding error bars represent their retrieval 

uncertainties and in-situ measured uncertainties. 

 

Figure 8c shows the retrieved mean Deff of the MODIS-CALIOP observed dust plumes in Figure 7 and the Deff of 605 

SALTRACE-E at Cape Verde and SALTRACE-W at Barbados. The retrieved Deff on June 16th over Cape Verde (4.8 

μm) is close to that of SALTRACE-E (5.1 μm). During the transport from Cape Verde (23°W) to mid-Atlantic (43°W), 

the Deff decreases from 4.8 μm to 4.0 μm. Approaching Barbados and further the Caribbean Sea, the Deff remains at 

3.9 μm, which is also close to that of SALTRACE-W (4.1 μm). It validates the Deff retrieval in both the short-range 

and long-range transport regions and demonstrates the retrieval’s capability of revealing the transport process of dust 610 

coarse-mode particle size in a better spatiotemporal resolution than in-situ measurements. 
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5 Climatological analyses 

5.1 Comparison of DAOD10μm with IIR-based DAOD10.6μm and IASI-based DAOD10μm 

In addition to the presented case studies, the statistical evaluation of satellite-based retrieval of DAOD usually assumes 

the AERONET AOD in VIS as the benchmark. However, the comparison between DAOD10μm and AERONET AOD 615 

necessitates the conversion of DAOD from TIR to VIS, which introduces additional uncertainties stemming from the 

assumed thermal-to-visible DAOD ratios. Moreover, in our case, a pixel-by-pixel comparison with AERONET poses 

challenges as CALIOP has limited spatial coverage, thus providing inadequate AERONET-collocated samples. 

 

Beyond the case studiesTherefore, in this section, we statistically evaluate the MODIS-CALIOP DAOD10μm by 620 

comparing it with the three independent TIR-based satellite-retrieved DAODTIR datasets that are rigorously assessed 

through comparisons with AERONET COD500nm. The first one is the night-time-only IIR-based DAOD10.6μm from 

Z22. Note that the IIR-based retrieval has two DAOD10.6μm datasets based on two different dust PSD assumptions. We 

use the one based on the Fennec SAL PSD from Ryder et al. (2013a) (referred to as “Fennec-SAL DAOD10.6μm”) 

recommended from Z22. The second one is the IASI-based dataset, as mentioned in Section 1. It retrieves DAOD10μm 625 

and dust mean layer altitude based on a two-step LUT method developed by the research group at Laboratoire de 

Météorologie Dynamique (LMD) (referred to as “IASI-LMD”). The third one retrieves DAOD10μm using IASI based 

on an artificial neural network (NN) method developed by the research group at Université libre de Bruxelles (ULB) 

(referred to as “IASI-ULB”) (Clarisse et al., 2019).  

 630 

As the IIR Fennec-SAL DAOD10.6μm can be easily collocated with the MODIS-CALIOP DAOD10μm, we perform a 

pixel-by-pixel comparison between the two datasets using the five-year retrievals from 2013 to 2017 at nighttime 

based on a two-step collocation method. As mentioned in Z22, the IIR-based retrieval is implemented on samples with 

the estimated DAOD532nm > 0.05, while the MODIS-CALIOP retrieval does not carry this limitation. Consequently, 

we first choose the MODIS-CALIOP DAOD10μm with the corresponding estimated DAOD532nm > 0.05 in both 635 

products. Note that the MODIS-CALIOP DAOD10μm is retrieved simultaneously with Deff while the IIR Fennec-SAL 

DAOD10.6μm was retrieved with a fixed Deff ~ 6.7 μm. Therefore, to control the dust PSD impact on the retrieved 

DAOD, we further select the MODIS-CALIOP DAOD10μm with Deff ranging from 4 μm to 8 μm to collocate with the 

Fennec DAOD10.6μm. 

 640 

As shown in Figure 9a, the DAOD10μm correlates with DAOD10.6μm with R = 0.7 and with DAOD10.6μm being 

systematically lower than DAOD10μm by 25% (slope = 0.75). The difference may be attributed to the spectral difference 

between 10.0 μm and 10.6 μm (see Figure 5c), which ranges from 0.5 to 0.8 for Deff ranging from 4 μm to 8 μm. In 

addition to spectral differences, several factors may have caused the variability of the collocated pixels between the 

two datasets. Firstly, although the collocated DAOD10μm are pre-selected based on Deff. The impact of dust PSD on 645 

the retrieved DAOD still exists, as it is challenging to find enough pixels with the same Deff as the Fennec SAL 

observation. Secondly, the treatments of RI in the two studies are also different. In Z22 a relatively simple method is 

used to assign the Di-Biagio RI to different regions while we utilize the DustCOMM-2021 to help assign Di-Biagio 
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RI in this study (see Appendix C).  Furthermore, the MODIS-CALIOP retrieval has evolved from the IIR-based 

retrieval from Z22 with three improvements, namely the lower detector noise from MODIS, the improved retrieval 650 

methods, and the enhanced dust RI assumptions. These differences may have also directly affected the pixel-by-pixel 

comparison.  

