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Abstract. Lightning is affected by many factors, many of which are not routinely measured, well understood, or accounted 

for in physical models. Machine learning (ML) excels in exploring and revealing complex relationships between 10 

meteorological variables such as those measured at the South Great Plains (SGP) Atmospheric Radiation Measurement 

(ARM) site; a site that provides an unprecedented level of detail on atmospheric conditions and clouds. Several commonly 

used ML models have been applied to analyse the relationship between ARM data and lightning data from the Earth 

Networks Total Lightning Network (ENTLN) in order to identify important variables affecting lightning occurrence in the 

vicinity of the SGP site during the summers (June, July, August and September) of 2012 to 2020. Testing various ML 15 

models, we found that the Random Forest model is the best predictor among common classifiers. It predicted lightning 

occurrence with an accuracy of 76.9 % and an area under curve (AUC) of 0.850. Using this model, we further ranked the 

variables in terms of their effectiveness in predicting lightning and identified geometric cloud thickness, rain rate and 

convective available potential energy (CAPE) as the most effective predictors. The contrast in meteorological variables 

between no-lightning and frequent-lightning periods was examined on hours with CAPE values conducive to thunderstorm 20 

formation. Besides the variables considered for the ML models, surface variables such as equivalent potential temperature 

and mid-altitude variables such as minimum equivalent potential temperature have a large contrast between no-lightning and 

frequent-lightning hours. Finally, a notable positive relationship between intra-cloud (IC) flash fraction and the square root 

of CAPE ( 𝐶𝐴𝑃𝐸) was found suggesting that stronger updrafts increase the height of the electrification zone, resulting in 

fewer flashes reaching the surface and consequently a greater IC flash fraction. 25 

1 Introduction 

Thunderstorms are most common during the warm season when high moisture and buoyant instability are available (Doswell 

III et al., 1996). The frequency of lightning is affected by multiple meteorological variables including convective available 

potential energy (CAPE), rain rate, geometrical cloud thickness, wind shear, and multiple microphysical variables such as 

the diameter of ice crystals (Sherwood et al., 2006; Lal et al., 2014) and cloud droplet size (Orville et al., 2001). CAPE plays 30 
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an important role in lightning activity (Pawar et al., 2012; Romps et al., 2014; Romps et al., 2018) with the magnitude and 

vertical distribution of CAPE affecting the updraft velocity and vertical distribution of cloud water path and consequently the 

lightning charge generation process inside deep convective clouds (Williams, 2017). When studying daily records of flashes, 

Williams et al. (2002) found a CAPE threshold of approximately 1000 J·kg-1 above which lightning is likely. Both lightning 

activity and rainfall in deep convective systems are physically related to mixed-phase cloud processes involving super-35 

cooled water, ice and graupel. Heavy glaciation aloft is essential to produce frequent lightning activity (Williams et al., 

1989). Monthly and seasonal correlation coefficients between precipitation and lightning counts were found to vary between 

0.81 and 0.98 over the central and eastern Mediterranean Sea during winter time (Price and Federmesser, 2006). The 

influence of cloud thickness on lightning is complicated. According to Takahashi (1978), the mixed phased zone of 

convective clouds is crucial for the charge separation mechanism. Warm cloud depth is defined as vertical thickness between 40 

the lifting condensation level (LCL) and the freezing level (0 °C). Cold cloud depth is defined as the thickness from the 

freezing level to the storm top. The depth of the warm cloud region is critical for determining the cloud droplets growth. A 

larger warm cloud depth is likely to enhance the efficiency of warm rain–collision–coalescence processes, and lower the 

altitude at which precipitation forms. When warm raindrops begin to form, fewer droplets will be lifted to become mixed-

phase hydrometeors where they can affect electrification in the thunderstorm (Carey and Buffalo, 2007). The mixed phase 45 

region includes graupel and ice crystals, so it is closely related to the lightning activity. Price and Rind (1992) showed that 

the lightning flash rate within a convective cloud is proportional to the fifth power of the cloud-top height. Furthermore, 

Yoshida et al. (2009) found that the number of lightning flashes per second per convective cloud is proportional to the fifth 

power of the cold-cloud depth regardless of location. Wind shear’s influence on convective systems is mixed. Richardson et 

al. (2007) found that strong wind shear may weaken the vertical development of an isolated supercell. Wind shear at 50 

different levels can play different roles in convective systems. According to Chen et al. (2015), increasing wind shear in the 

lower troposphere results in a more organized quasi-linear convective system. By increasing wind shear at the upper vertical 

levels only, the convective intensity is weakened but the structure is not affected much. Bang and Zipser (2016) analysed 

wind shear in the lowest 200 hPa of the atmosphere and found that the magnitude of the wind shear is a poor discriminator of 

lightning occurrence. Stolz et al. (2017), based on an analysis over multiple regions, found that total lightning density 55 

increases with increasing wind shear, but the signal is relatively weak compared with other variables.  

