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Abstract. The productivity of the world’s natural resources is critically dependent on a variety of highly uncertain factors,

which obscure individual investors and governments that seek to make long-term, sometimes irreversible investments in their

exploration and utilization. These dynamic considerations are poorly represented in disaggregated resource models, as incor-

porating uncertainty into large-dimensional problems presents a challenging computational task. In this paper, we apply the

SCEQ algorithm (Cai and Judd, 2023) to solve a large-scale dynamic stochastic global land resource use problem with stochas-5

tic crop yields due to adverse climate impacts and limits on further technological progress. For the same model parameters,

the range of land conversion is considerably smaller for the dynamic stochastic model as compared to deterministic scenario

analysis. This highlights the importance of incorporating uncertainty in the model’s optimization stage to determine optimal

paths of natural resource uses.

1 Introduction10

Understanding the future allocation of the world’s natural resources is an important research problem for environmental sci-

entists and economists. This involves a thorough understanding of a complex interplay of different factors, including, among

others, continuing population increases, shifting diets among the poorest populations in the world, increasing production of

renewable energy, including biofuels, and growing demand for ecosystem services, including forest carbon sequestration (Fo-

ley et al., 2011). The problem is further confounded by faster than expected climate change, which is altering the biophysical15

environment of agriculture and forestry. Moreover, highly uncertain future productivities and valuations of ecosystem services,

coupled with medium- to long-term irreversibilities in the extraction of nonrenewable or partially renewable resources, such as

long-growth natural forests, give rise to a challenging problem of decision-making under uncertainty.

While there is a large body of research analyzing the problem of natural resource extraction and utilization under uncertainty

theoretically or using stylized computational models (see, e.g., Miranda and Fackler (2004), Tsur and Zemel (2014) and refer-20

ences therein), quantifying the effects of uncertainty on natural resource use in a more realistic setting remains a challenging
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problem. This is because natural resource allocation problems, like environmental policy problems in general, involve highly

nonlinear structure and damage functions, important irreversibilities, and long time horizons (Pindyck, 2007). Computational

integrated models of economy and environment are the standard workhorse mechanisms for modeling the long-term alloca-

tion of the world’s natural resources, including particularly difficult land use problems (see, e.g., Füssel (2009), Schmitz et al.25

(2014), Nikas et al. (2019), and references therein). These models have the important advantage of detailed spatial and sectoral

(particularly, energy and agricultural sector) coverage, which allows them to capture a broad range of responses to changes in

demand and supply factors affecting the utilization of natural resources. However, given the high computational complexity of

these models, they are typically either static or based on myopic expectations, whereby decisions about production, consump-

tion, and resource extraction and conversion are made only on the basis of information in the period of the decision (Babiker30

et al., 2009). These models, therefore, have limited ability to address important intertemporal questions such as, for exam-

ple, a dynamic trade-off between conservation, carbon sequestration, and renewable offsets for fossil fuels. Among the few

forward-looking, dynamic economy and environment models, none explicitly incorporates uncertainty into the determination

of the optimal path of natural resource use.1 This is because introducing uncertainty into these models is confined by an array of

computational obstacles that are very difficult (e.g., high dimensionality and kinks caused by occasionally binding constraints),35

if not impossible, to address using standard numerical methods such as projection methods and value function iteration (see,

e.g., Judd 1998; Miranda and Fackler 2004; Cai and Judd 2014; Cai 2019). To the extent that uncertainty in these models is

considered, this is only through parametric or probabilistic sensitivity analysis or the use of alternative scenarios. Therefore the

high-dimensional resource use models have not effectively dealt with optimal extraction and conversion decisions along the

uncertain path of key drivers affecting resource allocation in the face of costly reversal of conversion decisions.40

In this study, we seek to address this important limitation of the economy-environment modeling of natural resource use.

In doing so, we build on recent advances in computational economics and operations research. Cai et al. (2017) introduced

a nonlinear certainty equivalent approximation method (NLCEQ) for solving large-scale infinite horizon stationary dynamic

stochastic problems and demonstrated how this method could be used to achieve an accurate solution to a stylized stationary

dynamic stochastic land use problem. The original NLCEQ method, however, is ill-suited for solving most environmental and45

resource economics problems. This is because stochastic problems of utilization of natural resources feature nonstationary

stochastic trends, such as climate or technological trajectories, and some never converge to a stationary state. Building on

the original NLCEQ work Cai and Judd (2023) introduced a simulated certainty equivalent approximation method (SCEQ),

which efficiently solves nonstationary dynamic stochastic problems, including those with high dimensionality and occasionally

binding constraints. Cai and Judd (2023) showed that the SCEQ method is highly accurate and achieves stable numerical50

solutions for dynamic stochastic problems in economics.

