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Motivation

The manuscript by Reynard and Zhong describes measurements of the changes in the
frequencies of Raman lines of quartz under hydrostatic pressure and also non-hydrostatic
stress in two different experiments. These measurements are potentially valuable for the
interpretation of the Raman shifts of quartz inclusions trapped inside other mineral hosts in
terms of the stress state of the inclusion, from which the entrapment conditions of the inclusion
can be constrained (e.g. Kohn 2014; Angel et al. 2017; Zhong et al. 2020; Gilio et al. 2021).
It has previously been proposed that the Raman shifts of minerals under deviatoric stress can
be interpreted in terms of the phonon-mode Griineisen tensors (e.g. Angel et al. 2019), and
that the values of the components of the tensors can be determined by conducting ab initio
Hartree-Fock/ Density Functional Theory (HF/DFT) simulations of crystal structures under
different stress/strain conditions (Murri et al. 2019; Stangarone et al. 2019; Musiyachenko et
al. 2021).

Reynard and Zhong conclude from their work that the values of the components of the
phonon-mode Griineisen tensors of quartz obtained from HF/DFT are incorrect and further
conclude that the use of these tensors to describe the shift in Raman frequencies under stress
is not appropriate. In this comment | will clearly separate and discuss two distinct issues:

1) Whether or not the phonon-mode Griineisen tensor is the correct physical description of
the change in Raman frequencies of a crystalline solid under deviatoric stress, and what its
known limitations are.

2) Whether or not the values of the components of the phonon-mode Griineisen tensors
determined by HF/DFT or by experiment agree, and if these values are correct.

Phonon-mode Griineisen tensors

Phonon-mode Griineisen tensors are simply the anisotropic generalisation of the concept of
phonon-mode Griineisen parameters which are well-established as the appropriate
description of the relationship between the change in the wavenumbers of phonon modes
with strain. Each phonon mode m with a wavenumber w™ is associated with a volume
Gruneisen parameter yy* defined as:
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Thus, the values of the volume phonon-mode Griineisen parameters can be determined from
an experiment in which wavenumbers of phonons are measured, for example by Raman
spectroscopy, while the volume of the crystal is changed, for example in a high-pressure
experiment or an experiment in which the temperature of the crystal is changed.

The anisotropic extension of equation (1) requires that instead of considering the volume
strain ‘f/—V, the change in the shape of a crystal must be considered. This is described by the

strain tensor, &;;, which is a symmetric second rank tensor (Nye 1957). Because the

wavenumber w™ of a phonon mode is a scalar, the volume phonon-mode Griineisen
parameter must be replaced in (1) by a second-rank symmetric tensor, so that:

—dw™ m
ol =YE (2)
0

The “:” in Equation (2) indicates a double-scalar product between the two tensors, which can
be written out in terms of their components as:
—dw™
o Yi1€11 + V22822 + V33€33 + +V73823 + V32632 + V{3613 3)
0
+¥31€31 + V12612 + ¥V21€21
Both tensors are symmetric (Nye 1957; Angel et al. 2019) and therefore ¢;; = ¢;; and y;}' =
yji* for each pair of non-diagonal elements, so:

—dw™
o = Y1111 + V22€22 + V33€33 + 2Y753623 + 2¥{3613 + 2¥12612 4)
We can reduce these tensors to a vector form in which the double-scalar product in Equation
(2) becomes a scalar product of two vectors that represent the y™ and the & tensors. Under
the Voigt convention, the normal strain components are equal in magnitude to the diagonal
components of the tensor, e.g. &; = &1, While the shear strains &,, €5, &¢ are one-half of the
values of the corresponding tensor components ¢,5, €3, €1,. Therefore, if we set y;*, y&* and
ve® equal to the values of the corresponding tensor components y,3, Y13, Y12, We obtain an
expression exactly equivalent to (4):

—dw™
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The introduction of a factor of %% into the strain vector components and not into the
Grineisen vector components avoids factors of 2 appearing for the terms with subscripts i =
4,5,6 in the matrix version (5) of the tensor equation (2).

Because the phonon-mode Griineisen tensors are properties of the crystal they are subject to
the symmetry of the crystal. For this reason, the trigonal symmetry of quartz means that

yit = yFtand yit = yit = y&* for each mode, so that each mode in quartz has only two
unique non-zero components of its phonon-mode Grineisen tensor, y{* # y3*. and thus
equation (5) is reduced for quartz to:



—dw™

mo y1' (&1 + &) +v3'e; (6)
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Both the validation of this description for how the Raman frequencies of quartz change with
stress or temperature, and the values of the components y{™* and y3"* for quartz can only be
determined by experimental measurements or ab-initio simulations of quartz.