Both natural and anthropogenic aerosols affect lightning activity (Westcott, 1995; Altaratz et al., 2010; Wang et al., 2011; Li 

et al., 2019; Zhao et al., 2020; Sun et al., 2021). High aerosol loading related to volcanic activity is closely correlated with 

general lightning activity at different time scales (Yuan et al., 2011), and smoke caused by man-made forest fires increases 

cloud condensation nuclei (CCN) concentrations during the Amazon dry season, invigorating the electrical activity in the 60 

low aerosol loading environment (Altaratz et al., 2010). Weekly cycles in lightning activity are also observed (Bell et al., 

2009) and are consistent with cycles in precipitation over the southeast US (Bell et al., 2008). This apparent weekly cycle in 

afternoon lightning activity, peaking on Wednesday and with a minimum on Saturday and Sunday, can only be explained by 

aerosol’s weekly cycle, given the fact that no significant dynamical or thermal weekly cycle is observed. Enhanced lightning 
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activity is observed over two of the world's busiest shipping lanes in the Indian Ocean and the South China Sea, which 65 

cannot be explained by meteorological factors, and is therefore likely due to aerosol particles emitted from the ship engines 

(Thornton et al., 2017). Wang et al. (2018) found that the type of aerosol affects lightning formation with much higher flash 

rates in moist central Africa than dry northern Africa. In both regions, the lightning flash rate changes with aerosol optical 

depth in a boomerang shape: first increasing with aerosol optical depth up to approximately 0.3, and then decreasing for dust 

and flattening for smoke aerosols. 70 

There are two types of lightning flashes: cloud-to-ground (CG) flashes and intra-cloud (IC) flashes. Many approaches have 

been used to predict flash types, which involve complicated interactions between atmospheric processes. For example, a new 

prognostic variable, potential electrical energy, is introduced to the Weather Research and Forecasting (WRF) cloud-

resolving model to predict the dynamic contribution of the grid-scale-resolved microphysical and vertical velocity fields, so 

that it can be used to predict both CG and IC flashes in convection-allowing forecasts (Lynn et al., 2012). Using observations, 75 

the product of CAPE and precipitation explains 77 % of the variance in the time series of total CG flashes over the 

contiguous United States (Romps et al., 2014). Therefore, Tippett and Koshak (2018) used the product of CAPE and rain 

rate as a proxy to predict CG lightning over the US and produce CG lightning threat forecasts.   

Today, lightning prediction remains challenging despite significant progress in lightning research. In recent years, machine 

learning (ML) based predicting or nowcasting of lightning occurrence has become popular. A four-parameter model based 80 

on four commonly available surface weather variables (air pressure at station level, air temperature, relative humidity and 

wind speed) developed by Mostajabi et al. (2019) has considerable predictive skill for lightning occurrence and produces 

warnings for lead times up to 30 minutes. The importance of the input variables in this model fits with the generally accepted 

physical understanding of surface processes driving thunderstorms. CG lightning damages infrastructure, leads to the loss of 

life and ignites forest fires (Cooper et al., 2019). Therefore, ML-based prediction of CG lightning is increasing. For example, 85 

La Fata et al. (2021) used ML to nowcast the spatial distribution of CG flashes, while He et al. (2020) used a ML algorithm 

based on a WRF simulation to predict CG lighting over the Alaskan tundra. 

In this study, we use a ML model to investigate the meteorological variables affecting lightning occurrence over the 

Southern Great Plains during summer. Then, the contrast in variables between no-lightning and frequent-lightning hours is 

shown for strong convective environments. Lastly, the IC fraction’s relationship with the square root of CAPE ( 𝐶𝐴𝑃𝐸) and 90 

its potential physical mechanism is discussed. 

2 Data 

2.1 Earth Networks Total Lightning Network (ENTLN) 

ENTLN is a total lightning detection system and consists of over 1800 sensors deployed in over 100 countries. It detects 

wideband (1 Hz to 12 MHz) electric field signals emitted by both IC and CG lightning. In addition, for each flash, exact time, 95 

geolocation and peak current are recorded as well (Zhu et al., 2022). ENTLN records the flash type, IC or CG, and also 
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provides an estimation of the source height of IC flashes. Typically, signal timing measurements from at least 5 sensors are 

able to determine the latitude, longitude, height and time that define the source location. The more sites that are used the 

smaller the uncertainty becomes (Heckman, 2014).  

In this study, we use ENTLN flashes within the 1° × 1° grid box (36°-37° N, 97°-98° W) that includes the Atmospheric 100 

Radiation Measurement (ARM) South Great Plains (SGP) site. Hourly flash records of summer months (June, July, August 

and September) from 2012 to 2020 are used. 