We apply the SCEQ method to solve a large-scale dynamic stochastic model, focusing on the optimal global land use

allocation problem. This highly complicated resource use problem features multiple cross-sectoral and dynamic trade-offs.

Specifically, we apply the method to a global land use model nicknamed FABLE (Forest, Agriculture, and Biofuels in a Land

1Several recent studies, e.g., Cai and Lontzek (2019) have successfully integrated uncertainty about economic and climate outcomes in a stochastic

integrated assessment climate-economy framework. For a review of this related literature, see Cai (2019, 2021).
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use model with Environmental services) in the face of uncertainty. FABLE is a dynamic, forward-looking global multi-sectoral55

partial equilibrium model designed to analyze the evolution of global land use over the coming century. Prior applications of

that model (Steinbuks and Hertel, 2013; Hertel et al., 2013, 2016; Steinbuks and Hertel, 2016) analyze the competition for

scarce global land resources in light of the growing demand for food, energy, forestry, and environmental services and evaluate

key drivers and policies affecting global land use allocation. All these applications, however, assume perfect foresight and treat

uncertainty in a parametric fashion, thus ignoring the impact of future uncertainties on the optimal allocation of global land60

use.

By way of illustration, we focus on uncertainty emanating from crop productivity over the next century. Along with energy

prices, regulatory policies, and technological change in food, timber, and biofuels industries, this is one of four core uncertain-

ties affecting competition for global land use (Steinbuks and Hertel, 2013). To quantify the uncertainty in agricultural yields,

we construct a stochastic crop productivity index that captures two key uncertainty sources: technological progress and global65

climate change (Lobell et al., 2009; Licker et al., 2010; Foley et al., 2011).2 Following Rosenzweig et al. (2014), we use projec-

tions from climate and crop simulation models under Representative Concentration Pathways 6.0W/m
2 (RCP6) GHG forcing

scenario (Moss et al., 2008), as well as the survey of recent agro-economic and biophysical studies to calibrate the index.

We simulate the results of the model where the global planner optimally allocates land uses under the perfect foresight

of different realizations of the crop productivity index, focusing our attention on the current century. We then compare and70

contrast them with the results of the dynamic stochastic model, where the global planner has rational expectations about

uncertain crop yields brought to the model’s optimization stage. When the uncertainty in crop productivity is incorporated

into the model, we see an additional redistribution of land resources to offset the impact of potentially lower yields. Due to

intertemporal substitution, some of that redistribution occurs even in the absence of actual changes in the states of climate or

technology affecting crop yields. Moreover, the range of these alternative optimal paths of cropland is considerably smaller75

than the magnitude of possible land conversion resulting from the scenario analysis based on the deterministic model. This

result indicates that the scenario analysis may significantly overstate the expected agricultural land conversion magnitude

under uncertain crop yields.

Our study contributes to the growing literature that analyzes the intertemporal allocation of land and other natural resources

under uncertainty and irreversibility constraints. Most of the literature focuses on a particular type of resource or sector where80

intertemporal issues are significant and cannot be ignored. One example of this literature is forestry management in the context

of uncertain fire risks and climate mitigation policies (Sohngen and Mendelsohn, 2003, 2007; Daigneault et al., 2010). Another

example is natural land conservation decisions under irreversible biodiversity losses (Conrad, 1997, 2000; Bulte et al., 2002;

Leroux et al., 2009). While these models are undoubtedly helpful for understanding the broad implications of uncertainty on

the intertemporal allocation of land resources, they are less effective in quantifying the effect of uncertainty in the supply and85

2Climate change will likely affect the productivity of other land resources, such as forestland. Several recent modeling studies (see, e.g., Tian et al. (2016)

and references therein) have suggested that climate change is likely to result in higher forest growth and greater timber yields, as well as in more forest dieback,

with the net effects varying over time and space. Incorporating these effects is beyond the scope of this study and is left for future research.
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demand drivers in more complex settings, such as, e.g., optimal allocation of multiple competing land resources in the long

run.

