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Motivation 
 

 

The manuscript by Reynard and Zhong describes measurements of the changes in the 

frequencies of Raman lines of quartz under hydrostatic pressure and also non-hydrostatic 

stress in two different experiments. These measurements are potentially valuable for the 

interpretation of the Raman shifts of quartz inclusions trapped inside other mineral hosts in 

terms of the stress state of the inclusion, from which the entrapment conditions of the inclusion 

can be constrained (e.g. Kohn 2014; Angel et al. 2017; Zhong et al. 2020; Gilio et al. 2021). 

It has previously been proposed that the Raman shifts of minerals under deviatoric stress can 

be interpreted in terms of the phonon-mode Grüneisen tensors (e.g. Angel et al. 2019), and 

that the values of the components of the tensors can be determined by conducting ab initio 

Hartree-Fock/ Density Functional Theory (HF/DFT) simulations of crystal structures under 

different stress/strain conditions (Murri et al. 2019; Stangarone et al. 2019; Musiyachenko et 

al. 2021).  

 

Reynard and Zhong conclude from their work that the values of the components of the 

phonon-mode Grüneisen tensors of quartz obtained from HF/DFT are incorrect and further 

conclude that the use of these tensors to describe the shift in Raman frequencies under stress 

is not appropriate. In this comment I will clearly separate and discuss two distinct issues: 

 

1) Whether or not the phonon-mode Grüneisen tensor is the correct physical description of 

the change in Raman frequencies of a crystalline solid under deviatoric stress, and what its 

known limitations are. 

 

2) Whether or not the values of the components of the phonon-mode Grüneisen tensors 

determined  by HF/DFT or by experiment agree, and if these values are correct. 

 

 

Phonon-mode Grüneisen tensors 
 

Phonon-mode Grüneisen tensors are simply the anisotropic generalisation of the concept of 

phonon-mode Grüneisen parameters which are well-established as the appropriate 

description of the relationship between the change in the wavenumbers of phonon modes 

with strain. Each phonon mode m with a wavenumber 𝜔𝑚 is associated with a volume 

Grüneisen parameter 𝛾𝑉
𝑚 defined as: 

 

𝛾𝑉
𝑚 =

−𝑉

𝜔𝑚

𝑑𝜔𝑚

𝑑𝑉
 (1) 

 



2 

 

Thus, the values of the volume phonon-mode Grüneisen parameters can be determined from 

an experiment in which wavenumbers of phonons are measured, for example by Raman 

spectroscopy, while the volume of the crystal is changed, for example in a high-pressure 

experiment or an experiment in which the temperature of the crystal is changed. 

 

The anisotropic extension of equation (1) requires that instead of considering the volume 

strain 
𝑑𝑉

𝑉
, the change in the shape of a crystal must be considered. This is described by the 

strain tensor, 𝜀ij, which is a symmetric second rank tensor (Nye 1957). Because the 

wavenumber 𝜔𝑚 of a phonon mode is a scalar, the volume phonon-mode Grüneisen 

parameter must be replaced in (1) by a second-rank symmetric tensor, so that: 

 
−𝑑𝜔𝑚

𝜔0
𝑚 = 𝜸𝒎: 𝜺 (2) 

 

The “:” in Equation (2) indicates a double-scalar product between the two tensors, which can 

be written out in terms of their components as: 
−𝑑𝜔𝑚

𝜔0
𝑚 = 𝛾11

𝑚𝜀11 +  𝛾22
𝑚 𝜀22 + 𝛾33

𝑚 𝜀33 + +𝛾23
𝑚 𝜀23 + 𝛾32

𝑚 𝜀32 + +𝛾13
𝑚𝜀13

+ 𝛾31
𝑚 𝜀31 + 𝛾12

𝑚𝜀12 + 𝛾21
𝑚 𝜀21 

(3) 

 

Both tensors are symmetric (Nye 1957; Angel et al. 2019) and therefore 𝜀𝑖𝑗 = 𝜀𝑗𝑖 and 𝛾𝑖𝑗
𝑚 =

𝛾𝑗𝑖
𝑚 for each pair of non-diagonal elements, so: 

