Intra-event evolution of elemental and ionic concentrations in wet deposition in an urban environment

Thomas Audoux¹, Benoit Laurent¹, Karine Desboeufs¹, Gael Noyalet¹, Franck Maisonneuve², Olivier Laurent²,³, Servanne Chevaillier²

¹ Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
² Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
³ Univ Paris Est Créteil, CNRS, ENPC, Université Paris Cité, OSU-EFLUVE, F-94010, Créteil, France

Correspondence to: Thomas Audoux (thomas.audoux@lisa.ipsl.fr) ; Benoit Laurent (benoit.laurent@lisa.ipsl.fr)

Abstract.

Wet deposition is a crucial process that affects the lifetime of atmospheric particles by allowing them to be deposited by two different mechanisms, namely below the cloud and in the cloud. In order to estimate the mechanisms implied in the wet deposition, a measurement campaign was carried out conducted in the Paris region to monitor, focusing on the evolution of the chemical composition of wet deposition during rainfall events from sequential sampling. A total of eight rain events have been sampled. The latter had different were documented and characterized by varying meteorological conditions, atmospheric dynamics, and aerosol particle concentrations. Concomitant measurements representative of the chemical composition of aerosol particles urban conditions and wet deposition allows calculating washout ratios from measurements taken at the beginning of the rainfall events, before the dilution effect occurred, and showed an increasing trend with increasing rainfall rates influenced by long-range mineral dust transport. The intra-event evolution of the chemical composition of wet deposition revealed the predominant role of meteorological parameters and local sources in the observed mass concentration variability. The contributions of in-cloud and below-cloud scavenging mechanisms were estimated for some rainfall events and found to vary depending on the specific sources, atmospheric dynamics and meteorological conditions. From selected case studies, the washout ratios (WR) and scavenging coefficients were quantified by conducting simultaneous measurements of aerosol particle composition and wet deposition. The results highlighted a variability of the WR and scavenging coefficients depending on the rainfall rate and on the chemical specie. Scavenging coefficients estimated from WR ranged from 5.4×10⁻⁸ to 1.1×10⁻⁵ s⁻¹ for chemical elements, and are within the range of values reported in the literature for 0.2-2 µm particles diameter. Our results pointed out that scavenging coefficient increases with rainfall rate according to a power law, as previously shown in the literature, indicating a stronger removal of particles from the atmosphere with greater precipitation intensity. Quantitative analysis of the data allowed us to estimate the relative contributions of in-cloud scavenging (ICS) for selected rain events. The ICS relative contributions ranged on average from 23% to 62% depending on the rain events, and varied according to the chemical species within the same rain event. This highlights the variability and complexity of the wet deposition process and the influence of specific factors on the contribution of ICS, such as aerosol particle size and hygroscopicity. Overall, this study highlights the variability of wet deposition and its chemical composition, and the need to consider the specificities of each event to fully understand the underlying mechanisms.
After emissions or formations and transport of aerosols in the atmosphere, wet deposition is one of the final sinks in their atmospheric cycle (e.g.,...). Wet deposition involves two distinct mechanisms: in-cloud scavenging (hereafter referred to as ICS) and below cloud scavenging (hereafter referred to as BCS). ICS refers to the scavenging of aerosols within the cloud, where they either act as condensation (or ice) nuclei or are captured by already formed droplets (Seinfeld and Pandis, 2016). BCS is the result of particles being captured through collision by raindrops as they fall via several size-related mechanisms (e.g., Brownian diffusion, interception, inertial impaction) (Slinn, 1977). Through these two mechanisms, wet deposition includes locally emitted aerosols that can be scavenged from the atmosphere, as well as long-range transported aerosols that can be removed by precipitating cloud systems (e.g., Bertrand et al., 2008). Depending on the regions, wet deposition mechanisms collect atmospheric aerosols from different (natural, anthropogenic) sources that can be identified by their chemical composition. By scavenging atmospheric pollutants and potentially toxic metals, wet deposition has an impact on air quality. Wet deposition of nitrogen (N), phosphorus (P) and trace metals can also serve as a significant input of nutrients species to terrestrial and marine ecosystems (e.g.,...).

Worldwide observational measurement networks have shown strong spatial and temporal variability in the mass and chemical flux of wet deposition. This variability can be observed at interannual, seasonal, daily, or intra-event scales and is dependent on the aerosol content, precipitation properties, and their interaction. Approaches based on only some of the measurable parameters have been used to document the scavenging of atmospheric particles by precipitation. One approach is to compute the washout ratio (hereafter referred to as WR), which is based on the ratio of the mass or elemental concentrations of wet deposition to those of aerosols measured in the atmosphere. WR is a parameter that integrates, without distinction of processes, the relative scavenging efficiency of particulate compounds and chemical elements by considering their transfer from air to water. WR has been regularly used to characterize wet deposition by precipitation for different types of particulate aerosols and chemical compounds found in various atmospheric environments.

The proportion of ICS and BCS in wet deposition is influenced by a number of factors, including the local environment (e.g.,... rural or urban) and associated emissions, meteorological variables such as rainfall amount, intensity and type, and aerosols content in the atmosphere such as its loading, their size and vertical distributions (Aikawa et al., 2014; Ge et al., 2016; Lim et al., 1991; Bertrand et al., 2008; Ge et al., 2021a). The accuracy of the representation of these mechanisms in global and regional modeling is still questionable (Croft et al., 2010), as there is insufficient data to constrain them accurately (Ryu and Min, 2022). Indeed, while BCS was considered to be less important than ICS regarding wet deposition in several modeling studies (Croft et al., 2010; Yang et al., 2015; Kim et al., 2021), however, recent observational studies have found that BCS represented a non-negligible fraction of the wet deposition (Xu et al., 2019; Ge et al., 2021a; Chatterjee et al., 2010; Karşı et al., 2018; Audoux et al., 2023). Grythe et al. (2017) also emphasized the significance of BCS, indicating that it is more responsible for the removal of aerosols in the lower atmosphere, while ICS dominates the wet removal in the free troposphere. These recent findings demonstrate the need to re-evaluate the importance of BCS in regional and global-scale modeling of atmospheric aerosols and thus the necessity to provide more in situ deposition measurements to better constrain them.
Approaches based on only some of the measurable parameters have been used to document the scavenging of atmospheric particles by precipitation. One approach is to compute the washout ratio (also called scavenging ratio and hereafter referred to as WR), which is based on the ratio of the mass or elemental concentrations of wet deposition to those of aerosols measured in the atmosphere (Chamberlain, 1960). WR is a parameter that integrates, without distinction of processes, the relative scavenging efficiency of particulate compounds and chemical elements by considering their transfer from air to water. WR has been regularly used to characterize wet deposition by precipitation for different types of particulate aerosols and chemical compounds found in various atmospheric environments (Jaffrezo et al., 1990; Cerqueira et al., 2010; Marticorena et al., 2017). It can also be used to estimate wet deposition fluxes given air concentrations and precipitation rates (Duce et al., 1991; Mamun et al., 2022).

Moreover, WR make it possible to study the relative importance of some of the parameters involved in the mechanism of the transfer between the phases, such as rainfall rates (González and Aristizábal, 2012) or aerosol particle size (Jaffrezo and Colin, 1988; Cheng et al., 2021). However, Cheng et al. (2021) have highlighted in their literature review the scarcity of particulate element WR data due to the limited co-located measurements of elements in precipitation and aerosol particles. Another approach is to calculate the scavenging coefficient, which is commonly used in global chemical transport models to represent the below cloud scavenging of particles by rain (Ge et al., 2021b; Colette et al., 2017). Theoretical studies have primarily focused on determining the particle collection efficiency of raindrops as they fall, while certain numerical, laboratory, and field studies have developed semi-empirical parameterizations (Wang et al., 2014; Dépée et al., 2020; Laakso et al., 2003; Slinn, 1977).

However, a gap remains between field measurements, theoretical and semi-empirical parameterizations (Wang et al., 2010, 2011). Therefore, the determination of both WR and scavenging coefficient appears to be very useful for future wet deposition studies.