2.2 ARM 

Multiple datasets are collected at the US Department of Energy ARM program SGP site, which is located at 36.6° N, 97.5° 

W. The SGP atmospheric observatory was the first field measurement site established by the ARM user facility, and it is 105 

currently one of the world’s largest and most extensive climate research facilities. Variables including convective cloud 

thickness, rain rate, and >10 dBz vertical extent are downloaded or calculated from various ARM SGP datasets (Table 1), 

and are considered to be representative of the entire 1° × 1° region. 

2.3 Other data sources 

The wind shear values used in this study are calculated using fields from the “ERA5 hourly data on pressure levels from 110 

1959 to present” dataset (Hersbach et al., 2023). ERA5 is the 5th generation ECMWF reanalysis for global climate and 

weather, providing several improvements compared with ERA-I. The analysis is produced at a 1-hour time resolution using 

an advanced 4D-var assimilation scheme (Hersbach et al., 2020). The eastward and northward components of the wind with 

a 0.25° × 0.25° spatial resolution (centred at 36.5° N, 97.5° W) are downloaded for 750, 500 and 250 hPa levels. The hourly 

wind shear is then calculated between 750 and 500 hPa, and between 750 and 250 hPa: 115 

𝑊𝑖𝑛𝑑	𝑆ℎ𝑒𝑎𝑟	 750 250 	hPa = 𝑢89:	;<= − 𝑢?9:	;<= ? + 𝑣89:	;<= − 𝑣?9:	;<= ? 

𝑊𝑖𝑛𝑑	𝑆ℎ𝑒𝑎𝑟	 750 500 	hPa = 𝑢89:	;<= − 𝑢9::	;<= ? + 𝑣89:	;<= − 𝑣9::	;<= ? 

Fine particulate matter (PM2.5) concentrations are obtained from the US Environmental Protection Agency Air Quality 

System database. We have taken the average value of hourly surface PM2.5 concentrations measured in the nearby counties 

of Kay (in Oklahoma, 36.7° N, 97.1° W), Sedgwick (in Kansas, 37.7° N, 97.3° W) and Sumner (in Kansas, 37.5° N, 97.4° 120 

W). One measurement is available in each county. 

The column aerosol optical thickness (AOT) used in this study comes from the Modern-Era Retrospective analysis for 

Research and Applications version 2 (MERRA-2), which is the latest version of global atmospheric reanalysis for the 

satellite era produced by NASA Global Modeling and Assimilation Office using the Goddard Earth Observing System 

Model (GEOS) version 5.12.4. The dataset covers the period of 1980-present. M2T1NXAER (or tavg1_2d_aer_Nx) is an 125 

hourly time-averaged 2-dimensional data collection in MERRA-2. This collection consists of assimilated aerosol diagnostics, 

and the data field is time-stamped with the central time of hours starting from 00:30. We aggregated the 0.625° × 0.500° 

https://doi.org/10.5194/egusphere-2023-1020
Preprint. Discussion started: 12 June 2023
c© Author(s) 2023. CC BY 4.0 License.



5 
 

MERRA-2 data onto a 1° × 1° grid using distance-weighted average remapping to the GPCC1.0 grid (Level 3 and 4 

Regridder and Subsetter Information) and took the 36°-37° N, 97°-98° W grid box value of the total aerosol extinction AOT 

at 550 nm. 130 

3 Methods 

In this section, the Random Forest classifier is introduced and various ML related terms are defined. It will be shown that the 

Random Forest classifier has the best performance among all common classifier ML models. 

3.1 Random Forest classifier and 10-fold cross validation 

The Random Forest classifier is an ensemble learning method for classification that operates by constructing a multitude of 135 

decision trees at training time. For classification tasks, the output of the random forest is the class selected by the most trees. 

Ten-fold cross-validation is a resampling procedure commonly used to evaluate ML models. First, the dataset is shuffled 

randomly and split into 10 groups. Nine of the groups are used for training and the other group for evaluation. In this 

application, we predict the occurrence of lightning (Yes vs No) using 9 training groups and evaluate the prediction using the 

remaining group. 140 

3.2 Area under curve (AUC) calculation 

The receiver operating characteristics (ROC) curve was first used in signal detection theory to represent the trade-off 

between hit rates and false alarm rates (Green and Swets, 1966). For a ML classifier model, a positive or negative prediction 

for a certain threshold will be made for a given set of input variables. An error matrix is then made that records the frequency 

of true positive (TP), false positive (FP), false negative (FN) and true negative (TN) predictions. The true positive rate (TPR, 145 

TPR=TP/(TP+FN)) and false positive rate (FPR, FPR= FP/(FP+TN)) can be calculated accordingly. TPR and FPR vary with 

threshold and we can put (FPR, TPR) points on the ROC space as the threshold changes. Both FPR and TPR range in value 

from 0 to 1, and we connect the points to get an ROC curve. The area under the ROC curve integrating from 0 to 1 is called 

AUC, which measures the discriminatory power of the predictive classification model. 