 
−𝑑𝜔𝑚

𝜔0
𝑚 = 𝛾11

𝑚𝜀11 + 𝛾22
𝑚 𝜀22 + 𝛾33

𝑚 𝜀33 + 2𝛾23
𝑚 𝜀23 + 2𝛾13

𝑚𝜀13 + 2𝛾12
𝑚𝜀12 (4) 

 

We can reduce these tensors to a vector form in which the double-scalar product in Equation 

(2) becomes a scalar product of two vectors that represent the 𝜸𝒎 and the 𝜺 tensors. Under 

the Voigt convention, the normal strain components are equal in magnitude to the diagonal 

components of the tensor, e.g. 𝜀1 = 𝜀11, while the shear strains 𝜀4, 𝜀5, 𝜀6 are one-half of the 

values of the corresponding tensor components 𝜀23, 𝜀13, 𝜀12. Therefore, if we set 𝛾4
𝑚, 𝛾5

𝑚  and 

𝛾6
𝑚 equal to the values of the corresponding tensor components 𝛾23, 𝛾13, 𝛾12, we obtain an 

expression exactly equivalent to (4): 

 
−𝑑𝜔𝑚

𝜔0
𝑚 = 𝛾1

𝑚𝜀1 + 𝛾2
𝑚𝜀2 + 𝛾3

𝑚𝜀3 + 𝛾4
𝑚𝜀4 + 𝛾5

𝑚𝜀5 + 𝛾6
𝑚𝜀6 (5) 

 

The introduction of a factor of ½ into the strain vector components and not into the 

Grüneisen vector components avoids factors of 2 appearing for the terms with subscripts i = 

4,5,6 in the matrix version (5) of the tensor equation (2).  

 

Because the phonon-mode Grüneisen tensors are properties of the crystal they are subject to 

the symmetry of the crystal. For this reason, the trigonal symmetry of quartz means that 

𝛾1
𝑚 =  𝛾2

𝑚 and 𝛾4
𝑚 =  𝛾5

𝑚 =  𝛾6
𝑚 for each mode, so that each mode in quartz has only two 

unique non-zero components of its phonon-mode Grüneisen tensor, 𝛾1
𝑚 ≠  𝛾3

𝑚. and thus 

equation (5) is reduced for quartz to: 
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−𝑑𝜔𝑚

𝜔0
𝑚 = 𝛾1

𝑚(𝜀1 + 𝜀2) + 𝛾3
𝑚𝜀3 (6) 

 

Both the validation of this description for how the Raman frequencies of quartz change with 

stress or temperature, and the values of the components 𝛾1
𝑚 and 𝛾3

𝑚 for quartz can only be 

determined by experimental measurements or ab-initio simulations of quartz.  

 

Is the Grüneisen approach correct in principle? 

 

Both the isotropic (equation 1) and the anisotropic version (equations 3-5 in general, and 6 

for quartz) predict that the changes in Raman mode shifts are linear with strain. For small 

strains, 𝜀1 + 𝜀2 + 𝜀3 =
𝑑𝑉

𝑉
, so the isotropic and anisotropic approaches are consistent in this 

prediction. A further implication of this approach is that the phonon frequencies are a 

function of the strains of the crystal alone, and not of temperature or pressure. Therefore, if 

the Grüneisen approach is correct, a plot of any Raman frequency against the volume should 

lie on a single trend that is linear in volume, and this is observed for many modes of many 

crystals, including quartz (e.g. Murri et al. 2018). 

 

 

Figure 1. Symbols show the measured 

changes in Raman shift under hydrostatic 

pressure from the experimental data of 

Morana et al. (2020) and Reynard and 

Zhong. The lines are the predicted shifts 

calculated from the measured unit-cell 

parameters of quartz under pressure 

(Scheidl et al. 2016) and the published 

Grüneisen tensor components of Murri et al. 

(2019) as solid lines and Reynard and 

Zhong (their Table 1) as dashed lines. 

 

Note that the two sets of experimental data 

are very similar, as are the predicted shifts 

for the 128 and 464 lines which agree with 

the measured data up to ca. 2 GPa, a 

pressure greater than that found in quartz 

inclusions. The prediction of the 206 line 

from Reynard and Zhong does not describe 

the measured pressure evolution of this 

mode.  

