
1 
 

Divergent Biophysical Responses of Western United States Forests to Wildfire Driven by 

Eco-climatic Gradients  

Surendra Shrestha1*, Christopher A. Williams1, Brendan M. Rogers2, John Rogan1, and Dominik 

Kulakowski1 

1Graduate School of Geography, Clark University, Worcester, MA 01610 

2Woods Hole Research Center, Falmouth, MA 02540 

*Corresponding Author:  

Surendra Shrestha 

Graduate School of Geography, Clark University 

Worcester, MA 01610 

Email: Surshrestha@clarku.edu; sbs.stha111@gmail.com 

Phone: +1- (774) 253-0917  

mailto:Surshrestha@clarku.edu


2 
 

Abstract 1 

Understanding vegetation recovery after fire is critical for predicting vegetation-mediated 2 

ecological dynamics in future climates. However, information characterizing vegetation recovery 3 

patterns after fire and their determinants are limited over large geographical extents. This study 4 

uses Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) and albedo 5 

to characterize patterns of post-fire biophysical dynamics across the western United States (US) 6 

and further examines the influence of topo-climatic variables on the recovery of LAI and albedo 7 

at two different time horizons, 10 and 20 years post-fire, using a random forest model. Recovery 8 

patterns were derived for all wildfires that occurred between 1986 and 2017 across seven forest 9 

types and 21 level III ecoregions of the western US. We found differences in characteristic 10 

trajectories of post-fire vegetation recovery across forest types and ecoclimatic settings. LAI in 11 

some forest types recovered only 60% - 70% by 25 years after fire while it recovered 120% to 12 

150% of the pre-fire levels in other forest types, with higher absolute post-fire changes in forest 13 

types and ecoregions that had a higher initial pre-fire LAI. Our random forest results showed very 14 

little influence of fire severity on the recovery of both summer LAI and albedo at both post-fire 15 

time horizons. Post-fire vegetation recovery was most strongly controlled by elevation, with faster 16 

rates of recovery in lower elevations. Similarly, annual precipitation and average summer 17 

temperature had significant impacts on the post-fire recovery of vegetation. Full recovery was 18 

seldom observed when annual precipitation was less than 500 mm and average summer 19 

temperature was above the optimal range i.e., 15-20℃. Climate influences, particularly annual 20 

precipitation, was a major driver of post-fire summer albedo change through its impact on 21 

ecological succession. This study provides quantitative measures of primary controls that could be 22 

used to improve the modelling of ecosystem dynamics post-fire. 23 
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1. Introduction 26 

Wildfires have burned millions of hectares of forests in the western United States (Littell et al., 27 

2009; White et al., 2017) and have increased in both frequency and severity in recent decades. This 28 

trend has been attributed to temperature increases, more frequent droughts, below average winter 29 

precipitation and earlier spring snowmelt (Dale et al., 2001; Westerling et al., 2006; Rogers et al., 30 

2011; Ghimire et al., 2012; Dennison et al., 2014; Littell et al., 2015; Abatzoglou & Williams, 31 

2016; Williams & Abatzoglou, 2016; Williams et al., 2021), making ecosystem resilience and 32 

vegetation recovery post-fire a primary concern to researchers and land managers (Allen & 33 

Breshears, 2015). Existing studies report that large wildfires in western U.S. forests have increased 34 

four-fold since 1970-1986, with total burn area increasing by six and a half times (Westerling et 35 

al., 2006). Expanded burning can profoundly alter a wide range of ecosystem characteristics such 36 

as stand structure, species composition, leaf area, canopy ecophysiology, and microclimate (Liu et 37 

al., 2005). The most immediate biophysical effect of wildfire on the land surface is the decrease in 38 

live vegetation and the deposition of black carbon on the soil surface (De Sales et al., 2018). The 39 

alteration in surface roughness directly influences the interaction between the land and the 40 

atmosphere by, typically, reducing the turbulent mixing and net radiation (Chambers et al., 2005). 41 

Moreover, the deposition of the black carbon on the surface changes net radiation through its 42 

impact on surface albedo, which alters the partitioning of energy into latent heat and sensible heat 43 

(Jin & Roy, 2005). Fires have the potential to modify local to regional climate through these long-44 

lived changes in land surface dynamics and other substantial forcing impacts such as greenhouse 45 

gas fluxes and aerosols (Bonan et al., 1995). In this study, we use contemporary spaceborne 46 

observing systems to quantify the magnitude and timing of ecosystem responses to severe wildfires 47 

as a crucial step in assessing their associated ecological, hydrological, and biogeophysical impacts. 48 
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In addition to quantification, it is equally important to document the factors that determine 49 

variability in post-fire recovery in order to develop a predictive understanding of ecosystem 50 

dynamics in response to wildfire, especially considering present and expected future increases in 51 

the frequency of large, severe wildfires (Scholze et al., 2006; IPCC, 2007; Seastedt et al., 2008; 52 

Urza et al., 2017; Hankin et al., 2019). Vegetation recovery is likely to vary considerably across 53 

the landscape, even when initial estimates of fire severity are similar (Keeley et al., 2008; Frazier 54 

et al., 2018). Some forest ecosystems have shown to recover fully after large severe disturbances 55 

(Rodrigo et al., 2004; Knox & Clarke, 2012), while others have recovered little towards pre-fire 56 

levels (Barton, 2002; Rodrigo et al., 2004; Lippok et al., 2013). Variability in recovery rates has 57 

been shown to depend on the interactive effects of numerous biotic and abiotic factors related to 58 

nature of fire, life history traits of species, and environmental conditions following fire (Chambers 59 

et al., 2016; Johnstone et al., 2016; Stevens-Rumann et al., 2018). For example, post-fire recovery 60 

of dry mixed conifer forests in the western U.S. is strongly affected by fire severity (Chappell 61 

1996; Meng et al., 2015; Kemp et al., 2016; Harvey et al., 2016; Meng et al., 2018; Vanderhoof et 62 

al., 2020) and pre-fire condition (Martin-Alcon & Coll, 2016; Zhao et al., 2016). Other factors that 63 

can be important to vegetation recovery after fire include vegetation type (Epting, 2005; Yang et 64 

al., 2017); site topography including slope, aspect, and elevation (Wittenberg et al., 2007; Meng 65 

et al., 2015; Liu et al., 2016; Chambers et al., 2018; Haffey et al., 2018), and post-fire climate 66 

including temperature and moisture conditions (Chappell, 1996; Meng et al., 2015; Stevens-67 

Rumann et al., 2018; Kemp et al., 2019; Guz et al., 2021). Long-term assessment of post-fire 68 

vegetation recovery across forest types can offer valuable insights to researchers and land 69 

managers who seek to identify areas that could benefit from post-fire management and develop 70 

potential management actions such as fuels treatment, prescribed fire, carbon management, etc. 71 
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Several studies have documented vegetation recovery and associated biogeophysical and 72 

biogeochemical dynamics in response to wildfires by employing field-based observations 73 

including flux tower measurements (Chambers & Chapin III, 2002; Jin & Roy, 20005; Amiro et 74 

al., 2006; Randerson et al., 2006; Campbell et al., 2007; Dore et al., 2010; Kemp et al., 2016; 75 

