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Abstract. Physical numerical weather prediction models have biases and miscalibrations that can depend on the weather

situation, which makes it difficult to postprocess them effectively using the traditional model output statistics (MOS) framework

based on parametric regression models. Consequently, much recent work has focused on using flexible machine learning

methods that are able to take additional weather-related predictors into account during postprocessing, beyond the forecast of

the variable of interest only. Some of these methods have achieved impressive results, but they typically require significantly5

more training data than traditional MOS and are less straightforward to implement and interpret.

We propose MOS random forests, a new postprocessing method that avoids these problems by fusing traditional MOS with

a powerful machine learning method called random forests to estimate "weather-adapted" MOS coefficients from a set of pre-

dictors. Since the assumed parametric base model contains valuable prior knowledge, much smaller training data sizes are

required to obtain skillful forecasts and model results are easy to interpret. MOS random forests are straightforward to imple-10

ment and typically work well, even with no or very little hyperparameter tuning. For the difficult task of postprocessing daily

precipitation sums in complex terrain, they outperform reference machine learning methods at most of the stations considered.

Additionally, the method is highly robust to changes in data size and works well even when less than a hundred observations

are available for training.

1 Introduction15

Although physically-based numerical weather predictions (NWPs) have made significant improvements in recent decades

(Bauer et al., 2015), statistical postprocessing is still necessary to correct systematic errors in the forecasts and accurately quan-

tify their uncertainty (Vannitsem et al., 2021). The popular model output statistics (MOS) framework introduced by Glahn and

Lowry (1972) postprocesses NWPs using linear regressions between historical observations and their corresponding predic-

tions. Since then, the idea behind MOS has been extended to ensemble-postprocessing (EMOS) using more flexible regression20

models that allow for heteroscedastic forecast errors (NGR, Gneiting et al., 2005) or non-Gaussian responses (e.g., Scheuerer,

2014; Simon et al., 2019).

Postprocessing with MOS or EMOS is intuitive and can work well, but requires a dataset that is both sufficiently large to

allow for stable estimation of model coefficients and homogeneous enough for a single model with constant coefficients to

work well. This means that the numerical weather model which is to be postprocessed must have relatively constant systematic25
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biases and miscalibrations. In order to obtain such a homogeneous dataset, it is standard practice to estimate separate MOS for

different atmospheric quantities, locations and lead times. Seasonal changes in predictability can be accounted for using time-

adaptive MOS that employ sliding window training schemes (Gneiting et al., 2005) or by replacing constant model coefficients

with cyclical functions of the day of the year (Lang et al., 2020). This approach also works with other univariate predictors

such as altitude (Schoenach et al., 2020).30

Weather-adaptive postprocessing – i.e., allowing biases and miscalibrations of the NWP model to depend on the weather

situation – is necessary to obtain optimal forecast performance, but is made complicated by the large number of potentially

relevant atmospheric variables whose interactions are unknown or poorly understood. It is possible to include such additional

predictors in a MOS model by using selection procedures based on expert knowledge (Stauffer et al., 2017b) or gradient

boosting (Messner et al., 2017), but this requires that the interactions are either ignored or parameterized a priori.35

Machine learning (ML) methods have become increasingly popular postprocessing tools in recent years because they are

well-suited to deal with this high-dimensional predictor space (Schulz and Lerch, 2022). Neural networks (NNs), for example,

have been used in parametric distributional regressions similar to EMOS (Rasp and Lerch, 2018) and semi-parametric quantile

function regressions based on Bernstein polynomials (Bremnes, 2020). The predictive skill of NNs can be impressive, but

they typically require combining data from many different stations to effectively train the model. Purely local (station-wise)40

ML-based postprocessing is often performed using random forests, which generally assume either a parametric distribution for

the response (Schlosser et al., 2019) or predict a collection of specified quantiles (Taillardat et al., 2016; Evin et al., 2021),

although combinations of the two have been employed as well (Taillardat et al., 2019). Random forests have the advantage

of being straightforward to implement, but they generally can only approximate linear (or other very smooth) functions by

combining many (highly nonlinear) step functions from individual trees. This may prove to be somewhat of a disadvantage in45

MOS applications, where the relationship between observations and model outputs is typically close to linear.