 

For small stresses, within the linear elastic regime where the strains are related to the applied 

stresses j (again in Voigt  notation) by the elastic compliance matrix sij as i = sij.j, the 

Raman shifts are predicted to change linearly with applied stress, as shown by Reynard and 

Zhong (their Fig 3c) and others (e.g. Tekippe et al. 1973; Briggs and Ramdas 1977; Barron 

et al. 1982). At high pressures, such as achieved in a DAC, the strains are no longer linearly 

proportional to the applied stress and instead the stress-strain relationship is described by 

non-linear equations of state. Thus, the Grüneisen approach implicitly predicts that Raman 

shifts will change non-linearly with pressure because of the non-linearity of strains with 
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pressure, even if the Grüneisen parameters or tensor components remain invariant with 

pressure. This is what is commonly observed in measurements of Raman shifts of crystals 

under hydrostatic pressure in diamond-anvil cells, including those of Reynard and Zhong 

(Fig. 1). 

 

Further, for quartz and zircon, the mode Grüneisen parameters determined from HF/DFT 

simulations predict, in combination with the measured strains as a function of pressure, the 

experimentally measured changes in Raman frequencies with pressure (see my Fig. 1 for 

quartz). This agreement extends to volumes strains of ca. 4 % in both quartz (Murri et al. 

2019) and zircon (Stangarone et al. 2019), corresponding to pressures of, respectively, 2 and 

8 GPa. The mode Grüneisen parameters calculated for the 128 and 464 modes by Reynard 

and Zhong also show the same agreement (Fig. 1).  

 

This brief discussion shows that there is substantial experimental evidence to indicate that 

the principles behind the Grüneisen approach are valid.  

 

Potential limitations of the Grüneisen approach 

We now consider possible limitations to the extent of its applicability, because if Grüneisen 

theory is found to be a valid description of the behaviour of minerals in the range of stresses 

and strains found in natural inclusions, as Figure 1 suggests, then it will be a useful tool in 

geology. 

 

The first potential limitation is that it assumes a linear relationship between the phonon 

frequencies and the strains of the crystal. This may break down for several reasons. The first 

is already illustrated by Figure 1, that shows for pressures above ca. 2 GPa for quartz, the 

Raman shifts diverge from the prediction of the phonon-mode Grüneisen tensors. As noted 

above, this corresponds to about 4% in volume compression, and about 1.3% in linear 

strains. The same limiting strain value is found for zircon (Stangarone et al. 2019). This is 

not a breakdown of the Grüneisen approach, but simply requires an extension to non-linear 

relationships. This would be entirely analogous to the fact that the linear relationship 

between stress and strain breaks down at quite modest stresses (pressures) and the 

relationship must be described by non-linear EoS. But this is not a limitation to the method 

for interpreting Raman spectra of natural quartz inclusions as they exhibit pressures of less 

than 1.5 GPa. 

 

There is also evidence from HF/DFT simulations (Murri et al. 2019) that at large strains 

some modes, and especially those involved in soft mode phase transitions such as the − 

transition in quartz, become non-linear in strain. Leaving aside other considerations, the 

physical properties of a mineral such as quartz change rapidly as the − transition is 

approached; for example the bulk modulus of quartz drops to zero at the transition 

(Lakshtanov et al. 2007) and other properties such as the heat capacity and thermal 

expansion coefficient diverge towards infinite values (e.g. Carpenter et al. 1998; Murri and 

Prencipe 2021). Given that the thermal expansion and heat capacity depend on the phonon 

frequencies, it would be entirely expected that the relationship between those frequencies 

and the cell parameters and strain may also become non-linear near to the phase transition.  

 

The phonon-mode wavenumbers depend upon the interactions between the atoms within the 

crystal, which depend in part on the distances between them. One can associate the changes 

in phonon-mode wavenumbers with changes in the inter-atomic distances. For simple 
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structures, such as the rock salt structure in which all of the atoms have fixed coordinates 

within the unit cells, changes in inter-atomic distances are determined by the change in the 

unit-cell parameters alone. Therefore, there is good reason to expect a direct linear 

relationship between phonon-mode wavenumbers and unit-cell strains. However, in more 

complex structures such as quartz, the atom coordinates within the unit cell are independent 

variables. Therefore, there is no a-priori physical reason why the strains (fractional length 

changes) of inter-atomic distances or bonds should scale with the unit cell strains; indeed 

certain structural elements such as SiO4 tetrahedra have much higher bulk moduli than the 

mineral structures that they form. Experimental determinations of bond lengths by 

diffraction methods is challenging because of both the small changes involved and the role 

of correlated thermal motion that prevents diffraction returning true local bond lengths (e.g. 