3.3 ARM dataset processing 150 

Cloud top height, cloud base height and cloud type are obtained from CLDTYPE data product with a temporal resolution of 

1 minute. For the SGP site, deep convective clouds are identified as clouds with cloud base height lower than 3.5 km and 

cloud top height higher than 6.5 km (Flynn et al., 2017). We use this product to identify convective clouds and calculate the 

convective cloud thickness from the cloud base to the cloud top. For each hour, the variable “Cloud Thickness” is obtained 

by averaging thicknesses for each minute during the hour with convective clouds. Rain rate is measured with a temporal 155 

resolution of 1 minute (Bartholomew, 2016) and contained in the VDIS product. The variable “Rain Rate” is the hourly sum. 
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The ARSCLKAZR1KOLLIAS data product provides us with zenith-pointing radar reflectivity profiles at Ka-band (35 GHz) 

every 4 seconds with a vertical resolution of 30 meters. According to Seo and Liu (2005), the relationship between radar 

reflectivity and ice water content for the six ice particle types near the ARM SGP site show that ice water content for each 

vertical layer is proportional to the 0.79th power of radar reflectivity. We have set a threshold of 10 dBz for layers, so that 160 

each layer will have about 0.5 g·m-3 ice water content when its radar reflectivity exceeds this threshold. We only take 

measurements of radar reflectivity at altitudes higher than 3 km as temperatures at altitudes less than this are always too low 

to support ice in clouds during the summer at the ARM SGP site. The hourly average extent and centroid of radar reflectivity 

exceeding 10 dBz are recorded as variables “Radar Reflectivity > 10 dBz Extent” and “Radar Reflectivity > 10 dBz 

Centroid”, respectively. These variables are chosen because they are closely associated with mixed-phase clouds extent and 165 

height. Fifty-four environmental variables (Jensen et al., 1998) are measured every minute and recorded in 

INTERPOLATEDSONDE. We primarily use the profiles of pressure, temperature and dew point and calculate the 

meteorological variables listed in Table 1 for this product. We use the 30th minute profile of the hour to calculate these 

variables, except for CAPE. We calculate the average CAPE based on the 15th minute and 45th minute profiles of the hour. 

We do not calculate values for each minute due to computational expense. AOSCCN1COL and AOSCCN2COLAAVG 170 

include cloud CCN concentrations every minute. These two products record the CCN concentrations at different 

supersaturation levels by manipulating the supersaturation in the instruments from 0.1 % to 1.2 %. According to Politovich 

and Cooper (1988), the maximum supersaturation is usually smaller than 0.5 % in cumulus clouds. Thus, we have selected 

all CCN concentration measurements at supersaturation in the range from 0.4 % to 0.6 %, and calculated the average value 

for each hour. Measurements of planetary boundary layer height (PBLH) are conducted every 30 seconds using micropulse 175 

lidar (MPL) and recorded in PBLHTMPL1SAWYERLI. We take the average value of PBLH for each hour and record them 

as variable “PBLH”. 

Because of differences in temporal resolution and formatting, each variable from the ARM SGP site is merged into a 

homogeneous database at a temporal resolution of 1 hour (Table 1). 

 180 

Data Product Name Variables Obtained or Derived from Dataset 

CLDTYPE Convective cloud type, Cloud Thickness 

VDIS Rain Rate 

ARSCLKAZR1KOLLIAS Radar Reflectivity > 10 dBz Extent, Radar 

Reflectivity > 10 dBz Centroid 

INTERPOLATEDSONDE CAPE, Surface Equivalent Potential Temperature, 

0 °C Freezing Level Height 

AOSCCN1COL, AOSCCN2COLAAVG CCN Concentration 

PBLHTMPL1SAWYERLI Planetary Boundary Layer Height 

Table 1: Data sets containing the variables considered for use in the lightning parameterization. 
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4 Results 

4.1 ML based investigation of the variables affecting lightning occurrence 

First, we identified convective hours using the CLDTYPE product at the ARM SGP site. This product provides an automated 185 

cloud type classification based on microphysical quantities derived from vertically pointing lidar and radar. Twenty-four 

hours were checked each day. In total, deep convective clouds were detected for 817 hours during JJAS of 2012-2020. 

Lightning was observed in the 1° × 1° grid box (36°-37° N, 97°-98° W) in 509 of those hours. 

Numerous meteorological variables were considered for use in the ML based analysis. Eight mostly independent variables 

(i.e., variables with inter-correlations |R| of 0.5 or less) were selected for further analysis. These variables and their inter-190 

correlations are shown in Figure 1.  