Our study is perhaps most closely related to the recent works of Lanz et al. (2017) and Zhao et al. (2021). Lanz et al. (2017)

developed a two-sector stochastic Schumpeterian growth model with the endogenous allocation of global land use. As our

paper does, they find that optimal allocation of global land use requires more cropland conversion when the uncertainty in90

agricultural productivity is present. Lanz et al. (2017), however, focused on endogenous population dynamics, labor allocation,

and technological progress, whereas our paper is concerned with the endogenous allocation of multiple types of land use and

corresponding land-based goods and services. Our paper also advances methodological grounds by applying a more advanced

algorithm that overcomes computational difficulties in solving multidimensional stochastic land use models, which made Lanz

et al. (2017) significantly simplify their model by assuming that their binary shocks occur only in three time periods. Zhao et al.95

(2021) compare models with adaptative expectations and perfect foresight assumptions for both price and yield for agricultural

producers to make land allocation and production decisions. Zhao et al. (2021) find similar results that land use change variation

becomes much smaller than in the perfect foresight model, which allows for faster land use adjustments while market price

variations increase. Unlike our paper, Zhao et al. (2021) do not explicitly incorporate uncertainty in the model’s optimization

stage.100

2 Stochastic FABLE model

This section presents a modeling framework for analyzing nonlinear dynamic stochastic models of natural resource use with

multiple sectors, in which preferences, production technology, resource endowments, and other exogenous state variables

evolve stochastically over time according to a Markov process with time-varying transition probabilities. The constructed

model belongs to the class of stochastic growth models with multiple sectors studied in Brock and Majumdar (1978), Majumdar105

and Radner (1983), and Stokey et al. (1989) among others.

Specifically, we develop a stochastic version of a global land use model nicknamed FABLE (Forest, Agriculture, and Biofuels

in a Land use model with Environmental services), a dynamic multi-sectoral model for the world’s land resources over the next

century (Steinbuks and Hertel, 2012, 2016). This model combines recent strands of agronomic, economic, and biophysical

literature into a single, intertemporally consistent analytical framework at the global scale. FABLE is a discrete dynamic110

partial equilibrium model where the population, labor, physical and human capital, and other variable inputs are assumed to

be exogenous. Total factor productivity and technological progress in non-land-intensive sectors are also predetermined. The

model focuses on the optimal allocation of scarce land across competing uses across time and solves the dynamic paths of

alternative land uses, which together maximize global economic welfare.

The FABLE model accommodates a complex dynamic interplay between different types of global land use, whereby the115

societal objective function places value on processed crops and livestock, energy services, timber products, ecosystem services,

and other non-land goods and services (Figure 1). There are three accessible primary resources in this partial equilibrium model

of the global economy: land, liquid fossil fuels, and other primary inputs, e.g., labor and capital (see the bottom part of Figure 1).
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Figure 1. Structure of the FABLE Model

Note. State variables are shown as oval shapes. Decision variables are shown as rectangular shapes. The utility function is shown as an

octagonal shape. Transition laws are shown as dotted arrows. Stochastic model terms incorporating random processes are shown as dashed

shapes or arrows.

The supply of land is fixed and faces competing uses that are determined endogenously by the model. They include unmanaged

forest lands - which are in an undisturbed state (e.g., parts of the Amazon tropical rainforest ecosystem), agricultural (or crop)120

land, pasture land, and commercially managed forest land. As trees of different ages have different timber yields and different

propensities to sequester carbon, the model keeps track of various tree vintages in managed forests, which introduces additional

numerical complexity for solving the model. We don’t keep track of vintages for natural lands and assume they are primarily

old-grown forests. We ignore other land use types, such as savannah, grasslands, and shrublands, which are largely unmanaged

and often of limited productivity.3 We also ignore residential, retail, and industrial uses of land in this partial equilibrium model125

of agriculture and forestry.