MOS random forests (MOS forests for short) fuse traditional and ML-based postprocessing by first assuming an appropriate

parametric MOS model and then adapting its coefficients to the weather situation at hand using random forests. The split

variables and corresponding split points in the individual trees of a MOS forest are not selected based on properties of the

response variable directly (e.g., their mean, quantiles, or other parameters) as done in quantile forests or distributional forests.50

Instead the splits are chosen based on changes in the MOS coefficients of the assumed model, which may reflect either changes

in the marginal distribution of the response (e.g., captured by intercepts) or changes in the dependence on the model outputs

(e.g., captured by slopes). The predictor space is thus partitioned to ensure homogeneity with respect to the MOS coefficients,

meaning that a single model with constant coefficients can be assumed to work well in each corresponding subsample of the

data. In order to decrease variance and allow for smooth dependencies, a MOS forest combines the partitions from many55

different MOS trees grown using bootstrapped or subsampled data (Breiman, 1996) and only random subsets of predictor

variables for splitting at each node (Breiman, 2001). Weather-adapted MOS coefficients predicted by the MOS forest can then

be interpreted and used for postprocessing in the usual way.

A detailed description of MOS forests can be found in Sec. 2. In the following Sec. 3, MOS forests and reference methods

are used to postprocess ensemble predictions of daily-precipitation sums in complex terrain. The results of this real-world60
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application are presented in Sec. 4. Strengths and limitations of the proposed method are discussed in Sec. 5 and summarizing

remarks conclude the paper in Sec. 6.

2 MOS random forests

MOS forests adapt the regression coefficients of an assumed (non-adaptive) base MOS to some set of additional atmospheric

variables that characterize the current weather situation. Thus, it is first necessary to choose a suitable base MOS for the specific65

postprocessing task at hand (Sec. 2.1). Subsequently, individual MOS trees are grown from this base MOS using model-based

recursive partitioning algorithms which seek to identify homogeneous weather partitions of the predictor space within the tree’s

terminal nodes (Sec. 2.2). Individual MOS trees already allow for weather-adaptive postprocessing but can only approximate

smooth effects through step functions with many splits. To better capture smooth effects and improve predictive performance,

MOS forests therefore combine the partitions from not just one, but many different MOS trees learned on random subsamples70

of the full data, yielding the final weather adapted MOS (Sec. 2.3). This model can then be used for postprocessing "as usual".

2.1 Choosing a base MOS

The goal of MOS is to improve upon the quality of physical NWP models by identifying their "weather-related statistics" using

regression models trained on historical observations and corresponding predictions (Glahn and Lowry, 1972). Since MOS was

first introduced fifty years ago, there have been substantial changes in both (i) what is meant by "weather-related statistics" in75

the context of MOS and (ii) the flexibility of the regression methods used to identify these.

In the simplest case – with a single (deterministic) forecast for an atmospheric quantity and forecast errors that may be

assumed Gaussian – systematic biases in the NWPs can be identified using a classical linear regression. A classical example is

to regress observed temperatures y on the corresponding temperature predictions x:

E(y | x) = β0 +β1 ·x. (1)80

MOS coefficients β0 and β1 then describe how the temperature forecast from the physical model should be corrected to better

match real world observations. For the ideal case of an NWP with no systematic biases, these values would be β0 = 0 and

β1 = 1. In the classical linear model, coefficients are estimated by miniziming the sum of the squared errors (OLS) on some

set of training data, which is equivalent to minimizing the root mean square error (RMSE) of the residuals.

This simple postprocessing model not only allows biases in the NWP to be corrected, but also implicitly estimates the85

uncertainty of the postprocessed forecast. Namely, if y can be assumed to follow a Gaussian distribution conditionally on x,

the minimum RMSE obtained during model estimation is an estimate of the standard deviation σ of the forecast distribution

and Eq. 1 may be rewritten as

y ∼N (µ,σ2), where µ= β0 +β1 ·x and logσ = γ0, (2)