Busing and Levy 1964; Downs et al. 1992) especially in open framework structures such as 

quartz (Kihara 1990; 2001; Kimizuka et al. 2003; Murri et al. 2019). On the other hand, 

HF/DFT simulations do suggest that at low temperatures away from the − transition, that 

the real inter-atomic distances scale approximately linearly with the unit-cell strains (Murri 

et al. 2019). The same was found for zircon (Stangarone et al. 2019). Therefore, the internal 

degrees of freedom in mineral structures do not appear to create a significant limitation to 

the Grüneisen approach. 

 

The Grüneisen relationship in terms of stress 

 

For linear elasticity the Grüneisen relationships, both isotropic and anisotropic, can be 

written directly in terms of stress, by using the linear relationship between stress and strain, 

as Reynard and Zhong do. This is not wrong, but has two major disadvantages: 

 

First: that it is not immediately obvious from the components of the stress tensor whether or 

not the symmetry of the crystal has been broken. This is important, because when the 

symmetry of the crystal is broken by the stress, then the forces and distances between the 

atoms are changed and the symmetries and frequencies of the phonon modes therefore 

change. Since the phonon-mode Grüneisen tensor is a property tensor and is therefore 

subject to the symmetry of the crystal (Eqn. 6) it only describes the changes in phonon-mode 

wavenumbers when the symmetry of the crystal is preserved. Therefore, a phonon-mode 

Grüneisen tensor of quartz calculated for trigonal symmetry is not expected to predict the 

wavenumber shifts of a quartz crystal whose symmetry has been broken by applied stress 

(Murri et al. 2022), and this is a problem in the analysis of Reynard and Zhong. They 

describe two non-hydrostatic stress experiments, one with stress applied along the c-axis of 

quartz, and the second with the stress applied perpendicular to the c-axis. In the first case, 

the only non-zero component of the stress vector is 3. For the second case Reynard and 

Zhong provide insufficient information about crystal orientations and the Cartesian axis 

convention used to determine the values of 1 and 2. What is however certain is that in this 

experiment the non-zero components of the stress field are some combination of 1 and 2, 

but they are not required to be equal (note this contradicts the statement made on lines 154-

155 of Reynard and Zhong). In neither case is it obvious what is the symmetry of the quartz 

crystal under these stresses. If we convert these stresses into strains, then the answer is 

obvious. The first stress field induces strains 1= 2 ≠ 3 and the symmetry is preserved. The 

second, if the stress is just 1 ≠ 0,  2 = 3 =0, will produce a compressive strain along the 

Cartesian X axis, and expansion along the Cartesian Y and Z axes. Therefore, if we assume 

that the Cartesian X-axis is aligned along the crystallographic a-axis, the a-axis will be 
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shortened, while the crystallographic b and c parameters will be expanded. Unequal strains 

along the crystallographic a- and b-axes accompanied necessarily by a shear strain thus will 

result from all uniaxial stresses applied to quartz perpendicular to the c-axis. Therefore, the 

symmetry will be broken and the use of the trigonal phonon-mode Grüneisen tensors is not 

valid. Further, such a symmetry reduction does not result in LO-TO splitting of the E modes 

as claimed by Reynard and Zhong, but the generation of a pair of modes with different 

wavenumbers from the doubly-degenerate E modes of the parent trigonal structure. If the 

strained structure has monoclinic symmetry (as would occur for stress applied exactly along 

the crystallographic a-axis) the parent E mode splits into one A and one B mode. For other 

stress directions, the strained structure has triclinic symmetry and the E modes of the parent 

structure split into a pair of A modes (Tekippe et al. 1973; Murri et al. 2022). In both cases, 

each of these modes has an LO and TO component.  

 

Note also that the LO-TO splitting in general of the E modes in quartz does not require the 

application of stress. The LO and TO components can be easily resolved in a well oriented 

crystal under certain scattering geometries, although the scattering geometry used by 

Reynard and Zhong is not specified. However, the E mode near 128 cm-1 is the only one for 

which the LO-TO splitting cannot be resolved in unstressed quartz. Therefore, the evidence 

of splitting of this Raman peak into two different peaks requires symmetry breaking; the 

splitting of the 128 E mode reported by Reynard and Zhong is therefore not the TO-LO 

splitting of one parent E mode, but two different modes under the broken symmetry, neither 

of which can be expected to have properties predicted by the trigonal properties and 

Grüneisen tensors of quartz.  