The flow of liquid fossil fuels evolves endogenously along an optimal extraction path, allowing for exogenously specified

new discoveries of fossil fuel reserves. Other primary inputs include variable inputs, such as labor, capital (both physical and

3This makes them difficult to incorporate into an economic model of land use. Consequently, they have historically been neglected in economic models of

global land use change. More recently, these natural lands have been incorporated via location-specific supply curves depicting the potential for bringing these

lands into commercial production (e.g., in the REF MAGNET model: https://www.magnet-model.eu/model ). However, the ecosystem services provided by

these lands are not explicitly valued as they are in the FABLE model, where they are explicitly included in the utility function.
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human), and intermediate materials. The endowment of other primary inputs is exogenous and evolves along a pre-specified

global economic growth path.130

There are six intermediate inputs used in the production of land-based goods and services in FABLE: petroleum products,

fertilizers, crops, liquid biofuels,4 live animals and raw timber (see the middle part of Figure 1). Fossil fuels are refined

and converted to either petroleum products, that are further combusted, or to fertilizers, that are used to boost yields in the

agricultural sector. Cropland and fertilizers are combined to grow crops, that can be further converted into processed food

and biofuels, or used as animal feed. Specifically, we assume that agricultural land LA,c
t and fertilizers xn,ct are imperfect135

substitutes in the production of food crops, xct , with specific production technology given by the following constant elasticity

of substitution (CES) function:

xct = θct

(
αn
(
LA,c
t

)ρn

+(1−αn)(xn,ct )
ρn

) 1
ρn
, (1)

where θct is stochastic crop technology index, and αn and ρn are, respectively, the input share and substitution parameters.

Equation (1) captures three key responses within the model to changes in crop technology index: (i) demand response (change in140

consumption of food crops), (ii) adaptation on the extensive margin (substitution of agricultural land for other land resources),

and (iii) adaptation on the intensive margin (substitution of agricultural land for fertilizers).

Biofuels substitute imperfectly for liquid fossil fuels in final energy demand. The food crops used as animal feed and

pasture land are combined to produce raw livestock. Harvesting managed forests yield raw timber that is further used in timber

processing.145

The land-based consumption goods and services take the form of processed crops, livestock, and timber and are, respectively,

outcomes of food crops, raw livestock, and timber processing. The production of energy services combines non-land energy

inputs (i.e., liquid fossil fuels) with biofuels, and the resulting mix is further combusted. Finally, all land types can contribute

to other ecosystem services, a public good to society, including recreation, biodiversity, and other environmental goods and

services. To close the demand system, we also include other non-land goods services (e.g., manufacturing goods and retail,150

construction, financial, and information services), which involve the ’consumption’ of other primary inputs not spent on the

production of land-based goods and services. As the model focuses on the representative agent’s behavior, the final consumption

products are all expressed in per-capita terms.

A complete description of model equations, variables, and parameter values is presented in the appendix.

3 Modeling Crop Yield Uncertainty155

This section characterizes uncertainty in future agricultural yields over the coming century, which is one of the core uncertain-

ties shown to affect land use in the long run (Steinbuks and Hertel, 2013). Crop yields are subject to two types of uncertainties:
4In FABLE, bioenergy does not include the potential use of biomass in power generation. This limitation is acknowledged in Steinbuks and Hertel (2016,

p. 566): “A more serious limitation to this study is our omission of the potential demand for biomass in power generation. Under some scenarios, authors

have shown this to be an important source of feedstock demand by mid-century (Rose et al. 2012). However, absent a full representation of the electric power

sector, our framework is ill-suited to addressing this issue.”
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those related to the development and dissemination of new technologies and those related to changes in the climatic conditions

under which the crops are grown. The former type of uncertainty has until recently dominated the pattern of the evolution of

global crop yields, whereas the latter is becoming an increasingly important factor (Lobell and Field, 2007; IPCC, 2014). While160

it is plausible to hypothesize that accelerating climate impacts may, in turn, induce further technological advances in an effort

to facilitate adaptation to climate change, this hypothesis is not supported by limited empirical evidence (Burke and Emerick,

2016). Therefore, in this paper, these two sources of uncertainty are treated separately, although they are both characterized by

the use of combined climate and crop simulation models run over a global grid.