Generally though, weather forecasts do not have constant uncertainty and many atmospheric variables do not follow Gaussian90

distributions, even conditionally. To allow for more flexibility in postprocessing, modern implementations of MOS therefore
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often employ distributional regressions (Kneib et al., 2021), also known as generalized additive models for location, scale

and shape (GAMLSS, Rigby and Stasinopoulos, 2005). In distributional regression, the observation y can follow some other

parametric distribution and all parameters (not just the mean) of this distribution are modeled on appropriate predictors derived

from the NWP (ensemble).95

Typically, coefficients of distributional regression models are estimated by maximizing the log-likelihood ` of the distribu-

tional parameters given the observations or by minimizing the continuous ranked probability score (CRPS). One prominent

example in the postprocessing literature is the nonhomogeneous Gaussian regression (NGR) of Gneiting et al. (2005), also

known as EMOS, where the parameters µ and σ in Eq. 2 are modeled on the mean and spread of an NWP ensemble, re-

spectively. Other examples include truncated Gaussian and generalized extreme value response distributions to forecast wind100

speeds (Thorarinsdottir and Gneiting, 2010; Lerch and Thorarinsdottir, 2013) and censored and shifted gamma distributions to

forecast precipitation (Baran and Nemoda, 2016).

In the subsequent sections we therefore assume that the base MOS for y explained by x uses some parametric model with

likelihood `((y,x),θ) and r-dimensional parameter vector θ that is estimated through likelihood-maximization:

θ̂ = argmax
θ

N∑
i=1

`((yi,xi),θ), (3)105

In the example from Eq. 2 the likelihood is Gaussian with parameter vector θ = (β0,β1,σ) but other distributions, like the ones

from the previous paragraph, could be used in the same way.

2.2 Growing individual MOS trees

In order to adapt the coefficients of the base MOS chosen in Sec. 2.1 to some additional weather-related predictors z1,z2, . . .zk,

a single MOS tree partitions the predictor space Z1×Z2× ·· ·×Zk into disjoint subsets that can each be considered "homo-110

geneous weather situations for the purpose of NWP postprocessing" – i.e., where constant MOS coefficients work well. It is

grown using model-based recursive partitioning algorithms (Zeileis et al., 2008; Seibold et al., 2018) according to the following

steps:

Step 1: Estimate coefficients of the base MOS

MOS coefficients θ are estimated through likelihood maximization on the i= 1, . . . ,N observations yi and corresponding115

predictions xi in the dataset. This is done by solving the first-order condition
N∑
i=1

s((yi,xi),θ) = 0, (4)

where

s((yi,xi),θ) =

(
∂`((yi,xi),θ)

∂θ1
, . . . ,

∂`((yi,xi),θ)

∂θr

)>
(5)

contains the partial derivatives of the log-likelihood with respect to each coefficient – i.e., the model scores – evaluated at the120

i-th observation pair (yi,xi).
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Step 2: Select the splitting variable

Scores with respect to each coefficient are again computed at all observations (Eq. 5) and evaluated at the estimated coefficients

θ̂ = (θ̂1, . . . , θ̂r) from Step 1. Since the estimated coefficients were obtained using Eq. 4, each score vector has a mean of zero.

If the single MOS with constant coefficients fits well, the scores for each observation should randomly fluctuate around zero.125

On the other hand, systematic departures of the scores from zero along some of the variables in z suggest that predictions can

be improved by splitting the data and estimating separate postprocessing models on the two resulting subsamples. Whether or

not the scores fluctuate randomly or depend on one of the weather-related predictors can be assessed using an independence

test between the scores and each of the variables in z (see permutation tests of Hothorn et al., 2006, 2008). If there is a

significant dependence with respect to at least one of the variables, then the most significant variable (i.e., with the smallest130

p-value) is selected for splitting. The underlying test statistic captures the overall dependence in all score components (i.e., all

MOS coefficients) simultaneously using a quadratic form. To account for assessing multiple variables from z, a Bonferroni

correction for multiple testing is employed.

Step 3: Identify the optimal split point

Once the splitting variable zj has been selected, an exhaustive search is performed over all possible split points to identify135

the partition that improves the log-likelihood the most. For numerical splitting variables, up to 2 · (N − 1) different MOS are

estimated in this step – separate models in both subsamples for each of the N −1 possible split points. The number of possible

split points (and thus estimated models) decreases for each tie among the realizations of zj . For unordered categorical splitting

variables, the number of possible split points is equal to the number of ways in which the different categories can be divided

into two subgroups, and thus increases exponentially with the number of distinct categories.140

Repeat previous steps

The three steps described above split a dataset of size N into two disjoint subsamples that are then each postprocessed using

a separate MOS. In order to grow a MOS tree, these steps are repeated for each subsample until a stopping criterion has been

reached. The terminal nodes of a MOS tree (i.e., those nodes that are not split any further) contain disjoint subsamples of the

full data that correspond to different homogeneous weather situations for postprocessing with MOS (Figs. 1 and 2).145

Coefficients θ1, . . . ,θk in each terminal node are obtained through likelihood-maximization on the corresponding subsample.