 

Thanks to the abovementioned improvements, in Figure 9b, the histogram of the absolute DAOD uncertainty of 

DAOD10μm is reduced by ~55% from 0.2 to 0.09 in terms of the mean value compared with that of DAOD10.6μm. In 655 

Figure 9c, the relative uncertainty of DAOD10μm is substantially reduced compared with that of DAOD10.6μm, especially 

for retrievals with small DAOD value (e.g., DAOD10μm < 0.1). Consequently, we conclude that the MODIS-CALIOP 

DAOD10μm is generally consistent with the IIR-based DAOD10.6μm from Z22 with a substantial improvement regarding 

the retrieval uncertainty 

 660 

 
 
Figure 9: The pixel-by-pixel comparison of MODIS-CALIOP DAOD10μm with the IIR-based Fennec-SAL DAOD10.6μm 

from Z22 for retrievals from 2013 to 2017 over oceans at nighttime. (a) The joint histogram of DAOD10μm and 

DAOD10.6μm. The solid black line is the linear regression of the two datasets. The R, P and N at the lower right represent 665 
the Pearson correlation coefficient, p-value and the number of pixels of the linear regression. (b) The probability density 

function (PDF) of DAOD10μm uncertainty (blue) and DAOD10.6μm uncertainty (red). (c) The mean relative retrieval 

uncertainty (i.e., DAOD uncertainty / DAOD) of DAOD10μm (blue) and DAOD10.6μm (red). The y-axis is on a logarithmic 

scale. 

 670 

Unlike the comparison with the IIR-based retrieval, the orbit difference between the MODIS-CALIOP and IASI 

observations and the cloud-free dust sampling difference between the corresponding retrievals prevent the pixel-by-

pixel comparison with the Level-2 data (Zheng et al., 2022). Therefore, we alternatively perform the climatological 

comparison among the aggregated 5° longitude by 2° latitude Level-3 seasonal mean MODIS-CALIOP, IASI-LMD 

and IASI-ULB DAOD10μm based on five-year data from 2013 to 2017 in both daytime and nighttime. The 5° by 2° 675 

seasonal mean IASI-LMD and IASI-ULB DAOD10μm are aggregated from the corresponding 1° by 1° monthly mean 
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Level-3 products. Note that both seasonal mean IASI DAODs are divided by the total number of AOD samples. To 

be consistent, in our retrieval, the seasonal mean DAOD10μm is averaged by the total number of cloud-free aerosol 

samples (Naerosol in Figure S109).  

 680 

Figure 10 shows the seasonal mean DAOD10μm over oceans in both daytime and nighttime averaged by five-year 

retrievals of MODIS-CALIOP (left column), IASI-ULB (middle column) and IASI-LMD (right column) from 2013 

to 2017. Similar to Z22, we highlight three dust-transport regions, North Atlantic (NA), Indian Ocean (IO) and North 

Pacific (NP) and define the rest of the areas as non-dust-dominated regions as shown in Figure 10. 

 685 

 
Figure 10: The five-year seasonal mean DAOD10μm comparison between the retrieval of MODIS-CALIOP (left column), 

the IASI-ULB and the IASI-LMD. From the top row to the bottom presents seasons from winter to fall. The black boxes 

indicate the three defined dust-transport regions, North Atlantic (NA; 4°N-30°N, 90°W-14°W), Indian Ocean (IO; 0°N-

30°N, 40°E-90°E) and North Pacific (NP; 20°N-50°N, 120°E-180°). 690 
 

In terms of seasonal variation, the MODIS-CALIOP retrieval well captures the seasonal patterns of DAOD over the 

three dust-transport regions compared with IASI-ULB and IASI-LMD. Over non-dust-dominated regions, the 

MODIS-CALIOP DAOD10μm agrees more with IASI-ULB, while IASI-LMD DAOD10μm is bias high (~0.05). In 

boreal winter, DAOD10μm over tropical and southern Atlantic reach the peak, indicating that dust emitted from North 695 

Africa is transported south-westward and reaches south America due to the south-shifted Harmattan north-easterly 

wind (Marticorena et al., 2010). Dust transport westward over NP originates from east Asian source regions, such as 

the Gobi Desert and Taklimakan Desert, with peak emission in the spring (Yu et al., 2010). Therefore, DAOD10μm 

over NP is found at its peak in spring, mainly driven by mid-latitude westerly jets with relatively high altitudes (> 5 

km). Because of the higher altitude of Asian dust compared with North African dust, it also has a longer transport 700 

distance to reach NP and even to North America (Huang et al., 2022), but with relatively lower DAOD10μm (0.05-
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0.1) compared with that over NA (~0.2). From spring to summer, dust from North Africa outbreaks in both NA and 

the Mediterranean Sea and peaks in summer. With the peak emission in North Africa in summer, dust transport to NA 

has the highest DAOD10μm (> 0.3) and reaches North America with relatively high DAOD10μm (~0.1) compared 

with other seasons. In addition, DAOD10μm over IO peaks in summer (~0.2), mainly due to the summer Shamal wind 705 

bringing dust from Arabian Peninsula and traveling southwestward to IO. Both DAOD10μm over NA and IO decrease 

from summer to autumn due to the reduced emission from both source regions.   
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 710 
Figure 1011: The comparisons of the seasonal mean MODIS-CALIOP DAOD10μm versus IASI-LMD (a,b,c) and IASI-ULB 

(d,e,f) DAOD10μm over NA (a,d), IO (b,e) and NP (c,f) from 2013 to 2017. Each point in the scatterplots represents a seasonal 
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mean DAOD10μm in one of the 5° by 2° grids for a specific year from 2013 to 20152017. The solid black lines are the linear 

regressions of each comparison, while the black dash lines are the reference one-to-one lines. The k, c, r,  and p and RMSE 

at the upper right of each panel represent each linear regression's slope, intercept, correlation coefficient,  and p-value and 715 
root mean square error. 