Several studies using sequential sampling have shown a decrease in concentration during the rain event, which is more pronounced in the first few millimeters of rainfall (e.g., Seymour and Stout, 1983; Jaffrezo et al., 1990; Aikawa and Hiraki, 2009). For example, Tanner et al. (2006) found that concentrations measured after 10 mm of rainfall can be 2 to 33 times lower than concentrations measured in the first 2 mm of rainfall, depending on the studied compounds. Sequential rainfall sampling allows the collection of successive rainfall fractions to monitor the temporal variability of wet deposition (e.g., Laquer, 1990). It is of particular interest to study the dependence of wet deposition content on rainfall characteristics (intensity, droplet size and distribution), which also evolve during the event (Audoux et al., 2023). In addition, the study of the chemical composition of wet deposition and its evolution throughout a rain event allows determining the influences of several aerosol sources (e.g., anthropogenic or natural). The intra-event evolution of rain chemical composition has also been used to discuss the relative contribution of ICS and BCS mechanisms to wet deposition (e.g., Aikawa and Hiraki, 2009; Ge et al., 2021; Audoux et al., 2023). Indeed, it is generally assumed that the first increments of the rain event are influenced by both mechanisms, while the last fractions could be attributed to ICS only (Aikawa and Hiraki, 2009; Chatterjee et al., 2010; Germer et al., 2007; Karşı et al., 2018; Desboeufs et al., 2010), although the relative proportion of ICS and BCS evolves during the event (e.g., Zou et al., 2022). Therefore, studying the evolution of wet deposition composition within a rainfall event provides valuable information on the temporal variability and the origin of scavenged aerosol particles, both in terms of sources of pollutant and BCS and ICS mechanisms.
A dedicated sequential precipitation sampler as well as conditioning and chemical analysis protocols were developed to document the intra-event variability of the dissolved and particulate chemical composition of rainfall (Audoux et al., 2023). The present study is based on the analysis of sequential rainfall sampling performed in late winter and spring 2022 at a study site in the Paris region, which included eight case studies with contrasting meteorological conditions, atmospheric loading, and chemical composition. It has three objectives: (1) to document the intra-event evolution of ionic and elemental composition of dissolved and particulate phase species in wet deposition with time and rainfall characteristics for contrasted rain events, and (2) to discuss the parameters influencing the intra-event variability of wet deposition chemistry in terms of atmospheric aerosol particles sources, precipitation through the quantification of washout ratios and meteorological properties scavenging coefficients and (3) to estimate the relative contribution of BCS and ICS mechanisms in the wet deposition.

2 Material and methods

2.1 Measurement site and sampling strategy of wet deposition and aerosol particles

The sampling site is located at the air quality station operated by the Interuniversity Laboratory of Atmospheric Systems (LISA) and located at the University of Paris Est Creteil (UPEC) in the south-east of the Paris agglomeration (48.79 °N-2.44 °E) (Figure 1). The study site is in close proximity to various sources of pollution including nearby industries and an incinerator, highways, railway stations, and construction sites. Between July 2021 and July 2022, daily rainfall depths measured using a Précis-Mécanique rain gauge model 3 070 A (0.2 mm precision) at the study site ranged from 0.2 to 37.6 mm. 19% of rainy days presented rainfall depths lower than 0.4 mm, 12% were between 0.4 and 1 mm, 40% were between 1 and 5 mm, and 13% were higher than 10 mm. The sampling strategy is to investigate case studies sampled during an intensive measurement campaign during the winter and spring of 2022. During this period, the daily average PM$_{10}$ (PM$_{2.5}$) concentrations were around 17.5 (11.2) µg m$^{-3}$ with values reaching up to 57.5 (43.0) µg m$^{-3}$. Wet deposition collection is performed with a sequential sampler specifically developed at the LISA (Figure 1 A). Sampling, conditioning and analysis of rain samples are described in detail in Audoux et al. (2023), and thus, it is briefly reminded here.

The rain is collected using a Teflon pyramid funnel with a collection surface of 1 m2 in combination with a sampling unit. This unit enables the automatic collection of up to 24 consecutive fractions of rain, adjustable from 0.05 to 2.0 mm, to study dissolved and particulate phase of the wet deposition. The sampling is conducted based on volume, and as a result, it is dependent on the rainfall rate. The sequential sampler is able to correctly collect rainfall fractions for low rainfall intensities, as well as for more intense rainfall recorded by the rain gauge and disdrometer, in comparison with standardized measurements (Audoux et al., 2023). The materials that make up the sampler have been chosen to allow analysis of the ionic and elemental composition of the dissolved and particulate phase at high and low concentration levels (from several mg L$^{-1}$ to hundreds of ng L$^{-1}$). The sampling bottles and materials that came in contact with the samples underwent a thorough washing protocol in clean-room laboratory with ISO 7 and ISO 5 level controls.
A summer rain event was collected in July 2021 (R1) and a winter rain event were collected in February 2022 (R2) (Audoux et al., 2023). These case studies are completed here with 6 additional events collected in late winter and spring 2022, between March (R3, R4, R5, R6 and R7 rain events) and April (R8 rain event). For the 8 rain events studied, between 11 and 32 consecutive fractions have been sampled, the latter being collected within 10 seconds to 2 hours, depending on the rainfall rate.

Concomitant measurements on atmospheric aerosols and meteorological parameters during the rain sampling is important for a more in-depth understanding of wet deposition mechanisms. Therefore, PM$_{2.5}$ and PM$_{10}$ aerosol mass concentration, as well as the particle size distribution (PSD) between 0.18 and 18 µm, are measured using the FIDAS (Figure 1 D), equipped with a TSP Sigma 2 inlet, with a 1 min time step. The FIDAS is an instrument used for regulatory air quality measurement of PM$_{2.5}$ and PM$_{10}$ mass concentration (LCSQA, 2021). Moreover, PM$_{10}$ aerosol particles are sampled on polycarbonate membranes (Nuclepore®, 0.4 µm porosity) using a PM$_{10}$ head sampling (Figure 1 C). Air sampling is done between 15 hours and 24 hours before the start of the rain and is stopped at the beginning of the latter, within one minute after removing the cover from the sequential sampler, while the first fraction is being collected. This allows characterizing the chemical composition of the atmospheric aerosol prior to rainfall. Rainfall rate and droplet size distribution (DSD) are measured using an OTT PARSIVEL® (PARticle Size and VElocity, Figure 1 E, Supplement 1) optical disdrometer with a time resolution of 30 seconds. In parallel, wind direction, wind speed as well as air temperature and relative humidity are measured using instrumentation from Campbell Scientific© and are recorded with a time step of 1 min. The cloud base height and homogeneity of atmospheric column are measured using a ceilometer (Vaisala CL31, Figure 1 B, Supplement 2). Parsivel disdrometers and ceilometers are typically used in multiple measurement networks for precipitation and cloud base height characterization (e.g., Haeffelin et al., 2005; Tapiador et al., 2010). FIDAS, ceilometer and disdrometer measurements are made continuously at the study site, while aerosols filter sampling and deposition...
measurements are made on alert before or during rain events. This makes it necessary to regular follow-up the precipitation alerts.

2.2 Elemental and ionic composition analysis of wet deposition samples and atmospheric aerosol membranes

After sampling, rain samples are quickly processed for ionic and elemental analysis, usually within a time frame of 1 to 12 hours after the end of rainfall. If immediate processing is not feasible, the samples are kept in a cool and dark environment at 6°C, and are processed within 24 to 48 hours. Treatment, filtration, and conditioning are done in a clean-room laboratory with ISO 6 level controls, under a laminar flow hood (U15 filter) which is estimated to be equivalent to ISO 3. A pH meter (METTLER TOLEDO Seven2Go) is used to measure the pH of each sequential sample. Samples are then filtered through pre-cleaned Nuclepore® polycarbonate membranes with a porosity of 0.2 µm to separate the particulate phase from the dissolved phase. Following Audoux et al. (2023), the dissolved phase is then divided into two fractions. The first fraction (10 mL aliquot) is frozen until the analysis of water-soluble major inorganic cations (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺), anions (Cl⁻, NO₃⁻, PO₄³⁻, SO₄²⁻) and organic ions (HCOO⁻, CH₃COO⁻, C₂H₃COO⁻, MSA, C₃O₂⁻) by Ion Chromatography (Compact IC Flex, Metrohm®, PRAMMICS Platform). The second fraction (two 15 mL aliquots) is acidified to pH = 1 with nitric acid (Suprapur®) and stored at 6°C until analysis of water-soluble Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Ti, and Zn by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES, Spectro ARCOS Ametek®). The membranes are dried under laminar flow hood and conditioned for 48 h at a constant relative humidity of 45 – 50% and at T = 20°C prior weighting using a precision microbalance (METTLER TOLEDO® XPR26C, PRAMMICS Platform). In order to accumulate a sufficient amount of material for analysis, several rain sequential samples can be filtered through the same filter. Conversely, when the particulate load is too high, rain fractions can be filtered through multiple membranes. Elemental composition (Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, P, Si, Ti, and Zn) of the particulate phase is determined using X-ray fluorescence spectrometer (XRF, ZETIUM 4 kW, Malvern Panalytical, PRAMMICS Platform). The 0.4µm porosity Nuclepore® membranes are also analyzed using XRF to characterize the elemental composition of the aerosol in the air prior to rainfall events. Our strategy is to monitor the elemental inorganic fraction of the aerosol in order to link it to the rainfall composition. It therefore allows us to characterize about 40% of the average aerosol composition in the Paris region (Airparif, 2021).