Hankin et al., 2019; Ma et al., 2020), remote sensing observations (Veraverbeke et all., 2012; 76 

O’Halloran et al., 2014; Micheletty et al., 2014; Rogers et al., 2015; Bright et al., 2019; Vanderhoof 77 

et al., 2020), and modeling approaches driven by remote sensing observations (Hicke et al., 2003; 78 

Bond-Lamberty et al., 2009; Williams et al., 2012; Rogers et al., 2013; Maina et al., 2019). While 79 

instructive and critical for mechanistic understanding, local field-based studies on post-fire 80 

ecological dynamics tend to focus on small, localized areas, encompassing only a single or a few 81 

wildfire events (Meigs et al., 2009; Montes-Helu et al., 2009; Downing et al., 2019). In contrast, 82 

large-scale regional analyses using remotely sensed observations and modeling approaches tend 83 

to focus on Mediterranean (Veraverbeke et all., 2012a, 2012b; Meng et al., 2014; Yang et al., 84 

2017) and boreal ecosystems (Amiro et al., 2000; Chambers & Chapin, 2003; Randerson et al., 85 

2006; Lyons et al., 2008; Amiro et al., 2010; Jin et al., 2012; Rogers et al., 2013; Hislop et al., 86 

2020), or on only a few forest types (mostly ponderosa pine and mixed conifer of western U.S.) 87 

(Chen et al., 2011; Dore et al., 2012; Meng et al., 2015; Roche et al., 2018; Bright et al., 2019; 88 

Littlefield et al., 2020). Moreover, such studies did not examine how their results scale up to 89 

multiple fire events across broad regions. 90 

The purpose of this study is to provide a more precise estimate of wildfire impacts on LAI and 91 

surface albedo in seven different forest types of the western US using observations derived from 92 

the MODIS.  Moreover, this study also examines the factors that influence the nature and rate of 93 

vegetation recovery in the post-fire environment. The hypotheses for the work are that 1) the rate 94 
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of recovery of LAI following wildfire varies across forest types and ecoclimatic settings, 2) the 95 

change in vegetation cover post-fire induces a change in the albedo which varies by forest types 96 

and ecoclimatic settings, and 3) the variability in the post-fire response of albedo is attributable to 97 

the same factors that explain variability in LAI post-fire.  98 

2.   Methods 99 

2.1. Study Area  100 

This study was carried out in the western US, a region that has been severely disturbed by wildfires 101 

in the last several decades. Its extent for the purpose of this study (Fig. 1) encompasses the 102 

conterminous US west of the 100th meridian (Thompson et al., 2003). This region is geographically 103 

diverse with high physiographic relief and strong local and regional climatic gradients (Bartlein & 104 

Hostetler, 2003), including regions such as temperate rain forests, high mountain ranges, great 105 

plains, and deserts (Thompson et al., 2003). Our study considered seven forest types that are 106 

dominant across the western US, as defined by the US Forest Service’s National Forest Type data 107 

set (Ruefenacht et al., 2008), including Douglas-fir, Pinyon-Juniper, Ponderosa pine, 108 

Spruce/Fir/Hemlock, Mixed conifer, Lodgepole pine, and Oak. Within these forest types, we only 109 

considered areas that were burned with high severity as defined by Monitoring Trends in Burn 110 

Severity (MTBS) to examine the post-fire biophysical dynamics. In case of attribution of postfire 111 

recovery, we considered all fire severity classes from MTBS in our random forest model to 112 

determine the influence of these classes on post-fire recovery of vegetation and surface albedo. 113 

Within each ecoregion, we selected only those forest types that cover >10% of ecoregion’s forest 114 

area and had >1% pixels burned under high severity. As a result, only 21 out of 35 level III 115 

ecoregions of the western US (Table S1) (Omernik, 1987) had a sufficient number of 500 m x 500 116 

m pixels that saw high severity burning within these forest types to support the generation of forest-117 
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type-specific chronosequences of post-fire ecological responses. Across these ecoregions, average 118 

annual precipitation (1981-2010) was 900 ± 490 mm yr-1 (mean ± SD), while mean summer 119 

minimum and maximum temperature were 23° ± 2.8°C and 7° ± 2.5°C, respectively (PRISM; Daly 120 

et al., 2008). 121 

 122 
Figure 1: Distribution of 1986-2017 burned area (Eidenshink et al., 2007) and forest types 123 

(Ruefenacht et al., 2008) within study area extent. 124 

2.2. Remote Sensing Data and Data Products 125 

The burned area and fire severity data used in this study were obtained from Monitoring Trends in 126 

Burn Severity (MTBS) for the period of 1986-2017 (Eidenshink et al., 2007). We divided our study 127 

into different forest types to analyze the recovery of LAI and albedo post-fire, utilizing a USFS 128 
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forest type group map (Ruefenacht et al., 2008). We resampled the MTBS dataset from its native 129 

30 m resolution to a coarser 500 m resolution. During this process, we retained only those 500 m 130 

pixels that contained at least 75% of the corresponding 30 m pixels burned, thus reducing noise 131 

from pixels with an unclear mix of burn and unburn conditions. Similarly, we resampled forest 132 

type grid from 250 m to 500 m resolution and selected pixels where at least 75% of the forest 133 

within each pixel belonged to a single forest type based on the 250 m forest type group map. We 134 

excluded pixels that were burned more than once between 1986 and 2017 as such pixels can add 135 

noise to the post-fire trajectory of biophysical properties.  136 

This study analyzed spatially and temporally consistent MODIS products: LAI and shortwave 137 

white sky albedo to assess fire-induced change in vegetation and surface albedo in the western US. 138 

The MODIS satellite data tile subsets (tiles h8v4, h8v5, h9v4, h9v5, h10v4, and h10v5) from 2001 139 

to 2019 were downloaded from the MODIS data archive (https://www.earthdata.nasa.gov/). 140 

Within each data tile, we employed the quality assurance (QA) bits embedded in the MODIS 141 

products to ensure that only the highest-quality values (flagged as ‘0’) were included. This process 142 

involved removing all retrievals affected by cloud cover and those flagged for low quality. The 143 

MODIS LAI product (MCD15A2H; Myneni et al., 2002) reports the green leaf area index which 144 

represents the amount of one-sided green leaf area per unit ground area in broadleaf canopies or 145 

half the total surface area of needles per unit ground area in coniferous canopies. The MODIS LAI 146 

algorithm utilize a main look-up-table (LUT) based procedure that makes use of spectral 147 

information contained in red and NIR bands along with a back-up algorithm that relies on an 148 

empirical relationship between the Normalized Difference Vegetation Index (NDVI) and canopy 149 

LAI, and fraction of photosynthetically active radiation (fPAR) (Myneni et al., 2002).  150 

https://www.earthdata.nasa.gov/)
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For albedo, we used the daily MODIS collection 6 bidirectional reflectance distribution function 151 

(BRDF)/Albedo product at 500 m resolution (MCD43A3; Schaaf et al., 2002). The use of both 152 

Terra and Aqua data in this product provides more diverse angular samplings and increased 153 

probability of high input data that allow more accurate BRDF and albedo retrievals. The MODIS 154 

albedo algorithm uses a bidirectional reflectance distribution and shortwave reflectances (0.3-5.0 155 