 

For more quantitively comparison, Figure 11 shows the 2-D histogram of all the Figure 10 shows the comparisons of 

5° by 2° gridded seasonal mean samples in each year from 2013 to 2017 of MODIS-CALIOP DAOD10μm with the two 

IASI DAOD10μm over the three dust-transport regions from 2013 to 2017. MODIS-CALIOP DAOD10μm over NA and 720 

IO are highly correlated and consistent with IASI-LMD DAOD10μm with R = 0.9,0.8 and k = 0.9,1.1, respectively, as 

shown in Figures 10a 11a and 10b11b. However, for optically thin dust (e.g., DAOD < 0.1), IASI-LMD DAOD10μm 

is systematically ~0.02 greater than MODIS-CALIOP DAOD10μm as shown from the intercepts of the linear regression 

in Figures 10a 11a and 10b11b. In addition, the two datasets have a poor agreement over NP (R = 0.2). In contrast, 

MODIS-CALIOP DAOD10μm achieves a better correlation over the dust-transport regions with IASI-ULB (including 725 

NP) than the comparison with IASI-LMD DAOD10μm (see Figures 10d11d-10f11f). It is mainly because both retrievals 

mostly avoid contamination from sub-pixel clouds and background aerosols, which should be the reason for the high 

bias of the IASI-LMD optically thin dust (DAOD10μm < 0.1) DAOD10μm. However, IASI-ULB DAOD10μm is 40%-60% 

lower than that of MODIS-CALIOP and IASI-LMD DAOD10μm over the three dust-transport regions (k = 0.6,0.5,0.4 

in Figures 10d11d-10f11f). 730 

 

Although the discrepancy of the two IASI-based DAOD10μm is non-negligible, the two datasets achieve good 

agreements with AERONET because the different assumptions of TIR-to-VIS DAOD ratios offset the DAOD10μm 

difference. As they assumed similar dust RIs (e.g., OPAC RIs) and spherical dust, the disagreement of the DAOD10μm 

could be due to the different a priori dust PSDs. IASI-ULB assumes a monomodal dust PSD with a geometric mean 735 

radius at 0.5 μm (i.e., mean diameter at 1.0 μm). It is much smaller than the IASI-LMD assumed coarse-mode dust 

PSD with an effective radius at 2.3 μm (i.e., effective diameter = 4.6 μm), possibly leading to the systematically lower 

DAOD10μm compared with MODIS-CALIOP and IASI-LMD DAOD10μm. Because MODIS-CALIOP Deff has a 

climatological value ranging from 4.0 to 5.0 (see Figure 1112, detail in Section 5.2), which is closer to 4.6 μm, 

MODIS-CALIOP DAOD10μm shows better consistent with the IASI-LMD DAOD10μm. This non-negligible 740 

dependency of the retrieved DAOD10μm to dust PSD is also presented in Z22. It highlights the importance of the 

spatiotemporal variation of dust PSD and the advantage of the observational constraint on both DAOD10μm and dust 

coarse-mode PSD from the MODIS-CALIOP retrieval.  

 

5.2 Spatiotemporal variation of dust Deff 745 

One of the main objectives of this study is to provide a climatological view of dust coarse-mode size variation during 

transport in a global coverage from satellite observations, which has not yet been available in the literature, as far as 

we know, due to the difficulties mentioned in Section 1. In this section, we present the spatiotemporal variation of Deff 
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in terms of seasonal variation, the regional difference among dust-transport regions and longitudinal-mean variation 

within dust-transport regions based on the five-year retrieval data from 2013 to 2017. 750 

Different with seasonal mean DAOD10μm, the denominator of the seasonal mean Deff is the number of samples with 

successful retrievals only. Noting that the retrieval uncertainty is large for optically thin dust (i.e., DAOD10μm < 0.1, 

see Figure 9c), we consider that the seasonal mean DAOD10μm < 0.005 is mainly contributed by optically thin dust and 

therefore mask the seasonal mean Deff with seasonal mean DAOD10μm < 0.005 to focus on more confident Deff 

retrievals. We found that the seasonal variation of Deff is highly correlated with that of DAOD10μm. For example, the 755 

largest Deff over NA and IO occurs in summer, while the peak of Deff over NP happens in spring. As dust extinction in 

TIR is more sensitive to coarse-mode dust (Ryder et al., 2019), it is reasonable to find that the greater the DAOD10μm, 

the coarser dust is in the atmosphere.  

 

 760 
Figure 1112: 2013-2017 five-year averaged seasonal mean Deff masked by the five-year seasonal mean DAOD10μm > 0.005 in 

winter (a), spring (b), summer (c) and fall (d). The black boxes indicate the three defined dust-transport regions as same as 

in Figure 9. 

