## **Supplementary Material to:**

# The first application of a numerically-exact, higher-order sensitivity analysis approach for atmospheric modelling: implementation of the hyperdual-step method in the Community Multiscale Air Quality Model (CMAQ) version 5.3.2

Jiachen Liu<sup>1</sup>, Eric Chen<sup>1</sup>, Shannon L. Capps<sup>1</sup>

<sup>1</sup>Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, Pennsylvania, USA

Correspondence to: Shannon L. Capps (shannon.capps@drexel.edu)

## 1. Operations with hyperdual numbers

Examples of operations including addition, multiplication, exponential, natural log, power, and sine functions for hyperdual numbers  $H_a = a_0 + a_1\epsilon_1 + a_2\epsilon_2 + a_{12}\epsilon_{12}$  and  $H_b = b_0 + b_1\epsilon_1 + b_2\epsilon_2 + b_{12}\epsilon_{12}$  are listed in Eqs. S1-S6. These operations are derivations based on Fike and Alonso (2011).

$$H_a + H_b = a_0 + b_0 + (a_1 + b_1)\epsilon_1 + (a_2 + b_2)\epsilon_2 + (a_{12} + b_{12})\epsilon_{12}$$
(S1)

$$H_a H_b = a_0 b_0 + (a_1 b_0 + a_0 b_1) \epsilon_1 + (a_2 b_0 + a_0 b_2) \epsilon_2 + (a_0 b_{12} + a_1 b_2 + a_2 b_1 + a_{12} b_0) \epsilon_{12}$$
(S2)

$$\exp(H_a) = \exp(a_0) + [a_1 \exp(a_0)]\epsilon_1 + [a_2 \exp(a_0)]\epsilon_2 + [(a_1a_2 + a_{12})\exp(a_0)]\epsilon_{12}$$
(S3)

$$\ln(H_a) = \ln(a_0) + \left(\frac{a_1}{a_0}\right)\epsilon_1 + \left(\frac{a_2}{a_0}\right)\epsilon_2 + \left(\frac{a_{12}}{a_0} - a_1a_2\right)\epsilon_{12}$$
(S4)

$$H_a^{H_b} = \exp[H_b \ln(H_a)]$$
(S5)

$$\sin(H_a) = \sin(a_0) + [a_1 \cos(a_0)]\epsilon_1 + [a_2 \cos(a_0)]\epsilon_2 + [a_{12} \cos(a_0) - a_1 a_2 \sin(a_0)]\epsilon_{12}$$
(S6)

The power function (Eq. S5) is defined with both the natural log and exponential to avoid explicitly writing out the operations, which could be very complicated.

## 2. Slopes and $\mathbb{R}^2$ values of additional one-to-one plots

The slopes of additional first-order (Table S1) and second-order (Table S2) FDM and HYD sensitivities comparisons are shown.

| Table S1. Slo | pe and R <sup>2</sup> of the com | parisons of sensitiv | ities of ground layer | r species concentrati | ons to domain-wide | perturbations |
|---------------|----------------------------------|----------------------|-----------------------|-----------------------|--------------------|---------------|
|               |                                  |                      |                       |                       |                    |               |

| Sensitivities: slope, R <sup>2</sup> |                                 |                                    |                                        |
|--------------------------------------|---------------------------------|------------------------------------|----------------------------------------|
| NO <sub>x</sub>                      | $SO_2$                          | 2 <sup>nd</sup> -order NOx         | 2 <sup>nd</sup> -order SO <sub>2</sub> |
| $s_{NO_x}^{ANH_4}$ : 0.99, 0.94      | $s_{SO_2}^{ANH_4}$ : 1.00, 0.97 | $s_{NO_x}^{(2)ANH_4}$ : 0.74, 0.67 | $s_{SO_2}^{(2)ANH_4}$ : 0.04, 0.04     |
| $s_{NO_x}^{ANO_3}$ : 1.00, 0.99      | $s_{SO_2}^{ANO_3}$ : 0.10, 0.30 | $s_{NO_x}^{(2)ANO_3}$ : 0.61, 0.38 | $s_{SO_2}^{(2)ANO_3}$ : 0.01, 0.00     |
| $s_{NO_x}^{ASO_4}$ : 1.00, 0.94      | $s_{SO_2}^{ASO_4}$ : 1.04, 1.00 | $s_{NO_x}^{(2)ASO_4}: 0.98, 0.96$  | $s_{SO_2}^{(2)ASO_4}$ : 0.04, 0.06     |