µm) and provides both black-sky and white-sky albedos. We used shortwave broadband white sky 156 

albedo for this study because it is less biased in complex terrain and less sensitive to view and 157 

solar angles (Gao et al., 2005). We stratified the sampling of white-sky albedo by snow-free and 158 

snow-covered conditions based on the presence or absence of snow, determined at a pixel level by 159 

the MODIS daily snow cover 500 m product (MOD10A1; Salomonson and Appel, 2004). We 160 

assigned snow-free and snow-covered conditions using a threshold of less than 30% and greater 161 

than 75% snow cover. We chose these thresholds as a balance between inclusion for robust 162 

sampling and exclusion to reduce noise from pixels with an unclear mix of snow and snow-free 163 

conditions. We are aware that much of our study domain does not have considerable snow cover 164 

during winter, and these snow-free winter albedos had similar patterns and magnitudes as summer 165 

albedos (Fig. S1). Therefore, the average summer (June-August) albedo values presented here 166 

represent the snow-free condition only, while the average winter (December – February) values 167 

presented include only snow-covered conditions. We did not report winter albedos for all forest 168 

types because of limits on the availability of high-quality snow-covered pixels. 169 

As part of our attribution analysis that seeks to identify factors that influence the pattern of post-170 

fire biophysical dynamics, we acquired a suite of climate variables– monthly mean summer 171 

precipitation, monthly mean summer temperature, monthly minimum summer temperature, 172 

monthly maximum summer temperature, total annual precipitation– covering the 2001-2019 173 
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period from Parameter-Elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 174 

2008). PRISM utilizes point measurements of precipitation and temperature to generate continuous 175 

digital grid estimations for climate data with a 4 km spatial resolution (Daly et al., 1994). The 176 

elevation of all burned pixels was taken from the US Geological Survey (USGS) National 177 

Elevation Dataset (NED) at 30 m (U.S. Geological Survey, 2019). All topo-climatic variables were 178 

re-gridded to the 500 m MODIS resolution for uniformity.  179 

2.3. Generating Chronosequences of Post-fire LAI and Albedo  180 

To address unrealistic variation in MODIS land surface products (Cohen et al., 2006), we 181 

computed mean monthly values by adding all samples and dividing it by the number of samples 182 

in each month within our stratified design. For the summer season, we computed mean summer-183 

season values of LAI and albedo by averaging the data from June, July, and August. Similarly, for 184 

the winter season, yearly values of LAI and albedo were computed the same way using data from 185 

December, January, and February. Next, we analyzed changes in post-fire LAI and albedo relative 186 

to pre-fire by sampling each of them as an annual time series from three years before wildfire 187 

events to all years of record after wildfire events. We grouped samples from each fire event based 188 

on forest type, eco-climatic setting, and snow cover conditions. Within these groups, we 189 

composited burn events from different years and aligned them temporally to represent three years 190 

prior to the fire and all years after the fire. Consequently, chronosequences of biophysical 191 

properties as a function of time since fire were created for a combination of seven forest types, two 192 

snow cover conditions (in case of albedo), and 21 sub-ecoregions. 193 

2.4. Attribution of Recovery 194 
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We explored the relationships between albedo and LAI recovery and topo-climatic factors, and 195 

subsequently attributed the recovery at 10 years post-fire and 20 years post-fire using random 196 

forest (RF) algorithms, implemented in R (Breiman 2001; Liaw & Wiener, 2002). We used a non-197 

parametric modeling method because most variable distributions were non-normal and RF does 198 

not require the variables to be normally distributed. Additionally, RF can handle tens of thousands 199 

of data points and provides variable importance scores. We initially selected seven explanatory 200 

variables - fire severity class (low, medium, and high), three temperature variables, two 201 

precipitation variables, and elevation. Although RFs do not require collinear variables to be 202 

removed (Breiman, 2001), we employed a Variance Inflation Factor (VIF) analysis for 203 

multicollinearity as a variable selection method to improve computation efficiency and enhance 204 

interpretation, particularly with respect to variable importance. VIF analysis involves: a) 205 

calculating VIF factors, b) removing the predictors from this set with VIF>10, and c) repeating 206 

until no variable has VIF>10. This provided us with four uncorrelated predictors to be used in the 207 

RF model - fire severity class, total annual precipitation, mean summer temperature (June – 208 

August), and elevation. We pooled post-fire LAI and albedo responses across 21 ecoregions within 209 

a given forest type for both time horizons (10-year post-fire and 20-year post-fire). The dataset 210 

was divided into training (80%) dataset to train the RF model and test (20%) dataset to validate 211 

the model. We created four RF models with 500 binary decision trees for each forest type (one for 212 

each time horizon for both LAI and albedo). We tuned the model to generate a model with the 213 

highest accuracy i.e., the lowest out-of-bag error among all tested combination of parameter 214 

values. The model’s performance was assessed using the R2 metric. We used unscaled permutation 215 

accuracy instead of the traditional Gini-based importance metric to rank the relative importance 216 

among explanatory variables, as Gini-based importance was shown to be more strongly biased 217 



13 
 

towards continuous variables or variables with more categories compared to other importance 218 

metrics (Strobl et al., 2007). The unscaled permutation importance metric calculates variable 219 

importance scores as the amount of decrease in the accuracy when a target variable is excluded. 220 

We used partial dependence plots (PDP) to visualize the influence of each explanatory variable on 221 

the degree of 10 years and 20 years post-fire recovery of LAI and albedo. PDP quantifies the 222 

marginal effects of a given variable on an outcome and provides a mechanism to explore insight 223 

in big datasets, especially when the random forest is dominated by lower-order interactions 224 

(Martin, 2014).  225 

3. Results 226 

3.1. Post-fire Recovery of Land Surface Properties 227 

Burning caused a large decline in LAI for all forest types. Generally, high productivity forests 228 

(e.g., Douglas-fir and Mixed conifers), compared to other forest types, experienced a larger decline 229 

in LAI in year one after fire (Fig. 2a-g). Compared to pre-fire levels, the decline in LAI ranged 230 

from 47% in Pinyon-Juniper to 76% in Ponderosa pine forests (Table S2). After this initial 231 

decrease, the effects of vegetation regeneration became apparent. For all forest types, the 232 

magnitude of LAI change decreases with increase in time since fire. However, LAI did not recover 233 

to the pre-fire condition in most cases by the 25-year period of observation available for this study. 234 

We found large differences in the timing of LAI recovery across forest types, with forest types 235 

recovering at different rates, crossing the pre-fire levels at different times, and reaching different 236 

peaks in LAI (Fig. 2a-g). For example, Douglas-fir in Columbia Mountains, Klamath Mountains, 237 

and Southern Rockies (Fig. 2g) and Mixed conifers in Baja California and Eastern Cascades (Fig. 238 

2a) showed complete recovery of LAI to pre-fire levels within the 25-year study period, while 239 

