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Abstract 1 

Understanding vegetation recovery after fire is critical for predicting vegetation-mediated 2 

ecological dynamics in future climates. However, information characterizing vegetation recovery 3 

patterns after fire and their determinants are limitedlacking over large geographical extents. This 4 

study uses Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) and 5 

albedo to characterize patterns of post-fire biophysical dynamics across the western United States 6 

(US) and further examines the influence of topo-climatic variables on the recovery of LAI and 7 

albedo at two different time intervalshorizons, 10 and 20 years post-fire, using a random forest 8 

model. Recovery patterns were derived for all wildfires that occurred between 1986 and 2017 9 

across seven forest types and 21 level III ecoregions of the western US. We found differences in 10 

characteristic trajectories of post-fire vegetation recovery across forest types and ecoclimatic 11 

settings. LAI in some forest types recovered only 60% - 70% by 25 years after fire while it 12 

recovered 120% to 150% of the pre-fire levels in other forest types, with higher absolute post-fire 13 

changes in forest types and ecoregions that had a higher initial pre-fire LAI. Our random forest 14 

results showed very little influence of fire severity on the recovery of both summer LAI and albedo 15 

at both post-fire time intervalshorizons. Post-fire vegetation recovery was most strongly controlled 16 

by elevation, with faster rates of recovery in lower elevations. Similarly, annual precipitation and 17 

average summer temperature had significant impacts on the post-fire recovery of vegetation. Full 18 

recovery was seldom observed when annual precipitation was less than 500 mm and average 19 

summer temperature was above the optimal range i.e., 15-20℃. Climate influences, particularly 20 

annual precipitation, was a major driver of post-fire summer albedo change through its impact on 21 

ecological succession. This study provides quantitative measure of primary controls that could be 22 

used to improve the modelling of ecosystem dynamics post-fire. 23 
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1. Introduction 26 

Wildfires have burned millions of hectares of forests in the western United States (Littell et al., 27 

2009; White et al., 2017) and have increased in both frequency and severity in recent decades. This 28 

trend has been attributed to temperature increases, more frequent droughts, below average winter 29 

precipitation and earlier spring snowmelt (Dale et al., 2001; Westerling et al., 2006; Rogers et al., 30 

2011; Ghimire et al., 2012; Dennison et al., 2014; Littell et al., 2015; Abatzoglou & Williams, 31 

2016; Williams & Abatzoglou, 2016; Williams et al., 2021), making ecosystem resilience and 32 

vegetation recovery post-fire a primary concern to researchers and land managers (Allen & 33 

Breshears, 2015). Existing studies report that large wildfires in western U.S. forests have increased 34 

four-fold since 1970-1986, with total burn area increasing by six and a half times (Westerling et 35 

al., 2006). Expanded burning can profoundly alter a wide range of ecosystem characteristics such 36 

as stand structure, species composition, leaf area, canopy ecophysiology, and microclimate (Liu et 37 

al., 2005). The most immediate biophysical effect of wildfire on the land surface is the decrease in 38 

live vegetation and the deposition of black carbon on the soil surface (De Sales et al., 2018). The 39 

alteration in surface roughness directly influences the interaction between the land and the 40 

atmosphere by, typically, reducing the turbulent mixing and net radiation (Chambers et al., 2005). 41 

Moreover, the deposition of the black carbon on the surface changes net radiation through its 42 

impact on surface albedo, which alters the partitioning of energy into latent heat and sensible heat 43 

(Jin & Roy, 2005). Fires have the potential to modify local to regional climate through these long-44 

lived changes in land surface dynamics and other substantial forcing impacts such as greenhouse 45 

gas fluxes and aerosols (Bonan et al., 1995). In this study, we use contemporary spaceborne 46 

observing systems to quantify the magnitude and timing of ecosystem responses to severe wildfires 47 

as a crucial step in assessing their associated ecological, hydrological, and biogeophysical impacts. 48 
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In addition to quantification, it is equally important to document the factors that determine 49 

variability in post-fire recovery in order to develop a predictive understanding of ecosystem 50 

dynamics in response to wildfire, especially considering present and expected future increases in 51 

the frequency of large, severe wildfires (Scholze et al., 2006; IPCC, 2007; Seastedt et al., 2008; 52 

Urza et al., 2017; Hankin et al., 2019). Vegetation recovery is likely to vary considerably across 53 

the landscape, even when initial estimates of fire severity are similar (Keeley et al., 2008; Frazier 54 

et al., 2018). Some forest ecosystems have shown to recover fully after large severe disturbances 55 

(Rodrigo et al., 2004; Knox & Clarke, 2012), while others have recovered little towards pre-fire 56 

levels (Barton, 2002; Rodrigo et al., 2004; Lippok et al., 2013). Variability in recovery rates has 57 

been shown to depend on the interactive effects of numerous biotic and abiotic factors related to 58 

nature of fire, life history traits of species, and environmental conditions following fire (Chambers 59 

et al., 2016; Johnstone et al., 2016; Stevens-Rumann et al., 2018). For example, post-fire recovery 60 

of dry mixed conifer forests in the western U.S. is strongly affected by fire severity (Chappell 61 

1996; Meng et al., 2015; Kemp et al., 2016; Harvey et al., 2016; Meng et al., 2018; Vanderhoof et 62 

al., 2020) and pre-fire condition (Martin-Alcon & Coll, 2016; Zhao et al., 2016). Other factors that 63 

can be important to vegetation recovery after fire include vegetation type (Epting, 2005; Yang et 64 

al., 2017); site topography including slope, aspect, and elevation (Wittenberg et al., 2007; Meng 65 

et al., 2015; Liu et al., 2016; Chambers et al., 2018; Haffey et al., 2018), and post-fire climate 66 

including temperature and moisture conditions (Chappell, 1996; Meng et al., 2015; Stevens-67 

Rumann et al., 2018; Kemp et al., 2019; Guz et al., 2021). Long-term assessment of post-fire 68 

vegetation recovery across forest types can offer valuable insights to researchers and land 69 

managers who seek to identify areas that could benefit from post-fire management and develop 70 

potential management actions such as fuels treatment, prescribed fire, carbon management, etc. 71 
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Several studies have documented vegetation recovery and associated biogeophysical and 72 

biogeochemical dynamics in response to wildfires by employing field-based observations 73 

including flux tower measurements (Chambers & Chapin III, 2002; Jin & Roy, 20005; Amiro et 74 

al., 2006; Randerson et al., 2006; Campbell et al., 2007; Dore et al., 2010; Kemp et al., 2016; 75 

Hankin et al., 2019; Ma et al., 2020), remote sensing observations (Veraverbeke et all., 2012; 76 

O’Halloran et al., 2014; Micheletty et al., 2014; Rogers et al., 2015; Bright et al., 2019; Vanderhoof 77 

et al., 2020), and modeling approaches driven by remote sensing observations (Hicke et al., 2003; 78 

Bond-Lamberty et al., 2009; Williams et al., 2012; Rogers et al., 2013; Maina et al., 2019). While 79 

instructive and critical for mechanistic understanding, local field-based studies on post-fire 80 

ecological dynamics tend to focus on small, localized areas, encompassing only a single or a few 81 

wildfire events (Meigs et al., 2009; Montes-Helu et al., 2009; Downing et al., 2019). In contrast, 82 

large-scale regional analyses using remotely sensed observations and modeling approaches tend 83 

to focus on Mediterranean (Veraverbeke et all., 2012a, 2012b; Meng et al., 2014; Yang et al., 84 

2017) and boreal ecosystems (Amiro et al., 2000; Chambers & Chapin, 2003; Randerson et al., 85 

2006; Lyons et al., 2008; Amiro et al., 2010; Jin et al., 2012; Rogers et al., 2013; Hislop et al., 86 

2020), or on only a few forest types (mostly ponderosa pine and mixed conifer of western U.S.) 87 

(Chen et al., 2011; Dore et al., 2012; Meng et al., 2015; Roche et al., 2018; Bright et al., 2019; 88 

Littlefield et al., 2020). Moreover, such studies have less exploreddid not examinefailed to 89 

document how these their results scale up to multiple fire events across broad regions. 90 