 

 
Figure 1: Correlations between variables selected for use in the ML analysis. The relatively low correlations between the 

pairs make them good candidates for the analysis. 195 

 

Our goal is to use the 8 input variables to predict the occurrence of lightning in a convective hour. We repeat 10-fold cross-

validation 50 times in order to estimate the overall performance of different ML models. Based on our 50 simulations with 

the 10-fold cross-validation, the Random Forest Classifier was identified as the best classifier among the common classifiers 

shown below, because of its highest accuracy and its AUC value (Table 2). 200 
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Classifier Name Accuracy AUC 

Support Vector Machine (SVM) 

with linear kernel 

72.1 % ± 0.1 % 0.797 ± 0.001 

SVM with radial basis function 

(RBF) kernel 

74.0 % ± 0.2 % 0.821 ± 0.001 

Random Forest 76.9 % ± 0.3 % 0.850 ± 0.002 

Logistic Regression 72.3 % ± 0.1 % 0.800 ± 0.001 

Decision Tree 69.8 % ± 0.5 % 0.679 ± 0.004 

Gaussian Naive Bayes 74.2 % ± 0.2 % 0.812 ± 0.002 

Table 2: Mean accuracy and AUC with standard deviation for each ML classifier method. Each method was run 50-times 

using 10-fold cross-validation. The accuracy is defined as the ratio of correct predictions of lightning occurrence (Yes vs. No) 

to total predictions. AUC provides an aggregate measure of performance across all classification thresholds and can have 

values ranging from 0.5 to 1.0. Models with higher values of AUC do a better job of distinguishing between convective 205 

hours with and without lightning. 

 

After choosing the Random Forest classifier model, we split the dataset randomly into training and test sets with split 

percentages of 75 % to 25 % and performed 1000 simulations. We then ran the Random Forest Classifier to evaluate its 

overall performance, as shown in the error matrix (Table 3). This classifier predicts lightning occurrence with an accuracy of 210 

77 % using these 8 input variables. 

 

    Prediction: No Lightning  Prediction: Lightning 

Truth: No Lightning  24.5 % ± 2.5 %  13.0 % ± 2.6 % 

Truth: Lightning  10.4 % ± 2.5 %  52.1 % ± 2.9 % 

Table 3: This error matrix shows the accuracy of the Random Forest Classifier. The frequency (percentage and standard 

deviation) of the binary prediction that fell into each of the 4 categories is shown. The overall accuracy, sum of the true 

negatives (24.5 %) and true positives (52.1 %), is about 77 %. 215 

 

In addition to the error matrix, an overall ranking of feature importance is also generated from the ML model, as shown in 

Figure 2. This figure shows the fraction of the time each variable was identified as the most important feature (#1) to the 

least important feature (#8). For example, the variable “Cloud Thickness” is the most important feature (#1) in 57.4 % of the 

1000 runs, while it is the second (#2), the third (#3) and the fourth (#4) important in 33.4 %, 8.9 % and 0.3 % of the runs. 220 

From the ranking distribution, we can identify that “Cloud Thickness”, “Rain Rate” and “CAPE” are the top 3 important 
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variables determining lighting occurrence in the model. The sum of the 1st, 2nd and 3rd place percentages for each of these 

variables exceed 90 %. The next 3 most important variables are “Radar Reflectivity > 10 dBz Extent”, “Wind Shear 

(750/250 hPa)” and “Radar Reflectivity > 10 dBz Centroid”. The least important variables are “PM2.5 Concentration” and 

“Wind Shear (750/500 hPa)”. The low sensitivity to PM2.5 concentrations could be due to its small range of variability, 225 

especially compared with other variables’ relatively large variations. The differentiation of the variables into top, middle and 

least important categories is distinct according to the robust ranking distribution, as can be seen in Figure 2. 

 

 
Figure 2: Variables importance ranking distribution. Probability distribution function showing the frequency that each 230 

variable was rated as the most-to-least important after running the Random Forest Classifier with random splitting 1000 

times. 

 

4.2 Contrast in meteorological variables between no-lightning and frequent-lightning hours in strong convective 
environments 235 

In convective hours with lightning, the hourly flash count distribution is shown in Figure 3. The average and median number 

of ENTLN flashes per hour in the 1° × 1° grid box containing the SGP site are 864.9 and 162.5 respectively, with the large 

difference indicating the distribution is skewed by hours with very frequent lightning. 
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 240 
Figure 3: Hourly flash count distribution for flashing hours in the 1° × 1° grid box containing the SGP site. Note that the x-

axis is logarithmic. 

 

To ensure the environment is favourable for lightning, we have set a threshold of CAPE = 2000 J·kg-1 and for this analysis 

only selected those hours with convective clouds when CAPE is larger than 2000 J·kg-1, given the fact that this threshold of 245 

CAPE is considered as a strong convective environment in several studies (Rutledge et al., 1992; Chaudhuri, 2010; 

Chaudhuri and Middey, 2012; Hu et al., 2019).  

Of course, there are still hours with no lightning despite the strong convective environment. Once a strong convective hour is 

selected, if that hour and the hours before and after it have no lightning, we define the period as a “no-lightning hour”; if the 

mean flash rate during that three-hour period exceeds the median hourly flash rate of 162.5, we define the period as a 250 

“frequent-lightning hour”. Overall, when the environment was strongly convective, there were 41 no-lightning hours, 75 

frequent-lightning hours, and 59 intermediate lightning hours. The contrast in meteorological variables between the no-

lightning and frequent-lightning hours is shown in Table 4. 