Lodgepole pine, Oak, and Ponderosa pine were characterized by a slower recovery rate and most 240 
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did not recover to pre-fire levels by the 25-year period (Fig. 2 and Table S2). We also found varied 241 

recovery rates across geographic regions even within a single forest type, presumably related to 242 

climate and soils. For example, the characteristic post-fire LAI trajectories for the high 243 

productivity Douglas-fir forest type (Fig. 2g) showed a substantially faster recovery in Cascades, 244 

Klamath Mountains, and Columbia Mountains regions compared to the Idaho Batholith region of 245 

the western US. Based on observations from all forest types, in general, the faster recovery of LAI 246 

was observed in high elevation, wet areas with substantial maritime influences.  247 

 248 

Figure 2: Mean summer post-fire LAI (± SE) as a function of time since fire in seven different 249 

forest types of the western US. (Sub-ecoregions: E-Cascades = Eastern Cascades; Costal = Coastal 250 

sage; Baja-CA = Baja California; KM = Klamath Mountains; SN = Sierra Nevada; Can-Rockies 251 

= Canadian Rockies; Mid-Rockies = Middle Rockies; S-Rockies = Southern Rockies; N-Cascades 252 

= Northern Cascades; ID-Batholith: = Idaho Batholith; Col-M = Columbia Mountains; Blue-M = 253 

Blue Mountains; Grt Plains = Great Plains; T-Sierras = Temperate Sierras; AZ-NM-Plateau = 254 

Arizona-New Mexico Plateau; Cent-Basin = Central Basin; CO-Plateau = Colorado Plateau; 255 

Mojave = Mojave Basin; Highland = North American Highland; Wasatch-M = Wasatch 256 

Mountains). 257 
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Turning to albedo, we found significant changes in summer albedo post-fire of all forest types. 258 

Three important trends, similar among forest types, emerged from these post-fire summer albedo 259 

trajectories. First, for all forest types, summer albedo decreased immediately after fire (Fig. 3) 260 

likely due to low reflectivity by black carbon deposition on the soil surface and dead tree boles 261 

both common immediately after high severity burning. The decline in summer albedo ranged from 262 

0.01-0.02 across forest types with the greatest decline (20% from pre-fire levels; Table S3) 263 

observed in Douglas-fir forest of the Klamath Mountains region. Second, post-fire albedo 264 

increased gradually from year two since fire, crossing the pre-fire levels at around 3 years post-265 

fire, and peaking at different time horizons for different forest types and regions (Fig. 3a-g). 266 

Elevated post-burn albedo is presumably due to increasing canopy cover, the relative high albedo 267 

of grasses and shrubs that establish in early succession, and the loss of black carbon coatings on 268 

soil and woody debris (Chambers and Chapin, 2002). The timing and magnitude of peak post-fire 269 

albedo varied across forest types. For example, Ponderosa pine showed its peak in post-fire albedo 270 

at 18 years post-fire (Fig. 3c) and 11 years post-fire for one of the Mixed Conifer regions (Fig. 3a), 271 

while slow growing species such as Spruce/Fir/Hemlock may not have reached its peak by the end 272 

of the 25-year post-fire study period (Fig. 3f). Similarly, there were significant regional differences 273 

in timing and magnitude of peak albedo for a given forest type group. For example, Mixed Conifer 274 

post-fire albedo peaked at 11 years post-fire in Baja California, while it continued to increase 275 

through to 25 years in Klamath Mountains (Fig. 3a). Third, as the post-fire LAI approached the 276 

pre-fire LAI levels, post-fire albedo started to decline from the peak towards its pre-fire albedo, 277 

but it did not reach the pre-fire albedo levels by the end of the 25-year study period (Fig. 3a-g).  278 

Post-fire winter albedo for each forest type had a similar pattern as summer albedo except with 279 

greater magnitude and that it increased immediately after fire (Fig. 4a-f and Table S4). We 280 
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observed greater inter-annual variability in the timeseries of post-fire winter albedo likely related 281 

to variability in snow cover and also a smaller signal-to-noise ratio associated with smaller sample 282 

sizes. The albedo response was more than three-fold larger in winter than in summer, peaking in 283 

the range of 0.4 to 0.6 across forest types and with an increase over pre-fire levels of about 0.25 to 284 

0.50. Similar to summer albedos, winter albedos did not return to the pre-fire levels by the end of 285 

25-year study period (Fig. 4a-f). 286 

 287 

Figure 3: Mean summer post-fire albedo (± SE) as a function of time since fire in seven different 288 

forest types of the western US.  289 
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 290 

Figure: 4: Mean winter post-fire albedo (± SE) as a function of time since fire in seven different 291 

forest types of the western US. 292 

3.2. Drivers of post-fire recovery of LAI and albedo 293 

Our random forest model had high accuracy for recovery of both LAI and albedo 10 years and 20 294 

years post-fire. The out-of-bag (OOB) error rate of the random forest model for the relative 295 

recovery of 10-year post-fire LAI was around 3% - 8% (r2 = 0.66 – 0.78), while it was around 296 

2.5% - 9% (r2 = 0.65 – 0.78), 0.4% - 1.4% (r2 = 0.55 – 0.83), and 0.3% - 1.6% (r2 = 0.52 – 0.83) 297 

for 20-year post-fire LAI, 10-year post-fire albedo, and 20-year post-fire albedo, respectively 298 

(Table S5).  The variable with greatest importance agreed well between 10-year LAI and 20-year 299 

post-fire LAI for all forest types indicating that the recovery of LAI at 10-year and 20-year post-300 

fire were both largely determined by the same governing factors (Fig. S2). Among all the 301 

explanatory variables, the degree of post-fire LAI recovery at both 10-year and 20-year post-fire 302 

were largely dominated by elevation and total annual precipitation (Fig. S2). In contrast, the factor 303 

with greatest influence on post-fire summer albedo varied by forest type and time since fire. For 304 
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example, in the Mixed conifer forest type, annual precipitation was the major determinant of 10-305 

year post-fire albedo recovery, while it was average summer temperature in case of 20-year 306 

postfire. Similarly, the degree of 10-year post-fire albedo recovery in the Spruce/Fir/Hemlock 307 

forest type was largely determined by average summer temperature, while the recovery after 20-308 

year post-fire was mainly determined by elevation. Fire severity, on the other hand, showed almost 309 

no explanatory power in predicting recovery of LAI and albedo at both times for all forest types 310 

(Fig. S2,S3). 311 

The degree of LAI recovery 10-year post-fire increased with an increase in total annual 312 

precipitation for all forest types, but it varied little when the total annual precipitation exceeded 313 