The purpose of this study is to provide more precise estimate of wildfire impacts on LAI and 91 

surface albedo in seven different forest types of the western US using observations derived from 92 

the MODIS.  Moreover, this study also examines the factors that influence the nature and rate of 93 

vegetation recovery in the post-fire environment. The hypotheses for the work are that 1) the rate 94 
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of recovery of LAI following wildfire varies across forest types and ecoclimatic settings, 2) the 95 

change in vegetation cover post-fire induces a change in the albedo which varies by forest types 96 

and ecoclimatic settings, and 3) the variability in the post-fire response of albedo is attributable to 97 

the same factors that explain variability in LAI post-fire.  98 

2.   Methods 99 

2.1. Study Area  100 

This study was carried out in the western US, a region that has been severely disturbed by wildfires 101 

in the last several decades. Its extent for the purpose of this study (Fig. 1) encompasses the 102 

conterminous US west of the 100th meridian (Thompson et al., 2003). This region is geographically 103 

diverse with high physiographic relief and strong local and regional climatic gradients (Bartlein & 104 

Hostetler, 2003), including regions such as temperate rain forests, high mountain ranges, great 105 

plains, and deserts (Thompson et al., 2003). Our study considered seven forest types that are 106 

dominant across the western US, as defined by the US Forest Service’s National Forest Type data 107 

set (Ruefenacht et al., 2008), including Douglas-fir, Pinyon-Juniper, Ponderosa pine, 108 

Spruce/Fir/Hemlock, Mixed conifer, Lodgepole pine, and Oak. Within these forest types, we only 109 

considered areas that were burned with high severity as defined by Monitoring Trends in Burn 110 

Severity (MTBS) to examine the post-fire biophysical dynamics. In case of attribution of postfire 111 

recovery, we considered all fire severity classes from MTBS in our random forest model to 112 

determine the influence of these classes on post-fire recovery of vegetation and surface albedo. 113 

Within each ecoregion, we selected only those forest types that cover >10% of ecoregion’s forest 114 

area and had >1% pixels burned under high severity. As a result, only 21 out of 35 level III 115 

ecoregions of the western US (Table S1) (Omernik, 1987) had a sufficient number of 500 m x 500 116 

m pixels that saw high severity burning within these forest types to support the generation of forest-117 
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type-specific chronosequences of post-fire ecological responses. Across these ecoregions, average 118 

annual precipitation (1981-2010) was 900 ± 490 mm yr-1 (mean ± SD), while mean summer 119 

minimum and maximum temperature were 23° ± 2.8°C and 7° ± 2.5°C, respectively (PRISM; Daly 120 

et al., 2008). 121 

 122 
Figure 1: Distribution of 1986-2017 burned areawildfires (Eidenshink et al., 2007) and forest types 123 

(Ruefenacht et al., 2008) within study area extent. 124 

2.2. Remote Sensing Data and Data Products 125 

The burned area and fire severity data used in this study were obtained from Monitoring Trends in 126 

Burn Severity (MTBS) for the period of 1986-2017 (Eidenshink et al., 2007). We divided our study 127 

into different forest types to analyze the recovery of LAI and albedo post-fire, utilizing a USFS 128 
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forest type group map (Ruefenacht et al., 2008). We resampledreprojected the MTBS dataset from 129 

its native 30 m resolution to a coarser 500 m resolution. During this process, we retained only 130 

those 500 m pixels that contained at least 75% of the corresponding 30 m pixels burned, thus 131 

reducing noise from pixels with an unclear mix of burn and unburn conditions. Similarly, we 132 

resampled forest type grid from 250 m to 500 m resolution and selected pixels where at least 75% 133 

of the forest within each pixel belonged to a single forest type based on the 250 m forest type group 134 

map. We excluded pixels that were burned more than once between 1986 and 2017 as such pixels 135 

can add noise to the post-fire trajectory of biophysical properties.  136 

This study analyzed spatially and temporally consistent MODIS products: LAI and shortwave 137 

white sky albedo to assess fire-induced change in vegetation and surface albedo in the western US. 138 

The MODIS satellite data tile subsets (tiles h8v4, h8v5, h9v4, h9v5, h10v4, and h10v5) from 2001 139 

to 2019 were downloaded from the MODIS data archive (https://www.earthdata.nasa.gov/). 140 

Within each data tile, we employed the quality assurance (QA) bits embedded in the MODIS 141 

products to ensure that only the highest-quality values (flagged as ‘0’) were included. This process 142 

involved removing all retrievals affected by cloud cover and those flagged for low quality. The 143 

MODIS LAI product (MCD15A2H; Myneni et al., 2002) reports the green leaf area index which 144 

represents the amount of one-sided green leaf area per unit ground area in broadleaf canopies or 145 

half the total surface area of needles per unit ground area in coniferous canopies. The MODIS LAI 146 

algorithm utilize a main look-up-table (LUT) based procedure that makes use of spectral 147 

information contained in red and NIR bands along with a back-up algorithm that relies on an 148 

empirical relationship between the Normalized Difference Vegetation Index (NDVI) and canopy 149 

LAI, and fraction of photosynthetically active radiation (fPAR) (Myneni et al., 2002).  150 

https://www.earthdata.nasa.gov/)
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For albedo, we used the daily MODIS collection 6 bidirectional reflectance distribution function 151 

(BRDF)/Albedo product at 500 m resolution (MCD43A3; Schaaf et al., 2002). The use of both 152 

Terra and Aqua data in this product provides more diverse angular samplings and increased 153 

probability of high input data that allow more accurate BRDF and albedo retrievals. The MODIS 154 

albedo algorithm uses a bidirectional reflectance distribution and shortwave reflectances (0.3-5.0 155 

µm) and provides both black-sky and white-sky albedos. We used shortwave broadband white sky 156 

albedo for this study because it is less biased in complex terrain and less sensitive to view and 157 

solar angles (Gao et al., 2005). We stratified the sampling of white-sky albedo by snow-free and 158 

snow-covered conditions based on the presence or absence of snow, determined at a pixel level by 159 

the MODIS daily snow cover 500 m product (MOD10A1; Salomonson and Appel, 2004). We 160 

assigned snow-free and snow-covered conditions using a threshold of less than 30% and greater 161 

than 75% snow cover. We chose these thresholds as a balance between inclusion for robust 162 

sampling and exclusion to reduce noise from pixels with an unclear mix of snow and snow-free 163 

conditions. We are aware that much of our study domain does not have considerable snow cover 164 

during winter, and these snow-free winter albedos had similar patterns and magnitudes as summer 165 

albedos (Fig. S1). Therefore, the average summer (June-August) albedo values presented here 166 

represent the snow-free condition only, while the average winter (December – February) values 167 

presented include only snow-covered conditions. We did not report winter albedos for all forest 168 

types because of limits on the availability of high-quality snow-covered pixels. 169 

As part of our attribution analysis that seeks to identify factors that influence the pattern of post-170 

fire biophysical dynamics, we acquired a suite of climate variables– monthly mean summer 171 

precipitation, monthly mean summer temperature, monthly minimum summer temperature, 172 

monthly maximum summer temperature, total annual precipitation– covering the 2001-2019 173 
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period from Parameter-Elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 174 

2008). PRISM utilizes point measurements of precipitation and temperature to generate continuous 175 

digital grid estimations for climate data with a 4 km spatial resolution (Daly et al., 1994). The 176 

elevation of all burned pixels was taken from the US Geological Survey (USGS) National 177 

Elevation Dataset (NED) at 30 m (U.S. Geological Survey, 2019). All topo-climatic variables were 178 

re-gridded to the 500 m MODIS resolutionprojection for uniformity.  179 

2.3. Generating Chronosequences of Post-fire LAI and Albedo  180 

To address unrealistic variation in MODIS land surface products (Cohen et al., 2006), we 181 

computed mean monthly values by adding all samples and dividing it by the number of samples 182 

in each month within our stratified design. For the summer season, we computed mean yearly 183 

summer-season values of LAI and albedo by averaging the data from June, July, and August. 184 