We characterize future uncertainty in yields by constructing a stochastic crop productivity index, θct , which captures the165

evolution of future crop yields under different realizations of uncertainty in crop productivity based on the most recent pro-

jections in the agronomic and environmental science studies. An important characteristic of staple grain yields is that they

tend to grow linearly, adding a constant amount of gain (e.g., ton/ha) each year (Grassini et al., 2013). This suggests that the

proportional growth rate should fall gradually over time. However, crop physiology dictates certain biophysical limits to the

rate at which sunlight and soil nutrients can be converted to the grain. And there is some recent agronomic evidence (Cassman170

et al., 2010; Grassini et al., 2013) showing that yields appear to be reaching a plateau in some of the world’s most impor-

tant cereal-producing countries. Cassman (1999) suggests that average national yields can be expected to plateau when they

reach 70–80% of the genetic yield potential ceiling. Based on these observations from the agronomic literature, we specify the

following logistic function determining the evolution of the crop productivity index over time:

θct =
θcT θ

c
0e

κct

θcT + θc0 (e
κct − 1)

, (2)175

where θc0 is the value of the crop productivity index in period 0, which we calibrate to match observed weighted yields in key

staple crops (corn, rice, soybeans, and wheat), θcT is the crop yield potential at the end of the current century, that is, “the yield

an adapted crop cultivar can achieve when crop management alleviates all abiotic and biotic stresses through optimal crop and

soil management” (Evans and Fischer, 1999), and κc is the logistic convergence rate to achieving potential crop yields.

Though the initial value of the crop productivity index is known with certainty, potential crop yields are highly uncertain. We180

assume that potential crop yields are affected by a two-dimensional stochastic process of climate and technological shocks, J1,t,

and J2,t, respectively. For the technological shock, J2,t, we assume that there are three states of technology: “bad” (indexed by

J2,t = 1), “medium” (indexed by J2,t = 2), and “good” (indexed by J2,t = 3). In the optimistic (i.e., “good”) state of advances

in crop technology, we assume that yields will continue to grow linearly throughout the coming century, eliminating the yield

gap by 2100. In the “medium” state of technology, rather than closing the yield gap by 2100, average yields in 2100 are just185

three-quarters of the yield potential at that point in time. In the “bad” state of technology, there is no technological progress,

and the crop yields stay the same as at the beginning of the coming century.
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For the climate shock, J1,t, we assume it is a Markov chain with five possible states at each time t. To construct these

states, we use the results of ISIMIP fast-track crop simulation model comparison (Rosenzweig et al., 2014).5 Since FABLE is

a partial equilibrium model without an embedded climate module, we cannot directly capture all sources of GHG emissions190

and endogenize their effect on global crop yields. Instead, to ensure the simulation results’ comparability with the structural

parameters (e.g., demographic and economic growth, the rate of technological change) of the FABLE model, we select four crop

simulation model runs under the RCP6 GHG forcing scenario.6 We also consider alternative assumptions on CO2 fertilization

effects.

Based on these data, we construct five states corresponding to quintiles of the distribution of different outcomes of four195

global crop simulation models and five global climate models, with and without CO2 fertilization effects for potential crop

yields by 2100. Under two optimistic states of the world, we observe 2 and 15 percent increases in potential crop yields relative

to the model baseline (calibrated based on historical trends over the reference period 1971 to 2004), respectively, whereby

significant CO2 fertilization effects offset the negative effects of climate change. For the next two states, we see 15 and 19

percent declines in potential crop yields relative to the model baseline whereby CO2 fertilization effects are assumed to be200

either small or non-existent, and the negative effects of climate change tend to prevail. Finally, under the most pessimistic state

of the world, drastic adverse effects of climate change combined with the absence of any CO2 fertilization effects result in a

36 percent decline in potential crop yields relative to the model baseline.

Further details of constructing climate and technological states can be found in the appendix.

The path of technological change in crop yields evolves by reversible transitions across these states. The stochastic path of205

the crop productivity index is then given by

At =
AT (J1,t,J2,t)A0e

κct

AT (J1,t,J2,t)+A0 (eκct − 1)
, (3)

where AT (i, j) represents the crop productivity index at the terminal time T at the state J1,t = i and J2,t = j, for i= 1,2, ...,5

and j = 1,2,3. Thus, At is a Markov chain, which takes one of 15 possible time-varying values at each time period. This can

be seen as a discretization of a mean-reverting process with continuous values and a time trend, but a finer Markov chain with210

more values can only marginally change our solution. AsAt is completely dependent on J1,t and J2,t, it is not a state variable,

whereas J1,t and J2,t are both state variables.