 

In terms of regional differences, we found that the maximal seasonal Deff over IO (~4.2 μm in summer, Figure 11c12c) 765 

and NP (~4.2 μm in spring, Figure 11b12b) are ~22% lower than that over NA (~5.4 μm in summer, Figure 11c12c). 

It suggests that the coarse-mode dust is frequently found over NA but not over IO and NP. It is expected over NP 

because the transport distance from source regions located in East Asia to NP is much longer than that from North 

Africa to NA (Alizadeh-Choobari et al., 2014). In addition, the emitted and transported dust PSD from Asia is possible 

to be finer than that from North Africa and Arabia due to the radiative feedback on dust emission (Woodage and 770 

Woodward, 2014). As a result, there is less chance for coarse dust particles to survive till over NP. In contrast, although 

dust from the Middle East to IO has a similar transport distance as that over NA, fewer coarse dust particles are found 
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over IO. As the retrieval samples are distributed similarly over the three transport regions for all seasons as shown in 

Figure S109, it is less likely to have sampling bias between regions. One of the possible reasons that the long-range 

transport dust from the Middle East is not within elevated mixed layers (Carlson, 2016), such as SAL over NA, that 775 

triggers static instability and strong vertical turbulence to sustain coarse dust particles for a longer lifetime (Gutleben 

and Groß, 2021; Gasteiger et al., 2017). However, due to insufficient in-situ measurements on dust PSD in the Middle 

East (Adebiyi et al., 2020b), what causes the regional differences in dust particle size after long-range transport 

remains open and needs further investigation in the future.  

 780 

 
Figure 1213: The annual longitudinal mean DAOD10μm (blue curves), DAOD532nm (red curves), the DAOD ratio of 

DAOD10μm to DAOD532nm (green dash curves) and Deff (black curves) over the North Atlantic (a,c) and the North Pacific 

(b,d). 

 785 

As mentioned in Section 5.1, the assumed dust PSD impacts heavily on both the retrieved DAOD10μm and the 

theoretical TIR-to-VIS DAOD ratio. Because our retrieval provides simultaneous DAOD10μm and Deff and the 

synergetic CALIOP estimated DAOD532nm, we further investigate the relationship between Deff and the observational-

based TIR-to-VIS DAOD ratio (defined as DAOD10μm/DAOD532nm). From the view of longitudinal transport for 

Saharan dust and Asian dust, we demonstrate the annual longitudinal mean DAOD532nm and DAOD10μm over NA and 790 

NP (Figures 12a 13a and 12b13b). They both show a consistent variation between DAOD532nm and DAOD10μm with a 

decreasing trend westward over NA and eastward over NP, convincing the reliability of the DAOD10μm retrievals 
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described in Section 5.1. Figures 12c 13c show that the corresponding DAOD ratio over NA decreases by 23% 

westward from 18°W to 40°W and 8% from 40°W to 80°W. As coarse-mode particles dominate the dust extinction in 

TIR, the reduction of the DAOD ratio reflects the faster decrease of DAOD10μm and, thus, implies a loss of coarse-795 

mode dust loading in the column, which also can be inferred by the decreasing of Deff. In Figure 12c13c, we found 

that the decreasing trends of Deff and DAOD ratio are highly correlated. It demonstrates a ~20% reduction of DAOD 

ratio and a ~7% decrease of mean Deff during the transport to the mid-Atlantic, while there are less than 10% and 2% 

decrease of DAOD ratio and mean Deff during the rest of the NA transport. The transport pattern over NA is also 

similar with the dust case observed by SALTRACE presented in Section 4.2.2. However, in Figure 12d13d, we found 800 

a rapid fluctuation of the DAOD ratio due to the fewer retrieval samples (Figure S109) and higher retrieval uncertainty 

from 120°E to 140°E, which is ’gainst Deff's relatively stable decreasing rate. Despite that, we found a less than 10% 

reduction of Deff throughout the eastward transport to 180°, suggesting a stable trend of dust coarse-mode size during 

the NP transport.  

 805 

Note that dust particle size varies in the day-to-day transports, which is not visible in the long-term averaged 

longitudinal transport. To provide details on the variation of Deff in different size ranges during transport over NA and 

NP in their peak season, we present the population distribution of Deff longitudinally in summer over NA and spring 

over NP. We first slice the NA region from 4°N to 30°N into seven sub-regions at 10° longitude intervals, as shown 

in Figure 13h14h. Within each sub-region box, we present the histogram and the cumulative distribution function 810 

(CDF) of Deff of all the optically thick dust (i.e., DAOD10μm > 0.1) in the summer from 2013 to 2017. To better visualize 

the variation of Deff during the transport, within each sub-region box, the histogram and CDF (blue curves in Figures 

13a 14a to 13g14g) are compared with those from the previous (i.e., eastward) box are also presented (red curves in 

Figures 13b 14b to 13g14g). 
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Figure 1314: The histogram (solid curves with the bottom x-axis) and the cumulative distribution function (dash curves 

with the top x-axis) of Deff with DAOD10μm > 0.1 within each longitudinal box from west to east ranging from 1 (a) to 7 (g) 

over the NA in the summer from 2013 to 2017. Blue curves represent Deff samples within the current box. Orange curves 

represent Deff samples within the previous box eastward. (h) The geolocation boundaries of each longitudinal box on top of 820 
the seasonal mean Deff were masked by seasonal mean DAOD10μm > 0.005 over the NA in the summer from 2013 to 2017.  