 

Meteorological Variables  No-Lightning Hours  Frequent-Lightning Hours  p-value 

CAPE (J·kg-1) 2627 ± 712 2669 ± 585 > 0.05 

Rain Rate (mm·h-1)  0.16 ± 0.51 8.57 ± 15.25 < 0.001 

Cloud Thickness (km)  6.22 ± 2.13 10.66 ± 3.04 < 0.001 

Wind Shear (750/250 hPa) 

(m·s-1)  

14.63 ± 5.17 12.04 ± 6.22 < 0.05 
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Wind Shear (750/500 hPa) 

(m·s-1)  

9.45 ± 4.17 7.65 ± 3.85 < 0.05 

Radar Reflectivity > 10 dBz 

Extent (km)  

0.13 ± 0.24 1.31 ± 1.60 < 0.001 

Radar Reflectivity > 10 dBz 

Centroid (km)  

4.80 ± 1.23 5.73 ± 1.96 < 0.01 

PM2.5 Concentration (µg·m-

3) 

10.92 ± 3.83 6.57 ± 3.89 < 0.001 

Table 4: The contrast (mean, standard deviation, and significance of difference) in meteorological variables put into ML 255 

Random Forest model between no-lightning and frequent-lightning hours. For example, a p-value of “< 0.01” indicates that 

the difference is significant at the 99 % level. 

 

After limiting the analysis to hours with CAPE > 2000 J·kg-1, we do not see a significant difference in CAPE between the 

no-lightning and frequent-lightning hours, indicating that once CAPE reaches a high value, it is no longer a good predictor 260 

for lightning occurrence. The rain rate and convective cloud thickness are much larger when lightning is frequent (p-value 

less than 0.001), indicating that lightning is associated with high rain rates and deep convective clouds. This finding is 

consistent with the ML results. The “Radar Reflectivity > 10 dBz Extent” variable is an order of magnitude larger when 

lightning occurs, indicating that total ice water path, which is associated with high values of radar reflectivity is also much 

higher. In addition, the centroid altitude of radar reflectivity is higher by about 19 %, a difference that is significant at the 99 % 265 

confidence interval (CI). Mean vertical wind shear is smaller when flashes are present with decreases of about 18 % in 750 

to 250 hPa shear (significant at 95 % CI) and 20% in 750 to 500 hPa shear (significant at 95 % CI). Perhaps surprisingly, 

differences in PM2.5 between the non-flashing and frequent-flashing hours are significant. Specifically, hours with frequent 

lightning have 40 % less PM2.5 than no-lightning hours. This result is seemingly inconsistent with the ML analysis discussed 

earlier, which showed that PM2.5 had little effect on lightning occurrence and with previous studies finding that enhanced 270 

lightning activity is related to higher aerosol loading. 

CCN concentrations are also more than 30 % smaller during frequent-lightning hours than no-lightning hours (Table 5). 

Similarly, values of MERRA-2 Total Aerosol Extinction AOT at 550 nm simultaneous with convective hour are lower in 

frequent-lightning hours than in no-lightning hours (significant at 99 % CI). One plausible explanation for this is aerosol wet 

removal, given the fact that lightning occurrence is closely related to precipitation. Therefore, we examined the PM2.5 and 275 

CCN concentrations during the convective hour and also during the hours preceding the convective hour as shown in Table 5. 

During all these hours, we still notice less PM2.5 concentration when flashes are frequent, but differences in CCN 

concentrations are small and insignificant statistically.  

Another possible explanation is mixing of pollutants throughout the planetary boundary layer (PBL). A higher PBLH is 

associated with greater vertical mixing and often a larger CAPE and higher surface temperature (Zhang et al., 2013). Sun and 280 
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Liang (2020) found that higher PBLHs were common during extreme precipitation. Both higher CAPE and higher 

precipitation rates are related to lightning occurrence. We calculated the product of PBLH and PM2.5 or CCN concentration, 

assuming that pollutants are distributed homogeneously within the PBL and compared the values between no-lightning and 

frequent-lightning hours. While differences in the product of CCN concentration and PBL height between no-lightning and 

frequent-lightning periods were nearly 50 %, they were insignificant at the 95 % CI due to large variability. Thus, the lower 285 

concentrations of PM2.5 and CCN frequent-lightning hours may be simply caused by mixing through a deeper PBL. 