Similarly, for the winter season, yearly values of LAI and albedo were computed the same way 185 

using data from December, January, and February. Next, we analyzed changes in post-fire LAI 186 

and albedo relative to pre-fire by sampling each of them as an annual time series from three years 187 

before wildfire events to all years of record after wildfire events. We grouped samples from each 188 

fire event based on forest type, eco-climatic setting, and snow cover conditions. Within these 189 

groups, we composited burn events from different years and aligned them temporally to represent 190 

three years prior to the fire and all years after the fire. Consequently, chronosequences of 191 

biophysical properties as a function of time since fire were created for a combination of seven 192 

forest types, two snow cover conditions (in case of albedo), and 21 sub-ecoregions. 193 

2.4. Attribution of Recovery 194 
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We explored the relationships between albedo and LAI recovery and topo-climatic factors, and 195 

subsequently attributed the recovery at 10 years post-fire and 20 years post-fire using random 196 

forest (RF) algorithms, implemented in R (Breiman 2001; Liaw & Wiener, 2002). We used a non-197 

parametric modeling method because most variable distributions were non-normal and RF does 198 

not require the variables to be normally distributed. Additionally, RF can handle tens of thousands 199 

of data points and provides variable importance scores. We initially selected seven explanatory 200 

variables - fire severity class (low, medium, and high), three temperature variables, two 201 

precipitation variables, and elevation. Although RFs do not require collinear variables to be 202 

removed (Breiman, 2001), we employed a Variance Inflation Factor (VIF) analysis for 203 

multicollinearity as a variable selection method to improve computation efficiency and enhance 204 

interpretation, particularly with respect to variable importance. VIF analysis involves: a) 205 

calculating VIF factors, b) removing the predictors from this set with VIF>10, and c) repeating 206 

until no variable has VIF>10. This provided us with four uncorrelated predictors to be used in the 207 

RF model - fire severity class, total annual precipitation, mean summer temperature (June – 208 

August), and elevation. We pooled post-fire LAI and albedo responses across 21 ecoregions within 209 

a given forest type for both time-intervals horizons (10-year post-fire and 20-year post-fire). The 210 

dataset was divided into training (80%) dataset to train the RF model and test (20%) dataset to 211 

validate the model. We created four RF models with 500 binary decision trees for each forest type 212 

(one for each time horizoninterval for both LAI and albedo) using fire and topo-climatic variables 213 

to determine how fire severity, climate and topography variables contributed to the recovery of 214 

summer LAI and albedo at two different times after burning- 10 years post-fire and 20 years post-215 

fire. We tuned the model to generate a model with the highest accuracy i.e., the lowest out-of-bag 216 

error among all tested combination of parameter values. The model’s performance was assessed 217 
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using the R2 metric. We used unscaled permutation accuracy instead of the traditional Gini-based 218 

importance metric to rank the relative importance among explanatory variables, as Gini-based 219 

importance was shown to be more strongly biased towards continuous variables or variables with 220 

more categories compared to other importance metrics (Strobl et al., 2007). The unscaled 221 

permutation importance metric calculates variable importance scores as the amount of decrease in 222 

the accuracy when a target variable is excluded. We used partial dependence plots (PDP) to 223 

visualize the influence of each explanatory variable on the degree of 10 years and 20 years post-224 

fire recovery of LAI and albedo. PDP quantifies the marginal effects of a given variable on an 225 

outcome and provides a mechanism to explore insight in big datasets, especially when the random 226 

forest is dominated by lower-order interactions (Martin, 2014).  227 

3. Results 228 

3.1. Post-fire Recovery of Land Surface Properties 229 

Burning caused a large decline in LAI for all forest types. Generally, high productivity forests 230 

(e.g., Douglas-fir and Mixed conifers), compared to other forest types, experienced a larger decline 231 

in LAI in year one after fire (Fig. 2a-g). Compared to pre-fire levels, the decline in LAI ranged 232 

from 47% in Pinyon-Juniper to 76% in Ponderosa pine forests (Table S2). After this initial 233 

decrease, the effects of vegetation regeneration became apparent. For all forest types, the 234 

magnitude of LAI change decreases with increase in time since fire. However, LAI did not recover 235 

to the pre-fire condition in most cases by the 25-year period of observation available for this study. 236 

We found large differences in the timing of LAI recovery across forest types, with forest types 237 

recovering at different rates, crossing the pre-fire levels at different times, and reaching different 238 

peaks in LAI (Fig. 2a-g). For example, Douglas-fir in Columbia Mountains, Klamath Mountains, 239 

and Southern Rockies (Fig. 2g) and Mixed conifers in Baja California and Eastern Cascades (Fig. 240 
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2a) showed complete recovery of LAI to pre-fire levels within the 25-year study period, while 241 

Lodgepole pine, Oak, and Ponderosa pine were characterized by a slower recovery rate and most 242 

did not recover to pre-fire levels by the 25-year period (Fig. 2 and Table S2). We also found varied 243 

recovery rates across geographic regions even within a single forest type, presumably related to 244 

climate and soils. For example, the characteristic post-fire LAI trajectories for the high 245 

productivity Douglas-fir forest type (Fig. 2g) showed a substantially faster recovery in Cascades, 246 

Klamath Mountains, and Columbia Mountains regions compared to the Idaho Batholith region of 247 

the western US. Based on observations from all forest types, in general, the faster recovery of LAI 248 

was observed in high elevation, wet areas with substantial maritime influences.  249 

 250 

Figure 2: Mean summer post-fire LAI (± SE) as a function of time since fire in seven different 251 

forest types of the western US. (Sub-ecoregions: E-Cascades = Eastern Cascades; Costal = Coastal 252 

sage; Baja-CA = Baja California; KM = Klamath Mountains; SN = Sierra Nevada; Can-Rockies 253 

= Canadian Rockies; Mid-Rockies = Middle Rockies; S-Rockies = Southern Rockies; N-Cascades 254 

= Northern Cascades; ID-Batholith: = Idaho Batholith; Col-M = Columbia Mountains; Blue-M = 255 

Blue Mountains; Grt Plains = Great Plains; T-Sierras = Temperate Sierras; AZ-NM-Plateau = 256 

Arizona-New Mexico Plateau; Cent-Basin = Central Basin; CO-Plateau = Colorado Plateau; 257 
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Mojave = Mojave Basin; Highland = North American Highland; Wasatch-M = Wasatch 258 

Mountains). 259 

Turning to albedo, we found significant changes in summer albedo post-fire of all forest types. 260 

Three important trends, similar among forest types, emerged from these post-fire summer albedo 261 

trajectories. First, for all forest types, summer albedo decreased immediately after fire (Fig. 3) 262 

likely due to low reflectivity by black carbon deposition on the soil surface and dead tree boles 263 

both common immediately after high severity burning. The decline in summer albedo ranged from 264 

0.01-0.02 across forest types with the greatest decline (20% from pre-fire levels; Table S3) 265 

observed in Douglas-fir forest of the Klamath Mountains region. Second, post-fire albedo 266 

increased gradually from year two since fire, crossing the pre-fire levels at around 3 years post-267 

fire, and peaking at different time horizonsintervals for different forest types and regions (Fig. 3a-268 

g). Elevated post-burn albedo is presumably due to increasing canopy cover, the relative high 269 

albedo of grasses and shrubs that establish in early succession, and the loss of black carbon 270 

coatings on soil and woody debris (Chambers and Chapin, 2002). The timing and magnitude of 271 

peak post-fire albedo varied across forest types. For example, Ponderosa pine showed its peak in 272 

post-fire albedo at 18 years post-fire (Fig. 3c) and 11 years post-fire for one of the Mixed Conifer 273 

regions (Fig. 3a), while slow growing species such as Spruce/Fir/Hemlock may not have reached 274 

its peak by the end of the 25-year post-fire study period (Fig. 3f). Similarly, there werewe see 275 

significant regional differences in timing and magnitude of peak albedo for a given forest type 276 

group. For example, Mixed Conifer post-fire albedo peaked at 11 years post-fire in Baja California, 277 

while it continued to increase through to 25 years in Klamath Mountains (Fig. 3a). Third, as the 278 

post-fire LAI approached the pre-fire LAI levels, post-fire albedo started to decline from the peak 279 

towards its pre-fire albedo, but it did not reach the pre-fire albedo levels by the end of the 25-year 280 

study period (Fig. 3a-g).  281 
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Post-fire winter albedo for each forest type had a similar pattern as summer albedo except with 282 

greater magnitude and that it increased immediately after fire (Fig. 4a-f and Table S4). We 283 

observed greater inter-annual variability in the timeseries of post-fire winter albedo likely related 284 

to greater noise associated with variability in snow cover and also a smaller signal-to-noise ratio 285 

associated with smaller sample sizes. The albedo response was more than three-fold larger in 286 

winter than in summer, peaking in the range of 0.4 to 0.6 across forest types and with an increase 287 

over pre-fire levels of about 0.25 to 0.50. Similar to summer albedos, winter albedos did not return 288 

to the pre-fire levels by the end of 25-year study period (Fig. 4a-f). 289 

 290 

Figure 3: Mean summer post-fire albedo (± SE) as a function of time since fire in seven different 291 

forest types of the western US.  292 
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 293 