 

The second problem in using the applied stress as a basis for predicting changes in Raman or 

other phonon frequencies, as illustrated by the text of Reynard and Zhong, is that it is linear 

in the stresses (their equation 4, and equation 7 here). As I have stated above, apart from 

identifying symmetry breaking, under linear elasticity the relationship between mode 

wavenumbers written in terms of stress is entirely equivalent to that written in terms of 

strain. However, the changes in wavenumbers with large stress, as illustrated by the 

experiments under hydrostatic pressure, are non-linear (Fig. 1). If the wavenumber shifts are 

expressed in terms of pressure, then this requires two separate analyses for small stresses and 

large stresses, and the cross-over point from one approach to the other is not defined; indeed 

such an approach suggests that the behaviour of solids under small single stresses and under 

significant hydrostatic pressure is fundamentally different. This is not correct.  In contrast, 

the expression of wavenumber shifts in terms of strains has the great advantage that the non-

linearity of wavenumber shift with high pressures emerges automatically and naturally not as 

a change in behaviour but simply as a consequence of the non-linearity of strains with 

pressure (Fig. 1).  

 

Thus, we see that a description of an experiment, and the Grünesien relationship, in terms of 

strain leads to a clear identification of symmetry-breaking and thus the applicability or 

otherwise of the phonon-mode Grüneisen tensors. And it unifies the physical description of 

the response of the Raman modes to both small stresses and large hydrostatic pressure. 

 

 

Values of the components of the Grüneisen tensors   
 

Having established that there is sufficient experimental evidence that the Grüneisen theory of 

solids can predict the hydrostatic evolution of the Raman spectra of quartz (my Fig. 1, Murri 
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et al. 2019), zircon (Stangarone et al. 2019) and rutile (Musiyachenko et al. 2021) up to 

about 4% compression, we can now address the question as to how to determine the values 

of the components of the phonon-mode Grüneisen tensors.  

 

Previous work (e.g. Tekippe et al. 1973; Briggs and Ramdas 1977) has used mechanical 

deformation, as Reynard and Zhong have done. This is a conceptually simple approach but 

has potential pitfalls. The most serious is that it is assumed that the stress applied to the load 

cell compressing the sample is applied completely to the sample (unless a friction correction 

is made), and that the sample is under a uniform homogeneous stress. The obvious problem 

is that, unless the sample is completely constrained in directions perpendicular to the load 

axis it will expand in the equatorial plane. If the stress and strain is homogeneous then this 

can be calculated from the elastic tensors of the crystal. However, an end-loaded sample will 

in general become barrel shaped; wider at the middle of the sample than at the ends due to 

friction in contact with the loaded pistons. Therefore, in order to interpret the measured 

Raman shifts from such an experiment it is necessary to either demonstrate that the stress 

and strain state is homogeneous across the complete sample, or to independently determine 

the strain or stress at the point of the Raman measurement (which could be done by 

simultaneous X-ray diffraction). Reynard and Zhong do not report such measurements, so 

the actual stress state of their samples could be different from that inferred from the pressure 

of the load cell. 

 

That may be one contribution to the difference in the Grüneisen parameters determined in 

the experiments of Reynard and Zhong and those by HF/DFT (Murri et al. 2019), and may 

also account for the failure of the Grünesien parameters of Reynard and Zhong to predict 

their own hydrostatic measurements of the 206 mode (Figure 1 above).  

 

 

Figure 2: Plot of measured changes 

in Raman shift under uniaxial stress 

along the c-axis from Reynard and 

Zhong. Dashed lines are the fits of 

Reynard and Zhong to their data. 