 

Meteorological Variables  No-Lightning Hours  Frequent-Lightning Hours  p-value 

PM2.5 Concentration in 

convective hours (µg·m-3) 

10.92 ± 3.83 6.57 ± 3.89 < 0.001 

PM2.5 Concentration 1 hour 

before convective hours 

(µg·m-3) 

10.94 ± 3.82 7.08 ± 4.28 < 0.001 

CCN Concentration in 

convective hours (cm-3) 

1640.13 ± 401.55 1094.22 ± 1205.45 < 0.05 

CCN Concentration 1 hour 

before convective hours (cm-

3) 

1616.69 ± 384.77 1249.85 ± 1222.03 > 0.05 

MERRA-2 Total Aerosol 

Extinction AOT at 550 nm in 

convective hours 

0.28 ± 0.10 0.22 ± 0.10 < 0.05 

PM2.5 Concentration in 

convective hours × PBLH 

(µg·m-3·km) 

10.88 ± 6.31 9.45 ± 8.36 > 0.05 

CCN Concentration in 

convective hours × PBLH 

(cm-3·km) 

1377.31 ± 493.49 1999.69 ± 3402.52 > 0.05 

Table 5: The contrast (mean, standard deviation, and significance of difference) in aerosol-related variables between no-

lightning and frequent-lightning hours. 

 290 

Some additional meteorological variables are calculated from the INTERPSONDE data set at the ARM SGP site. This value-

added product provides us with profiles of pressure, temperature and dew point. The contrast of these meteorological 

variables between no-lightning and frequent-lightning hours is shown in Table 6. 
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Meteorological Variables  No-Lightning Hours  Frequent-Lightning Hours  p-value 

LCL Height (km) 1.11 ± 0.41 1.11 ± 0.47 > 0.05 

0 °C Freezing Level Height 

(km) 

4.78 ± 0.22 4.64 ± 0.20 < 0.001 

Surface Equivalent Potential 

Temperature (K) 

356.64 ± 4.81 353.39 ± 6.42 < 0.01 

Minimum Equivalent 

Potential Temperature from 

700 hPa to 500 hPa (K) 

333.30 ± 4.18 328.84 ± 4.21 < 0.001 

Average Specific Humidity 

(SH) from Surface to LCL 

(g·kg-1) 

15.59 ± 1.68 14.92 ± 1.47 < 0.05 

Average Relative Humidity 

(RH) from Surface to LCL 

(%)  

69.8 ± 11.5 69.1 ± 12.4 > 0.05 

Average Mid-tropospheric 

SH from 700 hPa to 500 hPa 

(g·kg-1) 

6.09 ± 1.05 5.10 ± 1.12 < 0.001 

Average Mid-tropospheric 

RH from 700 hPa to 500 hPa 

(%) 

73.2 ± 13.1 62.0 ± 13.1 < 0.001 

Table 6: The contrast (mean, standard deviation, and significance of difference) between no-lightning and frequent-lightning 295 

hours in variables derived from the INTERPSONDE data product. 

 

According to the table, the LCL Height and vertically-integrated RH from the surface to LCL do not vary between no-

lightning and frequent-lightning hours. These variables affect warm cloud depth (Medina et al., 2022). Differences in the 

height of the 0 °C freezing level (0.14 km), vertically integrated SH (0.67 g·kg-1) from surface to LCL and surface equivalent 300 

potential temperature (3.25 K) are relatively small but significant statistically. The mid-tropospheric SH and RH are much 

lower during hours with thunderstorm activity (0.99 g·kg-1, 11.2 %, respectively), which is consistent with the analysis of 

convective profiles in the Amazon by Wall et al. (2014). They speculated that the increased lapse rate of humidity associated 

with a dry mid-troposphere increased the lapse rate of equivalent potential temperature and increased the severe storm threat 

when abundant moisture was present in the lower troposphere. Finally, the minimum equivalent potential temperature in 305 
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mid-troposphere is lower in frequent-lightning hours (4.46 K), which is consistent with Scala et al. (1990) who found that 

cells with a less pronounced equivalent potential temperature minimum are less likely to produce vigorous vertical transport 

than those developing in environments with a relatively strongly pronounced minimum. The low equivalent potential 

temperature region is considered as a source of cool dry air which feeds penetrating downdrafts helping to maintain an 

intense storm (Pickering et al., 1993). 310 

4.3 IC flash fraction relationship with 𝑪𝑨𝑷𝑬 

Holton (1973) found that CAPE plays an important role in determining maximum parcel updraft velocity, which is 

proportional to 𝐶𝐴𝑃𝐸 based on parcel theory. We have noticed a positive relationship between IC fraction and 𝐶𝐴𝑃𝐸, as 

shown in Figure 4. This analysis is based on 256 hours with convective clouds detected at ARM SGP site from the 

CLDTYPE product and plentiful flashes (Hourly Flash Count > Median Value of flashes during convective hours = 162.5), 315 

to ensure the statistics are meaningful. 

 

 

Figure 4: The Relationship between IC Fraction and 𝐶𝐴𝑃𝐸. The grey points show the IC fraction for convective hours with 

plentiful flashes while the red stars show the mean IC fraction for 5 m/s 𝐶𝐴𝑃𝐸  bins. The fitted line for the binned data and 320 

its equation are shown in the figure. 