Figure: 4: Mean winter post-fire albedo (± SE) as a function of time since fire in seven different 294 

forest types of the western US. 295 

3.2. Drivers of post-fire recovery of LAI and albedo 296 

Our random forest model had high accuracy for recovery of both LAI and albedo 10 years and 20 297 

years post-fire. The out-of-bag (OOB) error rate of the random forest model for the relative 298 

recovery of 10-year post-fire LAI was around 3% - 8% (r2 = 0.66 – 0.78), while it was around 299 

2.5% - 9% (r2 = 0.65 – 0.78), 0.4% - 1.4% (r2 = 0.55 – 0.83), and 0.3% - 1.6% (r2 = 0.52 – 0.83) 300 

for 20-year post-fire LAI, 10-year post-fire albedo, and 20-year post-fire albedo, respectively 301 

(Table S5).  The variable with greatest importance agreed well between 10-year LAI and 20-year 302 

post-fire LAI for all forest types indicating that the recovery of LAI at 10-year and 20-year post-303 

fire were both largely determined by the same governing factors (Fig. S2). Among all the 304 

explanatory variables, the degree of post-fire LAI recovery at both 10-year and 20-year post-fire 305 

were largely dominated by elevation and total annual precipitation (Fig. S2). In contrast, the factor 306 

with greatest influence on post-fire summer albedo varied by forest type and time since fire. For 307 
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example, in the Mixed conifer forest type, annual precipitation was the major determinant of 10-308 

year post-fire albedo recovery, while it was average summer temperature in case of 20-year 309 

postfire. Similarly, the degree of 10-year post-fire albedo recovery in the Spruce/Fir/Hemlock 310 

forest type was largely determined by average summer temperature, while the recovery after 20-311 

year post-fire was mainly determined by elevation. Fire severity, on the other hand, showed almost 312 

no explanatory power in predicting recovery of LAI and albedo at both times for all forest types 313 

(Fig. S2,S3). 314 

The degree of LAI recovery 10-year post-fire increased with an increase in total annual 315 

precipitation for all forest types, but it varied little when the total annual precipitation exceeded 316 

1000 mm. Annual precipitation was the major determinant of 10-year postfire LAI recovery for 317 

dry forests like Ponderosa pine, Pinyon-Junipers, and Oak, and these forest types tended to recover 318 

above pre-fire levels as the annual precipitation is increased. However, when the annual 319 

precipitation is less than 500 mm, the relative change in LAI is below 0 for all forest types, 320 

indicating that the complete recovery of LAI 10-year postfire was unlikely with annual 321 

precipitation less than 500 mm (Fig. 5c). In contrast, five out of seven forest types recovered over 322 

pre-fire levels 20-years post-fire with increased annual precipitation, indicating that Mixed 323 

conifers and Douglas-fir need more time and higher annual precipitation to recover to the pre-fire 324 

level. Only Oak and Ponderosa pine showed increased LAI 20-year post-fire as the annual 325 

precipitation exceeded 2000 mm (Fig. 6c). As with LAI, annual precipitation was one of the major 326 

determinants of both 10-year and 20-year post-fire albedo recovery. The post-fire elevation 327 

ofincrease in albedo by 10 years was greaterlarger for sites with less annual precipitation (Fig. 7c 328 

and 8c), particularly noticeable in dry forest types such as Douglas-fir, Ponderosa pine, and Oak 329 

where increased precipitation triggered a rapid increase in post-fire vegetation recovery. The Oak 330 
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forest type showed a particular anomaly of albedo 20-years post-fire, exhibiting a decline of around 331 

20% below pre-fire levels for sites with annual precipitation of 2000 mm or above (Fig. 8c), 332 

consistent with a rapid increase in vegetation recovery. 333 

Regarding average summer temperature, we found interesting divergence in the pattern of LAI 334 

response between cool and hot climates.  For forests growing in hotter conditions, the magnitude 335 

of LAI recovery at both time horizonsintervals decreased in areas with higher temperatures, 336 

particularly in Oak, Pinyon-Junipers, and Ponderosa pine forest types, as these forest types grow 337 

at warmer end of the species distribution. In contrast, increases in average summer temperature 338 

assisted the recovery of forest types growing at the colder end of the species distribution such as 339 

Lodgepole pine and Spruce/Fir/Hemlock (Fig. 5d and 6d), noting that LAI was consistently lower 340 

than pre-fire levels for these forest types at both time horizonsintervals.  Albedo does not show the 341 

same divergence in pattern with warmer conditions, and instead we find a somewhat surprising 342 

pattern. Hotter sites tend to experiencesee a larger enhancementelevation of summertime albedo 343 

over the pre-fire condition at both time horizonsintervals in spite of faster recovery of LAI with 344 

hotter temperature (Fig. 7d and 8d). 345 

Elevation was consistently found to be an important variable in determining the trajectory of post-346 

fire vegetation recovery. The post-fire recovery of LAI was slower at higher elevation both 10-347 

years and 20-years post-fire. Most forest types showed complete recovery towards pre-fire levels 348 

at an elevation below 1500 m. Only Pinyon-Junipers and Ponderosa pine forest types saw faster, 349 

more complete recovery of LAI with higher elevation (Fig. 5b and 6b). Turning to albedo response, 350 

we found that higher elevation led to a smaller increase in albedo over its pre-fire value for both 351 

time periods for the two forest types for which elevation was the most important predictor of post-352 

fire albedo change, namely for Pinyon-Juniper and Ponderosa pine forests. This is consistent with 353 
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faster post-fire recovery of LAI at higher elevation portions of range for these two forest types. In 354 

contrast, post-fire albedo of Douglas-fir, Mixed conifer and Oak forest types showed little 355 

dependence on elevation (Fig. 7b and 8b). 356 

Although fire severity was the least important predictor of both post-fire LAI and albedo recovery 357 

at both time horizonsevents, our results showed significant variation in post-fire recovery among 358 

severity classes for all forest types. As expected, the overall recovery of LAI 10-year post-fire was 359 

greater for low fire severity where the recovery ranged between 85% and 95% of pre-fire LAI 360 

levels (Fig. 5a). Only in the case of Oak and Pinyon-Juniper forest types that burned with high 361 

severity did we see full recovery of LAI at or above pre-fire levels by 10-years post-fire. By 20 362 

years post-fire, Lodgepole pine and Spruce/Fir/Hemlock still show a suppression of LAI relative 363 

to pre-burn and less recovery for more severe burn conditions (Fig. 6a) while Oak sees LAI 364 

elevated over the pre-burn condition and saw the largest LAI at sites that had the highest severity 365 

fires (Fig. 6a).  The four other forest types had LAI equal to the pre-burn condition and showed no 366 

variation across fire severity. For albedo, all forest types showed a larger elevation of albedo over 367 

their pre-fire values under medium fire severity (Fig. 7a). Oak had the lowest change in albedo at 368 

both time horizonsevents, owing to rapid post-fire recovery. Overall, post-fire albedo was 369 

consistently higher than pre-fire levels at both time horizonsevents in all forest types indicating 370 

that albedo requires more than two decades to return to pre-fire levels in these forest types (Fig. 371 