Note that this can also be understood as a weighted estimated using the full data, where weights are either zero or one, indicating

whether or not the respective observation is in the subsample of interest. In the following Sec. 2.3, this idea is extended to use

weights that may change smoothly (rather than abruptly) between zero and one. This can express the degree of similarity (with

respect to MOS coefficients) between some new weather situation and those historical weather situations in the training data.150
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2.3 Obtaining weather-adapted coefficients from a random forest of MOS trees

Individual MOS trees grown according to Sec. 2.2 are easy to understand and interpret (see Sec. 4.1), but can be sensitive to

small changes in the data and may have a suboptimal fit if the model parameters change smoothly with the weather situation

variables. To solve this problem and improve out-of-sample predictive skill, a MOS forest combines partitions from many

different trees grown on bootstrap-aggregated (bagged) data and using only a randomly chosen subset of the atmospheric155

variables in z for splitting at each node.

Given a MOS forest with T trees and P t partitions in each tree t, MOS coefficients are adapted to a new weather situation

z? ∈ Z1×Z2× ·· ·×Zr by maximizing the likelihood of the base MOS on the full training data as in Eq. 3,

θ̂(z?) = argmax
θ

N∑
i=1

w(z?,zi) · `((yi,xi),θ), (6)

but with observations (yi,xi) weighted according to160

w(z?,zi) =
1

T

T∑
t=1

P t∑
p=1

1((z? ∈ Ptp)∧ (zi ∈ Ptp))
| Ptp |

. (7)

These weights thus capture how similar the new weather situation z? is to any of the historical weather situations zi from the

training data, by computing how often they end up in the same "homogenous weather partition" from the different trees in the

forest. Thus, they characterize their similarity with respect to the MOS coefficients.

By using partitions from many different trees to estimate the weather-adapted MOS, model coefficients are not restricted to165

a discrete number of unique values at most equal to the number of terminal nodes (as can be seen with estimates for σ from the

MOS tree of Fig. 3). Instead, coefficients are allowed to have smooth dependencies on the additional predictors and as a result

predictions are more stable (see estimates for σ from the MOS forest of Fig. 3).

The MOS coefficients θ̂(z?) that have been adapted to the new weather situation z? can be used to postprocess the cor-

responding forecast x? in the same way as coefficients obtained from a MOS tree or from the base MOS itself. That is, the170

(log-transformed) probability density function for the unkown observation y? is given by `(y? | x?, θ̂(z?)) and the parameters

of the response distribution are those values predicted by the MOS.

Using neighborhood weights as described above is commonplace in forests that contain more complex "models" than just

a single scalar value in the terminal nodes (e.g., Schlosser et al., 2019; Athey et al., 2019). An alternative approach would

be to obtain the weather-adapted MOS model by averaging over MOS coefficients predicted by the individual trees. In the175

application considered here the two performed equally well, except for smaller sample sizes where using the weights was

slightly better.

3 Postprocessing precipitation forecasts in complex terrain

The MOS forests described in Sec. 2 are applied to the difficult task of obtaining reliable probabilistic precipitation forecasts in

complex terrain. Individual topographical features cannot be resolved by NWP models, which means that predictions for these180
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locations rely heavily on subgrid scale parameterizations whose accuracy can depend on the weather situation. Postprocessing

models are trained and evaluated on the RainTyrol dataset described in Sec. 3.1, which contains observations of daily

precipitation sums and various ensemble-derived predictor variables that can be used for weather-adaptive postprocessing. The

exact configuration of the MOS forest for this application and a description of the three reference methods are given in Sec. 3.2.

3.1 Data185

The RainTyrol dataset (Schlosser et al., 2019) is composed of observed daily precipitation sums from the Austrian National

Hydrographical Service and NWPs from the 11-member global ensemble forecast system (GEFS, Hamill et al., 2013) of the

U.S. National Oceanic and Atmospheric Administration (NOAA). Data is available at 95 different stations in Tyrol, Austria

(and surrounding border regions) for all July days between 1985 and 2012 except the missing July 19, 2011. July is a month

with some of the largest precipitation amounts and variability within the year and both large scale precipitation events and190

local convective events occur. To reduce skewness, daily precipitation sums observed at 06 UTC (robs) are power transformed

using a parameter value of 1/1.6, which corresponds to the median of the power coefficients estimated at all stations Stauffer

et al. (2017a).