2.3 Origin of scavenged aerosol particles

The origin of scavenged aerosol particles can be discussed in relation with their chemical compositions and the trajectory of the air masses. We calculated enrichment factors (EFs, Taylor and McLennan, 1985) in order to determine the origin of elements found in the rain samples. Al is used as the reference of the Earth’s crust (hereafter referred to as EF_X^{crust}), and Na as reference of the sea salt (hereafter referred to as EF_X^{sea salt}). Equation 1 is used to calculate EF as follows:

\[
EF_X(\%) = \left(\frac{([X]/[\text{ref}])_{\text{rain}}}{([X]/[\text{ref}])_{\text{crust or sea salt}}} \right) \times 100.
\]

(1)

Where \(([X]/[\text{ref}])_{\text{rain}} \) correspond to the ratio between the element X and the reference (Al or Na) concentrations in rainwater samples and \(([X]/[\text{ref}])_{\text{crust or sea salt}} \) the concentrations in the continental crust or in the sea.
To complement local wind measurements at the study site, air mass trajectories were calculated using the HYSPLIT model (https://ready.arl.noaa.gov/HYSPLIT.php) (Draxler and Rolph, 2012). HYSPLIT is a retro-trajectory analysis used to study local to continental air mass dispersion and transport of atmospheric compounds, respectively (Celle-Jeanton et al., 2009; Bertrand et al., 2008; Calvo et al., 2012), and to determine the origin of air masses to identify sources of atmospheric substances, e.g., mineral dust, sea salt or anthropogenic (Vincent et al., 2016; Anil et al., 2017). Here, 48 h or 120 h depending on the event, backward trajectories were computed by the HYSPLIT model with GFS (0.25 °, global) from the study site (47.79 °N - 2.44 °W) at the surface (0 m a.g.l.) and at the cloud base height measured by the ceilometer.

2.4 Determination of washout ratios, scavenging coefficient and scavenging mechanism contributions

2.4.1 Washout ratios

The washout ratio is a parameter used to quantify the relative scavenging efficiency of particulate compounds and chemical elements by rain. It is based on the principle of a transfer of the compounds from the air to the water. Therefore, below cloud WR are determined from the ratio of the elemental concentration measured in the wet deposition \((C_{\text{rain}}) \) to those measured in the aerosol filter \((C_{\text{air}}) \) (equation 2).

\[
WR = \frac{C_{\text{rain}} \, (\mu g \, kg^{-1})}{C_{\text{air}} \, (\mu g \, m^{-3})} \times \rho_{\text{air}} \, (kg \, m^{-3})
\]

WR make it possible to study the relative importance of some of the parameters involved in the mechanism of the transfer between the phases, such as rainfall rates or aerosol particle size. As opposed to what is done in the literature, i.e., the calculation of the WR taking into account the whole event (e.g., Cheng et al., 2021), the sequential collection makes it possible to avoid being affected by the dilution effect reported in the literature (e.g., Jaffrezo et al., 1990). That is more relevant regarding aerosol scavenging and determination of below-cloud WR, since this allows to avoid being affected by the dilution effect reported in the literature (e.g., Jaffrezo et al., 1990).

In order to discuss the relationship between aerosol and wet deposition, information is needed on both aerosol and rain, which we have for R2, R3, R5 and R8. In order to be able to accurately calculate the WR, it is important to consider the homogeneity of the atmospheric column as a parameter to be taken into account in order to justify to ensure the representativeness of the surface aerosol measurements. In our study, we observed the presence of a high-altitude aerosol layer using ceilometer measurements (Supplement S2). The atmospheric transport of mineral dust at high altitudes rendered the surface-collected aerosol sample unrepresentative of the scavenged air column. As a result, we excluded the R5 study case from the WR calculation. Therefore, we will focus our discussion on the WR of the element only for R2, R3, and R8.
2.4.2 Scavenging coefficient

We can determine the scavenging coefficient (Λ, s$^{-1}$) of elements using field measurements and based on the estimation of their washout ratios, as previously done in the literature for sulfate, nitrate and ammonium (Okita et al., 1996; Xu et al., 2019; Andronache, 2004; Yamagata et al., 2009). Indeed, by assuming a uniformly mixed atmospheric column below the cloud base, the average scavenging coefficient of elements can be expressed using equation (3), R and H being the rainfall rate (in mm s$^{-1}$) and the average cloud base height (in m) during the first fraction of rainfall, respectively.

$$\Lambda(s^{-1}) = \frac{WR}{R} \times \frac{R}{H}$$

2.4.3 In-cloud vs. below-cloud scavenging

The relative contribution of the ICS mechanism to the measured wet deposition is determined by analyzing the mass concentrations of chemical species measured at the end of the rainfall (C_{ICS}), a period for which there is a steady state between rainfall (referred to as C_{ICS}). Indeed, due to the scavenging during the initial stages of rainfall, the end of rainfall is characterized by lower PM concentration, which makes the BCS dominated by ICS, thus BCS is considered to be negligible in terms of wet deposition (e.g., Aikawa and Hiraki, 2009), since the rain composition can be considered representative of the concentrations of droplets in the cloud.

Different approaches are used to determine C_{ICS}, such as measuring after a certain amount of rainfall (e.g., 5 mm; Aikawa and Hiraki, 2009; Xu et al., 2017) or selecting the lowest values during rainfall events (Karşı et al., 2018; Berberler et al., 2022). Some authors also fit an exponential decay law and use the constant value as C_{ICS} (Ge et al., 2021a), while others determine C_{ICS} using the average value obtained during periods of lower mass concentration variations (Chatterjee et al., 2010). In our case, we selected rainfall events for which the measurements indicated an effective scavenging of the atmospheric column, with a predominant relative contribution of ICS at the end of the event. To select these events, we used the following criteria: 1) the decrease of concentrations measured in the wet deposition, reflecting the evolution of the contribution of the BCS; 2) the decrease of atmospheric concentrations measured using the FIDAS, suggesting a progressive scavenging of the air column under the cloud; and 3) constant concentrations of wet deposition at the end of the event, indicating a steady state between ICS and BCS. Thus, from these criteria, the evolution of the concentrations in the wet deposition, associated with the evolution of the atmospheric concentrations, makes it possible to discuss the relative contributions of the scavenging mechanisms could be discussed for R1, R2, R4 and R8 case studies.

We determine C_{ICS}, using the VWM of the last fraction of rain, once a steady state is reached at the end of the rainfall for R1 (1.48–2.65 mm), R2 (1.02–1.33 mm for SNA and 0.89–1.33 mm for other elements), R4 (2.21–4.42 mm) and R8 (1.87–6.94 mm). The wet deposition flux due to the ICS mechanism can thus be calculated using C_{ICS} and P_{tot}, the total rainfall depth of the rainfall (equation 4) as done previously in the literature (Xu et al., 2017; Aikawa et al., 2014; Ge et al., 2021a).
\[F_{ICS} = C_{ICS} \times P_{tot} \]

(4)

Then, the wet deposition flux due to BCS mechanism \((F_{BCS}) \) is determined by subtracting \(F_{ICS} \) from the total (dissolved + particulate) wet deposition \((F_{total}) \). Relative contributions of BCS \((BCS_C) \) and ICS \((ICS_C) \) to wet deposition can be obtained using equations 5 and 6, respectively.

\[BCS_C = \frac{F_{BCS}}{F_{total}} \]

(5)

\[ICS_C = \frac{F_{ICS}}{F_{total}} \]

(6)

3. Results

3.1 Description of wet deposition case studies

Eight rainfalls constitute a data set illustrating various cases in terms of aerosol concentrations and compositions as well as precipitation properties. The properties of the 8 rainfall events studied are listed in Table 1. The rainfall events are characterized by variable rainfall depths ranging from 0.9 to 6.9 mm and mean rainfall rate from 0.4 mm h\(^{-1}\) to 11.5 mm h\(^{-1}\). Depending on the rainfall depths and rates, the sampling resolution was adapted. For example, R7 was collected in 22 fractions of volumes ranging from 80 to 440 mL for a rainfall depth of 3.04 mm over 30 min, while R8 was collected in 32 fractions of volumes ranging from 60 to 820 mL for a rainfall depth of 6.9 mm and lasted several hours. Note that for R7, the sampling setup allowed us to only collect the first 3.04 mm of rain of the total event (10.3 mm). Our dataset consists of one (12.5%) event with a rainfall depth of less than 1 mm, one (12.5%) with a rainfall depth of more than 5 mm and the other (75%) representing rainfall depths between 1 and 5 mm. Rain events have varying cloud base heights (from 200 m for R6 up to 2 000 m for R8) which, however, can fluctuate within the same event as it is the case for R8.

