
We thank the referee for the detailed and insightful comments, which we have addressed as 
noted in bold in the following. Comments are addressed in the text as highlighted in yellow. 

Review of Reynard and Zhong: “Quartz under stress: Raman calibration and applications to 
geobarometry of metamorphic inclusions” 

  

Dear Editor, 

I have read through this manuscript in detail. It presents a new experimental calibration of the three 
major Raman peaks of quartz with hydrostatic pressure and uniaxial differential stress. I believe this 
is a valuable contribute to the discussion on the variations of Raman shifts of quartz under an applied 
stress and strain. In this respect the experiments reported in this manuscript bring a useful contribute 
to the development of a methodology to assess the stress states of inclusions in their host minerals 
for mechanical thermobarometry applications. The possibility to use the differential stress of several 
inclusions in the same host to obtain independent constraints on the temperature of entrapment, 
even if suggested already in previous literature, is appealing. For this reason, a robust method to 
quantify the differential stress of inclusions with Raman spectroscopy would be extremely important 
in the field of petrology. However, I have some concerns about this manuscript which should be 
addressed by the authors. I believe that this work is suitable for publication in Solid Earth, provided 
that the following comments are addressed. 

I introduce my general comments here, and further details are presented in the specific comments 
below. 

General comments 

The calibrations presented in this manuscript are based on the results from Raman experiments of 
quartz under hydrostatic pressure and uniaxial stresses with different orientations. In one of these 
experiments, the authors observe a separation of the doubly degenerate (E) mode (near 128cm-1) 
when the uniaxial stress is applied along the a-axis of the quartz unit-cell. This behavior is identified 
by the authors as the LO-TO splitting of  the E mode, and they conclude that their results are directly 
applicable to quartz crystals with trigonal symmetry. However, their interpretation does not agree 
with the existing Raman theory and the requirements of the symmetry analysis, as shown also by 
previous experiments and clearly summarized in its formal aspects by Tekippe et al. 
(1973).  Depending on the orientation of the stress with respect to the unstrained trigonal unit-cell, 
this configuration leads to a reduction of symmetry from trigonal to monoclinic or triclinic. Therefore, 
the splitting observed in the experiments of Reynard and Zhong is not the LO-TO splitting of the E 
mode, but rather the splitting of the E mode into totally symmetric (A) and antisymmetric (B) non-
degenerate modes (monoclinic symmetry), or into a pair of A modes (triclinic symmetry). Indeed, E 
modes in monoclinic and triclinic crystals are not allowed by symmetry. This is a crucial point, since 
the authors refer to the previous literature (Tekippe et al., 1973; Murri et al., 2022) to support the 
argument that their experiments apply directly to trigonal quartz inclusions without symmetry 
breaking, while those works conclude the opposite. Since it is possible that quartz inclusions in 
synthetic and natural samples have symmetry lower than trigonal because of their stress state, the 
results of calibrations with symmetry breakings are still useful and should be considered for the 
characterization of the stress states of inclusions in rocks.  For this reason, I recommend that the 
discussion is revised in order to make it consistent with the widely known physical theory, and to 
discuss the implications of the symmetry breaking. I elaborate further on this point in the specific 
comments below. 

We agree with the referee that the phrasing "TO-LO" splitting is incorrect because the splitting 
of the two components of the 128 E mode is due to symmetry reduction for compression at 
non-zero angle to the c-axis. We have replaced it by the expressions "splitting of the 128 mode 
components" or "splitting of the 128 peak" throughout the text. We respond to other specific 
comments on symmetry reduction below. 