1000 mm. Annual precipitation was the major determinant of 10-year postfire LAI recovery for 314 

dry forests like Ponderosa pine, Pinyon-Junipers, and Oak, and these forest types tended to recover 315 

above pre-fire levels as the annual precipitation is increased. However, when the annual 316 

precipitation is less than 500 mm, the relative change in LAI is below 0 for all forest types, 317 

indicating that the complete recovery of LAI 10-year postfire was unlikely with annual 318 

precipitation less than 500 mm (Fig. 5c). In contrast, five out of seven forest types recovered over 319 

pre-fire levels 20-years post-fire with increased annual precipitation, indicating that Mixed 320 

conifers and Douglas-fir need more time and higher annual precipitation to recover to the pre-fire 321 

level. Only Oak and Ponderosa pine showed increased LAI 20-year post-fire as the annual 322 

precipitation exceeded 2000 mm (Fig. 6c). As with LAI, annual precipitation was one of the major 323 

determinants of both 10-year and 20-year post-fire albedo recovery. The post-fire increase in 324 

albedo was greater for sites with less annual precipitation (Fig. 7c and 8c), particularly noticeable 325 

in dry forest types such as Douglas-fir, Ponderosa pine, and Oak where increased precipitation 326 

triggered a rapid increase in post-fire vegetation recovery. The Oak forest type showed a particular 327 
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anomaly of albedo 20-years post-fire, exhibiting a decline of around 20% below pre-fire levels for 328 

sites with annual precipitation of 2000 mm or above (Fig. 8c), consistent with a rapid increase in 329 

vegetation recovery. 330 

Regarding average summer temperature, we found interesting divergence in the pattern of LAI 331 

response between cool and hot climates.  For forests growing in hotter conditions, the magnitude 332 

of LAI recovery at both time horizons decreased in areas with higher temperatures, particularly in 333 

Oak, Pinyon-Junipers, and Ponderosa pine forest types, as these forest types grow at warmer end 334 

of the species distribution. In contrast, increases in average summer temperature assisted the 335 

recovery of forest types growing at the colder end of the species distribution such as Lodgepole 336 

pine and Spruce/Fir/Hemlock (Fig. 5d and 6d), noting that LAI was consistently lower than pre-337 

fire levels for these forest types at both time horizons.  Albedo does not show the same divergence 338 

in pattern with warmer conditions, and instead we find a somewhat surprising pattern. Hotter sites 339 

tend to experience a larger enhancement of summertime albedo over the pre-fire condition at both 340 

time horizons in spite of faster recovery of LAI with hotter temperature (Fig. 7d and 8d). 341 

Elevation was consistently found to be an important variable in determining the trajectory of post-342 

fire vegetation recovery. The post-fire recovery of LAI was slower at higher elevation both 10-343 

years and 20-years post-fire. Most forest types showed complete recovery towards pre-fire levels 344 

at an elevation below 1500 m. Only Pinyon-Junipers and Ponderosa pine forest types saw faster, 345 

more complete recovery of LAI with higher elevation (Fig. 5b and 6b). Turning to albedo response, 346 

we found that higher elevation led to a smaller increase in albedo over its pre-fire value for both 347 

time periods for the two forest types for which elevation was the most important predictor of post-348 

fire albedo change, namely for Pinyon-Juniper and Ponderosa pine forests. This is consistent with 349 

faster post-fire recovery of LAI at higher elevation portions of range for these two forest types. In 350 
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contrast, post-fire albedo of Douglas-fir, Mixed conifer and Oak forest types showed little 351 

dependence on elevation (Fig. 7b and 8b). 352 

Although fire severity was the least important predictor of both post-fire LAI and albedo recovery 353 

at both time horizons, our results showed significant variation in post-fire recovery among severity 354 

classes for all forest types. As expected, the overall recovery of LAI 10-year post-fire was greater 355 

for low fire severity where the recovery ranged between 85% and 95% of pre-fire LAI levels (Fig. 356 

5a). Only in the case of Oak and Pinyon-Juniper forest types that burned with high severity did we 357 

see full recovery of LAI at or above pre-fire levels by 10-years post-fire. By 20 years post-fire, 358 

Lodgepole pine and Spruce/Fir/Hemlock still show a suppression of LAI relative to pre-burn and 359 

less recovery for more severe burn conditions (Fig. 6a) while Oak sees LAI elevated over the pre-360 

burn condition and saw the largest LAI at sites that had the highest severity fires (Fig. 6a).  The 361 

four other forest types had LAI equal to the pre-burn condition and showed no variation across fire 362 

severity. For albedo, all forest types showed a larger elevation of albedo over their pre-fire values 363 

under medium fire severity (Fig. 7a). Oak had the lowest change in albedo at both time horizons, 364 

owing to rapid post-fire recovery. Overall, post-fire albedo was consistently higher than pre-fire 365 

levels at both time horizons in all forest types indicating that albedo requires more than two 366 

decades to return to pre-fire levels in these forest types (Fig. 7a and 8a). 367 
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 368 
Figure 5: Partial dependence of change in summer LAI 10-year post-fire relative to pre-fire on a) 369 

fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer temperature. 370 

(Forest types: MC = Mixed Conifers; LP = Lodgepole pine; DF = Douglas-fir; PP = Ponderosa 371 

pine; Pinyon = Pinyon-Juniper; SFH = Spruce/Fir/Hemlock). The y-axis represents change in LAI 372 

post-fire relative to pre-fire (degree of recovery), where negative values represent recovery below 373 

pre-fire levels, 0 represents recovery to pre-fire levels, and positive values represent recovery 374 

above pre-fire levels. 375 

  376 
 Figure 6: Partial dependence of change in summer LAI 20-year post-fire relative to pre-fire on a) 377 

fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer temperature. 378 
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  379 
Figure 7: Partial dependence of change in summer snow-free albedo 10-year post-fire relative to 380 

pre-fire on a) fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer 381 

temperature.  382 

 383 
Figure 8: Partial dependence of change in summer snow-free albedo 20-year post-fire relative to 384 

pre-fire on a) fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer 385 

temperature.      386 

4. Discussion and Conclusion 387 
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Here, we extended the regional research by Shrestha et al., (2022) with a much broader sampling 388 

to study post-fire responses for seven forest types in 21 sub-ecoregions of the western U.S. In 389 

addition, this study also uses a machine learning approach (random forest) to examine the influence 390 

of several topo-climatic variables on the nature and rate of vegetation recovery and associated 391 

albedo in the post-fire environment. 392 

4.1. Post-fire Vegetation Recovery 393 

In this study, we used MODIS-derived LAI to increase our understanding of variability in the 394 

recovery of vegetation in the post-fire environment across seven forest types and 21 sub-395 

ecoregions of the western United States. Similar to other studies (Morresi et al., 2019; Vanderhoof 396 

et al., 2020), we found rapid vegetation recovery in the first 10 years after fire. While LAI 397 

rebounded rapidly in the initial 10 years post-fire, this cannot be taken as a definitive indicator of 398 

successional trajectory, especially for slow growing forests like subalpine fir (Ferguson and 399 

Carlson, 2010) or for forests with episodic post-fire germination such as Ponderosa pine (Savage 400 

et al., 1996; Brown and Wu, 2005; Rodman et al., 2019). Leaf area recovery then slowed in most 401 

cases, and for many it did not return to the pre-fire level by the end of study period. We anticipate 402 

that the recovery of LAI to its pre-fire condition continues to unfold over time, extending beyond 403 

the 25-year duration covered by our study. In some cases, we see LAI at 20 or 25 years post-fire 404 

exceeding that prior to burning, suggesting that wildfire may have stimulated canopy renewal or 405 

release of the understory. Evaluating post-fire LAI trajectories on these, and longer, timescales can 406 

be of value from a management perspective, for example, to identify regions where there is a risk 407 

of regeneration failure for dominant, native species (Welch et al., 2016).  408 

Our findings demonstrated differences in characteristic trajectories across forest types and 409 

ecoregions. Wildfire caused a similar proportional reduction of LAI across forest types and 410 
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ecoregions, generally with 30% to 70% reduction in year 1 post-fire but with smaller reductions 411 

in some Pinyon-Juniper setting (Table S2). We also found varied rates of LAI recovery post-fire 412 

across forest types and ecoregions. Some forest types saw recovery to only 60 % to 70% by 25 413 

years while others saw LAI recovery to 120% to 150% of the pre-fire condition (Table S2). Many 414 

factors are likely to contribute to these patterns across forest types and ecoclimatic settings. First 415 

and foremost, it is no surprise that areas more suitable for growth have faster and more complete 416 

recovery with higher absolute LAI within a given forest type. For example, Douglas-fir stands in 417 