There are 80 different predictor variables derived from the GEFS that can be used for postprocessing. These include the

direct predictor of the observation: the mean of the ensemble forecast of total (24h) precipitation between +6h and +30h, but195

also the ensemble spread and its minimum and maximum. To account for the fact that summertime rainfall in Tirol is often

caused by convection during the late afternoon and evening hours, ensemble statistics for the four sub-daily 6h-precipitation

forecasts (+6h to +12h, +12h to +18h, +18h to +24h, and +24h to +30h) are also used as predictors. The same variations are

also included for forecasts of the convective available potential energy (CAPE), a key ingredient in thunderstorms. Forecasts of

temperatures and temperature differences at and between different heights, as well as incoming solar radiation (i.e., sunshine),200

pressure, precipitable water, and total column-integrated condensate are also added. Predictors derived from these atmospheric

variables are not included for every sub forecast, but the ensemble means and spreads are temporaly aggregated using the

minimum, maximum or mean. For example, pwat_mean_max refers to the maximum ensemble mean of precipitable water

forecasted by the GEFS for a lead time between +6h and +30h. A thorough description of all available predictor variables and

their naming conventions can be found in Table 1 of Schlosser et al. (2019).205

3.2 Methods

The ensemble forecasts described in Sec. 3.1 are postprocessed using MOS forests, two other forest-based weather-adaptive

reference methods, and a non-adaptive EMOS. An overview of the methods is given in Table 1 and more details are supplied

below.
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Model name Forecast type
Prespecified regression model for

Splitting variables
Location: µ Scale: log(σ)

MOS forest censored Gaussian β0 +β1 · tppow_mean γ0 all, except tppow_mean

Distributional forest censored Gaussian all

Quantile regression forest set of quantiles all

EMOS censored Gaussian β0 +β1 · tppow_mean γ0 + γ1 · log(tppow_sprd)
Table 1. Overview of methods used to postprocess precipitation forecasts from the RainTyrol dataset (see Sec. 3.1). In the dataset,

variable names tppow_mean and tppow_sprd refer to the mean and standard deviation of the power-transformed ensemble forecasts of total

precipitation, respectively.

3.2.1 MOS forests210

To deal with the fact that precipitation sums are strictly nonnegative, we follow Schlosser et al. (2019) and assume a left-

censored Gaussian response distribution with log-likelihood given by

`(µ,σ;y) =

log( 1
σ ·φ(y−µσ )), if y > 0

log(Φ(−µσ )), if y = 0
, (8)

where φ and Φ are the probability density function and cumulative density function of a standard Gaussian distributionN (0,1),

respectively.215

The prespecified base MOS

µ= β0 +β1 · tppow_mean, log(σ) = γ0, (9)

linearly models the distributional mean µ on the mean of the (power-transformed) daily precipitation sums predicted by the in-

dividual ensemble members – i.e., the direct predictor from the NWP model. The standard deviation of the response distribution

σ is modeled by an intercept.220

MOS forests are able to flexibly model MOS coefficients β0,β1,γ0 on all additional predictors from the dataset. The direct

predictor tppow_mean from the base MOS could also be included among the splitting variables, but this did not improve

forecast skill for our application. All model estimation is performed in R with the model4you (Seibold et al., 2019) and

crch (Messner et al., 2016) packages, using the same hyperparameters as the distributional forests of Schlosser et al. (2019).

In particular, this means that a node must have at least 50 samples in order to be split again (minsplit = 50) and that terminal225

nodes must have at least 20 samples (minbucket = 20).

3.2.2 Distributional forests

Distributional forests (Schlosser et al., 2019) work in a similar fashion to MOS forests, but do not contain a prespecified

MOS model. Instead, θ only contains the parameters of the assumed response distribution – i.e., in this case µ and σ of a
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censored Gaussian – rather than the MOS coefficients. Trees are split with respect to distributional parameters rather than MOS230

coefficients and the forest estimates the postprocessed response distribution rather than a weather-adapted MOS. Distributional

forests are estimated with the disttree package in R following the model configuration chosen by Schlosser et al. (2019)

and thus have the same hyperparameters as the MOS forests.