Having characterized the realizations of crop productivity under alternative states of agricultural technology and climate

change impacts, we still need to calibrate the transition probabilities for the climate and technology shocks to construct the

stochastic crop productivity index. As regards climate shock, the environmental and climate science literature acknowledges215

some degree of persistence but does not provide much guidance on the transition dynamics between alternative climate states

5More recent projections using ensembles of latest-generation crop and climate models find larger uncertainty of climate impacts on major crop yields

(Jägermeyr et al., 2021). Unfortunately, these data were not available at the time of the research. Our results should therefore be taken as conservative estimates

of the impacts of climate uncertainties on crop yields.
6FABLE model baseline assumes no climate regulations and other GHG mitigation measures required to achieve RCP4.5 or lower radiative forcing values,

whereas realism of RCP8.5 as the ‘business-as-usual’ scenario has been questioned by the literature (Hausfather and Peters, 2020).
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Figure 2. Crop Productivity Index

affecting crop yields. In the absence of reliable estimates for constructing the transition probability matrix of J1,t, we assume

simple transition dynamics, where each state has a 50 percent probability of retaining itself next period and a 25 percent

probability of moving upwards and downwards to an adjacent state (note that realizations can only stay the same or move

upwards from the lowest state, e.g., J1,t = 1, and only stay the same or move downwards from the highest state, e.g., J1,t = 5).220

As regards the technology shock, since we do not have historical data on the evolution of agricultural technology, we assume

that technological advances in agriculture follow a similar trend to advances in the rest of the economy and use the probability

transition matrix of J2,t estimated by Tsionas and Kumbhakar (2004) for a comprehensive panel of 59 countries over the

period of 1965–1990. These estimates correspond to a 20 percent probability of the “bad” technological state, 56 percent of

the “medium” state, and 24 percent of the “good” state. The transition probability matrices of J1,t and J2,t are shown in the225

appendix.

Figure 2 shows the deterministic-baseline path (the solid line) used in the perfect foresight model and the range of the

stochastic crop productivity index based on 1,000 simulation paths over the entire 21st century, with additional summary

statistics presented in the appendix. The simulations start at the “medium” states of climate and technology in the initial year.

The deterministic-baseline path is calculated by taking expectations of the stochastic crop productivity index conditional on230

the initial “medium” states (equation 3). It also takes the same values as the median path (the “o” line) of simulations, whereby

the climate and technological states are kept at “medium”, while the average line (the “+” line) deviates a bit after the year

9



2070. At every time t, there are 1,000 realized values ofAt, among which there are only 15 different values. The 10% and 90%

quantile lines (the dashed and dash-dotted lines) represent the 10% and 90% quantiles of these 1,000 simulated values of At at

time t, so they are not the realized sample paths, but Figure 2 also displays one realized sample path of At which is the dotted235

line.

4 Method of Model Solution: the SCEQ Algorithm

In most resource use problems under uncertainty, including the FABLE model, the social planner’s problem cannot be solved

analytically, although certain inferences about the potential effects of uncertainty can be made from more stylized models.

Numerical dynamic programming with value function iteration (see, e.g., Cai and Judd 2014; Cai 2019) is a typical method to240

solve these dynamic stochastic problems. However, numerical dynamic programming faces challenging problems such as high

dimensionality of state space, shape-preservation of value functions (Cai and Judd, 2013), and kinks caused by occasionally

binding constraints. These challenges are common in modeling natural resource use and are hard to address even with the most

advanced methods, such as parallel dynamic programming (Cai et al., 2015).

For non-stationary problems, value function iteration involves computing decision rules at each period t. However, com-245

puting all these rules can be very time-consuming and unnecessary if our primary goal is to obtain simulation paths and their

distributions until a time of interest, T ∗, even a long one (in environmental and climate change economics, for example, we are

often interested in solutions for the coming century and set the time of interest to 100 years and the problem horizon of more

than 300 years to avoid a large impact of terminal conditions). Instead of solving for optimal decisions for all possible states

at each time, we can approximately solve for optimal decisions for those simulated states along simulated paths. This logic is250

embedded in the novel SCEQ algorithm (Cai and Judd, 2023) used to solve for a simulated range of land use trajectories in the

stochastic FABLE model.