Cascades, Columbia Mountains, and Klamath Mountains had faster recovery rates and greater 418 

changes in absolute LAI after year 1 post-fire than did stands in the Rockies and Temperate Sierras 419 

(Table S2). Similarly, we observed a consistent slow trend in the rate of conifer regeneration in 420 

the interior of the western US with continental climate where high severity fire is common. This 421 

is likely due to reduced seed availability in response to larger high severity fires in these areas. 422 

(Cansler and McKenzie, 2014). Other factors include the regeneration capacity of the dominant 423 

tree species post-fire, with some readily and actively resprouting or having serotiny, while other 424 

lack these fire-adaptation traits (Howard, 2003; Meng et al., 2018), and competition with species 425 

such as early colonizers common after burning (Hansen et al., 2016; Stoddard et al., 2018). The 426 

post-fire dynamics presented here are not stratified by post-fire species composition, only 427 

characterizing the biophysical characteristics that unfold after burning of a particular forest type. 428 

Naturally, post-fire species composition can differ from pre-fire depending on seed and nutrient 429 

availability, fire severity, and climate and these effects are embedded in the post-fire biophysical 430 

trajectories that we present. Further exploration of how post-fire species composition and other 431 

regeneration characteristics influence biophysical trajectories is warranted. 432 
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Our findings of post-fire LAI trajectories across ecoclimatic settings suggest that the range of 433 

Douglas-fir stands may be less limited due to climate warming compared to Ponderosa pine, as 434 

their current range tends to extend into cooler and moister areas where they recover above pre-fire 435 

levels. This indicates that the worsening of climate changes in the future (more periods of 436 

prolonged drought) can have implications for migration of ponderosa pine due to worsening 437 

regeneration under climate stress. Although Pinyon-Juniper forests recovered rapidly in the first 438 

few post-fire years, our observed decline in the rate of pinyon-juniper recovery is consistent with 439 

the findings of Vanderhoof et al., (2020). This forest type is recognized for its slow regeneration 440 

and susceptibility to drought (Hartsell et al., 2020). Existing studies in post-fire recovery of 441 

Pinyon-Juniper suggest that this forest type recovers to pre-fire condition in <5 years after fire in 442 

the case of low to moderate fire (Jameson, 1962; Dweyer and Preper, 1967), while it takes >100 443 

years for recovery to pre-fire condition under high severity with heavy Pinyon-Juniper mortality 444 

(Erdman, 1970; Koniak, 1985). Other forest types showed faster or similar rates of recovery, for 445 

instance, Mixed conifer recovered completely in most of the ecoregions of the western US possibly 446 

due to richer species diversity and relatively higher precipitation (Bright et al., 2019). 447 

4.2. Post-fire albedo Changes 448 

Our results provide evidence for significant effects of wildfires on the albedo across forest types 449 

and eco-climatic settings in the western US, with post-fire albedo being much higher in winter 450 

than in summer. All forest types showed noticeable age-dependent albedo patterns, with a transient 451 

peak in summer albedo around 10-18 years post-fire. We observed a decline in summer albedo 452 

during the first year after fire except for Pinyon-Juniper (Table S3) presumably from charred 453 

surface and the deposition of black carbon. The increase in albedo in first year after fire in Pinyon-454 

Juniper may be associated with low pre-fire LAI leading to lower levels of charcoal and black 455 



26 
 

carbon deposition that absorb incoming radiation. Our finding is comparable to previously 456 

published findings that report albedo drops in the range of 0.01-0.05 using MODIS albedo (Jin and 457 

Roy, 2005; Randerson et al., 2006; Lyons et al., 2008; Veraverbeke et al., 2012). The slight 458 

differences are likely related to the variability in the domain of each study (e.g., western US vs. 459 

boreal, western US vs. Mediterranean), spatial resolution of MODIS pixels (500 m) that includes 460 

unburned patches and non-forest fractions, illumination conditions of the MODIS albedo products 461 

(black sky, white sky, blue sky) and method used to calculate albedo differences. Regarding the 462 

latter, we compared a pixel to itself between pre-and-post-fire years. The approach of comparing 463 

burned pixels to unburned neighboring pixels as control is also common (e.g., Myhre et al., 2005; 464 

Randerson et al., 2006; Lyons et al., 2008; Gatebe et al., 2014). One issue with this approach is 465 

that it does not consider heterogeneity of the land surface. Burned and control pixels may not be 466 

equivalent in the pre-burn period (Dintwe et al., 2017), as they do not necessarily represent a 467 

comparable vegetation state and therefore may not be a good proxy to pre-fire state.  468 

Soon after fire, we observed an increased in post-fire albedo during the summer period presumably 469 

due to combination of char removal and presence of early-successional plants (Johnstone et al., 470 

2010) that have higher albedo than mature species (Betts and Ball, 1997; Pinty et al., 2000; Amiro 471 

et al., 2006; Dintwe et al., 2017). Summer post-fire albedo recovered faster than LAI regardless of 472 

vegetation type. This pattern suggests that, in contrast to findings of Pinty et al., (2000) and 473 

Tsuyuzaki et al., (2009), post-fire recovery of albedo is driven by multiple factors in addition to 474 

the early regeneration of vegetation such as vegetation destruction and charcoal left behind (Jin et 475 

al., 2012), differences in fuel combustion and consumption (Jin and Roy, 2005), species 476 

composition during early succession (Beck et al., 2011), and seasonal variation in soil moisture 477 

and removal of black carbon (Montes-Helu et al., 2009; Veraverbeke et al., 2012). As the 478 
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regenerating vegetation matures, the increase in post-fire albedo progressively weakens as 479 

suggested by Amiro et al., (2006), reaching peak at ~ 10-18 years post-fire which then gradually 480 

decline towards pre-fire levels. We did not observe the complete recovery of post-fire albedo 481 

within the study period of 25 years post-fire. Many studies using remote sensing technique suggest 482 

that albedo in post-fire stands commonly equilibrates at ~40-80 years post-fire (Randerson et al., 483 

2006; Lyons et al., 2008; Kuusinen et al., 2014; Bright et al., 2015; Abdul Halim et al., 2019, Potter 484 

et al., 2020).  485 

We found the greatest increase in post-fire albedo during winter, a finding consistent with others 486 