Is the Gruneisen approach correct in principle?

Both the isotropic (equation 1) and the anisotropic version (equations 3-5 in general, and 6
for quartz) predict that the changes in Raman mode shifts are linear with strain. For small

strains, &; + &, + &5 = 7V so the isotropic and anisotropic approaches are consistent in this

prediction. A further implication of this approach is that the phonon frequencies are a
function of the strains of the crystal alone, and not of temperature or pressure. Therefore, if
the Grineisen approach is correct, a plot of any Raman frequency against the volume should
lie on a single trend that is linear in volume, and this is observed for many modes of many
crystals, including quartz (e.g. Murri et al. 2018).

50| Quartz ‘ E ' | | Figure 1. Symbols show the measured
K | | changes in Raman shift under hydrostatic

- PR e pressure from the experimental data of
g | Pepecdds —— Morana et al. (2020) and Reynard and
! | =Reynad Genesen predicton | Zhong. The lines are the predicted shifts

[2]
o

calculated from the measured unit-cell
parameters of quartz under pressure
(Scheidl et al. 2016) and the published
Grineisen tensor components of Murri et al.
(2019) as solid lines and Reynard and
Zhong (their Table 1) as dashed lines.

o
o

Raman shift change: cm™
[ B
o o

Note that the two sets of experimental data
are very similar, as are the predicted shifts
for the 128 and 464 lines which agree with
the measured data up to ca. 2 GPa, a
pressure greater than that found in quartz
inclusions. The prediction of the 206 line
Pressure: GPa from Reynard and Zhong does not describe
the measured pressure evolution of this
mode.

N
o

-
o

For small stresses, within the linear elastic regime where the strains are related to the applied
stresses oj (again in VVoigt notation) by the elastic compliance matrix sij as &i = sjj.cj, the
Raman shifts are predicted to change linearly with applied stress, as shown by Reynard and
Zhong (their Fig 3c) and others (e.g. Tekippe et al. 1973; Briggs and Ramdas 1977; Barron
et al. 1982). At high pressures, such as achieved in a DAC, the strains are no longer linearly
proportional to the applied stress and instead the stress-strain relationship is described by
non-linear equations of state. Thus, the Griineisen approach implicitly predicts that Raman
shifts will change non-linearly with pressure because of the non-linearity of strains with
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pressure, even if the Griineisen parameters or tensor components remain invariant with
pressure. This is what is commonly observed in measurements of Raman shifts of crystals
under hydrostatic pressure in diamond-anvil cells, including those of Reynard and Zhong

(Fig. 1).

Further, for quartz and zircon, the mode Griineisen parameters determined from HF/DFT
simulations predict, in combination with the measured strains as a function of pressure, the
experimentally measured changes in Raman frequencies with pressure (see my Fig. 1 for
quartz). This agreement extends to volumes strains of ca. 4 % in both quartz (Murri et al.
2019) and zircon (Stangarone et al. 2019), corresponding to pressures of, respectively, 2 and
8 GPa. The mode Griineisen parameters calculated for the 128 and 464 modes by Reynard
and Zhong also show the same agreement (Fig. 1).

This brief discussion shows that there is substantial experimental evidence to indicate that
the principles behind the Griineisen approach are valid.

Potential limitations of the Griineisen approach

We now consider possible limitations to the extent of its applicability, because if Griineisen
theory is found to be a valid description of the behaviour of minerals in the range of stresses
and strains found in natural inclusions, as Figure 1 suggests, then it will be a useful tool in

geology.

The first potential limitation is that it assumes a linear relationship between the phonon
frequencies and the strains of the crystal. This may break down for several reasons. The first
is already illustrated by Figure 1, that shows for pressures above ca. 2 GPa for quartz, the
Raman shifts diverge from the prediction of the phonon-mode Griineisen tensors. As noted
above, this corresponds to about 4% in volume compression, and about 1.3% in linear
strains. The same limiting strain value is found for zircon (Stangarone et al. 2019). This is
not a breakdown of the Griineisen approach, but simply requires an extension to non-linear
relationships. This would be entirely analogous to the fact that the linear relationship
between stress and strain breaks down at quite modest stresses (pressures) and the
relationship must be described by non-linear EoS. But this is not a limitation to the method
for interpreting Raman spectra of natural quartz inclusions as they exhibit pressures of less
than 1.5 GPa.