According to the HYSPLIT 48 h back trajectory calculation, the origin of the air masses scavenged at the study site remained constant during the duration of the rain events, except for R6 and R8 (Supplement S3). The air masses for R1 and R2 came from the Atlantic Ocean. R3 and R4 had air masses from the Mediterranean at the surface and from Spain and Portugal at the cloud base. For the other events, influenced by mineral dust intrusion from North Africa, the calculation of HYSPLIT back trajectories has been performed over 120 hours with the same conditions. For R5 and R6, the air masses at the surface came from the United Kingdom via the North Sea and Germany, while the air masses at the cloud base came from North Africa (south of Tunisia/west of Libya) for R5 and from the Mediterranean Basin and Italy for R6. In the second phase of the event R6 (after 9:00 UTC), the air masses at the surface also came from the Mediterranean Basin. For R7, the air masses at the cloud base came from the Mediterranean Basin and the air masses at the surface came from Libya. For R8, the beginning of the event was characterized by air masses coming from the Atlantic through North Morocco and Spain at the cloud base and from northern Tunisia at the surface. During the event, the origin of air masses evolved and came from different places in Northern Africa (Morocco, Algeria, and Tunisia) depending on altitude. This analysis of the back trajectories shows a close alignment between the origins of these large-scale air masses and the wind directions measured at the surface at the instrumented site in Creteil.
Atmospheric aerosol mass concentrations at the beginning (average over the 30 min prior to the onset of the rainfall) of R1, R2, R6 and R7 events are primarily controlled by PM$_{2.5}$, which represents 63–84% of PM$_{10}$ concentrations. R3 is characterized by a lower proportion of PM$_{2.5}$, which represents 38% of PM$_{10}$, while PM$_{2.5}$ measured for R4, R5 and R8 correspond to 46–53% of PM$_{10}$. R1 to R4 took place on days with low particle concentrations, with PM$_{10}$ concentrations lower than 20 μg m$^{-3}$. During these events, rain had the effect of reducing atmospheric PM$_{10}$ concentrations by 11–53% (Table 1). However, this illustrates the overall effect of the rain event without taking into account the increases in air concentrations that may have been observed during the events (e.g., R8). On the other hand, R5 to R7 occurred on days marked by high concentrations of both PM$_{2.5}$ (33–40 μg m$^{-3}$) and PM$_{10}$ (47–63 μg m$^{-3}$). The latter took place not only during a typical spring pollution episode (Favez et al., 2021), but also during a mineral dust intrusion from North Africa, as shown by a multi-model dust optical depth simulation provided by the WMO Barcelona Dust Regional Centre (Supplement S1S4, https://dust.aemet.es, Basart et al., 2019). During these events, rain was less effective at reducing PM$_{10}$ concentrations. While R5 is characterized by a decrease in the PM$_{10}$ concentration of the order of 17%, R6 and R7 show no variation or even an increase in the PM$_{10}$ concentration (Table 1). Even though R8 occurred on a day with low particle concentrations, this event was also marked by the intrusion of mineral dust from northern Africa (Supplement S1S4, Table 1).

Total wet deposition fluxes in our case studies are ranging from 11 to 107 g m$^{-2}$, and do not seem to be correlated with rainfall depth nor rainfall rate (Table 1). Although indeed, higher wet deposition fluxes are higher observed for rainfall events characterized by (R5 and R6) associated with low rainfall depth but higher surface pre-rain PM10 mass concentrations (R5, R6 and R7), they still show a factor of 4 between concentration. However, events characterized by a similar surface PM$_{10}$ mass concentration (R1, R2, R3, R4 and R8+) exhibit total wet deposition fluxes that vary over a factor 4.

Table 1. General information of studied rainfall events.

<table>
<thead>
<tr>
<th>Period</th>
<th>Date</th>
<th>Hour (UTC)</th>
<th>Rain</th>
<th>Number of rain fractions</th>
<th>Mean Rainfall depth (mm)</th>
<th>Mean rainfall rate (mm h$^{-1}$)</th>
<th>Pre-rain PM$_{10}$ concentration (μg m$^{-3}$)</th>
<th>PM${2.5}$/PM${10}$ fraction (%)</th>
<th>After-rain PM$_{10}$ concentration (μg m$^{-3}$)</th>
<th>Origin of air masses</th>
<th>Cloud base height (m)</th>
<th>Total wet deposition fluxes (g m$^{-2}$)</th>
<th>pH range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun.27</td>
<td>6:55</td>
<td>12:25</td>
<td>R1</td>
<td>21</td>
<td>2.65</td>
<td>18.7</td>
<td>61</td>
<td>12.2</td>
<td>West</td>
<td>-</td>
<td>11.3</td>
<td>5.0 – 6.0</td>
<td></td>
</tr>
<tr>
<td>Feb.10</td>
<td>17:28</td>
<td>20:55</td>
<td>R2</td>
<td>17</td>
<td>1.33</td>
<td>0.49</td>
<td>70</td>
<td>6.1</td>
<td>West</td>
<td>500 – 1 000</td>
<td>12.0</td>
<td>6.3 – 6.8</td>
<td></td>
</tr>
<tr>
<td>Mar.11</td>
<td>11:06</td>
<td>13:19</td>
<td>R3</td>
<td>15</td>
<td>1.03</td>
<td>0.69</td>
<td>11.8</td>
<td>36</td>
<td>South-South West</td>
<td>2 000</td>
<td>25.7</td>
<td>7.8 – 7.1</td>
<td></td>
</tr>
<tr>
<td>Mar.11</td>
<td>14:16</td>
<td>17:24</td>
<td>R4</td>
<td>17</td>
<td>4.42</td>
<td>1.41</td>
<td>9.9</td>
<td>55</td>
<td>South</td>
<td>1 200 – 1 500</td>
<td>27.8</td>
<td>6.0 – 6.9</td>
<td></td>
</tr>
<tr>
<td>Mar.29</td>
<td>13:10</td>
<td>16:50</td>
<td>R5</td>
<td>11</td>
<td>0.90</td>
<td>0.40</td>
<td>62.6</td>
<td>52</td>
<td>North-East (surface)</td>
<td>1 500 – 2 000</td>
<td>106.3</td>
<td>7.8 – 8.4</td>
<td></td>
</tr>
<tr>
<td>Mar.30</td>
<td>4:55</td>
<td>9:31</td>
<td>R6</td>
<td>15</td>
<td>1.20</td>
<td>0.43</td>
<td>44.3</td>
<td>82</td>
<td>South</td>
<td>200</td>
<td>107.1</td>
<td>7.2 – 8.0</td>
<td></td>
</tr>
<tr>
<td>Mar.30</td>
<td>15:32</td>
<td>16:01</td>
<td>R7</td>
<td>22</td>
<td>3.04</td>
<td>11.5</td>
<td>47.2</td>
<td>80</td>
<td>South</td>
<td>1 000</td>
<td>69.0</td>
<td>6.6 – 7.4</td>
<td></td>
</tr>
<tr>
<td>Apr.13</td>
<td>3:00</td>
<td>12:12</td>
<td>R8</td>
<td>32</td>
<td>6.94</td>
<td>0.90</td>
<td>11.9</td>
<td>46</td>
<td>South</td>
<td>200 – 2 000</td>
<td>47.9</td>
<td>6.1 – 7.1</td>
<td></td>
</tr>
</tbody>
</table>
The information collected makes it possible to describe 8 case studies, illustrating contrasting situations in terms of meteorological conditions, dynamics and atmospheric aerosol loads.

3.2 Classification of case studies

Differences observed in elemental and ionic mass concentration and composition of wet deposition led us to classify the events. Volume weighted mean (VWM) mass concentrations of the particulate and dissolved phases for each rain event are represented in figure 5.2.

Regarding the particulate phase, the average concentrations of major elements were found to be higher for R5 and R6 (Al: 3.310 – 3.560 µg L\(^{-1}\), Fe: 2.650 – 3.170 vs. µg L\(^{-1}\), Si: 8.500 – 10.300 µg L\(^{-1}\)) by more than one order of magnitude in comparison to R1 to R4 (Al: 2.8 – 13.0 µg L\(^{-1}\), Fe: 5.4 – 21.0 µg L\(^{-1}\), Si: 114 – 590 µg L\(^{-1}\)). Although the mass concentrations of the major elements in the particulate phase of the rainfall vary within exhibit high variation, with values differing by a factor of 85 between events. The highest concentrations are observed for R5 and R6 events, with 33.9 and 34.5 mg L\(^{-1}\), respectively. Despite these fluctuations in average mass concentrations, the particulate phase is primarily predominantly composed of Si, Fe, and Al, with contributing to a relative contribution proportion between 73% and 85%. In contrast, the particulate Ca content displays a more pronounced variability, ranging from 73 – 85% regardless of the event. The particulate Ca content, on the other hand, was found to vary between 3 – 3% to 12% depending on the specific rain event.

Figure 5.2. Volume weighted mean mass concentrations (mg L\(^{-1}\)) of (a) particulate and (b) dissolved phases. Contribution of elements in the elemental composition of particulate phase (c) and of chemical species of ionic and elemental composition of dissolved phase (d).