(Liu et al., 2005; Randerson et al., 2006; Montes-Helu et al., 2009; Gleason et al., 2019) due to 487 

increased exposure of snow resulting from the loss of canopy and tree mortality. In our analysis, 488 

post-fire winter snow-covered albedo increased with time since fire until a peak was reached, the 489 

timing of which varied across forest types. We hypothesize that this increase with time may result 490 

from the fall of standing dead snags (O’Halloran et al., 2014) and lower rate of reestablishment 491 

during succession (Fig. S4). Our finding showed similar post-fire winter albedo patterns across 492 

forest types in a region. For example, winter albedo in Lodgepole pine, Spruce/Fir/Hemlock, and 493 

Douglas-fir forest types in the Idaho Batholith region increased at a similar rate with time since 494 

fire which corresponds to consistent lower LAI recovery rate across these forest types in this region 495 

(Fig. S4b,f,g). However, variation in winter albedo was greater across ecoregions within a forest 496 

type (e.g., Mixed conifer) owing to variable rates of post-fire LAI recovery (Fig. S4a). Overall, 497 

our findings indicate a strong dependency of post-fire seasonal albedo on the proportion of 498 

vegetative cover, irrespective of forest types, on the post-fire environment. This observed effect 499 

provides a strong connection between albedo and successional patterns observed in these specific 500 

forest types.  501 
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4.3. Controls on post-fire recovery of biophysical parameters 502 

One of the major contributions of our approach is that it not only generates the post-fire trajectories 503 

of land surface biophysical properties across a range of forest types and geographic regions, but 504 

also distinguishes the contribution of nature of fire, climate, and topography on post-fire LAI and 505 

albedo recovery for each forest type. Previous work has shown fire severity to be an important 506 

driver of regeneration (Crotteau et al., 2013; Meng et al., 2015; Chambers et al., 2016; Vanderhoof 507 

et al., 2020). In contrast, our analysis suggested fire severity was of relatively low importance 508 

relative to other variables considered (Fig. S2). Despite being of lesser importance, we found that 509 

higher rates of post-fire recovery were associated with low severity fire and lowest recovery rates 510 

were associated with high fire severity. The lower recovery rates associated with high fire severity 511 

are possibly due to lower seed availability and greater distance to live seed sources (Haire & 512 

McGarigal, 2010; Kemp et al., 2016; Kemp et al., 2019), but high fire severity can also create 513 

mineral seed beds and free up essential resources such as moisture, light, and nutrients which 514 

promote the growth of vegetation (Gray et al., 2005; Moghaddas et al., 2008). Only Oak and 515 

Pinyon-Juniper showed higher recovery rates under high fire severity among forest types which is 516 

primarily due to rapid regeneration by resprouting in Oak (Meng et al., 2018) and colonization by 517 

resprouting shrubs in Pinyon-Juniper (Wangler & Minnich, 1996). The low importance of fire 518 

severity in determining post-fire vegetation growth indicates that the variability across a single fire 519 

may be outweighed at a regional level by climate and its proxies. It also suggests that at some sites, 520 

the impact of wildfire may be restricted to causing tree mortality under changing climate, rather 521 

than also significantly influencing the post-fire regeneration with its impact on seed availability 522 

(Kemp et al., 2019).  523 
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Our analysis indicated that among all the factors considered, elevation had the highest variable 524 

importance score in predicting the LAI 10-year and 20-year post-fire. We found greater rates of 525 

vegetation recovery in lower elevation. Less successful recovery at higher elevations is likely 526 

associated with cooler temperatures at higher elevations for many of the forest types, and those 527 

cool temperatures appear to still limit forest establishment and growth, even under general 528 

warming in the region (Stevens-Rumann et al., 2018). Only Pinyon-Juniper showed increased 529 

recovery with elevation (Fig. 5b and 6b) likely due to relief from the hot, dry conditions at lower 530 

elevations but also possibly due to resistance to invasion that increases with elevation in this forest 531 

type (Urza et al., 2017), suggesting that warming temperatures are having a detrimental effect on 532 

post-fire regeneration at warmer sites, but not yet promoting post-fire regeneration at cooler sites 533 

at all spatial scales (Harvey et al., 2016). Elevation was found to be important in various studies 534 

of post-fire regeneration of conifer forests in the western U.S., but with opposite directionality 535 

(Casady et al., 2010; Rother & Veblen, 2016; Vanderhoof et al., 2020). However, Mantgem et al., 536 

(2006) reported a strongly negative correlation with seedling density of Mixed conifer forests in 537 

the Sierra Nevada. In higher elevation forests such as Lodgepole pine, most studies demonstrated 538 

increased recovery post-fire (e.g., Harvey et al., 2016) which contrasted with our findings. These 539 

findings collectively highlight that there exists a large degree of uncertainty around individual 540 

forest type responses to post-fire climatic variability.  541 

Our study adds to a growing body of literature emphasizing the importance of climate for post-fire 542 

vegetation growth among different forest types (Meng et al., 2015; Buechling et al., 2016; Rother 543 

and Veblen, 2017; Hankin et al., 2019; Vanderhoof et al., 2020). Our data suggests that high 544 

average summer temperatures and low water availability limit the recovery of LAI 10-year and 545 

20-year postfire on these forest types. Drier forests such as Oak, Ponderosa pine, Douglas-fir, and 546 
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Pinyon-Juniper were strongly associated with annual precipitation and mean summer temperature, 547 

which is consistent with the findings of Meng et al., (2015) and Kemp et al., (2019). Our analysis 548 

also suggests that the critical thresholds for annual precipitation and mean summer temperature 549 

are 500 mm and 15-20℃, respectively, in these forest types. Our finding of higher sensitivity of 550 

Oak, Ponderosa pine, Douglas-fir, and Pinyon-Juniper to annual precipitation and average summer 551 

temperature suggests that future increases in temperature and water deficit may affect these forest 552 

types more so than other forest types. With a trend toward warmer springs and summers in recent 553 

decades throughout the western US (Westerling, 2006; Ghimire et al., 2012; IPCC, 2013; Williams 554 

et al., 2021), conditions for post-fire vegetation growth and survival are changing, as even a slight 555 

increase in water deficit on the drier sites can have adverse effects on tree regeneration (Stevens-556 

Rumann et al., 2018). While warming temperature has been shown to affect the post-fire 557 

regeneration of confer forests growing at the warmer end of the species distribution such as 558 

Douglas-fir and Ponderosa pine (Haffey et al., 2018; Kemp et al., 2019), it could promote the rate 559 

of post-fire recovery for conifer forests growing at the colder end of the species distribution 560 

previously limited by frozen soils, cold temperatures, and snow (Stevens-Rumann et al., 2018; 561 

Vanderhoof et al., 2020).  562 

Similar to LAI, our results of variable importance in random forests showed low importance of 563 

fire severity compared to other variables in post-fire recovery of summer albedo at both time 564 

horizons (Fig. S3). However, we noticed a difference in albedo change across fire severity classes. 565 

For example, we found lower albedo values in low fire severity areas compared to medium and 566 

high severity areas at both time horizons, which is associated with a greater degree of LAI recovery 567 

in low severity areas as vegetation has lower albedo than bare areas. Moreover, lower albedo 10-568 

years post-fire in high severity compared to medium severity could be due to standing snags 569 
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absorbing sunlight, with it taking 5-15 years for just half of dead snags to fall (Russell et al., 2006). 570 