There is also evidence from HF/DFT simulations (Murri et al. 2019) that at large strains
some modes, and especially those involved in soft mode phase transitions such as the o—3
transition in quartz, become non-linear in strain. Leaving aside other considerations, the
physical properties of a mineral such as quartz change rapidly as the a—f transition is
approached; for example the bulk modulus of quartz drops to zero at the transition
(Lakshtanov et al. 2007) and other properties such as the heat capacity and thermal
expansion coefficient diverge towards infinite values (e.g. Carpenter et al. 1998; Murri and
Prencipe 2021). Given that the thermal expansion and heat capacity depend on the phonon
frequencies, it would be entirely expected that the relationship between those frequencies
and the cell parameters and strain may also become non-linear near to the phase transition.

The phonon-mode wavenumbers depend upon the interactions between the atoms within the
crystal, which depend in part on the distances between them. One can associate the changes
in phonon-mode wavenumbers with changes in the inter-atomic distances. For simple
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structures, such as the rock salt structure in which all of the atoms have fixed coordinates
within the unit cells, changes in inter-atomic distances are determined by the change in the
unit-cell parameters alone. Therefore, there is good reason to expect a direct linear
relationship between phonon-mode wavenumbers and unit-cell strains. However, in more
complex structures such as quartz, the atom coordinates within the unit cell are independent
variables. Therefore, there is no a-priori physical reason why the strains (fractional length
changes) of inter-atomic distances or bonds should scale with the unit cell strains; indeed
certain structural elements such as SiO4 tetrahedra have much higher bulk moduli than the
mineral structures that they form. Experimental determinations of bond lengths by
diffraction methods is challenging because of both the small changes involved and the role
of correlated thermal motion that prevents diffraction returning true local bond lengths (e.g.
Busing and Levy 1964; Downs et al. 1992) especially in open framework structures such as
quartz (Kihara 1990; 2001; Kimizuka et al. 2003; Murri et al. 2019). On the other hand,
HF/DFT simulations do suggest that at low temperatures away from the a—f transition, that
the real inter-atomic distances scale approximately linearly with the unit-cell strains (Murri
et al. 2019). The same was found for zircon (Stangarone et al. 2019). Therefore, the internal
degrees of freedom in mineral structures do not appear to create a significant limitation to
the Griineisen approach.

The Gruneisen relationship in terms of stress

For linear elasticity the Griineisen relationships, both isotropic and anisotropic, can be
written directly in terms of stress, by using the linear relationship between stress and strain,
as Reynard and Zhong do. This is not wrong, but has two major disadvantages:

First: that it is not immediately obvious from the components of the stress tensor whether or
not the symmetry of the crystal has been broken. This is important, because when the
symmetry of the crystal is broken by the stress, then the forces and distances between the
atoms are changed and the symmetries and frequencies of the phonon modes therefore
change. Since the phonon-mode Griineisen tensor is a property tensor and is therefore
subject to the symmetry of the crystal (Eqgn. 6) it only describes the changes in phonon-mode
wavenumbers when the symmetry of the crystal is preserved. Therefore, a phonon-mode
Grineisen tensor of quartz calculated for trigonal symmetry is not expected to predict the
wavenumber shifts of a quartz crystal whose symmetry has been broken by applied stress
(Murri et al. 2022), and this is a problem in the analysis of Reynard and Zhong. They
describe two non-hydrostatic stress experiments, one with stress applied along the c-axis of
quartz, and the second with the stress applied perpendicular to the c-axis. In the first case,
the only non-zero component of the stress vector is 3. For the second case Reynard and
Zhong provide insufficient information about crystal orientations and the Cartesian axis
convention used to determine the values of o1 and o2. What is however certain is that in this
experiment the non-zero components of the stress field are some combination of o1 and o>,
but they are not required to be equal (note this contradicts the statement made on lines 154-
155 of Reynard and Zhong). In neither case is it obvious what is the symmetry of the quartz
crystal under these stresses. If we convert these stresses into strains, then the answer is
obvious. The first stress field induces strains 1= €2 # €3 and the symmetry is preserved. The
second, if the stress is just 61 # 0, o2 = o3 =0, will produce a compressive strain along the
Cartesian X axis, and expansion along the Cartesian Y and Z axes. Therefore, if we assume
that the Cartesian X-axis is aligned along the crystallographic a-axis, the a-axis will be