7a and 8a). 372 
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 373 
Figure 5: Partial dependence of change in summer LAI 10-year post-fire relative to pre-fire on a) 374 

fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer temperature. 375 

(Forest types: MC = Mixed Conifers; LP = Lodgepole pine; DF = Douglas-fir; PP = Ponderosa 376 

pine; Pinyon = Pinyon-Juniper; SFH = Spruce/Fir/Hemlock). The y-axis represents change in LAI 377 

post-fire relative to pre-fire (degree of recovery), where negative values represent recovery below 378 

pre-fire levels, 0 represents recovery to pre-fire levels, and positive values represent recovery 379 

above pre-fire levels. 380 

  381 
 Figure 6: Partial dependence of change in summer LAI 20-year post-fire relative to pre-fire on a) 382 

fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer temperature. 383 
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  384 
Figure 7: Partial dependence of change in summer snow-free albedo 10-year post-fire relative to 385 

pre-fire on a) fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer 386 

temperature. The y-axis represents change in albedo post-fire relative to pre-fire (degree of 387 

recovery), where negative values represent recovery below pre-fire levels, 0 represents recovery 388 

to pre-fire levels, and positive values represent recovery above pre-fire levels. 389 

 390 
Figure 8: Partial dependence of change in summer snow-free albedo 20-year post-fire relative to 391 

pre-fire on a) fire severity, b) elevation, c) annual precipitation, and d) mean monthly summer 392 

temperature.      393 

4. Discussion and Conclusion 394 
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Here, we extended the regional research by Shrestha et al., (2022) with a much broader sampling 395 

to study post-fire responses for seven forest types in 21 sub-ecoregions of the western U.S. In 396 

addition, this study also uses a machine learning approach (random forest) to examine the influence 397 

of several topo-climatic variables on the nature and rate of vegetation recovery and associated 398 

albedo in the post-fire environment. 399 

4.1. Post-fire Vegetation Recovery 400 

In this study, we used MODIS-derived LAI to increase our understanding of variability in the 401 

recovery of vegetation in the post-fire environment across seven forest types and 21 sub-402 

ecoregions of the western United States. Our study focused on the change of LAI over 25 years 403 

post-fire. During this timeframe, the recovery of LAI to the pre-fire condition can be expected to 404 

reflect establishment of new vegetation as well as the (re)growth and expansion of vegetation that 405 

managed to survive the wildfire. Similar to other studies (Morresi et al., 2019; Vanderhoof et al., 406 

2020), we found rapid vegetation recovery in the first 10 years after fire. While LAI rebounded 407 

rapidly in the initial 10 years post-fire, this cannot be taken as a definitive indicator of successional 408 

trajectory, especially for slow growing forests like subalpine fir (Ferguson and Carlson, 2010) or 409 

for forests with episodic post-fire germination such as Ponderosa pine (Savage et al., 1996; Brown 410 

and Wu, 2005; Rodman et al., 2019). Leaf area recovery then slowed in most cases, and for many 411 

it did not return to the pre-fire level by the end of study period. We anticipate that the recovery of 412 

LAI to its pre-fire condition continues to unfold over time, extending beyond the 25-year duration 413 

covered by our study. In some cases, we see LAI at 20 or 25 years post-fire exceeding that prior 414 

to burning, suggesting that wildfire may have stimulated canopy renewal or release of the 415 

understory. Evaluating post-fire LAI trajectories on these, and longer, timescales can be of value 416 
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from a management perspective, for example, to identify regions where there is a risk of 417 

regeneration failure for dominant, native species (Welch et al., 2016).  418 

Our findings generally agree with basic biogeographic expectations. For example,demonstrated 419 

differences in characteristic trajectories exist across forest types and ecoregions related to climate 420 

as well as soils and the basic fire adaptation traits of the species. WildfFire caused a similar 421 

proportional reduction of LAI across forest types and ecoregions, generally with 30% to 70% 422 

reduction in year 1 post-fire but with smaller reductions in some Pinyon-Juniper setting. 423 

Correspondingly, the absolute magnitude of LAI decline caused by fire was larger in forest types 424 

and regions that had a higher initial pre-fire LAI (Table S2). We also found varied rates of LAI 425 

recovery post-fire across forest types and ecoregions. Some forest types saw recovery to only 60 426 

% to 70% by 25 years while others saw LAI recovery to 120% to 150% of the pre-fire condition 427 

(Table S2). Similar to the decline in LAI year 1 post-fire, the absolute value of LAI increases 25 428 

years post-fire was larger in settings that had a larger pre-fire LAI, meaning in eco-climatic settings 429 

that are relatively favorable for forest growth. Many factors are likely to contribute to these patterns 430 

across forest types and ecoclimatic settings. First and foremost, it is no surprise that areas more 431 

suitable for growth have faster and more complete recovery with higher absolute LAI within a 432 

given forest type. For example, Douglas-fir stands in Cascades, Columbia Mountains, and Klamath 433 

Mountains had faster recovery rates and greater changes in absolute LAI after year 1 post-fire than 434 

did stands in the Rockies and Temperate Sierras (Table S2). Similarly, we observed a consistent 435 

slow trend in the rate of conifer regeneration in the interior of the western US with continental 436 

climate where high severity fire is common. This is likely due to reduced seed availability in 437 

response to larger high severity fires in these areas. because much of dry montane conifers and 438 

subalpine forests in the east of North Cascades, compared to western side, are characterized by 439 
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higher proportion of high severity burn patches during dry years, and as the fires get larger, the 440 

interior area of the burn patches increases significantly resulting in reduced establishment rates 441 

due to reduced seed availability (Cansler and McKenzie, 2014). While we did not examine the 442 

evidence of seed availability being a limitation for LAI recovery post-fire, it may become a 443 

growing limitation in these forests with wildfire becoming more severe in recent decades 444 

(Westerling et al., 2006; Parks and Abatzoglou, 2020) and the likely increase in persistent burned 445 

patch density under more extreme fire weather condition (Krawchuk et al., 2016). Other factors 446 

include Tthe regeneration capacity of the dominant tree species post-fire is also likely to play a 447 

role, with some readily and actively resprouting or having serotiny, while other lack these fire-448 

adaptation traits (Howard, 2003; Meng et al., 2018), and competition with species such as early 449 

colonizers common after burning (Hansen et al., 2016; Stoddard et al., 2018). that can be important 450 

for ecological resilience. Post-fire regeneration may also be impacted by secondary factors like 451 

competition with other species such as early colonizers common after burning. This is particularly 452 

true in Ponderosa pine and Lodgepole pine stands as these species can be outcompeted by aspen 453 

over the first 10-15 years postfire (Hansen et al., 2016; Stoddard et al., 2018; Vanderhoof et al., 454 

2020).  The post-fire dynamics presented here are not stratified by post-fire species composition, 455 

only characterizing the biophysical characteristics that unfold after burning of a particular forest 456 

type. Naturally, post-fire species composition can differ from pre-fire depending on seed and 457 

nutrient availability, fire severity, and climate and these effects are embedded in the post-fire 458 

biophysical trajectories that we present. Further exploration of how post-fire species composition 459 

and other regeneration characteristics influence biophysical trajectories is warranted. 460 

Our findings of post-fire LAI trajectories across ecoclimatic settings suggest that the range of 461 

Douglas-fir stands may be less vulnerable limited due to climate warming compared to Ponderosa 462 
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pine, as their current range tends to extend into cooler and moisterure areas where they recover 463 

above pre-fire levels within 25 years post-fire. This indicates that the worsening of climate changes 464 

in the future (more periods of prolonged drought) can have implications for migration of ponderosa 465 

pine due to worsening regeneration under climate stress. Such fire-catalyzed vegetation shift in 466 

coming years to decades can significantly affect the ecosystem services and economic activities 467 

provided by these widespread forest types (Rogers et al., 2011; Coop et al., 2020); thus, it is 468 

critically important to gain a comprehensive understanding of how the ranges of species may 469 

expand as tree growth becomes more feasible in higher elevations and higher latitudes (Lenoir et 470 

al., 2008) for forest management of burned areas in coming decades. Although Pinyon-Juniper 471 

forests recovered rapidly in the first few post-fire years, our observed decline in the rate of pinyon-472 

juniper recovery is consistent with the findings of Vanderhoof et al., (2020). This forest type is 473 

recognized for its slow regeneration and susceptibility to drought (Hartsell et al., 2020). Existing 474 

studies in post-fire recovery of Pinyon-Juniper suggest that this forest type recovers to pre-fire 475 

condition in <5 years after fire in the case of low to moderate fire (Jameson, 1962; Dweyer and 476 