 

Figures 13a 14a to 13b 14b show a slightlyslight decrease ofin the population of Deff greater than 5.5 μm. From Figures 

13b 14b to 13c14c, according to the CDFs, the contribution of Deff > 5 μm to the total number reduced from 40% to 

20%. In PDFs, there is a ~50% reduction in the population of Deff > 5 μm, while ~20% more dust with Deff ~ 4 μm is 825 

found, leading to the reduced mean Deff from 4.7 μm to 4.4 μm. Meanwhile, the peak of the PDFs in Figures 13a 14a 

to 13g 14g remains stable at 4.0 μm, while the number of samples decreases gradually, as shown in PDFs in Figures 

13d 14d to 13g14g, indicating that less coarse-mode dust can be transported to Boxes 5 to 7 (55°W to 85°W).    

 

The result suggests that ~50% of relatively coarser dust (Deff > 5 μm) tends to drop out when transported to the mid-830 

Atlantic (25°W to 35°W), which is ~2000 km away from source regions over North Africa. Afterward, from the mid-

Atlantic to the Caribbean Sea, the mean Deff remains almost unchanged, agreeing with the arguments from previous 

studies that the stabilization of coarse-mode dust PSD during the long-range transport (Weinzierl et al., 2017; Denjean 

et al., 2016; Ryder et al., 2019). Additionally, dust samples with Deff > 5 μm can still be found even at 65°W and 75°W 
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(see Figures 13f 14f and 13g14g) but with a relatively lower frequency (~20%). In other words, super-coarse dust 835 

particles, although rare, are still possible to be carried on a long-distance journey during the transport over NA (Van 

Der Does et al., 2018), which act against the gravitational settling theory by Stoke’s law (Ginoux, 2003; Bagnold, 

1974).  
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 840 
Figure 1415: Same as Figure 13 14 but for Deff with DAOD10μm > 0.1 05 within each longitudinal box from west to east 

ranging from 1 (a) to 7 (g) over the NP in the spring from 2013 to 2017.  

 

Unlike the Trans-Atlantic dust, Asian dust transport over NP experiences longer travel distances from the East Asian 

source regions and therefore has systematically smaller particle size. With the same method as Figure 1314, we present 845 

the histograms of Deff with DAOD10μm > 0.05 (according to the lower seasonal mean DAOD10μm over NP) within seven 

longitudinal boxes, as shown in Figure 1415. During the transport, the mostly unchanged PDFs with Deff > 4 μm from 

Box 1 (130°E) to Box 2 (140°E) only reduced ~10% from Box 2 to Box 3 (150°E). The CDFs are stable throughout 

the transport from Box 3 to Box 7 regardless of the total number of dust samples decrease. Compared with dust over 

NA, only ~5% of dust with Deff > 5 μm can be found after transporting to Box 3. The relatively homogenous and stable 850 

distribution of Deff ~ 4 μm suggests that the coarse-mode dust particles over NP may also have longer lifetimes than 

expected by the stand-alone gravitational settling theory. However, as DAOD10μm and the number of successful 

retrievals over NP are lower than that over NA and IO, the relatively higher retrieval uncertainty prevents us from 

drawing a clear conclusion. Future studies are recommended to validate the satellite retrieved Deff by in-situ measured 

Asian dust PSDs. 855 
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6 Discussions and Conclusions 

This study developed a novel retrieval algorithm for DAOD10μm and the coarse-mode dust PSD represented by Deff 

using the collocated CALIOP and MODIS observations. The Deff retrieval is detailly validated through three case 

studies in Aug 2015, Jan 2008 and June 2013, respectively.  860 

 

We validate the DAOD532nm matching with the AERONET total AOD at Cape Verde in the 2015 case study. Despite 

the spectral difference preventing the “apple-to-apple” comparison of DAOD10μm with AERONET, the relatively good 

correlation between DAOD10μm and the AERONET-validated DAOD532nm demonstrate the DAOD10μm retrieval’s 

reliability. Afterward, we present the consistency of the monomodal PSDs corresponding to the retrieved Deff with the 865 

AER-D PSD and SAMUM-2 PSD as well as their TIR optical properties in the 2015 and 2008 cases. The 2013 case 

validates the Deff retrieval in both the short-range (Cape Verde) and long-range (the Caribbean Sea) transport regions 

by comparing with SALTRACE dust PSD and demonstrates the retrieval’s capability of revealing the transport 

process of dust coarse-mode particle size in a better spatiotemporal resolution than in-situ measurements. The results 

convince us that the DAOD10μm and Deff retrieval dataset can provide a better constraint on regional and global LW 870 

DRE uncertainties due to DAOD and dust PSD. However, an assumption of dust RI is still needed. 