Regarding the dissolved phase, R4 and R8 are the rainfall events characterized by the lowest dissolved phase VWM concentrations (~ 2 to 3 mg L\(^{-1}\)) and the largest rainfall amounts (4.4 mm and 6.9 mm for R4 and R8, respectively). These results are consistent with the dependence of wet deposition concentrations with precipitation amount and the dilution effect documented in the literature (e.g., Jaffrezo et al., 1990). The largest concentrations
are of the order of 21 mg L\(^{-1}\) and correspond to the events marked by the mineral dust intrusion from northern Africa but also the lowest precipitation amounts (0.90 mm for R5 and 1.20 mm for R6). The latter are of the same order of magnitude as values found in the literature for semi-arid environments with values of the order of 20 mg L\(^{-1}\) or for urban environments in Europe during mineral dust intrusion (11.9—20.6 mg L\(^{-1}\), marked by high contents of calcium and species of crustal origin (e.g., Dissolved Ca and SO\(_4^{2-}\) contents of the same order of magnitude 20—11% by mass are also found). The rain events are not characterized by the same contents and relative proportions of acid (NO\(_3^-,\) SO\(_4^{2-}\)) or neutralizing (NH\(_4^+\)) species depending on the rainfall. The dissolved phase is mainly composed of SO\(_4^{2-}\), NO\(_3^-\) and NH\(_4^+\) (SNA), between 58 and 85% by mass of the analyzed species for R1, R2, R3, R4, R7 and R8. In contrast, R5 and R6, and to a lesser extent R8, are composed of a non-negligible proportion of Ca in the dissolved phase (23 — 40%).

The variations in concentrations of not only acid species, but also neutralizing compounds, lead to different pH values in the rainfall (Table 1). The progressive scavenging of these compounds during the rainfall event also results in variations in pH (Asman et al., 1982). These variations in pH can be observed between the different events. For instance, R1 has a lower pH (pH < 5.6) resulting from lower average concentrations of neutralizing species. Rains R2, R3, R4, R7 and R8 have higher pH values ranging from 6.2 to 6.8, and even basic for R5 and R6 (7.5 — 8.0). The basic nature of R5 and R6 rains is attributed to the higher Ca contents of mineral dusts present in these rains, which is in agreement with the influence of dust intrusion, as previously described (Ma, 2006; Oduber et al., 2020).

To go further in the interpretation, EFs presented in table 2 as well as origin of air masses (Table 1), are used to classify case studies into three groups: (i) R1 to R4, characterized by air masses from the west and south of France and a significant enrichment in Ca (EF > 15), Ni (EF > 10, except R4), P (EF > 30, except R1) and very high for Zn (EF > 120) and S (EF > 1000); (ii) R5 and R6, characterized by a contribution of mineral dust and EFs reflecting mineral sources signature (between 1 and 2), except for Zn (8.0 – 13) and S (119 – 136), which are still lower than the other rains; and (iii) R7 and R8, characterized by low EFs (<10) for all elements, but higher than R5 and R6 ones, except for Zn (26 — 44) and S (175 — 438).

Table 2. Enrichment factors (EF\(_{\text{crust}}\)) of elements measured in the rain events relative to the upper continental crust. Bold values indicate significant enrichment of the element (EF\(_{\text{crust}}\) > 10).

<table>
<thead>
<tr>
<th>EF(_{\text{crust}})</th>
<th>Ba</th>
<th>Ca</th>
<th>Cr</th>
<th>Fe</th>
<th>K</th>
<th>Mg</th>
<th>Mn</th>
<th>Na</th>
<th>Ni</th>
<th>P</th>
<th>S</th>
<th>Sr</th>
<th>Ti</th>
<th>V</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>7.9</td>
<td>19</td>
<td>5.6</td>
<td>2.5</td>
<td>3.2</td>
<td>1.4</td>
<td>3.8</td>
<td>4.8</td>
<td>17</td>
<td>8.1</td>
<td>1281</td>
<td>5.4</td>
<td>1.7</td>
<td>2.6</td>
<td>226</td>
</tr>
<tr>
<td>R2</td>
<td>20</td>
<td>31</td>
<td>16</td>
<td>6.3</td>
<td>12.7</td>
<td>1.0</td>
<td>9.3</td>
<td>16</td>
<td>52</td>
<td>53</td>
<td>1853</td>
<td>9.9</td>
<td>4.2</td>
<td>16</td>
<td>396</td>
</tr>
<tr>
<td>R3</td>
<td>6.6</td>
<td>25</td>
<td>5.2</td>
<td>2.6</td>
<td>5.9</td>
<td>1.8</td>
<td>5.4</td>
<td>13</td>
<td>11</td>
<td>33</td>
<td>1060</td>
<td>6.3</td>
<td>3.0</td>
<td>5.0</td>
<td>121</td>
</tr>
<tr>
<td>R4</td>
<td>7.5</td>
<td>17</td>
<td>5.6</td>
<td>2.7</td>
<td>7.0</td>
<td>1.5</td>
<td>5.2</td>
<td>9.9</td>
<td>5.4</td>
<td>38</td>
<td>1521</td>
<td>5.2</td>
<td>3.0</td>
<td>14</td>
<td>190</td>
</tr>
<tr>
<td>R5</td>
<td>2.6</td>
<td>6.6</td>
<td>2.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>1.5</td>
<td>0.37</td>
<td>0.9</td>
<td>3.8</td>
<td>136</td>
<td>2.8</td>
<td>1.7</td>
<td>3.1</td>
<td>13</td>
</tr>
<tr>
<td>R6</td>
<td>2.1</td>
<td>4.4</td>
<td>1.8</td>
<td>1.3</td>
<td>1.1</td>
<td>0.92</td>
<td>1.2</td>
<td>0.25</td>
<td>2.2</td>
<td>1.4</td>
<td>119</td>
<td>2.0</td>
<td>1.5</td>
<td>2.6</td>
<td>8.0</td>
</tr>
<tr>
<td>R7</td>
<td>4.2</td>
<td>7.1</td>
<td>4.1</td>
<td>1.8</td>
<td>1.6</td>
<td>1.1</td>
<td>1.9</td>
<td>0.53</td>
<td>3.7</td>
<td>4.1</td>
<td>438</td>
<td>2.7</td>
<td>1.8</td>
<td>3.1</td>
<td>44</td>
</tr>
<tr>
<td>R8</td>
<td>3.2</td>
<td>6.2</td>
<td>2.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.1</td>
<td>1.8</td>
<td>1.6</td>
<td>5.1</td>
<td>3.2</td>
<td>176</td>
<td>2.1</td>
<td>1.8</td>
<td>3.3</td>
<td>26</td>
</tr>
</tbody>
</table>

These elements make it possible to illustrate marked differences in terms of chemical concentrations and composition for the wet deposition events. The chemical signature allows us to classify rain events into three
categories: R1, R2, R3 and R4 show a marked anthropogenic signature and are hereafter referred to as “anthropogenic” events; R5 and R6 illustrate a distinct mineral dust signature and hereafter referred to as “mineral-dust” events; when R7 and R8 correspond to mixing conditions and are hereafter referred as “mineral-dust anthropogenic mixed” events. However, for a given element, the EF show that the origin is sufficiently homogeneous regardless of the rain events, limiting the data analysis as a function of aerosol sources.

4. Discussion

4.1. From aerosol particles and Sequential wet deposition compositions to washout ratios composition

4.1.1. Overall decrease of mass concentration

We firstly quantify for each event an overall decrease in mass concentrations of the particulate (up to a factor of 50) and dissolved (up to a factor of 35) phases, without distinction of the chemical composition (Supplement S4S5). The decrease factors (DF, i.e.,) is computed for each rain as the ratio of the mass concentration of the first fraction to the last fraction of rainfall. DF were more pronounced for “anthropogenic” than for “mineral-dust” rainfall, consistent with the difference in terms of rainfall amount (1.0 – 4.4 mm vs. 0.9 – 1.2 mm), and more marked (R8) to 7.3 (R2) times higher for the particulate phase than for the dissolved phase, regardless of depending on the event, the depth or the intensity of the rainfall. The latter appear to be. This is consistent with a more efficient scavenging of coarse particles (Al, Fe and Si), predominantly in the constituting a significant share of the particulate phase mass concentration (Figure S2), compared to the secondary submicronic aerosols (SNA) that make up a large proportion of the dissolved phase (Figure S2), as previously observed in the literature. However, the study of the elemental DF suggests that it also varies strongly depending on the element, even when they have a similar predominant phase and similar size within an event (e.g., see Supplement S5, S vs. Cl predominantly in the dissolved phase (>80%) and Ti vs. Cr mainly in particulate phase (>80%).