 

From Figure 5, as 𝐶𝐴𝑃𝐸 increases from 0 to 60 m/s, the IC fraction increases from 0.7 to about 0.9. A hypothesis for the 

relationship is that higher 𝐶𝐴𝑃𝐸  represents a stronger convective environment with stronger updrafts. The stronger 

updrafts bring the electrification zone further above the surface, resulting in few flashes reaching the surface and 325 
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consequently a greater IC flash fraction. This hypothesis is supported by the fact that higher IC flash fractions are associated 

with higher IC heights, as shown in Figure 5. This relationship has not been widely discussed in previous studies, as they 

have focused on land-ocean contrast (Lapp and Saylor, 2007) or cloud vertical development (Williams et al., 1989). Our 

result suggests that 𝐶𝐴𝑃𝐸 itself can be closely associated with IC fraction. 

 330 

 

Figure 5: IC Height and Fraction with 𝐶𝐴𝑃𝐸. Median IC height is plotted against the 𝐶𝐴𝑃𝐸 for hours when flash rates 

exceed the median of flashing hours. The colours show the fraction of flashes that are IC. The blue and red ovals are 

showing relatively low and high IC flash fraction regions in the figure. 

 335 

5 Conclusion 

Previous ML-based studies of lightning frequency focus on larger regions, have coarser time resolution, or focus on 

CG lightning only. Here, we take advantage of rich measurements of atmospheric and cloud properties at the ARM 

SGP site and ENTLN flash counts to explore the factors affecting flash rates on an hourly time resolution using ML 

models. The hourly data in such a small region provide us with a fruitful understanding of lightning. Eight mostly-340 

independent meteorological variables have been input into a Random Forest ML model to predict lightning occurrence. 

The ML model has an accuracy of more than 76% and AUC of 0.850, and the top, middle and least important variables 

sorting is significant according to the robust ranking distribution. The most important variables affecting lightning 

occurrence turn out to be cloud thickness, rain rate and CAPE. 
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In strong convective environments (CAPE > 2000 J·kg-1), several variables including rain rate and cloud thickness vary 345 

significantly between no-lightning and frequent-lightning periods. In addition, our analysis indicates that values of mid-

tropospheric humidity are typically lower during frequent-flashing hours with low values of mid-tropospheric humidity 

indicative of greater convective instability. Both the 0 °C freezing level height and the surface equivalent potential 

temperature have small but statistically significant differences between no-lightning and frequent-lightning hours. Minimum 

equivalent potential temperatures in the mid-troposphere are typically 4.46 K lower in frequent-lightning hours, suggesting 350 

that a source of cool dry air from penetrating downdrafts is helpful for maintaining intense storms. 

A positive relationship is found between 𝐶𝐴𝑃𝐸  and IC fraction in convective hours with plentiful flashes. It may be 

explained by the fact that higher 𝐶𝐴𝑃𝐸  represents a stronger convective environment, which can bring the electrification 

zone further above the surface, resulting in a greater IC flash fraction. This hypothesis is supported by the variation in 

median IC heights with 𝐶𝐴𝑃𝐸 although more analysis is needed to confirm the preliminary finding due to uncertainties in 355 

IC heights from ENTLN and the limited sample size. Lightning Mapping Array (LMA) data with more accurate flash 

heights could be used together with ENTLN flash type information to verify the positive relationship between 𝐶𝐴𝑃𝐸 and 

IC fraction. 

As lightning processes are complicated, better time resolution is needed to better understand the mechanism. This study 

focuses on hourly time resolution. ML can provide a quick and efficient result when dealing with multiple variables, while 360 

subsequent analysis and discussion are essential to understand the physical meaning behind the result. This study only 

focuses on the region around the ARM SGP site, and we simply assumed that those measurements are representative of the 

entire 1° × 1° grid, which adds uncertainty because the scale of convection is typically smaller than this.  Future analysis 

over other regions is desired to enrich the data volume, in order to train the ML model and get more reliable and robust 

results. 365 

Data availability 

All ARM SGP datasets can be found at the ARM archive (https://adc.arm.gov/discovery/#/results/site_code::sgp) for the 

AOSCCN1COL (https://doi.org/10.5439/1256093), AOSCCN2COLAAVG (https://doi.org/10.5439/1323894), 

ARSCLKAZR1KOLLIAS (https://doi.org/10.5439/1393437 and https://doi.org/10.5439/1228768), CLDTYPE 

(https://doi.org/10.5439/1349884), INTERPOLATEDSONDE (https://doi.org/10.5439/1095316), 370 

PBLHTMPL1SAWYERLI (https://doi.org/10.5439/1637942) and VDIS (https://doi.org/10.5439/1025315). ERA5 hourly 

data on pressure levels from 1940 to present (https://doi.org/10.24381/cds.bd0915c6), US EPA Air Quality Data 

(https://www.epa.gov/outdoor-air-quality-data/download-daily-data) and MERRA-2 tavg1_2d_aer_Nx 

(https://doi.org/10.5067/KLICLTZ8EM9D) are also publicly available. 

 375 
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