Moreover, as a potential user of the calibrations proposed in this manuscript, I was confused to 
realize that two different calibrations are proposed to estimate the same quantity (i.e. the differential 
stress in an inclusion), but often the values obtained from them do not agree. The disagreement 
arises from an apparent anti-correlation of the two proposed calibrations, the reasons for which are 
unfortunately not discussed in the manuscript. The averaging of the results of the two calibrations 
over many inclusions is proposed as a procedure to obtain the estimate of the residual differential 
stress of the sample, but even after this averaging the results often do not agree within uncertainties. 
I believe that, in order to improve the reception of the proposed approach by the scientific 
community, it would be important to expand the discussion on the reason why several averaging 
steps of the results of two calibrations that appear anti-correlated make this a robust method to 
estimate the residual differential stress.  I elaborate more on this point in the specific comments 
below. 

For quartz inclusions in garnet, there are two independent variables, hydrostatic pressure P 
and differential stress σ , and we have two independent equations to solve it.  P is determined 
from the shift of the 206 line that is independent of σ  and two independent values of σ  are 
determined from the shifts of the 128 and 464 lines. If other weaker lines were to be calibrated, 
we could define one independent estimate of σ  for each of them. Anticorrelation arises from 
uncertainties on P from the 206 line position and their propagation into the equations. Since 
this was not clear enough, we have expanded paragraphs to explain it as explained below, and 
added a supplementary figure to explain the error propagation. 

 

Specific comments 

• Lines 52-53. In Fig. 1 the Ne (and not He) and Hg peaks are marked with different wavenumbers to 
what reported in the text. 

• The typo on Ne is now corrected. The absolute positions of the sharp emission bands were 
given in the text. The "zero" used to define the Raman shift at absolute position is 18786.05 
cm-1 corresponding to the 532.31 nm wavelength of the laser. The difference between this 
value and the emission line position gives their apparent shift on Fig. 1 of 269.46 and 473.6 
cm-1. Small shifts with respect to this value are due to intrinsic uncertainties on the zero 
position. Explanation is now given in line 54. 

• Lines 73-76. Since the details of the experiments under uniaxial stress affect the resulting 
calibration, I suggest that the authors add here more details. I suggest that they describe here the 
dimensions of the sample and the procedure they used to orient the crystals. Reynard and Zhong 
mention that they oriented the sample optically and refer to Tekippe et al. (1973), who however 
oriented their crystal with X-rays. Determining the precise orientation of the crystal is fundamental 
for the correct estimate of the effect of stress, also in the light of the symmetry breaking discussed 
in my comment above. A slight deviation in the orientation (i.e. a stress not exactly oriented along 
the a-axis) can lead to a symmetry reduction to triclinic rather than monoclinic. The authors should 
give more details on the procedure they used and how the estimated accuracy of 3° can be 
achieved with optical observations. If possible, it would also be useful to add a figure that shows 
the experimental setup.   

• Faces of parallelepipeds were first cut perpendicular to the c-axis of a large single-crystal. 
Orientation of basal cuts was confirmed under the polarizing microscope using conoscopic 
figures as described in Briggs and Ramdas (1977). Orientation was also checked by Raman 
spectroscopy on unused rods. The c-axis orientation was within 1°, and that of the 
perpendicular to the a-axis within 2° (in the the basal plane, rods were cut parallel and 
perpendicular to hexagonal faces of the crystal, i. e. either parallel to a or perpendicular to 
it). This does not affect the measured shifts since the same shifts and splittings of E mode 
components are expected along those two directions (Tekippe et al., 1973). Details were 
added lines 78-86, and figures of Raman orientation are given in supplementary material 
(Fig. S1) shown below.  



 
 
Figure S1. Orientation of crystal determined by relative Raman intensities. Parallel and 
perpendicular cut are defined with respect to the c-axis. Orientation of the c-axis (top) and the 
perpendicular to the a-axis (bottom) is within 2° of the normal to the compression face (vertical 
direction). 
 

• Lines 80-87. I suggest that here a few more details are given regarding the elastic properties they 
used to calculate the strains of the quartz inclusions. They mention the EoS, but it is not clear if 
they used axial EoS (e.g. Angel et al., 2021) or some extrapolation of the elastic tensors to high 
pressure and temperature. They should also mention the source of the elastic properties of 
almandine that were used in the calculation, and if they are assumed to be constant with P and T 
or not. 