Table S2. Slope and R<sup>2</sup> of the comparisons of ground layer species concentrations to domain-wide perturbations

| Sensitivities: slope, R <sup>2</sup> |                                |                                   |                                   |
|--------------------------------------|--------------------------------|-----------------------------------|-----------------------------------|
| TERP                                 | APIN                           | 2 <sup>nd</sup> -order TERP       | 2 <sup>nd</sup> -order APIN       |
| $S_{TERP}^{AMT1}$ : 1.00, 1.00       | $s_{APIN}^{AMT1}$ : 1.00, 1.00 | $s_{TERP}^{(2)AMT1}$ : 0.50, 0.49 | $s_{APIN}^{(2)AMT1}$ : 0.51, 0.50 |
| $S_{TERP}^{AMT2}$ : 1.00, 1.00       | $s_{APIN}^{AMT2}$ : 1.00, 1.00 | $s_{TERP}^{(2)AMT2}$ : 0.38, 0.38 | $s_{APIN}^{(2)AMT2}$ : 0.40, 0.39 |
| $s_{TERP}^{AMT3}$ : 1.01, 1.00       | $s_{APIN}^{AMT3}$ : 1.01, 1.00 | $s_{TERP}^{(2)AMT3}$ : 0.84, 0.72 | $s_{APIN}^{(2)AMT3}$ : 0.85, 0.74 |
| $s_{TERP}^{AMT4}$ : 1.01, 1.00       | $s_{APIN}^{AMT4}$ : 1.02, 1.00 | $s_{TERP}^{(2)AMT4}$ : 1.02, 0.94 | $s_{APIN}^{(2)AMT4}$ : 1.06, 0.94 |
| $s_{TERP}^{AMT5}$ : 1.02, 1.00       | $s_{APIN}^{AMT5}$ : 1.03, 1.00 | $s_{TERP}^{(2)AMT5}$ : 1.03, 0.95 | $s_{APIN}^{(2)AMT5}$ : 1.07, 0.95 |
| $s_{TERP}^{AMT6}$ : 1.02, 1.00       | $s_{APIN}^{AMT6}$ : 1.03, 1.00 | $s_{TERP}^{(2)AMT6}$ : 1.03, 0.95 | $s_{APIN}^{(2)AMT6}$ : 1.06, 0.95 |

|             | HYD, 1<br>(s) | HYD, 2<br>(s) | HYD, 4<br>(s) | HYD, 8<br>(s) | REG, 1<br>(s) | REG, 2<br>(s) | REG, 4<br>(s) | REG, 8<br>(s) |
|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Chem        | 5810          | 2930          | 1490          | 725           | 3180          | 1610          | 794           | 403           |
| Aero        | 3840          | 1890          | 960           | 487           | 793           | 385           | 206           | 104           |
| Vdiff       | 3860          | 1870          | 924           | 487           | 1390          | 724           | 393           | 217           |
| Hadv        | 1270          | 757           | 474           | 320           | 589           | 334           | 216           | 160           |
| Phot        | 462           | 205           | 124           | 64.0          | 235           | 111           | 53.4          | 28.9          |
| Cldproc     | 301           | 173           | 94.8          | 56.9          | 149           | 81.4          | 41.3          | 27.4          |
| Hdiff       | 221           | 141           | 83.0          | 56.9          | 70.6          | 47.1          | 29.1          | 23.1          |
| Zadv        | 422           | 238           | 124           | 56.9          | 94.2          | 51.4          | 26.7          | 13.0          |
| MPI_Barrier | 2630          | 1830          | 1160          | 853           | 1160          | 796           | 561           | 368           |
| Other       | 1290          | 778           | 492           | 448           | 188           | 137           | 107           | 99.6          |

Table S3. Individual module wall time of regular CMAQ (REG) and CMAQ-hyd (HYD) runs.

### 3. Additional Figures



**Figure S1**. The first-order sensitivities of ground layer aerosol nitrate (ANO<sub>3</sub>) concentration with respect to domain-wide perturbation of SO<sub>2</sub> emission calculated by FDM with different perturbation sizes: (a) 125%, 75%; (b) 110%, 90%; (c) 125%, 100%; (d) 100%, 75%. The sensitivities are apparently noisy, especially over the coast of South Carolina and Georgia.



Figure S2. The first order sensitivities of (a): AMTNO<sub>3</sub> with respect to NOx,  $s_{NO_x}^{AMTNO_3}$  and (b): AMTNO<sub>3</sub> with respect to monoterpenes,  $s_{TERP}^{AMTNO_3}$ 

### 4. High-Performance Computing Clusters

The simulations were run on NCAR's Cheyenne Supercomputing Clusters (Computational Information Systems Laboratory, 2017). Cheyenne has 145,152 processor cores of 2.3 GHz Intel Xeon E5-2697V4 processors. The total system memory is 313 TB, with 64 GB per node on 3,168 nodes and 128 GB per node on 864 nodes. All the simulations in this work were run with 64 GB of memory per node.

## References

Computational Information Systems Laboratory: Cheyenne: SGI ICE XA Cluster, 10.5065/D6RX99HX, 2017. Fike, J. and Alonso, J.: The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011-01-04, 10.2514/6.2011-886,