Below we present the SCEQ algorithm version for solving the finite horizon nonstationary stochastic dynamic programming

problems the FABLE model belongs to (for a detailed description of other cases, see Cai and Judd (2023) Following the

standard notation in the literature, let St be a vector of state variables (here, land cover types and stocks of fossil fuels),255

and at be a vector of decision variables (here land conversion, resource extraction, transformation, and final consumption of

land-based goods and services) at each time t. The transition law of the state vector S is

St+1 =Gt(St,at, ϵt)

where ϵt is a serially uncorrelated random vector process, and Gt is a vector of functions: its i-th element, Gt,i, returns the i-th

state variable at t+1: St+1,i. For simplicity, we assume the mean of ϵt is 0.7260

The FABLE model equations (see appendix) can be compactly represented by the following social planner’s problem:

7For notational simplicity we keep the same mathematical representation of a transition function, even if some of its elements are redundant. For example, if

Gt,i is deterministic, we still denote it as St+1,i =Gt,i(St,at, ϵt) even though St+1,i = G̃t,i(St,at)+0 ·ϵt. Similarly, if there are some unused elements

of ϵt or some redundant arguments in a function Gt,j , we can multiply them by zero in Gt,j and thus still use St+1,j =Gt,j(St,at, ϵt) .
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max
at

E

{
T−1∑
t=0

δtUt (St,at)+ δTVT (ST )

}
(4)

s.t. St+1 =Gt(St,at, ϵt), t= 0,1,2, ...,T − 1,

Ft(St,at)≥ 0, t= 0,1,2, ...,T − 1,

where Ut is a utility function, δ ∈ (0,1) is the discount factor, E is the expectation operator, T is the horizon (T =∞ if it is an265

infinite-horizon problem), VT (ST ) is a given terminal value function depending on the terminal state ST (it is zero everywhere

for an infinite-horizon problem), and Ft(St,at)≥ 0 is a vector of feasibility constraints of actions at at time t. And we assume

that the initial state S0 is given, as it can usually be observed or estimated.

Algorithm 1 SCEQ for Finite-horizon Stochastic Dynamic Programming Problems with Time-Variant Exogenous Paths

Step 1. Initialization step. Given the initial state S0 and a time of interest T ∗, as well as a terminal value function VT (ST ).

Simulate a sequence of ϵt to get m paths, denoted ϵit for path i, from t= 0 to T ∗ − 1. Let Si
0 = S0 and iterate forward

through steps 2 and 3 for s= 0,1,2, ...,T ∗ − 1.

Step 2. Optimization step. Solve the following deterministic model starting from time s and simulated node Si
s:

max
at

T−1∑
t=s

δt−sUt (St,at)+ δT−sVT (ST ) (5)

s.t. St+1 =Gt(St,at,0), t= s,s+1, ...,T − 1,

Ft(St,at)≥ 0, t= s,s+1, ...,T − 1,

where Ss is given by Si
s, for each i= 1, ...,m.

Step 3. Simulation step. Set Si
s+1 =Gt(S

i
s,a

i
s, ϵ

i
s), where ais is the optimal decision at time s of the problem (5), for each

i= 1, ...,m.

Algorithm 1 obtains simulated pathways of optimal decisions and states. Note that the inside loop across i can be switched

with the outside loop across time, that is, for each i, we can obtain one simulation path by iteratively solving (5) and simulating270

Si
s+1 =Gt(S

i
s,a

i
s, ϵ

i
s) for s= 0,1,2, ...,T ∗ − 1.

The optimization step of Algorithm 1 applies the certainty equivalent approximation idea of the NLCEQ method (Cai et al.,

2017): for a given state at time s, Si
s, we replace all future stochastic variables by their corresponding expectations conditional

on the current state Si
s,8 and convert the dynamic stochastic problem (4) into a deterministic finite-horizon dynamic problem

(5).275

8As ϵt is a serially uncorrelated stochastic process, we can replace ϵt by its zero mean in the functions of Gt in (5) if all transition laws are continuous.

For problems with a discrete Markov chain in transition laws, we can use the same technique as described in Cai et al. (2017) for NLCEQ with a discrete
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We implement the optimal control method (Cai, 2019) to solve (5) numerically, that is, we view (5) as a large-scale nonlinear

constrained optimization problem with {ait : t≥ s} and {Si
t : t≥ s} as its variables, and the transition equations and feasibility

restrictions as its constraints. The problem can be directly solved with an appropriate nonlinear optimization solver such as

CONOPT (Drud, 1994).