3.2.3 Quantile regression forests

Both MOS forests and distributional forests require specifying a parametric response distribution a priori. Since this assumption235

may not always hold (even conditionally), a fully non-parametric method called quantile regression forests (Meinshausen and

Ridgeway, 2006; Taillardat et al., 2016) is also considered. Splits are chosen with respect to the response value as in the

standard random forest algorithm Breiman (2001), but the partitions are subsequently used to perform weighted quantile

regressions and generate probabilistic forecasts. In this application 99 quantiles are considered, corresponding to probabilities

of p= 0.01,0.02, . . .0.99. Model estimation is performed using the quantregForest (Meinshausen, 2017) package in R.240

3.2.4 EMOS

All three methods described above incorporate additional predictors using forest-based algorithms to allow for weather-

adaptive postprocessing. In order to quantify the benefit that comes with this added model flexibility, a simple fully-parametric

non-adaptive EMOS is also considered:

µ= β0 +β1 · tppow_mean, log(σ) = γ0 + γ1 · log(tppow_sprd). (10)245

This EMOS has the same mean model as the prespecified MOS in the MOS forest, but also linearly models log(σ) on the

log-transformed standard deviation of the ensemble precipitation forecasts.

4 Results

To illustrate how postprocessing with MOS forests works in practice, first a single MOS tree is grown at the station of Axams

(for location, see Fig. 8 of Schlosser et al., 2019). This MOS tree is analyzed in Sec. 4.1. Subsequently, separate MOS forests250

are grown and used to postprocess forecasts at all stations. The quality of these forecasts is evaluated in Sec. 4.2.

4.1 Interpreting a MOS tree

A MOS tree for Axams is grown from the first 24 years of data and visualized in Fig. 1. The first split of the tree sepa-

rates rare (n= 23) weather situations with very high ensemble-averaged total column liquid condensate (tcolc_mean_mean)

from the remainder of the data. The rest of the data is then split based on the maximum temperature predicted by the255

ensemble (tmax_mean_mean). The lower temperature branch has two subsequent splits: first based on precipitable water

(pwat_mean_max) and then on the ensemble spread of precipitation (tppow_sprd). This results in three terminal nodes (nodes

5, 6, and 7). The higher temperature branch has three splits: based again on (tcolc_mean_mean), as well as the ensemble
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spreads of 500hPa temperature (t500_sprd_min) and precipitation (tppow_sprd1824). This results in four terminal nodes

(nodes 11, 12, 13, and 14).260

MOS models for each terminal node (i.e., distinct weather situation) are visualized in Fig. 2. The majority of observations

are found in either node 5, 13, or 11. For nodes 5 and 13, the MOS are quite similar, the largest difference being that forecasts

in node 13 are less certain (i.e., γ0 is greater). In contrast, the MOS used to postprocess NWPs in node 11 is very different, with

a strongly negative intercept for the mean model (β0 =−8.16) and a high forecast uncertainty (γ0 = 1.09). This is because

node 11 contains many days where the ensemble mean is greater than zero – i.e., some ensemble members predict precipitation265

for Axams – although no precipitation is actually observed. To understand when the tree makes such a prediction, it is only

necessary to consider the splits in Fig. 1 that lead to node 11: high maximum temperature, low column liquid condensate, and

narrow ensemble spreads for minimum temperature at 500hPa and accumulated precipitation between 18 and 24 UTC.

4.2 Evaluating predictive skill

MOS forests are compared to the reference methods described in Sec. 3.2 by evaluating the skill of postprocessed forecasts270

using the widely-used continuous ranked probability score (CRPS, Matheson and Winkler, 1976; Gneiting and Raftery, 2007).

To replicate a true operational scenario, all evaluations are performed out-of-sample on data that was not used to train the

models. First, forecasts at Axams are evaluated using multiple replications of a randomized 7-fold cross validation (Sec. 4.2.1).

At all other stations, forecasts are issued for a single hold-out fold (containing the last 4 years) and the remaining 6 folds

(containing the first 24 years) are used for model training (Sec. 4.2.2). Finally, models are also trained using different amounts275

of data (12, 6, and 3 years) to investigate their robustness in this respect (Sec. 4.2.3).