Figure 7 illustrates the differences in the mass concentration decrease of the elements between the first and the last fraction of each rain event. Overall, we found that R3, R5 and R6 exhibit lower DF, mostly within a factor 5 for R3 and R3, and with a given type of rain (“anthropogenic” Figure 3 a factor 2 for R5, b, c and d, “mineral-dust” Figure 2, Supplement S6). In contrast, DF of R1, R2, R4, R7 (except Ni) and R8 were higher, mainly greater than 5, depending on the element and the event. The lower DFs were observed for the events characterized by the lower amount and intensity of precipitation (R3, R5 and R6), and therefore a lower efficiency to scavenge the atmosphere, 3 e and f, or “mixed” Figure 3 g and h), in other words, for atmospheric content of the same order of magnitude and for similar chemical composition (see Table 1 and Figure 2), the DF increases with rainfall depth (Figure 3). In addition, R5 and R6 were characterized by high atmospheric aerosol concentrations and a long-range transport of mineral aerosols at altitude, which also explains and low rainfall rate (< 0.5 mm h⁻¹). The latter explain the higher DF, due to high mass concentrations observed at the end of throughout the event due to both the low decrease of atmospheric content and the additional contribution of the dust particles within the clouds. Within a given event, elemental mass concentration DF exhibits significant variability depending on the element (Figure 3), even when elements share a similar predominant phase and similar size characteristics. For example, in the case of R4 event, DF of Cl is two times higher than S, while they are predominantly in the last fraction dissolved phase.
and DF of Ti is almost 4 times higher than Cr, while they are predominantly in the particulate phase. These observations underline the importance of (a) R5 and (b) R8. The dotted line represents a 1:1 fit, while the dark and light gray envelopes represent DF within a factors 2 and 5 deviation, respectively, considering individual element behaviors when assessing wet deposition dynamics.

Figure 3. Element decrease factor (DF) for each rain event. The dotted line marks a DF = 5. Missing bar means that the concentration in the first fraction and/or the last fraction of rainfall is below detection limit. Blue bars, orange bars and green bars correspond to “anthropogenic”, “mineral-dust” and “mixed” events, respectively.

4.2.2. Intra-event evolution

Sequential sampling enabled the observation of various patterns of concentration evolution during rainfall events. Some events were characterized by a continuous decrease in mass concentrations throughout the rainfall, ultimately reaching a lower and constant level in the final fractions regardless of the phase nor the chemical species (R1, R7). This kind of evolution is commonly found in the literature, with a high-decreasing trend in the first 1 to 3 mm, until reaching a constant level until the end of the rainfall, for both dissolved and particulate phases (e.g., Jaffrezo et al., 1990; Kasahara et al., 1996). In contrast, although lower and constant levels were reached at the end of rainfall, other events R4, R5 and R8 exhibited punctual increases or stabilization of the concentrations of both phases during the rainfall (R4, R5 and R8), while the rest of the R2, R3 and R6 events showed only punctual increases of the dissolved phase (R2, R3 and R6).

As an illustration, Figure 8 shows the temporal evolution of atmospheric concentrations (PM_{10} and PM_{2.5}) with time, the evolution of mass concentrations of dissolved and particulate phases, rainfall intensity and droplet concentrations (i.e., the number of droplets measured by the disdrometer divided by the unit of volume of the
collected rain fraction) during R6 and R8 events. It has been observed that atmospheric concentrations evolve differently according to particle size classes (PM$_{2.5}$ vs. PM$_{2.5,10}$) and rainfall phases. Generally, precipitation is associated with a decrease in atmospheric concentrations during rainfall (Table 1), except for event R6 (Figure 4d). However, an increase in concentrations of the coarse aerosol fractions (PM$_{2.5,10}$) is observed quite systematically as rainfall intensities decrease (<below 0.5 mm h$^{-1}$), especially for events R2, R4, and R8 (between 4:00 and 5:00) as shown in Figure 8a.

Increase of wet deposition concentrations during rainfall has been previously observed by some authors (e.g., Karşı et al., 2018). Here, since the latter were systematically correlated with a decrease in precipitation intensity (Figure 4d, i) and an increase in droplet concentration (Figure 4d, j), there. Several possible explanations are considered for these observations: this could be either due to an effect of "over-concentration" of the falling raindrops or a release of aerosols due to their evaporation (Huff and Stout, 1964; Baechmann et al., 1996a, b; Gong et al., 2011); or an increase in scavenging efficiency due to the reduction of droplet size distribution implying a larger effective surface of capture (e.g., Jones et al., 2022) as well as to a local emission phenomenon (Karşı et al., 2018).

The high temporal resolution of the sampling, and hence, the determination of the chemical composition of the dissolved and particulate phases, allows identifying more accurately the cause of these concentration increases.

For rainfall events R4 and R8 (Figure 4a-e), notable increases in concentration during the rain are observed for both the particulate and dissolved phases and are. These increases appear to be associated with higher precipitation in altitudes than at the surface according to, as indicated by the ceilometer measurements (Figure 5). A plausible explanation for these observations could be the partial evaporation of raindrops as they fall, could thus reduce, leading to a reduction in their diameter and concentrate them. Assuming a subsequent increase in mass concentration. It is assumed that only the water evaporates and not in this process, while the chemical species contained in the raindrops remain. Consequently, the amount of initial material removed by the droplets, expressed in terms of their volume, becomes greater (Baechmann et al., 1996b). On the contrary, if the evaporation of the droplets is complete as they fall, this has can result in the effect of releasing aerosols into the atmosphere, thereby increasing atmospheric concentrations (Huff and Stout, 1964; Gong et al., 2011). Therefore, this can increase then affect the mass concentrations of the following subsequent raindrops by capturing as falling raindrops capture the released aerosols as they fall.

For R6, there is also an increase in mass concentrations during rainfall, but only for some species (Figure 4f-j). NO$_3^-$ and NH$_4^+$ concentrations increase by a factor of 4 to 5, while dissolved Zn and Cu concentrations increase by a factor of 5 to 16 (included in the “others” category in Figure 2). The observed increase in NO$_3^-$ and NH$_4^+$ mass concentrations in precipitation may be attributed to an increase in additional input by local emissions. Indeed, during this period, between 7:00 and 9:00 a.m., low precipitation rates and a very low boundary layer height (are observed, with the cloud base height around 200 m) are observed between 7:00 and 9:00 a.m. This specific timeframe corresponds to a period where of significant road traffic, which is important and close in proximity to the monitoring site. In addition, the NO$_x$ concentrations measured at the LISA air quality station during the same time steps also show display increases of more than a factor of 5 over the same time steps. As,
Considering that NOx, Zn and Cu are tracers of automotive activity (Thorpe and Harrison, 2008; Bukowiecki et al., 2009; Pant and Harrison, 2013), this observation provides further support for the hypothesis of the influence of local emissions (in this case road traffic) on the increase in rainfall mass concentrations of wet deposition throughout the event. R6 is therefore a good case study to illustrate the combined influence of changing meteorological parameters and local sources on the evolution of deposition concentrations during a rain event.

Figure 8a. R8 (a-e) and R6 (f-j) case studies. Evolution of PM$_{10}$ and PM$_{2.5}$ concentrations (µg m$^{-3}$; a and f) with time. The different sampling periods for each rain fraction are indicated by the intervals in blue (a and f). Evolution of dissolved mass concentration (mg L$^{-1}$; b and g), particulate mass concentrations (mg L$^{-1}$; c and h), rainfall intensity (R in mm h$^{-1}$; d and i) and droplet concentration (ND$^{+}$ L$^{-1}$; e and j) throughout rain events.

By conducting a comprehensive analysis of precipitation characteristics, atmospheric dynamics, and local influences, we aimed to shed light on the underlying mechanisms responsible for the observed punctual increases in mass concentrations during our study cases. Our results highlight the importance of the droplet size distribution, its evolution as well as the presence of local sources that evolve also during the rain event. Such investigations are
essential to unravel the complexities of wet deposition dynamics and deepen our understanding of the intricate interactions between atmospheric particles and wet deposition processes.

4.2. Washout ratios and scavenging coefficient

Based on the criteria explained Sect. 2.4, we selected R1, R2, R4. The developed measurement strategy for both the chemical characterisation of aerosol and wet deposition (see section 2.3) enables to compare the concentrations in the air and in the first samples of rain, excluding the effect of dilution. Total mass concentrations estimated from chemical analysis of aerosol filters represent from 15 (R3) to 55% (R8) of the measured PM$_{10}$ mass concentration (Table 1), depending on the situations.