 

The solid lines are calculated from 

the published Grüneisen tensor 

components of Murri et al. (2019) 

and the strains calculated from the 

applied stress and the elastic 

compliance tensor of quartz at room 

T (Lakshtanov et al. 2007). Other 

published  measurements of the 

elastic tensor give very similar 

results. 
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Apart from this mode, there is general agreement in the prediction of the hydrostatic 

evolution of the 128 and 464 modes from both HF/DFT and the experiments of Reynard and 

Zhong (Figure 1). The agreement between the predictions of HF/DFT and the uniaxial stress 

measurements is poorer (Figure 2). This may be due inhomogeneities in the stress field in the 

sample during the experiments. But it may also indicate short-comings in the use of HF/DFT 

simulations, which is why determinations of the Grüneisen tensors by different methods is so 

important. Possible explanations for the predictions of HF/DFT being in error centre around 

the fact that the HF/DFT simulations are performed at 0 K (at the static limit), and the 

experiments are performed at 300K. Therefore, if there is a significant change in the 

dynamics of the quartz between 0 K and 300K, for example in the phonon-phonon 

interactions, then one would expect that the prediction of the Raman shifts at room 

temperature to be in error. However, then one would also expect that the predicted Raman 

shifts with pressure at room temperature (Figure 1) would be wrong, but they are actually 

correct. These discrepancies between mechanical experiments and predictions of HF/DFT 

can only be resolved by further careful evaluation and cross-comparison of both approaches. 

 

The other point of agreement between the experiments of Reynard and Zhong and HF/DFT is 

in the sensitivity of the three Raman modes of quartz to non-hydrostatic stress. This can be 

evaluated from the Grüneisen tensors of quartz (Murri et al. 2019) by calculating the angle in 

the 1- 3 strain space between the lines of predicted constant mode wavenumber (the isoshift 

lines of Murri et al., 2019), and the line of strains expected under hydrostatic stress. The 

HF/DFT-predicted isoshift line (Murri et al. 2019) of the 206 mode lies at 91o (i.e. almost 

perpendicular) to the line of hydrostatically-induced strains, whereas the isoshift lines of the 

128 and 464 modes are approximately 80 degrees from the hydrostatic line. The HF/DFT 

simulations therefore predict that the 206 mode is the least-sensitive to non-hydrostatic 

stresses, and this appears to be confirmed by the results of Reynard and Zhong. 

 

Summary 
 

It is clear that there is the possibility that the values of the components of the phonon-mode 

Grüneisen tensors determined by HF/DFT at 0 K are not exactly correct. They are however 

sufficiently correct that they reproduce the hydrostatic evolution of the Raman modes of quartz 

up to 2 GPa, the discrepancies being of the same order as the differences (which are 

unexplained by Reynard and Zhong) between the data of Reynard and Zhong and the previous 

determinations by Schmidt and Ziemann (2000) and Morana et al. (2020). The Grüneisen 

tensors also reproduce the expected inclusion pressures of synthetic inclusions from their 

measured Raman spectra (Bonazzi et al. 2019), and natural inclusions (e.g. Gilio et al. 2022), 

although I agree with Reynard and Zhong that some inclusions appear to have unreasonably 

high deviatoric stress calculated by this method. Whether this reflects experimental difficulties 

in measuring Raman spectra, the high correlation between the 1 and 3 strains determined 

from Raman shifts via the phonon-mode Grüneisen tensors, or actually problems with the 

values of the tensor components determined by HF/DFT, remains to be determined. 

 

Possible reasons for different values of the components of the phonon-mode Grüneisen 

tensors may lie either in short-comings of applying HF/DFT simulations to experiments at 

room temperature, or to short-comings in the deformation experiments of quartz. The 

reasons can only be determined through carefully documented experiments in which the 

stress or strain state of the sample at the point of Raman measurement is determined. Such 

experiments can only provide a test of the HF/DFT simulations if they are performed in 
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orientations and stress states that preserve the symmetry of the quartz crystal. Thus, the 

second uniaxial stress experiment of Reynard and Zhong with the stress applied 

perpendicular to the c-axis broke the crystal symmetry of quartz (as evidenced by the 

splitting of the mode into two modes, not the LO and TO components of one mode), and 

cannot be used for comparison to the predictions from the HF/DFT simulations of trigonal 

quartz. Further experiments are clearly required before any conclusions can be drawn about 

the correctness or otherwise of the component values of Grüneisen tensors calculated by 

HF/DFT. In any case, whether or not the values are correct, no evidence has yet emerged to 

disprove the general concept of Grüneisen that the phonon-mode wavenumbers scale with 

the strains applied to the crystal.  
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