 

We apply the retrieval to five-year MODIS-CALIOP data from 2013 to 2017 and compare the DAOD retrieval with 

IIR-based and IASI-based retrieval. As an improved version compared with the IIR-based retrieval, the MODIS-

CALIOP retrieval reduced ~50% of DAOD uncertainty and achieves good consistency (R = 0.7 in Figure 9). In the 875 

climatological comparison with the seasonal mean IASI-based DAOD10μm, MODIS-CALIOP DAOD10μm reaches a 

better agreement with IASI-LMD DAOD10μm over NA (R = 0.9) and IO (R = 0.8) than that over NP (R = 0.2). 
Meanwhile, the IASI-ULB DAOD10μm over the three regions are highly correlated with MODIS-CALIOP DAOD10μm, 

while they are systematically underestimated possibly due to the Deff of the pre-assumed dust PSD is significantly 

lower than that of IASI-LMD DAOD10μm and the climatological Deff. The discrepancy of the two AERONET-880 

evaluated IASI DAOD10μm datasets reveals that the dependency of TIR-to-VIS DAOD ratios and the retrieved 

DAOD10μm to dust PSD is non-negligible, which is also proved in Z22. It highlights the importance of considering the 

spatiotemporal variation of dust Deff in TIR retrievals.  

 

A global and climatological analysis of the five-year Deff retrievals from -60°N to 60°N over oceans is presented. 885 

Comparing Deff among the three transport regions, we found that seasonal mean Deff over IO (3.9-4.2 μm) is up to 

~22% lower than that over NA (4.1-5.4 μm) depending on different seasons, implying a shorter lifetime of coarse-

mode dust particles transported from the Middle East to IO than that from North Africa to NA. For Deff variation 

during transport, over NA, we found a ~50% reduction of retrievals with Deff  > 5 μm from 15°W to 40°W and a 

relatively stable Deff at ~ 4 μm throughout the Caribbean Sea. The Deff result from 15°W to 40°W differs from the 890 

IASI-retrieved effective radius distribution over NA in Peyridieu et al. (2013), which presented an almost constant 

value at 2 μm during summer throughout the transport. In addition, the prevailing dust with Deff at ~ 4 μm and a small 

portion of dust with Deff  > 5 μm (5%-20%) found after long-term transport in both NA and NP can hardly be explained 
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by the stand-alone gravity settling theory. The results provide observation-based transport patterns of the coarse mode 

dust size over oceans, which can be used to evaluate the simulated dust coarse mode PSD in dust transport models. 895 

 

However, there are serval limitations for our retrieval. First of all, the case-study validation of Deff is limited to three 

field campaigns. Extended comparisons with other other upcoming in-situ measurements, especially over 

Mediterranean, IO and NP, should be realized further to validate the applicability and significance of the proposed 

approach. Secondly, our retrieval is still not applicable for observations over land due to the uncertainties from land 900 

surface temperature and emissivity. Nonetheless, with more reliable databases of land surface characteristics, this 

portable retrieval algorithm can be easily extended to cover the dust source regions. Thirdly, the vertical distribution 

of dust PSD in columns is assumed to be homogeneous, which might be improved by inferring the layer attenuated 

backscatter total color ratio (i.e., the ratio of the layer total attenuated backscatter at 1064 nm to that at 532 nm) 

observed by spaceborne Lidars. ThirdlyLastly, the limited spatial coverage of CALIOP restrains the application of our 905 

data to regional studies. Extending the retrieval to off-CALIOP-track MODIS pixels is recommended for future 

studies. 
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Appendix A: The cloud-free clean radiative closure benchmark between the CRTM-DISORT calculated and 910 
the MODIS-observed BTs 

In this study, the uncertainties contributed by the auxiliary data, the radiative transfer simulation, and the observational 

errors is evaluated through the radiative closure benchmark between the CRTM-DISORT calculated and the MODIS-

observed BTs under cloud-free and clean (without dust) conditions based on the collocated MODIS and CALIOP data 

from 2007 to 2010.  915 

 

Figures A1a and A1c show the BT discrepancies (referred to as “dBT”) between the simulations and the observations 

for daytime and nighttime cloud-free and clean cases over oceans at three MODIS TIR bands. Figures A1b and A1d 

show the corresponding discrepancies of the cloud-free spectral BT differences (BTD) between 11 μm and 12 μm 

(blue curve, referred to as “dBTD11-12”) and that between 8.5 μm and 12 μm (red curve, referred to as “dBTD08-12”). 920 

Both dBTs and dBTDs are unbiased (i.e., with a peak and a mean value centered at zero) in both daytime and nighttime, 

demonstrating a remarkable consistency between the CRTM-DISORT simulation and the MODIS observation. For 

the three single TIR BTs, because the 8.5-μm and 11-μm bands are the cleaner (i.e., less water vapor absorption) than 

the 12-μm band that is the most water-vapor-absorptive, the standard deviations of dBT at 8.5 μm and 11 μm are lower 

(0.78 – 0.86 K) than that at 12 μm (0.88 – 0.9 K). Interestingly, the errors of the two dBTDs are substantially reduced 925 

to the range of 0.2 to 0.4 K as the errors from the assumed atmospheric states at each band are canceled out, especially 

the dBTD11-12 (0.18 K at nighttime and 0.21 K at daytime), which is sensitive to DAOD as explained in section 3.2. 