• Details and references were added in section 3 lines 91-94 and 96-99. 

• Line 116. The authors should precisely report the orientation of the applied stress with respect to 
the quartz crystal. Because of the symmetry of quartz, the a-b crystallographic plane is not 
elastically isotropic (Nye, 1985). Assuming that the Cartesian x-axis is aligned to the a-axis of the 
unit-cell, and the Cartesian z to c, a uniaxial stress applied along x or along a direction orthogonal 
to it, would reduce the symmetry to monoclinic. On the other hand, if the non-zero component of 
the uniaxial stress is applied in any other direction of the Cartesian x-y plane, the symmetry would 
be reduced to triclinic rather than monoclinic. Therefore, it is not enough to state that the stress is 
applied normal to the crystallographic c-axis, and the authors should state explicitly if the a-axis is 
parallel to the global Cartesian x and if they oriented the stress exactly along the a-axis. 

• As stated above, there is a deviation of the c- or a-axis of <2°. Perpendicular to c-axis, the 
symmetry reduction to monoclinic cannot be avoided in the uniaxial compression setup 
used here and in earlier studies. With the deviation of crystallographic axes from face 
normal, the triclinic distortion is negligible. This is explained in lines 133-136. 

• Line 117. Before discussing the evolution of Raman shift with the applied stress, I believe it would 
be worthwhile to discuss if any barreling effect does take place in the sample due to the friction 
with the compression cell, and if the authors assessed the homogeneity of the stress in the 
sample. The potential inhomogeneity of stress in the sample would require a correction to 
determine the exact value of stress at the point of the Raman measurements, given the stress 
applied to the crystal rod. 

• Raman shift were measured at half length of the crystal at a depth of about 200 
micrometers. Barreling could indeed be a concern, although it would remain limited in 



quartz with a maximal stress of 0.6 GPa. If we multiply this stress tensor (0, 0, 0.6) by the 
compliance tensor of quartz, we get 0.0007 lateral strain. This means the area correction is 
0.0007^2, which is 5e-7 or ~300 Pa. Tekippe et al (1973) and Briggs and Ramdas (1979) do 
not mention issues with barreling for aspect ratio of ~3. Barreling should have more effect 
on short crystals than on long ones. This is not the case because we have measured the 
Raman shift using samples with different aspect ratios of 2.5 and 4 perpendicular to the c-
axis, and 1 and 4 along the c-axis, and we obtained similar results. We added those details 
in lines 140-141 and crystal size data in the supplementary table. 