4.2.1 Full cross validation at individual station

The Axams data is randomly split into 7 disjoint folds that each contain observations and NWPs from 4 different years. MOS

forests and the reference postprocessing methods outlined in Sec. 3.2 are trained on 6 out of the 7 folds and then used to make

predictions on the remaining fold. After 7 rounds of this, out-of-sample predictions are available for each day in the 28 years of280

data and used to compute an average CRPS for each method. The entire process is then repeated 10 times, each with a different

random choice for the 7 folds. CRPS skill scores are computed relative to the EMOS model and visualized by boxplots in

Fig. 4. MOS forests improve CRPS by more than 7% at Axams and thus perform slightly better than both the distributional

forest and the quantile regression forest, which each lead to improvements of around 6%.

4.2.2 Hold out validation at all stations285

To investigate predictive performance at all 95 stations, all models are trained on the first 24 years of data (1985-2008) and

out-of-sample predictions are made for the last 4 years (2009-2012).

CRPS skill scores relative to EMOS are computed for each method at each station and visualized by boxplots in Fig. 4. MOS

forests generally outperform the other forest-based postprocessing methods and are noticeably more robust. Distributional
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tcolc_mean_mean
p < 0.001

1

≤ 0.455 > 0.455

tmax_mean_mean
p < 0.001

2

≤ 285.689 > 285.689

pwat_mean_max
p < 0.001

3

≤ 19.389 > 19.389

tppow_sprd
p = 0.004

4

≤ 0.339 > 0.339

n = 210
β0 = − 1.59
β1 = 1.15
γ0 = 0.22

5
n = 24

β0 = 0.19
β1 = 0.54
γ0 = 0.61

6
n = 85

β0 = 0.29
β1 = 0.83
γ0 = 0.65

7

tcolc_mean_mean
p < 0.001

8

≤ 0.271 > 0.271

t500_sprd_min
p = 0.01

9

≤ 0.092 > 0.092

tppow_sprd1824
p < 0.001

10

≤ 0.091 > 0.091

n = 150
β0 = − 8.16
β1 = 2.59
γ0 = 1.09

11
n = 76

β0 = − 1.37
β1 = 0.96
γ0 = 1.1

12
n = 156

β0 = − 2.65
β1 = 1.35
γ0 = 0.67

13
n = 20

β0 = − 2.11
β1 = 1.03
γ0 = 0.55

14
n = 23

β0 = 0.91
β1 = 0.58
γ0 = 0.58

15

Figure 1. A single MOS tree estimated for Axams. Ellipses represent nodes used for splitting and contain the name of the splitting variable

along with the p-value of the independence test. The corresponding split point is included in the two branches (lines) emanating from the

node. Terminal nodes (which are not split again) are visualized by rectangles and contain the number of observations n and estimated MOS

coefficients β0,β1,γ0. The models fit in each terminal node are visualized in Fig. 2.
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Figure 2. Scatter plots of observations versus ensemble mean forecasts in each terminal node of Fig. 1. Numbers identifying the nodes are

included in the top left of each plot. Dashed and solid lines are quantiles corresponding to probabilities of 2.5%, 25%, 50%, 75%, and 97.5%,

obtained from the MOS model fit in each node.
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Figure 3. Solid lines are out-of-sample predictions for the location (µ) and scale (σ) parameters of the response distribution at Axams in July

2009, obtained from the MOS tree visualized in Figs. 1 and 2 as well as a MOS forest. Dashed lines are corresponding predictions from the

base MOS (Eq. 9).

forests and quantile regression forests occasionally perform up to 5% worse than a basic EMOS and the quantile regression290

forest is outperformed by EMOS nearly 25% of the time. This is not the case for the MOS forests, which always perform at

least as well as EMOS and improve the forecasts by more than 5% at 75% of the stations.

Regional differences in model performance can be seen in the map of Fig. 5. While MOS forests significantly outperform

distributional forests and quantile regression forests in the northeast and southeast of the forecast region, results are less clear

in the more mountainous regions further west and near the main Alpine crest. At these locations, quantile regression forests295

often perform slightly better. Such clear regional differences in model performance are not visible in Fig. 8 of Schlosser et al.

(2019), perhaps because all their postprocessing methods assumed the same type of response distribution.

Overall, probabilistic forecasts obtained from the MOS forests not only have a better CRPS than those obtained from the

other two methods, but are also more statistically consistent with observations (i.e., calibrated). Calibration across all stations

is visualized by probability integral transform (PIT) histograms for MOS forests and distributional forests and with a rank300

histogram for the quantile regression forests (Fig. 6). For perfectly calibrated forecasts, these histograms should be approxi-

mately uniform. Although all methods somewhat overestimate probabilities for high precipitation events, this overestimatation

is much less pronounced in the MOS forests.