The smaller uncertainties in dBTDs are probably due to error cancellations. For example, if AMSR-E underestimates 

the SST, the simulated BT would be colder than the observation because of the overestimated surface-emitted 

radiance. However, the underestimation happens in all three TIR bands, and the error cancels each other to some 930 

extent, leading to smaller uncertainty in dBTDs.   

 

Overall, one standard deviation of dBTs and dBTDs represents the retrieval uncertainty due to the atmospheric 

auxiliary data, the radiative transfer simulation, and the observational errors, which is revisited in section 3.2.  
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 935 
Figure A1: The nighttime (a) and daytime (c) cloud-free and clean sky dBTs at the MODIS 8.5-μm (blue), 11-μm (orange) 

and 12-μm (green) bands. The nighttime (b) and daytime (d) cloud-free clean sky dBTD8-12 (orange) and dBTD11-12 (blue). 

 

Appendix B: Pre-processing of the cloud-free dust detection from the collocated MODIS and CALIOP 
observation 940 

The first step of the retrieval is to identify high-quality cloud-free dust-laden observations. Due to the different spatial 

coverage of MODIS and CALIOP, the retrieval requires collocated data from both sensors, which is done in the 

following steps. First, we refer to the MODIS-AUX product (Partain, 2007) developed for CloudSat to find along-

CloudSat-track MODIS pixels for two reasons. First, each along-CloudSat-track profile has 15 collocated MODIS 

pixels in the MODIS-AUX product. Each MODIS pixel contains the MODIS Level-1B radiances and Level-2 945 

geometries. Using the 15 collocated MODIS pixels saves computational time from accessing the original terabyte-

scale Level-1B products (Zheng et al., 2021). Second, the along-track orbits of CALIPSO and CloudSat are highly 

synchronized. It allows each along-CALIPSO-track profile to quickly match the nearest pixel among the 15 collocated 

along-CloudSat-track MODIS pixels. However, noting that the MODIS viewing zenith angle of the collocated pixels 

are not exactly nedir as CALIOP has, which is also considered in our retrieval (See Table 1). 950 
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The CALIOP “LID_L2_05kmAPro-Standard-V4” product has a 5 km along-track resolution, while the MODIS-AUX 

product is 1 km. To address this spatial difference, we reference the 1-km along-CALIOP-track geolocation records 

from the “IIR_L2_Track-Standard-V4” product, which provides five records with 1-km resolution in each 5-km 

CALIOP profile. Each of the five 1-km geolocation records is then used to find the nearest along-CloudSat-track 955 

MODIS pixels. The corresponding MODIS Level-1B 1-km TIR BTs, BT uncertainties and the MODIS sensor’s 

geometries (i.e., viewing/solar zenith/azimuth angles) are then assigned to each geolocation record.  

 

Similar to the cloud masking process as in Z22, we use the collocated 1-km “Was_Cleared_Flag_1km” originated 

from the “IIR_L2_Track-Standard-V4” product to screen out MODIS pixels containing sub-pixel clouds that are 960 

detected by the single-laser-shot in 333 m along-track footprint. Finally, the remained cloud-free 1-km MODIS pixels 

within each 5-km CALIOP profile are averaged, forming the 5-km collocated MODIS-CALIOP cloud-free product. 

 

After cloud masking, dust detection also follows the procedures described in Z22. Firstly, we identify the high-quality 

CALIOP backscatter profiles by applying the extinction control flag (“Extinction_QC_Flag_532 = 0, 1, 16, 18” 965 

(Winker et al., 2013; Yu et al., 2015a)) to the 5-km MODIS-CALIOP cloud-free product. Next, we apply the cloud-

aerosol discrimination (CAD) score to select the profiles containing all detected features with CAD between -100 to 

-90 to ensure the quality of the detected aerosol layers (Yu et al., 2019). Finally, the selected CALIOP backscatter 

profiles are further used to distinguish dust from non-dust aerosols. The separation is based on the contrast of the DPR 

between dust and non-dust aerosols. The higher the non-sphericity and particle size, such as dust, the lower the DPR. 970 

Therefore, the DPR of dust aerosols (𝛿𝛿𝑑𝑑) is usually higher than that of other non-dust aerosols (𝛿𝛿𝑛𝑛𝑑𝑑). Accordingly, a 

vertically resolved fraction 𝑓𝑓𝑑𝑑(𝑧𝑧)  of dust backscatter (𝛽𝛽𝑑𝑑(𝑧𝑧)) to the observed backscatter (𝛽𝛽(𝑧𝑧)) (i.e., 𝑓𝑓𝑑𝑑(𝑧𝑧)  =

 𝛽𝛽𝑑𝑑(𝑧𝑧)/𝛽𝛽(𝑧𝑧)), is estimated by the observed particulate DPR 𝛿𝛿(𝑧𝑧), 𝛿𝛿𝑑𝑑 and 𝛿𝛿𝑛𝑛𝑑𝑑 as  

𝑓𝑓𝑑𝑑(𝑧𝑧) = (𝛿𝛿(𝑧𝑧)−𝛿𝛿𝑛𝑛𝑛𝑛)(1+𝛿𝛿𝑛𝑛)
(1+𝛿𝛿(𝑧𝑧))(𝛿𝛿𝑛𝑛−𝛿𝛿𝑛𝑛𝑛𝑛)

                  (B1) 