• Lines 126-132: as introduced in the general comments above, I have serious concerns regarding 
the interpretation of the splitting of the doubly degenerate (E) mode (near 128cm-1) under uniaxial 
stress applied along the a-axis as a LO-TO splitting. The symmetry of a crystal under uniaxial 
compression is determined by the symmetry elements common to both the unstrained crystal and 
the strain state. The reduction of the symmetry of the crystal point-group as a result of an applied 
external field is known in the literature as the morphic effect (Anastassakis, 1980; Gregora, 2013). 
Assuming that the orientation of the stress in this experiment is exactly along the a-axis (which in 
turn is parallel to the Cartesian x) of the unstrained trigonal unit-cell of quartz, this configuration 
leads to a reduction of symmetry from trigonal to monoclinic (see table II of Tekippe et al., 1973). 
Therefore, in this configuration the E mode, belonging to the parent trigonal symmetry, splits into a 
totally symmetric (A) and antisymmetric (B) non-degenerate mode in the new stress-induced 
monoclinic symmetry, as required by the theory and already shown in previous experiments (Fig. 
5, table II and discussion at page 813 in Tekippe et al., 1973). This should not be confused with 
the LO-TO splitting of the E mode, which occurs in non-centrosymmetric crystals (even 
unstressed) because of the long-range polarization fields (electro-optic effect; Gregora, 2013) and 
it is typically unresolved for the 128cm-1 line (Briggs & Ramdas, 1977). A similar behavior was also 
confirmed by the first principle calculations of Murri et al. (2022) for a stress configuration which 
leads to a symmetry reduction from trigonal to triclinic. They showed that each E mode of an 
unstressed trigonal quartz, splits into two A modes because of the applied strain/stress that 
induces a symmetry breaking, and both of the A modes in turn exhibit a LO-TO splitting. 
Therefore, the separation of the 128cm-1 peak observed by Reynard and Zhong with a uniaxial 
stress parallel to the a-b plane of quartz is actually the evolution of the E mode into an A and B 
modes (if the uniaxial stress is applied along the a-axis or orthogonal to it, leading to a monoclinic 
symmetry) or into two A modes (if the uniaxial stress is applied along any other direction in the a-
b plane and the final symmetry is triclinic). In order to correctly interpret which of the situations 
takes place in these experiments (i.e. symmetry reduction to monoclinic or triclinic), Reynard and 
Zhong should clearly state the orientation of the Cartesian axes with respect to the 
crystallographic axes of the quartz sample, and the orientation of the stress in the Cartesian 
reference system (see also my previous comment). Moreover, the authors use the DFT calculations 
of Murri et al. (2022) to support that the results of this study are applicable to quartz inclusions 
with trigonal symmetry (lines 130-131). However, the conclusions of Murri et al. (2022) say the 
opposite. They state that when the splitting between two A(LO-TO) modes in the stress-induced 
triclinic symmetry (originated from one E(TO-LO) mode in the parent trigonal symmetry) becomes 
detectable, the use of the inclusion is not recommended for elastic thermobarometry due to the 
symmetry breaking. Therefore Reynard and Zhong should correct the wrong identification of this 
behavior as a LO-TO splitting of the E mode throughout this manuscript, in table 1 and in the 
figures. They should also not use the results from first principle calculations to support that the 
effect of symmetry reduction in their experiments is small and that their results are directly 
applicable to trigonal crystals. Since it is possible that quartz inclusions in synthetic and natural 
samples have symmetry less than trigonal because of their stress state, the results of calibrations 
with symmetry breakings still provide useful information for the characterization of the stress 
states of inclusions, and in my opinion the discussion in the manuscript should head towards this 
direction. 

• As stated above, we agree with the referee and the incorrect use of TO-LO splitting for 
symmetry-induced splitting was corrected throughout the text. In the reference Murri et al. 
(2022), it is stated in their abstract "These HF/DFT simulations show that the changes in the 
positions of the Raman modes produced by strains that are expected for symmetry broken quartz 
inclusions in zircon are generally similar to those that would be seen if the quartz inclusions 



remained truly trigonal in symmetry.", which we interpret as symmetry breaking being of 
second order importance. Citation is now placed in the discussion of natural inclusions (line 
297). An essential point is that the sum of individual stress dependences obtained here, even 
in symmetry breaking geometry, are similar to the hydrostatic shift at ambient pressure, 
showing that the effect of symmetry breaking, if any, is of second order. A paragraph was 
modified in lines 147-154 to clarify this point.  

• Lines 135-142. Since the authors compare their experimental results at hydrostatic conditions with 
the previous literature, they should also compare them with the hydrostatic results of Morana et al. 
(2020). 

• Reference to Morana et al. (2020) was already given in line 111 along with Hemley 1987, 
where we explained that data above 2 GPa yielded too low pressure dependences when 
compared with the present calibration. We have expanded a bit this paragraph (lines 125-
127) to explain this source of uncertainty and how we remedy it using small pressure steps 
in the 2 GPa pressure range. 