shortened, while the crystallographic b and ¢ parameters will be expanded. Unequal strains
along the crystallographic a- and b-axes accompanied necessarily by a shear strain thus will
result from all uniaxial stresses applied to quartz perpendicular to the c-axis. Therefore, the
symmetry will be broken and the use of the trigonal phonon-mode Griineisen tensors is not
valid. Further, such a symmetry reduction does not result in LO-TO splitting of the E modes
as claimed by Reynard and Zhong, but the generation of a pair of modes with different
wavenumbers from the doubly-degenerate E modes of the parent trigonal structure. If the
strained structure has monoclinic symmetry (as would occur for stress applied exactly along
the crystallographic a-axis) the parent E mode splits into one A and one B mode. For other
stress directions, the strained structure has triclinic symmetry and the E modes of the parent
structure split into a pair of A modes (Tekippe et al. 1973; Murri et al. 2022). In both cases,
each of these modes has an LO and TO component.

Note also that the LO-TO splitting in general of the E modes in quartz does not require the
application of stress. The LO and TO components can be easily resolved in a well oriented
crystal under certain scattering geometries, although the scattering geometry used by
Reynard and Zhong is not specified. However, the E mode near 128 cm™ is the only one for
which the LO-TO splitting cannot be resolved in unstressed quartz. Therefore, the evidence
of splitting of this Raman peak into two different peaks requires symmetry breaking; the
splitting of the 128 E mode reported by Reynard and Zhong is therefore not the TO-LO
splitting of one parent E mode, but two different modes under the broken symmetry, neither
of which can be expected to have properties predicted by the trigonal properties and
Gruneisen tensors of quartz.

The second problem in using the applied stress as a basis for predicting changes in Raman or
other phonon frequencies, as illustrated by the text of Reynard and Zhong, is that it is linear
in the stresses (their equation 4, and equation 7 here). As | have stated above, apart from
identifying symmetry breaking, under linear elasticity the relationship between mode
wavenumbers written in terms of stress is entirely equivalent to that written in terms of
strain. However, the changes in wavenumbers with large stress, as illustrated by the
experiments under hydrostatic pressure, are non-linear (Fig. 1). If the wavenumber shifts are
expressed in terms of pressure, then this requires two separate analyses for small stresses and
large stresses, and the cross-over point from one approach to the other is not defined; indeed
such an approach suggests that the behaviour of solids under small single stresses and under
significant hydrostatic pressure is fundamentally different. This is not correct. In contrast,
the expression of wavenumber shifts in terms of strains has the great advantage that the non-
linearity of wavenumber shift with high pressures emerges automatically and naturally not as
a change in behaviour but simply as a consequence of the non-linearity of strains with
pressure (Fig. 1).

Thus, we see that a description of an experiment, and the Grinesien relationship, in terms of
strain leads to a clear identification of symmetry-breaking and thus the applicability or
otherwise of the phonon-mode Grineisen tensors. And it unifies the physical description of
the response of the Raman modes to both small stresses and large hydrostatic pressure.

Values of the components of the Griineisen tensors

Having established that there is sufficient experimental evidence that the Griineisen theory of
solids can predict the hydrostatic evolution of the Raman spectra of quartz (my Fig. 1, Murri



et al. 2019), zircon (Stangarone et al. 2019) and rutile (Musiyachenko et al. 2021) up to
about 4% compression, we can now address the question as to how to determine the values
of the components of the phonon-mode Griineisen tensors.

Previous work (e.g. Tekippe et al. 1973; Briggs and Ramdas 1977) has used mechanical
deformation, as Reynard and Zhong have done. This is a conceptually simple approach but
has potential pitfalls. The most serious is that it is assumed that the stress applied to the load
cell compressing the sample is applied completely to the sample (unless a friction correction
is made), and that the sample is under a uniform homogeneous stress. The obvious problem
is that, unless the sample is completely constrained in directions perpendicular to the load
axis it will expand in the equatorial plane. If the stress and strain is homogeneous then this
can be calculated from the elastic tensors of the crystal. However, an end-loaded sample will
in general become barrel shaped; wider at the middle of the sample than at the ends due to
friction in contact with the loaded pistons. Therefore, in order to interpret the measured
Raman shifts from such an experiment it is necessary to either demonstrate that the stress
and strain state is homogeneous across the complete sample, or to independently determine
the strain or stress at the point of the Raman measurement (which could be done by
simultaneous X-ray diffraction). Reynard and Zhong do not report such measurements, so
the actual stress state of their samples could be different from that inferred from the pressure
of the load cell.