We did not find significant impact of elevation on post-fire albedo change in these forest types 571 

except for Pinyon-Juniper and Ponderosa pine, which showed decreased albedo post-fire in 572 

response to increased LAI with elevation. As expected, climate, particularly annual precipitation, 573 

was the major determinant of post-fire albedo change. Annual precipitation was found to be highly 574 

associated with changes in post-fire albedo in all forest types, where increased precipitation 575 

decreased the albedo post-fire with impact more prominent in 20-year post-fire. Annual 576 

precipitation impacts post-fire albedo through two different mechanisms. First, increased annual 577 

precipitation is associated with greater recovery of LAI in these forest types (Fig. 6c) where the 578 

mid-age stands replace the initial post-fire establishments, reducing albedo (Chambers and Chapin, 579 

2002). Second, soil moisture depends on precipitation. With greater precipitation leading to 580 

increased soil water content, we could expect a corresponding decrease in albedo due to darkening 581 

of soil particularly in open canopy conditions where the soil received direct radiation (Montes-582 

Helu et al., 2009). Furthermore, an increase in leaf area within the understory during the wet season 583 

could have a similar effect, as reported in Thompson et al. (Thompson et al., 2004). Regarding 584 

temperature, the pattern of albedo recovery did not correspond well with the pattern of LAI 585 

recovery at both time horizons in these forest types. Albedo is elevated over the pre-fire condition 586 

more in the warmer part of a forest type’s range even in forest types that have a faster recovery of 587 

LAI in that warmer domain. We might expect that a higher LAI would be associated with a lower 588 

albedo, but evidently the association is not as simple, and it might have something to do with 589 

species composition rather than simply leaf area. Our results point to the importance of climate 590 

patterns as a driver of post-fire summer albedo recovery through their influence on ecological 591 

succession on the post-fire environment. 592 
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4.4. Significance and limitations of our Analysis 593 

Our results should be interpreted in light of four constraints. First, the accuracy of MODIS product 594 

algorithm is dependent on biome-specific values, which following extensive fire-caused mortality, 595 

can introduce additional uncertainty due to assumption of fixed land cover type. In addition, we 596 

utilized the recovery of MODIS LAI as an indicator of vegetation recovery. One significant 597 

limitation of LAI-based analysis is that it captures some of the aggregate effects of mortality and 598 

regrowth but does not fully characterize shifted species composition and community structure on 599 

the ground. Therefore, detailed, intensive field monitoring of vegetation structure both before and 600 

after fires can serve as a valuable complement to LAI-based analysis (Williams et al., 2014). 601 

Additionally, incorporating additional remote observations at the species level from the fusion of 602 

very high spatial resolution, lidar, or hyperspectral data (Huesca et al., 2013; Polychronaki et al., 603 

2013; Kane et al., 2014) can further enhance the assessment. Second, in terms of albedo, we used 604 

a 500 m MODIS albedo product which reflects a somewhat larger area (Campagnolo et al., 2016). 605 

Each 500 m grid may in fact include a mix of burned and unburned patches which could result in 606 

underestimation of post-fire albedo. Although the use of MODIS data with its relatively low spatial 607 

resolution will miss some of the details of fine-scale spatial variability in burn severity, land cover 608 

type and so forth (Key, 2006), MODIS data has advantages in terms of higher temporal frequency 609 

of sampling that can be important in post-fire biophysical dynamics (Lhermitte et al, 2010; 610 

Veraverbeke et al., 2010, 2012) and these data also have good temporal coverage going back 611 

decades. Furthermore, higher resolution datasets on biophysical properties are still not 612 

operationally available. Third, the quality of our results may be constrained by the accuracy of fire 613 

severity from the MTBS product as dNBR is not a perfect metric of severity and may struggle to 614 

capture some variations in severity (Roy et al., 2006; De Santis and Chuvieco, 2009). However, 615 
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several new generation fire remote sensing products (Csiszar et al., 2014; Parks et al., 2014; 616 

Boschetti et al., 2015) are emerging in recent years, which hold the potential for further 617 

improvements in post-fire recovery studies. Finally, post-fire vegetation recovery in burned areas 618 

may vary from one location to another, influenced by several other factors that this study did not 619 

cover. To gain a comprehensive understanding of the trajectory of post-fire vegetation recovery, 620 

future studies, in addition to topo-climatic variables, should consider species competition, 621 

scorching of the seed bank, distance to seed tree, other post-fire disturbances, physiology of cones, 622 

seeds, and seedlings, as well as the interactions among all influencing drivers in these settings. 623 

Despite these limitations, by aggregating across multiple fire events in 21 different sub-ecoregions 624 

and arraying observations along a 25-years chronosequence, our results demonstrate the spatial 625 

and temporal variability of fire effects on post-fire environment. Understanding such variability of 626 

fire effects and vegetation in space and time is important for comprehensive understanding of the 627 

drivers of natural regeneration and vegetation recovery in post-fire environments (Stevens-628 

Rumann and Morgan, 2019). Our analysis could also help improve the modeling of post-fire 629 

recovery pathways by identifying the most important predictors of post-fire recovery and by 630 

approximating related thresholds of response. For example, our results suggest a full recovery of 631 

LAI in dry, low elevation forest types like Pinyon-Juniper, Ponderosa pine, and Oak within 10 632 

years post-fire when the annual precipitation exceeds the threshold of 500 mm and average summer 633 

temperature is ~15-20℃. A quantitative measure of primary controls is needed if efforts to develop 634 

realistic post-fire LAI trajectories for ecohydrological modeling studies are to be successful, as 635 

suggested by McMichael et al., (2004).  636 

One major significance of our approach and findings is its potential to advance the land surface 637 

models (LSMs) embedded in Earth system models (ESMs). Currently, these models lack robust 638 
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representations of the ecological and biophysical consequences resulting from wildfire events 639 

(Lawrence and Chase, 2007; Williams et al., 2009). Modelers could use the pattern of post-fire 640 

biophysical dynamics as a function of time since fire, emerged from our data analysis, to inform 641 

the LSMs to more accurately represent biophysical and ecological functions of severely disturbed 642 

landscapes. 643 

4.5. Implications of Our Research 644 

There is mounting evidence of increased extreme fire incidents in the western US due to ongoing 645 

climate change (Westerling et al., 2006; Williams et al., 2014), leading to rapid alteration and 646 

considerable uncertainty regarding species composition (McDowell et al., 2015) and ecological 647 

dynamics (Johnstone et al., 2016). This study provides an estimate of the effect of the post-fire 648 

environment on vegetation and surface albedo balance of the western US. The chronosequence 649 

data show clear patterns with time since fire for both biophysical parameters. Our results show that 650 

conifer forest ecosystems, particularly Douglas-fir and Ponderosa pine, are slower to recover post-651 

fire, which may indicate they face greater risks from the projected increase in fire severity and 652 

frequency as forecasted for drier interiors of the western US (Abatzoglou and Williams, 2016; 653 

Littell et al., 2018). The post-fire biophysical changes documented here could be of significance 654 

for local to regional climates, potentially eliciting feedbacks that influence regional climate change 655 

and needs for adaptation. 656 
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