• Line 172. This sentence seems to say that DFT calculations cannot be used as a basis to calculate 
the LO-TO splitting. Actually DFT calculations can be used to calculate the LO and TO 
components and therefore their splitting (see for example Murri et al., 2019). However, as 
discussed in previous comments, the experiments under uniaxial stress in the a-b plane presented 
by Reynard and Zhong lead to a symmetry reduction to monoclinic (or triclinic) which is different to 
the DFT results reported in Murri et al. (2019) where no symmetry breaking occurred and the 
trigonal symmetry was preserved in all of the simulations. This might potentially contribute to part 
of the discrepancy between the results presented here and the Grueneisen tensor of Murri et al., 
(2019). 

• We thank the referee for pointing out this mistake of calling it LO-TO splitting and clarifying 
what was calculated by Murri et al. (2019). We agree that the symmetry breaking may have a 
second order contribution to the discrepancy as discussed above (line 152-154). We also 
emphasize that non-linear variations of Grüneisen parameters also contribute to 
discrepancies between fits to first-principles calculation and experiments (lines 170-172). 

• Sections 6.1 and 6.2. I approached these sections as a possible user of these calibrations, and I 
am a bit confused by the trends shown in the reported results. In this manuscript two different 
calibrations (sigma128 and sigma 464) are proposed to estimate the same quantity, the value of 
differential stress in one inclusion. One should expect that these calibrations give the same (or 
similar) results when applied to the same inclusion. In other words, the stress determined in this 
way should fall on the 1:1 line in Fig. 5C and 6B. However, one can see that the stress of 
inclusions belonging to the same dataset always align along a line that forms a high angle to the 
1:1 line. Therefore, often, the two calibrations give very different values of differential stress for one 
inclusion, which may have even opposite sign (see Fig. 5C and 6B). The fact that the inclusions in 
all samples show this anti-correlation between the values obtained from the sigma128 and 
sigma464 calibrations, points to the fact that this is a feature arising from the calibration and not 
from the specific features of a sample, because clearly inclusions cannot have simultaneously two 
different states of stress. The authors propose arbitrarily that inclusions are “valid” if the values of 
(sigma3-sigma1) from the two calibrations differ by less than 1 GPa (lines 222-223). The reason for 
choosing such a large threshold value is not discussed in the manuscript, but this choice means 
that the proposed methodology considers acceptable that one inclusion is simultaneously under a 
(sigma3-sigma1) = -0.49 GPa and (sigma3-sigma1) = +0.49 GPa. In this respect, the statement 
that the results of the two calibrations are self-consistent (lines 251-261) is very misleading (see 
also my specific comment below, with some statistics on the given results). Such results may be 
confusing for a user. Clearly an inclusion cannot be simultaneously under two different stress 
states, and therefore this method does not determine the differential stress of one inclusion 
(except in rare cases). In my opinion, the reason for the anti-correlation between the values 
obtained from the sigma128 and sigma464 calibrations should be explained, because it is not 
intuitive and it is not clear by which physical behavior it is originated. Moreover, when many 
inclusions in one sample are measured, the results of the sigma128 and sigma464 calibrations 



averaged on all the inclusions in the sample give somewhat similar results, but they often do not 
agree within mutual uncertainties (see the datasets of Cisneros et al., 2020 and Gonzalez et al., 
2019 in the supplementary table of Reynard and Zhong). The authors therefore suggest that the 
averaged results of the two calibrations should be averaged again to give the final correct value. 
By reading the manuscript it is not clear to me the reason why several averaging steps of the 
results of two calibrations that appear anti-correlated should make this a robust method to 
estimate the value of differential stress.  I had the (maybe wrong) impression that the motivation is 
just the fact that the final averaged value is somewhat similar to the expectations of the elastic 
model for some of the analyzed samples. Therefore, if the authors have more physical insights that 
support the robustness of this procedure I suggest that they discuss them in order to avoid 
possible confusion for the reader. 