Preper, 1967), while it takes >100 years for recovery to pre-fire condition under high severity with 477 

heavy Pinyon-Juniper mortality (Erdman, 1970; Koniak, 1985). Other forest types showed faster 478 

or similar rates of recovery, for instance, Mixed conifer recovered completely in most of the 479 

ecoregions of the western US possibly due to richer species diversity and relatively higher 480 

precipitation (Bright et al., 2019). 481 

4.2. Post-fire albedo Changes 482 

Our results provide evidence for significant effects of wildfires on the albedo across forest types 483 

and eco-climatic settings in the western US, with post-fire albedo being much higher albedo in 484 

winter than in summer. The post-fire albedo trajectories obtained from this study are broadly 485 
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consistent with those obtained from the literature (Beringer et al., 2003; Randerson et al., 2006; 486 

Lyons et al., 2008; Montes-Helu et al., 2009; Gleason et al., 2019). All forest types showed 487 

noticeable age-dependent albedo patterns, with a transient peak in summer albedo around 10-18 488 

years post-fire. We observed a decline in summer albedo during the first year after fire except for 489 

Pinyon-Juniper (Table S3) presumably from charred surface and the deposition of black carbon. 490 

The increase in albedo in first year after fire in Pinyon-Juniper may be associated with low pre-491 

fire LAI leading to lower levels of charcoal and black carbon deposition that absorb incoming 492 

radiation. Our finding is comparable to previously published findings that report albedo drops in 493 

the range of 0.01-0.05 using MODIS albedo (Jin and Roy, 2005; Randerson et al., 2006; Lyons et 494 

al., 2008; Veraverbeke et al., 2012). The slight differences are likely related to the variability in 495 

the domain of each study (e.g., western US vs. boreal, western US vs. Mediterranean), spatial 496 

resolution of MODIS pixels (500 m) that includes unburned patches and non-forest fractions, 497 

illumination conditions of the MODIS albedo products (black sky, white sky, blue sky) and method 498 

used to calculate albedo differences. Regarding the latter, we compared a pixel to itself between 499 

pre-and-post-fire years. The approach of comparing burned pixels to unburned neighboring pixels 500 

as control is also common (e.g., Myhre et al., 2005; Randerson et al., 2006; Lyons et al., 2008; 501 

Gatebe et al., 2014). One issue with this approach is that it does not consider heterogeneity of the 502 

land surface. Burned and control pixels may not be equivalent in the pre-burn period (Dintwe et 503 

al., 2017), as they do not necessarily represent a comparable vegetation state and therefore may 504 

not be a good proxy to pre-fire state. This characteristic decline in summer albedo immediately 505 

after fire contributed to differences in albedo patterns with other disturbance types (harvest, beetle 506 

outbreak). For example, in the first year following a disturbance event, Mohammad et al., (2019) 507 
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reported higher summer albedo in a post-harvest stand than in a post-fire stand because of high 508 

charcoal occurrence on the soil surface in the latter case.  509 

Soon after fire, we observed an increased in post-fire albedo during the summer period presumably 510 

due to combination of char removal and presence of early-successional plants (Johnstone et al., 511 

2010) that have higher albedo than mature species (Betts and Ball, 1997; Pinty et al., 2000; Amiro 512 

et al., 2006; Dintwe et al., 2017). Summer post-fire albedo recovered faster than LAI regardless of 513 

vegetation type. This pattern suggests that, in contrast to findings of Pinty et al., (2000) and 514 

Tsuyuzaki et al., (2009), post-fire recovery of albedo is driven by multiple factors in addition to 515 

the early regeneration of vegetation such as vegetation destruction and charcoal left behind (Jin et 516 

al., 2012), differences in fuel combustion and consumption (Jin and Roy, 2005), species 517 

composition during early succession (Beck et al., 2011), and seasonal variation in soil moisture 518 

and removal of black carbon (Montes-Helu et al., 2009; Veraverbeke et al., 2012). As the 519 

regenerating vegetation matures, the increase in post-fire albedo progressively weakens as 520 

suggested by Amiro et al., (2006), reaching peak at ~ 10-18 years post-fire which then gradually 521 

decline towards pre-fire levels. We did not observe the complete recovery of post-fire albedo 522 

within the study period of 25 years post-fire. Many studies using remote sensing technique suggest 523 

that albedo in post-fire stands commonly equilibrates at ~40-80 years post-fire (Randerson et al., 524 

2006; Lyons et al., 2008; Kuusinen et al., 2014; Bright et al., 2015; Abdul Halim et al., 2019, Potter 525 

et al., 2020).  526 

We found the greatest increase in post-fire albedo during winter, a finding consistent with others 527 

(Liu et al., 2005; Randerson et al., 2006; Montes-Helu et al., 2009; Gleason et al., 2019) due to 528 

increased exposure of snow resulting from the loss of canopy and tree mortality. In our analysis, 529 

post-fire winter snow-covered albedo increased with time since fire until a peak was reached, the 530 
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timing of which varied across forest types. We hypothesize that this increase with time may result 531 

from the fall of standing dead snags (O’Halloran et al., 20122014) and lower rate of 532 

reestablishment during succession (Fig. S4). On average, it takes 5-15 years after fire for half of 533 

the dead snags to fall in post-fire environment in coniferous forests in western North America 534 

(Russell et al., 2006), which coincides with the timing of peak in winter albedo in our study. Our 535 

finding showed similar post-fire winter albedo patterns across forest types in a region. For 536 

example, winter albedo in Lodgepole pine, Spruce/Fir/Hemlock, and Douglas-fir forest types in 537 

the Idaho Batholith region increased at a similar rate with time since fire which corresponds to 538 

consistent lower LAI recovery rate across these forest types in this region (Fig. S4b,f,g) related to 539 

climate and soil. However, variation in winter albedo was greater across ecoregions within a forest 540 

type (e.g., Mixed conifer) owing to variable rates of post-fire LAI recovery (Fig. S4a). Overall, 541 

our findings indicate a strong dependency of post-fire seasonal albedo on the proportion of 542 

vegetative cover, irrespective of forest types, on the post-fire environment. This observed effect 543 

provides a strong connection between albedo and successional patterns observed in these specific 544 

forest types.  545 

4.3. Controls on post-fire recovery of biophysical parameters 546 

One of the major contributions of our approach is that it not only generates the post-fire trajectories 547 

of land surface biophysical properties across a range of forest types and geographic regions, but 548 

also distinguishes the contribution of nature of fire, climate, and topography on post-fire LAI and 549 

albedo recovery for each forest type. Previous work has shown fire severity to be an important 550 

driver of regeneration, with high fire severity associated with lower post-fire regeneration 551 

(Crotteau et al., 2013; Meng et al., 2015; Chambers et al., 2016; Vanderhoof et al., 2020). In 552 

contrast, our analysis suggested fire severity was of relatively low importance relative to other 553 
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variables considered (Fig. S2). Despite being of lesser importance, We we found that higher rates 554 

of post-fire recovery were associated with low severity fire and lowest recovery rates were 555 

associated with high fire severity. The lower recovery rates associated with high fire severity are 556 

possibly due to lower seed availability and greater distance to live seed sources (Haire & 557 

McGarigal, 2010; Kemp et al., 2016; Kemp et al., 2019), but high fire severity can also create 558 

mineral seed beds and free up essential resources such as moisture, light, and nutrients which 559 

promote the growth of vegetation (Gray et al., 2005; Moghaddas et al., 2008). Only Oak and 560 