Total mass concentrations measured in the first fraction of rainfall events (0.06 to 0.10 mm) are higher when pre-rain PM$_{10}$ surface concentrations are greater (Table 1). However, for R2, R3 and R8, PM$_{10}$ concentrations are of the same order of magnitude (11.8 – 13 µg m$^{-3}$) while total mass concentrations in their first fraction differ by a factor 1.8 (R2: 28.1 mg L$^{-1}$; R3: 49.8 mg L$^{-1}$; R8: 38.7 mg L$^{-1}$). The latter is higher when the PM$_{2.5}$/PM$_{10}$ ratio is lower (Table 1). This suggests that PM$_{2.5}$ are scavenged less effectively than coarser particles (PM$_{2.5}$–10). R6 and R7 events are characterized by similar pre-rain PM$_{10}$ surface concentrations as well as similar PM$_{2.5}$/PM$_{10}$ ratios. However, R6 event shows total mass concentrations in the first fraction 2.4 times higher than R7 (68.3 mg L$^{-1}$). This can be explained by the long-range transport of mineral dust in altitude. Therefore, wet deposition fluxes at the beginning of rainfall seem to be primarily correlated to PM$_{10}$ surface concentrations and secondly to the coarse fraction (PM$_{2.5}$–10 / PM$_{10}$). This is consistent with the aerosol size dependence of scavenging mechanisms and the minimal efficiency of the BCS mechanism between 0.2 and 2 µm (e.g., Wang et al., 2010).

Figure 5, Element mass concentration in the first fraction of the rainfall (µg kg$^{-1}$) as a function of the element mass concentration in the aerosol (µg kg$^{-1}$) of (a) R2, (b) R3 and (c) R8. The solid lines with envelopes correspond to washout ratios of the order of 10 000 ± 3 000, while the dashed lines with envelopes correspond to washout ratios of 2 000 ± 1 000.

Figure 5 depicts the total concentration of elements (dissolved + particulate) in the first rain fraction (µg kg$^{-1}$), plotted against the total concentration of elements measured in the aerosol (µg kg$^{-1}$) for R2, R3 and R8 rain events, the only rain samplings adapted for this comparison. According to the equation 2, the ratios in these two concentrations illustrated in Figure 5 correspond to the WR for analysed species (Supplement S6). It appears that the scavenging efficiency is clearly depend on the element. As an example, for similar particulate mass concentrations (0.02 µg kg$^{-1}$), we found higher P concentration in the first fraction of R2 (88 µg kg$^{-1}$) in comparison with Ba (14 µg kg$^{-1}$).
We found that for a given rain event, WR values can vary up to a factor of 11 to 30 from an element to another (Supplement S6). WR of elements found in R2 are primarily in the 2,000 ± 1,000 envelopes, while WR of R3 are systematically higher. Regarding R8 events, we observe an intermediate behavior in terms of WR values. In all the cases, the values of WR are higher than the values previously estimated, in agreement with the dilution effect on the WR available in the literature. Indeed, by taking into account the first fraction of the rainfall, the calculation minimizes the influence of the ICS contribution as opposed to the WR values considering the entire event. The difference of WR as a function of element could be due to either an additional source of elements in the rain (e.g., ICS or gas phase scavenging), a difference in BCS efficiency, e.g., due to different size distribution or hygroscopicity of the element-bearing particles, or a contribution of PM with a diameter greater than 10 μm (e.g., Jaffrezo and Colin, 1988; Cheng et al., 2021; Kasper-Giebl et al., 1999; Cheng and Zhang, 2017). Cheng et al. (2021) emphasized the predominant role of particle size distribution on the WR. Indeed, the elements associated with the coarse mode (PM_{2.5-10}) present the largest WR, except Si and Fe, while the elements that are dominant in the fine particles (PM_{2.5}) had lower WR. Even if we have no information on the size distribution of aerosol chemical composition, the EF shows that the elements associated with coarse mode by Cheng et al. (2021) are from dust origin, and those associated with fine mode (e.g., S, Zn) are of anthropogenic origin, in our samples. Our results are consistent with these observations: while elements linked to coarse particles, such as calcium (WR ranging between 2,500 and 9,800), exhibit higher WR values compared to those associated with fine particles, such as zinc (WR ranging between 1,000 and 3,800). However, as highlighted in the review of Cheng et al. (2021), some elements found primarily in the coarse mode, such as Fe (WR = 3,800), exhibit similar WR value to elements associated with fine particles (e.g., Zn) as illustrated in the event R3.

However, our study revealed a significant variation between different events for the same chemical species. Interestingly, for each element, except S, this variability consistently follows a decreasing trend in WR with increasing pre-rain PM_{2.5}/PM_{10} fraction (Table 1). In addition, we observed an increasing trend in WR with higher rainfall rates. For instance, WR of Ca increase from 2,500 to 9,800 when rainfall rate increases from 0.5 to 1.2 mm h^{-1}. This shows that the particle size distribution is probably not the major factor acting on particle below-cloud wet scavenging. These results are particularly noteworthy because they represent the first instance of WR measurements unaffected by the dilution effect.

Scavenging coefficients (Λ) can be determined from the WR calculation using equation (3). These estimations are the first available for major and trace metals. Figure 6 illustrates Λ of elements as a function of rainfall rate. Our results show that Λ increases with rainfall rate according to a power law, as previously shown in the literature (e.g., Xu et al., 2019; Wang et al., 2014). At a rainfall rate of R = 1 mm h^{-1}, we obtained Λ values, between 0.5 and 1.3 × 10^6 s^{-1}, with the exception of chlorine. These values fall within the range (2.6 × 10^{-7} – 1.7 × 10^6 s^{-1}) documented for radionuclides by Sparmacher et al. (1993). R8 events to discuss the relative contributions of ICS and BCS. The ICS— for controlled experiments with similar rainfall rate and aerosol diameters (0.98 and 2.16 μm). Scavenging coefficients evolution with rainfall rate that varies from one element to another, with slopes ranging from 0.5 for sulphur to 2.9 for chlorine. These differences cannot be attributed solely to mass concentration, particle size, or water-soluble fraction of elements. For instance, while elements associated with the same aerosol types, such as Na and Cl or Al, Ti and Si, show similar behavior with rainfall rate, chlorine and
sulphur exhibit contrasting trends even though they are both water soluble elements. Similarly, scavenging coefficients for coarse particle (e.g., Al and Si; $1.5 - 8.5 \times 10^{-7} \text{s}^{-1}$) are comparable to those for fine particle (Zn and S; $0.9 - 6 \times 10^{-7} \text{s}^{-1}$). Aerosol scavenging does not depend on a single parameter, but is governed by the interaction of several parameters including the intrinsic properties of the aerosol (size, solubility) and of the precipitation (intensity, size and number of droplets). Consequently, our results underline the critical role of rainfall rates and aerosol particle properties for the determination of both WR and Λ.

Figure 6. Scavenging coefficient (Λ, s^{-1}) as a function of rainfall rate (R, mm h$^{-1}$) for studied elements.

4.3. Contribution of in-cloud and below cloud scavenging

The ICS_C of chemical species analyzed in the selected rains (see 2.4) are presented in Table 3. We observe different ICS_C contributions within an event for different chemical species, as well as different ICS_C values of the same chemical species between different events.

Table 3. Relative ICS contribution (ICS_C) for R1, R2, R4 and R8 events. **Bold** values indicate predominance of ICS.

<table>
<thead>
<tr>
<th>Chemical species</th>
<th>ICS_C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>62</td>
</tr>
<tr>
<td>Element</td>
<td>NO(\text{r})</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>

For R1, R2 and R4 anthropogenic events, the elements of crustal origin found in the coarse fraction of aerosols (Al, Si, Fe, Ti, Ca, Mg, Sr) are mainly deposited via BCS mechanism. This observation is consistent with previous in situ studies conducted in urban environments, which have shown that the BCS mechanism accounts for a significant proportion (ranging from 52% to 99%) of calcium wet deposition in urban environments (Ge et al., 2016; Karşı et al., 2018; Ge et al., 2021a; Berberler et al., 2022). In contrast, the wet deposition of crustal elements in mineral and anthropogenic event R8 are mainly deposited via ICS mechanism (57—75%).

With the exception of V (37%) and Cl (49%), all chemical species observed in R8 are mainly deposited through ICS mechanism (57—75%). The characteristics of R8 suggest two possible reasons explaining ICS prevalence: 1) since the precipitation accumulation is higher, the contribution of the rainout mechanism, due to atmospheric column depletion below the cloud, is also expected to be higher; 2) the event is characterized by a long-distance transport of mineral dust, which explains a more pronounced contribution of the ICS for crustal elements.

For anthropogenic events, Mn and NH\(\text{4}\)\(^+\) was found to be mainly deposited by attributed to the BCS mechanism, between accounting for 55 and %87. This corresponds to a similar range of values reported for NH\(\text{4}\)\(^+\) in other urban environments in Austria (65%), Turkey (60 – 95%) and China (47 – 84%) (Xu et al., 2017; Karşı et al., 2018; Berberler et al., 2022; Monteiro et al., 2021; Ge et al., 2021a). In the literature, large variations are found for the contribution of the BCS mechanism for sulfate and nitrate in urban environments shows large variations, with reported values ranging from 50% to 98% (Ge et al., 2016; Xu et al., 2017; Karşı et al., 2018; Ge
et al., 2021a; Monteiro et al., 2021; Berberler et al., 2022), and even down to as low as 16% for sulfate (Aikawa et al., 2014). Here, we found that the BCS of sulfate and nitrate ranging from anthropogenic events varies between 38% and 77%, depending on the events. Few chemical species show a predominance of ICS mechanism in the wet deposition of anthropogenic events that could be due to season explaining the difference, possibly be influenced by seasonal factors, different local sources (such as oil and wood heating systems for SO$_2^-$, Zn), gas scavenging contributions (with nitrate being mainly gaseous in summer and particulates in winter) (Audoux et al., 2023), or long distance transport. Thus, this explains why the BCS contribution can be explained by linked to the origin of air masses coming from the Atlantic Ocean.