• We agree that confusion must arise from insufficient explanation of the way we treat the 
data and why. We have expanded the discussion line 232-252 to provide more details. For 
each inclusion, the pressure is calculated from the 206 line position that is independent of 
differential stress using equation (1). Two estimates of the differential stress are then 
obtained using equations (13,14). As Raman measurements are subject to statistical 
fluctuations due to uncertainties, the two stresses are likely to differ for a given inclusion. 
Uncertainty in pressure will arise from uncertainty in the position of the 206 peak. 
Uncertainty on stress will arise from uncertainty in the position of the 126 and 464 peaks, 
and also in the position of the 206 peak that is used to calculate pressure in eq (13,14). 
Based on eq. 13 and 14, differential stress is linearly correlated to the 128 and 464 Raman 
peak position, thus any uncertainties arising solely from Raman measurement will directly 
propagate into the calculated differential stress. Also, because the 128 and 464 peak shifts 
induced by stress are of opposite sign, a fluctuation of the 206 peak position will result in an 
apparent anticorrelation between stresses obtained using eq (13,14), as seen in Figures 5 
and 6. As the differential stresses calculated from equations (13,14) are in general small, 
they are very sensitive to small systematic errors in Raman measurements, as shown on the 
new supplementary figure S2 reproduced below.

 
 
Fig. S2. Sensitivity analysis for calculated differential stresses 𝝈 using the position of the 128 
and 464 cm-1 peaks (equations 13,14). Raman band position is calculated using Eq. 2 and the 
inverted Eq. 13 and 14 at a given stress state, here set as P = 1GPa and 𝝈 = -0.1GPa. 
Subsequently a Gaussian noise is added to the calculated Raman band position, and Eq. 1, 13 
and 14 are again used to calculate differential stress. This is repeated 10000 times. Different 
variances in Raman band position are also tested to systematically show the sensitivity.  
Calculated stresses are extremely sensitive to small standard deviations on measured Raman 
frequencies. Anti-correlation increases as the standard deviation on the 206 cm-1 peak gets 



higher (top row), as seen in Figs. 5c and 6c for actual measurements on experimental and 
natural inclusions. Assuming conservative values of standard deviation of 1 cm-1 on the 206 
cm-1 peak, and of 0.5 cm-1 on the other peaks (top right diagram), absolute differences between 
the two values of 𝝈 higher than ~1 GPa are deemed unlikely and such values are rejected. 
 
If a sufficient number of inclusions is measured, and if they belong to the same population (i.e. 
if they formed in a single event under similar pressure and temperature conditions), the 
average pressure and stress values can be obtained with a greater accuracy since the 
standard error of the mean will be greatly reduced. An alternative approach would be to use 
the overdetermination of the system (2 unknowns and 3 independent equations or more if more 
peaks are used) to obtain the best-fit values of pressure and differential stress or strain 
(Bonazzi et al 2019, Murri et al 2019). It is our choice to compare the stresses obtained from eq 
(13,14) because it allows checking the self-consistency of the Raman measurements that may 
other wise be blurred if a single best fit value is calculated for each inclusions. 

• Lines 229-230. According to Bonazzi et al., (2019) they applied the Grueneisen tensor components 
of Murri et al. (2019) to calculate the strains from Raman shifts, and then they used the room-
pressure elastic tensor of Wang et al. (2015) to calculate the stresses from strains, without further 
corrections. I am not sure why the authors say that the relationship between strain and stress is 
not provided in Bonazzi et al., (2019), and to which “correction” they refer. This sentence should 
be explained in more details or removed. 

• We thank the referee for the clarification, the sentence was removed. 