Pinyon-Juniper showed higher recovery rates under high fire severity among forest types which is 561 

primarily due to rapid regeneration by resprouting in Oak (Meng et al., 2018) and colonization by 562 

resprouting shrubs in Pinyon-Juniper (Wangler & Minnich, 1996). The low importance of fire 563 

severity in determining post-fire vegetation growth indicates that the variability across a single fire 564 

may be outweighed at a regional level by climate and its proxies. It also suggests that at some sites, 565 

the impact of wildfire may be restricted to causing tree mortality under changing climate, rather 566 

than also significantly influencing the post-fire regeneration with its impact on seed availability 567 

(Kemp et al., 2019).  568 

Our analysis indicated that among all the factors considered, elevation had the highest variable 569 

importance score in predicting the LAI 10-year and 20-year post-fire. We found greater rates of 570 

vegetation recovery in lower elevation. Less successful recovery at higher elevations is likely 571 

associated with cooler temperatures at higher elevations for many of the forest types, and those 572 

cool temperatures appear to still limit forest establishment and growth, even under general 573 

warming in the region (Stevens-Rumann et al., 2018). A possible secondary reason could be soil 574 

conditions in the mountainous terrain and slope, with a higher occurrence of steep slopes at higher 575 

elevations than lower elevations. Slope has been shown to result in lower regeneration density 576 
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compared to shallower slopes (Lyderson & North, 2012; Kemp et al., 2016). Only Pinyon-Juniper 577 

showed increased recovery with elevation (Fig. 5b and 6b) likely due to relief from the hot, dry 578 

conditions at lower elevations but also possibly due to resistance to invasion that increases with 579 

elevation in this forest type (Urza et al., 2017), suggesting that warming temperatures are having 580 

a detrimental effect on post-fire regeneration at warmer sites, but not yet promoting post-fire 581 

regeneration at cooler sites at all spatial scales (Harvey et al., 2016). Elevation was found to be 582 

important in various studies of post-fire regeneration of conifer forests in the western U.S., but 583 

with opposite directionality (Casady et al., 2010; Rother & Veblen, 2016; Vanderhoof et al., 2020). 584 

However, Mantgem et al., (2006) reported a strongly negative correlation with seedling density of 585 

Mixed conifer forests in the Sierra Nevada. In higher elevation forests such as Lodgepole pine, 586 

most studies demonstrated increased recovery post-fire (e.g., Harvey et al., 2016) which contrasted 587 

with our findings. However, modeling evidence suggests that Lodgepole pine regeneration post-588 

fire could experience significant declines in coming decades as a result of both increased fire 589 

frequency (Westerling et al., 2011) and changing climatic conditions (Coops & Waring, 2011). 590 

These findings collectively highlight that there exists a large degree of uncertainty around 591 

individual forest type responses to post-fire climatic variability.  592 

Our study adds to a growing body of literature emphasizing the importance of climate for post-fire 593 

vegetation growth among different forest types (Meng et al., 2015; Buechling et al., 2016; Rother 594 

and Veblen, 2017; Hankin et al., 2019; Vanderhoof et al., 2020). Our data suggests that high 595 

average summer temperatures and low water availability limit the recovery of LAI 10-year and 596 

20-year postfire on these forest types. Drier forests such as Oak, Ponderosa pine, Douglas-fir, and 597 

Pinyon-Juniper were strongly associated with annual precipitation and mean summer temperature, 598 

which is consistent with the findings of Meng et al., (2015) and Kemp et al., (2019)who reported 599 
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a positive relationship between five-year post-fire NDVI values and wet season precipitation 600 

anomaly in Mixed conifers of Sierra Nevada. Similarly, Kemp et al., (2019) found mean summer 601 

temperature to be very important indicator of post-fire regeneration for Douglas-fir and Ponderosa 602 

pine with decreased potential for successful regeneration under warmer summer temperatures. Our 603 

analysis also suggests that the critical thresholds for annual precipitation and mean summer 604 

temperature are 500 mm and 15-20℃, respectively, in these forest types. Our finding of higher 605 

sensitivity of Oak, Ponderosa pine, Douglas-fir, and Pinyon-Juniper to annual precipitation and 606 

average summer temperature suggests that future increases in temperature and water deficit may 607 

affect these forest types more so than other forest types. For example, Rehfeldt et al., (2014) 608 

predicted a 50% decline in Ponderosa pine habitat range by 2060 in response to climate change. 609 

With a trend toward warmer springs and summers in recent decades throughout the western US 610 

(Westerling, 2006; Ghimire et al., 2012; IPCC, 2013; Williams et al., 2021), conditions for post-611 

fire vegetation growth and survival are changing, as even a slight increase in water deficit on the 612 

drier sites can have adverse effects on tree regeneration (Stevens-Rumann et al., 2018). While 613 

warming temperature has been shown to affect the post-fire regeneration of confer forests growing 614 

at the warmer end of the species distribution such as Douglas-fir and Ponderosa pine (Haffey et 615 

al., 2018; Kemp et al., 2019), it could promote the rate of post-fire recovery for conifer forests 616 

growing at the colder end of the species distribution previously limited by frozen soils, cold 617 

temperatures, and snow (Stevens-Rumann et al., 2018; Vanderhoof et al., 2020).  618 

Similar to LAI, our results of variable importance in random forests showed low importance of 619 

fire severity compared to other variables in post-fire recovery of summer albedo at both time 620 

horizonsintervals (Fig. S3). However, we noticed a difference in albedo change across fire severity 621 

classes. For example, we found lower albedo values in low fire severity areas compared to medium 622 
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and high severity areas at both time horizonsintervals, which is associated with a greater degree of 623 

LAI recovery in low severity areas as vegetation has lower albedo than bare areas. Moreover, 624 

lower albedo 10-years post-fire in high severity compared to medium severity could be due to 625 

standing snags absorbing sunlight, with it taking 5-15 years for just half of dead snags to fall 626 

(Russell et al., 2006). We did not find significant impact of elevation on post-fire albedo change 627 

in these forest types except for Pinyon-Juniper and Ponderosa pine, which showed decreased 628 

albedo post-fire in response to increased LAI with elevation. As expected, climate, particularly 629 

annual precipitation, was the major determinant of post-fire albedo change. Annual precipitation 630 

was found to be highly associated with changes in post-fire albedo in all forest types, where 631 

increased precipitation decreased the albedo post-fire with impact more prominent in 20-year post-632 

fire. Annual precipitation impacts post-fire albedo through two different mechanisms. First, 633 

increased annual precipitation is associated with greater recovery of LAI in these forest types (Fig. 634 

6c) where the mid-age stands replace the initial post-fire establishments, reducing albedo 635 

(Chambers and Chapin, 2002). Second, soil moisture depends on precipitation. With greater 636 

precipitation leading to increased soil water content, we could expectthere is a corresponding 637 

decrease in albedo due to darkening of soil particularly in open canopy conditions where the soil 638 

received direct radiation (Montes-Helu et al., 2009Domingo et al., 2000). and  Furthermore, an 639 

increase in leaf area within the understory during the wet season could have a similar effect, as 640 

reported in Thompson et al. (Thompson et al., 2004). Regarding temperature, the pattern of albedo 641 

recovery did not correspond well with the pattern of LAI recovery at both time horizonsintervals 642 

in these forest types. Albedo is elevated over the pre-fire condition more in the warmer part of a 643 

forest type’s range even in forest types that have a faster recovery of LAI in that warmer domain. 644 

We might expect that a higher LAI would be associated with a lower albedo, but evidently the 645 
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association is not as simple, and it might have something to do with species composition rather 646 

than simply leaf area. Our results point to the importance of climate patterns as a driver of post-647 

fire summer albedo recovery through their influence on ecological succession on the post-fire 648 

environment. 649 

4.4. Significance and limitations of our Analysis 650 

Our results should be interpreted in light of four constraints. First, the accuracy of MODIS product 651 

algorithm is dependent on biome-specific values, which following extensive fire-caused mortality, 652 

can introduce additional uncertainty due to assumption of fixed land cover type. For instance, the 653 

use of look-up-table (LUT) for different biomes in the MODIS fPAR/LAI algorithm can 654 

potentially lead to errors in LAI derivation in post-fire environment if an incorrect biome 655 

classification is applied. In addition, we utilized the recovery of MODIS LAI as an indicator of 656 

vegetation recovery. However, it is important to acknowledge that LAI is a valuable yet imperfect 657 

indicator of vegetation change resulting from wildfires. One significant limitation of LAI-based 658 

analysis is that it captures some of the aggregate effects of mortality and regrowth but does not 659 

fully characterize shifted species composition and community structure on the ground. We 660 

recognize that short-term LAI following wildfire represents relative vegetation cover rather than a 661 

direct measure of forest regeneration. Therefore, detailed, intensive field monitoring of vegetation 662 

structure both before and after fires can serve as a valuable complement to LAI-based analysis 663 