Nevertheless, overall, anthropogenic events are on average found to be primarily controlled by the BCS mechanism, accounting for 53% to 77% of the wet deposition of chemical species.

In contrast, for the mixed event R8, influenced by both local sources and long-distance transport of mineral dust, the majority of chemical species, except for V (37%) and Cl (49%), are predominantly deposited through the ICS mechanism, accounting for 57% to 75% of their wet deposition. While the long-distance transport of mineral dust may explain the pronounced contribution of the ICS mechanism for some crustal elements, it is evident that this factor alone cannot account for the prevalence of ICS for all chemical species. Certain elements observed in event R8, such as NH$_4^+$, are not associated with mineral dust. Since the rainfall depth is higher in this case, the higher ICS contribution can be due to an effective scavenging of the air column below the cloud (Ge et al., 2021a). On the basis of the 4 events for which the ICS$_c$ and BCS$_c$ mechanisms were calculated, we cannot conclude on the influencing factors. Indeed, for the events not characterized by long-range dust transport (i.e., R1, R2 and R4), no decrease in the average BCS$_c$ with increasing rainfall depth is observed, in contrast to the findings of Ge et al. (2021). This may be due to a difference in precipitation parameters (i.e., intensity, drop size and cloud base height) and PM$_{10}$ concentrations (Table 1). Indeed, R1 is characterized by twice the PM$_{10}$ concentrations but 2 to 4 times lower precipitation depth. In addition, the cloud base height is higher for R1 compared to R2. This could be a reason why the BCS$_c$ is higher even though the amount of precipitation is higher and the PM$_{10}$ concentration is lower.

Indeed, the wet deposition that occurs after the depletion of the atmospheric column below the cloud is primarily influenced by aerosol transported and scavenged within the cloud, explaining a high contribution of ICS mechanism.

Several factors may contribute to these differences in the observed contribution of ICS and BCS between events. One key factor is the variation in meteorological conditions, including intensity, drop size, and cloud base height, as well as PM$_{10}$ concentrations (Table 1). Numerical studies have highlighted the importance of not only cloud height but also cloud thickness in the relative contribution of BCS and ICS (Kim et al., 2021; Migliavacca et al., 2010; Wiegand et al., 2011). Therefore, cloud thickness measurements should be planned to better understand the scavenging process and its contribution to the total wet deposition. This dependence can be explained by the fact that the higher the cloud height, the greater the volume of air swept by the droplets, and therefore the greater the quantity of aerosols encountered by the precipitating droplets, at equal and homogeneous concentration on the atmospheric column. For example, event R1 has higher PM$_{10}$ concentrations but 2 to 4 times lower rainfall.
depth compared to other anthropogenic events. In addition, R4 has a higher cloud base height compared to R2, which could affect the BCS\(_C\) despite the higher precipitation amount and lower PM\(_{10}\) concentration. These variations in meteorological conditions and atmospheric dynamic could influence BCS efficiency as well as aerosol content to be scavenged below the cloud, leading to the observed discrepancies in BCS\(_C\) and ICS\(_C\) values. Consequently, the complex interactions between meteorological conditions, aerosol properties, local sources and long-range transport can result in different scavenging behaviors for each event, highlighting the challenge and the need of wet deposition studies.

5. Conclusion

Measurement campaign has been done in the south-east of the Paris region agglomeration to monitor the evolution of chemical composition of wet deposition with time during rainfall events. The collected rainfall events illustrate contrasting situations in terms of meteorological conditions (rainfall depth and intensity), atmospheric dynamics (cloud base height between 200 and 2500 m), as well as different atmospheric PM\(_{10}\) concentrations ranging from 10 to more than 60 \(\mu\)g m\(^{-3}\), characterized by the urban environment of the study site, but also by mineral dust intrusions from the Sahara. Using additional measurements, three categories of events were identified according to the origin of the aerosols found in the rain: "anthropogenic" (R1 to R4), "anthropogenic and mineral-dust" (R5 and R6) and "mineral-dust" mixed" rainfalls (R7 and R8).

Our study illustrates the variability of both the mass concentrations and the chemical composition of the particulate and dissolved phases. For the different rains sampled, we observe a rapid decrease in mass concentrations as the rain progresses. The decrease is more pronounced for the particulate fraction (up to a factor of 50) than for the dissolved fraction (up to a factor of 33), regardless of the event. However, some phases of increasing mass concentrations have been identified during certain events. We have proposed several hypotheses, such as local sources, evaporation of droplets and increase of scavenging efficiency, that warrant the need to thoroughly document the precipitation characteristics, atmospheric dynamics, and surface PM\(_{10}\) and PM\(_{2.5}\) content throughout the entire rainfall event.

Initial chemical composition of rainfall and the chemical composition of atmospheric PM\(_{10}\) allowed us to calculate washout ratios (WR) describing the very beginning of the rainfall, before the dilution effect occurs when the contribution of below cloud scavenging is greater. WR varied from below 2 000 for one event to up to 10 000 for another, depending on the chemical species, and consistent with an increasing trend with increasing rainfall rate.

Scavenging coefficients were also determined based on the WR, rainfall intensity and cloud base height. We obtained values in the range of 5.4\(\times\)10\(^{-8}\) to 1.1\(\times\)10\(^{-5}\) s\(^{-1}\) for studied elements. We found a power-lawed increase of the scavenging coefficient with the rainfall rate, as previously shown in the literature, indicating a greater removal of particles from the atmosphere at higher rainfall intensities. However, evolutions are not directly linked to aerosol size or solubility but rather to the multiple intrinsic parameters of aerosol and precipitation. The implications of these results are substantial, as they emphasize the need to consider rainfall characteristics and aerosol properties for accurate estimations of the scavenging process and its impact on atmospheric deposition. Such efforts will help refine and develop more reliable parameterizations that can accurately represent scavenging efficiency for a wider range of environmental conditions.
We estimate the contributions of the in-cloud scavenging (ICS) and below cloud scavenging (BCS) mechanisms for some rainfall events (R1, R2, R4 and R8). The results show a significant contribution of both mechanisms, with a higher contribution of the BCS mechanism, between 53 and 77% in average, for rainfall events characterized by a larger anthropogenic contribution and local sources (R1, R2 and R4). However, the contributions of scavenging mechanisms are as variable from one chemical species to another as they are from one rainfall to another, depending on their specific sources, atmospheric dynamic and meteorological conditions. The anthropogenic and mineral mixed event (R8), characterized by long-distance transport of mineral dust, shows a predominant contribution of the ICS mechanism. This illustrates, from 57 to 75%, depending on the chemical species. It is difficult to determine a general trend based on a limited number of events, because of the complex interactions between meteorological conditions, aerosol properties, local sources and long-range transport that there can be contrasting situations on the same study site, result in different scavenging behaviors for each event. However, our findings provide new directions for future research, particularly regarding the effect of droplet size distribution and the effect of cloud base height on wet deposition dynamics.

These results highlight the importance of understanding the physical and chemical processes involved in the transfer of aerosols from the atmosphere to the precipitation in order to better assess the impact of aerosol particles pollution on the environment.

To gain a comprehensive understanding of the factors influencing scavenging mechanisms, further investigation is necessary, including a larger data set covering a wider range of meteorological conditions and aerosol characteristics. Such a comprehensive approach will enable a more robust analysis and to confirm and/or identify the dominant factors that drive scavenging during rainfall events.

Acknowledgment

This work is performed in the framework of the research programs DATSHA supported by the French national program LEFE (Les Enveloppes Fluides et Environnement) and Foundation Air Liquide, and was also supported by LISA, UPC, UPEC, UMR CNRS 7583 via its internal project call. Some of the analyses (CI, XRF) presented were performed with the instruments of the PRAMMICS platform OSU-EFLUVE UMS 3563.

Author contributions

TA: Conceptualization, Formal analysis, Investigation, Writing – original draft, Writing – review & editing. **Visualization.**
BL: Conceptualization, Investigation, Writing – review & editing, Supervision, Funding acquisition, Project administration. **KD:** Formal analysis, Investigation, Writing – review & editing. **FM:** Methodology, Resources. **GN:** Formal analysis, Resources. **OL:** Formal analysis. **SC:** Conceptualization, Formal analysis, Project administration.
Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

LCSQA: Conformité technique des appareils de mesure, Laboratoire Central de Surveillance de la Qualité de l’Air, 2021.