That may be one contribution to the difference in the Grineisen parameters determined in
the experiments of Reynard and Zhong and those by HF/DFT (Murri et al. 2019), and may
also account for the failure of the Griinesien parameters of Reynard and Zhong to predict
their own hydrostatic measurements of the 206 mode (Figure 1 above).
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Apart from this mode, there is general agreement in the prediction of the hydrostatic
evolution of the 128 and 464 modes from both HF/DFT and the experiments of Reynard and
Zhong (Figure 1). The agreement between the predictions of HF/DFT and the uniaxial stress
measurements is poorer (Figure 2). This may be due inhomogeneities in the stress field in the
sample during the experiments. But it may also indicate short-comings in the use of HF/DFT
simulations, which is why determinations of the Griineisen tensors by different methods is so
important. Possible explanations for the predictions of HF/DFT being in error centre around
the fact that the HF/DFT simulations are performed at 0 K (at the static limit), and the
experiments are performed at 300K. Therefore, if there is a significant change in the
dynamics of the quartz between 0 K and 300K, for example in the phonon-phonon
interactions, then one would expect that the prediction of the Raman shifts at room
temperature to be in error. However, then one would also expect that the predicted Raman
shifts with pressure at room temperature (Figure 1) would be wrong, but they are actually
correct. These discrepancies between mechanical experiments and predictions of HF/DFT
can only be resolved by further careful evaluation and cross-comparison of both approaches.

The other point of agreement between the experiments of Reynard and Zhong and HF/DFT is
in the sensitivity of the three Raman modes of quartz to non-hydrostatic stress. This can be
evaluated from the Griineisen tensors of quartz (Murri et al. 2019) by calculating the angle in
the €1- €3 strain space between the lines of predicted constant mode wavenumber (the isoshift
lines of Murri et al., 2019), and the line of strains expected under hydrostatic stress. The
HF/DFT-predicted isoshift line (Murri et al. 2019) of the 206 mode lies at 91° (i.e. almost
perpendicular) to the line of hydrostatically-induced strains, whereas the isoshift lines of the
128 and 464 modes are approximately 80 degrees from the hydrostatic line. The HF/DFT
simulations therefore predict that the 206 mode is the least-sensitive to non-hydrostatic
stresses, and this appears to be confirmed by the results of Reynard and Zhong.

Summary

It is clear that there is the possibility that the values of the components of the phonon-mode
Gruneisen tensors determined by HF/DFT at 0 K are not exactly correct. They are however
sufficiently correct that they reproduce the hydrostatic evolution of the Raman modes of quartz
up to 2 GPa, the discrepancies being of the same order as the differences (which are
unexplained by Reynard and Zhong) between the data of Reynard and Zhong and the previous
determinations by Schmidt and Ziemann (2000) and Morana et al. (2020). The Griineisen
tensors also reproduce the expected inclusion pressures of synthetic inclusions from their
measured Raman spectra (Bonazzi et al. 2019), and natural inclusions (e.g. Gilio et al. 2022),
although I agree with Reynard and Zhong that some inclusions appear to have unreasonably
high deviatoric stress calculated by this method. Whether this reflects experimental difficulties
in measuring Raman spectra, the high correlation between the €1 and €3 strains determined
from Raman shifts via the phonon-mode Griineisen tensors, or actually problems with the
values of the tensor components determined by HF/DFT, remains to be determined.

Possible reasons for different values of the components of the phonon-mode Griineisen
tensors may lie either in short-comings of applying HF/DFT simulations to experiments at
room temperature, or to short-comings in the deformation experiments of quartz. The
reasons can only be determined through carefully documented experiments in which the
stress or strain state of the sample at the point of Raman measurement is determined. Such
experiments can only provide a test of the HF/DFT simulations if they are performed in
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orientations and stress states that preserve the symmetry of the quartz crystal. Thus, the
second uniaxial stress experiment of Reynard and Zhong with the stress applied
perpendicular to the c-axis broke the crystal symmetry of quartz (as evidenced by the
splitting of the mode into two modes, not the LO and TO components of one mode), and
cannot be used for comparison to the predictions from the HF/DFT simulations of trigonal
quartz. Further experiments are clearly required before any conclusions can be drawn about
the correctness or otherwise of the component values of Griineisen tensors calculated by
HF/DFT. In any case, whether or not the values are correct, no evidence has yet emerged to
disprove the general concept of Griineisen that the phonon-mode wavenumbers scale with
the strains applied to the crystal.
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