(Williams et al., 2014). Additionally, incorporating additional remote observations at the species 664 

level from the fusion of very high spatial resolution, lidar, or hyperspectral data (Huesca et al., 665 

2013; Polychronaki et al., 2013; Kane et al., 2014) can further enhance the assessment. Moreover, 666 

establishing connection between field-level data and satellite observations can enhance the 667 

interpretability of satellite observations (Hudak et al., 2007) and offer a means to scale up ground 668 
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observations to effectively characterize full landscapes. Second, in terms of albedo, we used a 500 669 

m MODIS albedo product which reflects a somewhat larger area (Campagnolo et al., 2016). Each 670 

500 m grid may in fact include a mix of burned and unburned patches which could result in 671 

underestimation of post-fire albedo. Moreover, the algorithm used to calculate albedo may result 672 

in an underestimation, as it might disproportionately consider structural elements (e.g., snags and 673 

surviving trees) in the post-fire landscape. A modeling study by Hovi et al (2019) corroborated 674 

this who reported strong link between the effective spatial resolution of the MODIS albedo product 675 

and forest structure. Although the use of MODIS data with its relatively low spatial resolution will 676 

miss some of the details of fine-scale spatial variability in burn severity, land cover type and so 677 

forth (Key, 2006), MODIS data has advantages in terms of higher temporal frequency of sampling 678 

that can be important in post-fire biophysical dynamics (Lhermitte et al, 2010; Veraverbeke et al., 679 

2010, 2012) and these data also have good temporal coverage going back decades. Furthermore, 680 

higher resolution datasets on biophysical properties are still not operationally available. Third, the 681 

quality of our results may be constrained by the accuracy of fire severity from the MTBS product 682 

as dNBR is not a perfect metric of severity and may struggle to capture some variations in severity 683 

(Roy et al., 2006; De Santis and Chuvieco, 2009). However, several new generation fire remote 684 

sensing products (Csiszar et al., 2014; Parks et al., 2014; Boschetti et al., 2015) are emerging in 685 

recent years, which hold the potential for further improvements in post-fire recovery studies. 686 

Finally, the processes driving post-fire vegetation recovery in burned areas may vary from one 687 

location to another, influenced by several other factors that this study did not cover.. The 688 

interaction among all the determinant of post-fire forest recovery is complex and measurements of 689 

fine resolution topo-climatic variables may not adequately explain the processers involved in forest 690 

regeneration and survival in the post-fire environment. There are several other factors that 691 
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influence post-fire regeneration that this study did not consider but could be important like species 692 

competition (Hansen et al., 2016; Stoddard et al., 2018), distance to seed tree (Kemp et al., 2016; 693 

Stevens-Rumann and Morgan, 2019), and other pre-fire disturbances (Buma and Wessman, 2011). 694 

The majority of the studies on post-fire recovery presented here have attributed the slower rates of 695 

recovery to post-fire climate conditions.  To gain a comprehensive understanding of the trajectory 696 

of post-fire vegetation recovery, future studies, in addition to topo-climatic variables, should 697 

consider species competition, scorching of the seed bank, distance to seed tree, other post-fire 698 

disturbances, physiology of cones, seeds, and seedlings, as well as the interactions among all 699 

influencing drivers in these settings. 700 

Despite these limitations, by aggregating across multiple fire events in 21 different sub-ecoregions 701 

and arraying observations along a 25-years chronosequence, our results demonstrate the spatial 702 

and temporal variability of fire effects on post-fire environment. While forest regeneration may be 703 

low in burned areas, it is highly variable spatially which is evident from the difference in recovery 704 

rates between moist, cooler northern sub-ecoregions and dry, hot southern sub-ecoregions. 705 

Understanding such variability of fire effects and vegetation in space and time is important for 706 

comprehensive understanding of the drivers of natural regeneration and vegetation recovery in 707 

post-fire environments (Stevens-Rumann and Morgan, 2019). Our analysis could also help 708 

improve the modeling of post-fire recovery pathways by identifying the most important predictors 709 

of post-fire recovery and by approximating related thresholds of response. For example, our results 710 

suggest a full recovery of LAI in dry, low elevation forest types like Pinyon-Juniper, Ponderosa 711 

pine, and Oak within 10 years post-fire when the annual precipitation exceeds the threshold of 500 712 

mm and average summer temperature is ~15-20℃. A quantitative measure of primary controls is 713 
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needed if efforts to develop realistic post-fire LAI trajectories for ecohydrological modeling 714 

studies are to be successful, as suggested by McMichael et al., (2004).  715 

One major significance of our approach and findings is its potential to advance the land surface 716 

models (LSMs) embedded in Earth system models (ESMs). Currently, these models lack robust 717 

representations of the ecological and biophysical consequences resulting from wildfire events 718 

(Lawrence and Chase, 2007; Williams et al., 2009). Modelers could use the pattern of post-fire 719 

biophysical dynamics as a function of time since fire, emerged from our data analysis, to inform 720 

the LSMs to more accurately represent biophysical and ecological functions of severely disturbed 721 

landscapes. 722 

For instance, the patterns emerged from our data analysis could be utilized to inform model 723 

parameters that describe wildfire impacts on biophysical properties of a landscape. A common 724 

practice in land surface modeling is to define a set of parameter values that are relatively constant 725 

for specific biomes all over the world (for example, Betts et al., 2007) and therefore, misses the 726 

local ecological dynamics of each biome, weakening the model-based assessments (Myhre et al., 727 

2005; Barnes & Roy, 2010). This holds true in post-fire environment and is evident from this study 728 

that suggests that the parameter values associated with biophysical, hydrological, and 729 

biogeochemical processes such as LAI and albedo vary over space and environmental condition, 730 

even within a specific vegetation type. Therefore, subtle changes to response functions and 731 

parameterization that govern rates of carbon, energy, and water fluxes in relation to disturbance 732 

events can yield divergent modeled responses of ecosystems to disturbance events. Currently, 733 

these models lack robust representations of the ecological and biophysical consequences resulting 734 

from wildfire events (Lawrence and Chase, 2007; Williams et al., 2009). In this research, we have 735 

quantified the post-fire changes in biophysical properties of land surface as a function of time since 736 
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fire. Modelers could use these annual values to inform the LSMs to more accurately represent 737 

biophysical and ecological functions of severely disturbed landscapes. 738 

4.5. Implications of Our Research 739 

There is mounting evidence of increased extreme fire incidents in the western US due to ongoing 740 

climate change (Westerling et al., 2006; Williams et al., 2014), leading to rapid alteration and 741 

considerable uncertainty regarding species composition (McDowell et al., 2015) and ecological 742 

dynamics (Johnstone et al., 2016). This study provides an estimate of the effect of the post-fire 743 

environment on vegetation and surface albedo balance of the western US. The chronosequence 744 

data show clear patterns with time since fire for both biophysical parameters. Our results 745 

quantitatively suggestshow that conifer forest ecosystems, particularly Douglas-fir and Ponderosa 746 

pine, are slower to recover post-fire, which may indicate they face greater risks more vulnerable 747 

in thefrom the projected increase in fire severity and frequency as forecasted for drier interiors of 748 

the western US exposed to high severity fires and this vulnerability is projected to increase in 749 

coming decades as wildfires continue to increase in severity and size under warmer and drier 750 

climate conditions (Abatzoglou and Williams, 2016; Littell et al., 2018). The post-fire biophysical 751 

changes documented here could be of significance for local to regional climates, potentially 752 

eliciting feedbacks that influence regional climate change and needs for adaptation. 753 
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