Following Yu et al. (2015a) and Z22, the lower and upper limits of 𝛿𝛿𝑛𝑛𝑑𝑑 are set to 0.02 and 0.07 and 𝛿𝛿𝑑𝑑 to 0.20 and 975 

0.30, respectively. The final 𝑓𝑓𝑑𝑑(𝑧𝑧) is set to the mean value of the upper bounds (𝛿𝛿𝑑𝑑 = 0.3 and 𝛿𝛿𝑛𝑛𝑑𝑑 = 0.07) and lower 

bounds (𝛿𝛿𝑑𝑑 = 0.2 and 𝛿𝛿𝑛𝑛𝑑𝑑 = 0.02). Due to the observed particulate DPR uncertainty, the value of 𝑓𝑓𝑑𝑑(𝑧𝑧) can exceed 1 

or below 0, which are set to be 1 and 0, respectively. Finally, we obtain the backscatter profile of dust aerosol as 

𝛽𝛽𝑑𝑑(𝑧𝑧) = 𝑓𝑓𝑑𝑑(𝑧𝑧) ⋅  𝛽𝛽(𝑧𝑧)                      (B2) 

which serves as the dust vertical distribution to scale the input DAOD in the CRTM-DISORT simulation. Note that 980 

the extinction coefficient profile can be obtained by multiplying 𝛽𝛽𝑑𝑑(𝑧𝑧) with an a priori dust extinction-to-backscatter 

ratios (i.e., Lidar ratios (LR)) for dust aerosol. According to previous studies for the dust LR (Haarig et al., 2022; Liu 

et al., 2002; Liu et al., 2008; Kim et al., 2020), we further calculate the column integrated DAOD at 532 nm (referred 

to as “DAOD532nm”) by assuming a dust LR at 44 sr with ±10 sr uncertainty. However, the DAOD532nm uncertainty 

contributed by LR is beyond this study and will not be discussed. Readers are referred to Kim et al. (2020) for details. 985 

 

However, the DPR-based method is likely to include the contribution of sea salt over open oceans and generate non-

zero DAOD532nm even without dust, especially in daytime when CALIOP has lower quality due to the solar 
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contamination. The possible reason is that sea salt would have DPR close to dust when their relative humidity is low 

(e.g., < 50%) (Haarig et al., 2017). Therefore, after deriving DAOD532nm, we further use the CALIOP VFM (i.e., the 990 

“Atmospheric_Volume_Description” in the "LID_L2_05kmAPro-Standard-V4" product; see Section 2.1 and Table 

1) to filter the profiles that has no dust, or polluted dust or marine dust layers. Finally, the rest of profiles are considered 

as cloud-free dust profiles for retrievals. 

 

Appendix C: Assignments of dust long-wave refractive index  995 

Note that assigning dust RIs from different source regions to the observed dust aerosol over the ocean should follow 

the dust global transport patterns. Accordingly, we applied the fractional contribution over oceans supplied by various 

dust source regions from the DustCOMM-2021 dataset developed by Kok et al. (2021a). This dataset provides the 

seasonally resolved global distribution of the fractional contribution of DAOD from nine defined dust source regions 

(see Figure C1) by integrating observational constraints on dust properties and abundance into an ensemble of GCM 1000 

simulations, gridded with a resolution of 2.5° longitude by 1.9° latitude. In other words, for each grid cell in each 

season, there are nine fractions representing the contributions from nine source regions, indicating the probability of 

where the DAOD that occurs in a grid cell in a particular season originated. We use this data set to choose the 

appropriate a priori dust RIs from different source regions for our retrieval over oceans. 

 1005 
Figure C1: The assignment of the source region-resolved dust refractive indices from Di Biagio et al. (2017) is based on 

which of the nine main source regions provided a fractional contribution to SW DAOD that exceeds 0.1, which is shown 

here for summer based on the DustCOMM-2021 dataset. 
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It should be noted that the DustCOMM-2021 is a climatological dataset. As such the uncertainties included in this 1010 

dataset cannot be propagated into not propagable for instantaneous observational retrievals. Hence, in this study, 

instead of scaling the Di-Biagio RI’s fractional contribution to form a new dust RI, we select the source region if its 

DAOD fractional contribution exceeds 0.1 and assign the corresponding Di-Biagio RIs within the selected source 

region for our retrieval. Figure C1 shows the nine regimes over oceans with fractional contribution greater than 0.1 

for the nine defined dust source regions in summer (see Figures S2 to S4 for other seasons). The Di-Biagio RIs are 1015 

assigned to the nine source regions based on their geolocations. For observations in each season within each regime, 

the retrieval will assume the dust originated from the identified dust source regions and choose the corresponding Di-

Biagio RIs. Note that the nine regimes can overlap, meaning that the observation over a particular grid cell covered 

by multiple regimes will assume multiple RIs from these regimes. The uncertainty due to the variation of multiple RIs 

is evaluated in Section 3.2. 1020 

Data availability 

The 2007 to 2017 MODIS-CALIOP DAOD10μm and coarse-mode Deff data (Level 2L2 and 5° × 2° monthly Level 

3L3) from July 2006 to August 2018 will be publiclyis available at https://doi.org/10.5281/zenodo.7857132after the 

acceptance of this manuscript. 
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