4.2.3 Sensitivity to size of training data

The methods compared above use 24 years of data for model training, but since such large datasets are not always available in305

postprocessing – e.g. for newly erected observational sites – the hold-out evaluations for all stations in Sec. 4.2.2 are repeated

using only 12, 6, and 3 years of data for training. The boxplots in Fig. 7 show that MOS forests are very robust to these

changes and still perform significantly better than a non-adaptive EMOS even when trained using only 3 years of data (i.e., 93
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Figure 4. Left: CRPSS relative to EMOS at Axams based on 10 randomly chosen 7-fold cross validations. Right: CRPSS relative to EMOS at

each station for the time period 2009-2012. Individual stations are connected by thin grey lines. Scores for the station of Axams are indicated

by filled black circles connected by black lines.
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are used to indicate where the CRPSS with respect to the second best method is less than 0.2, between 0.2 and 0.4, and more than 0.4,

respectively. Terrain elevation is indicated by background color.

observations). In contrast, distributional forests nearly always perform significantly worse than EMOS in such cases and have a

median skill score of−10% across all stations. Similarly, quantile regression forests are also outperformed by the non-adaptive310

EMOS at around half of the stations.
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Figure 7. As for the hold out evaluation of all stations in Fig. 4, but with models trained on the past 24, 6 and 3 years, respectively. Blue lines

highlight the influence changing data size has on the median CRPSS of each method.

5 Discussion

When compared to state-of-the-art weather-adaptive postprocessing methods, MOS forests have the main advantage of being

highly robust: they reliably outperform simple non-adaptive reference methods even when trained on very small sample sizes.

This is possible because, unlike state-of-the-art weather-adaptive methods that treat all predictors equally and use a data-driven315

approach to learn their relationships to the response, MOS forests directly incorporate prior (physically-based) knowledge

about the most important relationships in the form of a parametric model. One might think that robustness is not important

in our current "big data" era, but consider that NWP models are continuously updated (e.g., with improved resolutions or

14



parameterizations) and new stations (or measurement instruments) can always be installed. In the words of Glahn and Lowry

(1972), "data samples containing numerical model output are a perishable commodity" and this is still true today.320

In the application considered here, MOS forests are used to postprocess NWP ensembles and separate models are estimated

for each station. Without any modifications, MOS forests also offer a powerful way to obtain probabilistic forecasts from de-

terministic NWPs, where no predictors explicitly characterizing the forecast uncertainty are available. Similarly, MOS forests

could also be employed as spatial (rather than station-wise) postprocessing models by including predictors that contain infor-

mation about the individual grid points or stations within the training data. Potentially relevant variables would then include325

latitude, longitude, and altitude, but also surface roughness, landcover type, or other characteristics.

Despite their many advantages, MOS forests require specifying the same two things as all other MOS models: (i) a parametric

distribution for the response and (ii) models linking the parameters of that distribution with appropriate predictors derived from

the NWP. Not much can be done about the first point besides trying different response distributions or transformations of the

data. As for the second point, in cases where no suitable models for the distributional parameters can be specified a priori, MOS330

forests have no advantage over distributional forests. In fact, MOS forests collapse to distributional forests if the assumed base

MOS has intercept-only models for the parameters of the response distribution.

6 Conclusions

Since NWPs have errors that can depend on the weather-situation, weather-adaptive postprocessing methods are necessary

to obtain optimal probabilistic forecasts. By fusing traditional (non-adaptive) and modern (weather-adaptive) postprocessing335

approaches, MOS forests retain the best of both worlds: a method that is flexible enough to allow for weather-adaptive post-

processing, but also robust, intuitive, and straightforward to implement. This is achieved by using random forests to adapt the

regression coefficients of a prespecified parametric base MOS to a set of additional predictor variables that characterize the

current weather situation. In contrast to state-of-the-art postprocessing methods, which typically directly estimate properties

of the response from these predictors, MOS forests only use them to estimate the regression coefficients of the assumed base340

model. As a result, they can generate skillful forecasts even when only a very limited amount of data is available for training

and purely data-driven weather-adaptive methods fail to outperform a simple non-adaptive model.
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