• Lines 235-236. Apparently the dataset Alm-1 (synthesis at 3GPa, 775°) of Bonazzi et al. (2019) is 
completely discarded, since it cannot be explained by the proposed calibrations. The authors state 
that those measurements were affected by “systematic uncertainties in the Raman peak 
positions”. However, Reynard and Zhong neglect the fact that Bonazzi et al. (2019) were able to 
successfully back-calculate the initial entrapment conditions of the synthesis by applying the 
Grueneisen tensor of Murri et al. (2019) together with the measured shifts of the 128cm-1, 464cm-

1 and 206cm-1 For this experimect, the method of Bonazzi et al. (2019) leads even to a higher 
precision on the estimate of the residual pressure, as can be observed comparing the scatters of 
the dataset synthetized at 3GPa, 775°C in Fig. 5a of Reynard and Zhong and Fig.4a of Bonazzi et 
al. (2019). This would rule out the presence of systematic uncertainties in the measurements 
performed by Bonazzi et al. (2018). Moreover, Bonazzi et al. (2019) report that the dataset Alm-2, 
which gives results more consistent with the calibration of Reynard and Zhong, was analyzed with 
the same procedure and instrument as Alm-1. Again, the impression is that the dataset Alm-1 is 
discarded because of the anticorrelation of the proposed sigma128 and sigma464 calibrations, 
which leads to incompatible values of differential stress obtained from the two calibrations. This 
could perhaps be caused by the complex stress states of those inclusions that cannot be modeled 
with the current calibration. However, I find misleading that the problem is reduced 
to   “systematic uncertainties in the Raman peak positions” of Bonazzi et al. (2018) simply because 
those inclusions cannot be explained with the current calibration. 

• We do not discard the Alm-1 data, we just state that they have some internal inconsistency 
revealed by our analysis. A slight systematic error in the 206 peak position of 0.5 cm-1 could 
well explain why the Alm-2 data lie symmetrically from the 1:1 line defined by our calibration, 
and why the Alm-1 data are systematically offset. That kind of issue that could arise from 
drift of the instrument, which is unlikely given data were calibrated by Bonazzi et al. (2019). 
We propose this may be due to other effects such as systematic interference with garnet 
peak. Therefore we expanded the discussion of this particular point, and point out the 
sensitivity of the data analysis to such systematic deviation (lines 279-281). 

• Line 251: I find not accurate the statement that the results of the two calibrations are self-
consistent. Most of the inclusions in Fig. 5c and 6b fall along a line that forms a high angle to the 
1:1 line. This implies that the two calibrations give different results for the same inclusion. By just 
considering the dataset from Syros, for 16 inclusions out of 21 the two calibrations predict a 
differential stress of opposite sign. In the samples from Papua Nuova Guinea, this happens for 



more than 40 inclusions out of 92. This rate is very high also for the inclusions in the synthetic 
datasets of Bonazzi et al. (2019). In my opinion the authors should have in mind the future users of 
such calibration for whom such discrepancies may be confusing, and explain the reason of the 
anticorrelation between the two calibrations which leads to this inconsistencies.  

• The comment was addressed in a response to a former comment on similar topics. We feel 
the new paragraph and supplementary figure on sensitivity analysis will help future users to 
assess the origin of the apparent scattering and anticorrelation. 

• Lines 254-256. I suggest that this statement is explained in more detail. If they assume that the 
differential stress in natural inclusions is relaxed by inelastic processes, then they should expect to 
measure a differential stress in natural inclusions that is less than what expected from their purely 
elastic model. But the entire manuscript revolves around using the measured residual pressure 
and the residual differential stress to estimate the entrapment conditions with an elastic model, 
neglecting the inelastic relaxation. And at lines 262-264 they say that the measured differential 
stress agrees with the predictions of elastic models, which apparently rules out any inelastic 
relaxation. 

• We agree with the referee. We are discussing here the measured residual stress, which are 
accurately described by the elastic model, and point out this observation. As some inelastic 
relaxation likely occurred in natural inclusions, it would require modeling for estimating the 
effect on the reconstructed initial P-T conditions. On second thought, the slower growth 
rates in natural systems than in experiments likely account for this effect. A detailed 
examination of such effects is clearly out of the scope of the present article. We modified 
the sentence (lines 300-303) to mention this possibility. 

• Lines 259-261. I believe that the statement that the high rejection rate of Gonzalez et al. (2019) is 
due to the discrepancies of the Grueneisen tensor is misleading. The rejection rate is determined 
by a different choice of criterion and threshold in the present work and in Gonzalez et al. (2019). 
Since the Gruneisen tensor does not have the problem of giving two different stress states for the 
same inclusion, the criterion in Gonzalez et al. (2019) was based on the absolute value of the 
differential strain of the inclusions. Gonzalez et al. (2019) applied a restrictive threshold of 1e-3 on 
differential strain to obtain a less dispersed distribution. However, even not applying any limiting 
threshold on the data of Gonzalez et al. (2019) the distributions of residual pressures of all 92 
inclusions of Gonzalez et al. (2019) (see their supplementary materials) and of Reynard and Zhong 
(see their supplementary table, pressure obtained with the P206 calibration) are very similar, and in 
particular have the same standard error of 0.01 GPa. The only difference is a shift of the entire 
distribution of Gonzalez et al. (2019) to slightly higher pressures because of the use of different 
elastic properties for quartz. This shows that the high number of rejected inclusions in Gonzalez et 
al. (2019) is not due to problems with the Grueneisen tensor, but rather to the choice of a 
restrictive threshold to obtain higher accuracy on the average pressure. 

• The present calibration does not use the elastic data of quartz, since Raman peak positions 
are directly calibrated against pressure and stress. Only the Gruneisen formulation uses 
strains that need to be converted into stresses using elastic constants. The difference in 
absolute pressure between the two calibrations is due to the discrepancies between the 
stress-induced shifts obtained here experimentally and those implied in the Gruneisen 
analysis (Murri et al. 2019). We have added a sentence lines 231-234 to state this difference 
in the two approaches. For the sake of simplicity, we have suppressed the discussion on the 
Papua data and just state that the difference in rejection rate may arise from different 
criteria (line 307).  

• Table 1. As discussed above, the experiments under uniaxial stress in the x-y plane produce a 
symmetry breaking, and the two set of shift observed for the 128 cm-1 peak must not be labeled 
as TO-LO (Shapiro & Axe, 1972). Moreover, the note that “the TO-LO splitting was not modeled” in 
the calculations of Murri et al. (2019) is not correct as explained in previous comments. The LO-TO 
components for the 128 cm-1 peak were determined by Murri et al. (2019), but since their splitting 
is negligible, the Grueneisen tensor was calculated only for the TO component. Therefore, the 
discrepancy between the and  for the Raman modes determined in this work and those of Murri et 



al. (2019) may be partly due to the symmetry breaking induced during the experiments presented 
here.  

• The statements regarding TO-LO splitting have been corrected. 

• Fig. 5, lines 423-424. The statement concerning the anti-correlated uncertainties is not clear. I 
suggest that the reason for this anticorrelation is explained in more details here or in the text (see 
also above comments). 

• This is now explained in the paragraph added above section 6.1 

• Fig 1: in order to represent without ambiguity the orientation adopted in the measurements, I 
recommend adding the corresponding Porto's notation (Gregora, 2013; Scott & Porto, 1967) 
defined as following: 

A(BC)D 

With: 

A = direction of the incident radiation (wave-vector) 

B = polarization of incident radiation 

C = polarization of scattered radiation 

D = direction of the scattered radiation (i.e. wave-vector) 

where the direction and polarization of the incident and scattered radiation are defined with respect 
to the crystallographic axes of quartz. 

No polarizer was put in the scattered light path, thus only the polarization direction of the 
incident light is given, as now explained in the caption, where a sentence was added (also in 
section 2) to mention the use of a back-scattering geometry. 

Technical corrections 

• Equation (12) at line 196. I suspect that the last sigma in the right side of the equation is a left over 
and should be removed. 

• Fig 3c: the label of the y axis is missing 

• 6a. I suggest to add a legend to identify the large and small symbols 

the error in eq 12 was corrected, figures and captions modified. 
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