Observe that we just need to save the solution of (5) at time s, ais, for use in the next step. In step 3 of Algorithm 1 we280

use the saved optimal decision ais to generate the next-period state, Si
s+1 =Gt(S

i
s,a

i
s, ϵ

i
s), given realization of shocks, ϵis.

Once we reach the state Si
s+1 at time s+1, we come back to implement step 2 and then step 3. In other words, Algorithm 1

uses an adaptive management way: decisions are made for the current period in the face of future uncertain shocks; once the

next-period shock is observed, decisions for the next period are made with re-optimization given the observed shock and new

state variables at the next period. Observe that the serial correlation of random variables has been captured in their associated285

transition laws. Repeating this process iteratively through T ∗ times, we compute a representative simulated pathway of optimal

decisions, {ais}T
∗−1

s=0 , and states, {Si
s}T

∗

s=0, which corresponds to the realized path of shocks, {ϵis}T
∗−1

s=0 . Repeating over i, we

compute m simulated paths of optimal states and decisions and then obtain their distributions. This simulation process can be

naturally parallelized.

After we obtain the simulated solutions for our dynamic stochastic land use problem, we also check the normalized Euler290

errors and find that the L1 error of the solutions for the first 100 years (the periods of interest) among 1,000 simulated paths is

only 8.6×10−4, and the corresponding L∞ error is only 0.02.This is within range of acceptable accuracy for the most dynamic

stochastic problems (Cai and Judd, 2023).

5 Model Results

Below, we describe the results of the impact of crop yield uncertainty on the optimal path of global land use based on the295

dynamic stochastic model simulations. We solve the model over 400 years with 5-year time steps and present the results for the

first 100 years to minimize the effect of terminal period conditions on our analysis.9 We first present the results of the perfect

foresight model, wherein the optimal land allocation decisions are made based on the values of the crop productivity index

in the absence of climate and technology shocks. This deterministic analysis is a useful reference point for further discussion

when the uncertainty in food crop yields is introduced. We then present the results of the dynamic stochastic model, where300

the impact of the intrinsic climate and technology uncertainty is brought into the model optimization stage. Specifically, we

stochastic state to obtain the corresponding deterministic model (1). That is, given the realization of the Markov chain at time s, we can compute expectations

of the Markov chain at all times after s conditional on the value at the time s and then replace the stochastic process by the path of the conditional expectations

in step 2 of Algorithm 1.
9The model converges to its stationary state around 2150. The differences in land use allocations between 2100 and 2150 are small and, therefore, not

reported.
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generate 1,000 sample paths of optimal global land use under different realizations of the stochastic crop productivity index.10

The results are presented as the difference between the stochastic path and deterministic reference solution.

5.1 Optimal Path of Global Land Use under Crop Yield Uncertainty

Figure 3 depicts the optimal allocation of global land use over the next century. The left-hand side of Figure 3 shows the305

deterministic paths of different types of land considered in this study, i.e., when the food crop yields are perfectly anticipated.

Specifically, it shows three scenarios where the value of the crop technology index corresponds to (i) expected values of the

stochastic crop productivity index (deterministic-baseline scenario), (ii) the most pessimistic climate and bad technology states

(deterministic-pessimistic scenario), and (iii) the most optimistic climate and good technology states (deterministic-optimistic

scenario). The right-hand side of Figure 3 shows the difference range between the 1,000 simulation paths based on different310

ex-ante realizations of the stochastic crop productivity index and the deterministic-baseline path. The 10%, 50% and 90%

quantile lines represent 10%, 50% and 90% quantiles of 1,000 simulated values respectively at each time, and the average line

(the “+” line) represents the average of 1,000 simulated values respectively at each time.

The right-hand side of Figure 3 also shows two extreme cases of optimal land-use paths conditional on period t realizations

of crop productivity index states At(J1,t,J2,t). The realized crop productivity index always takes the highest possible value315

in a stochastic-optimistic case (the line of squares) and the lowest possible value in a stochastic-pessimistic case (the line of

marks). As future realizations of the stochastic crop productivity index are uncertain, these extreme stochastic solutions are

not the same as the corresponding deterministic solutions, where the values of the future crop productivity index are known

with certainty. In the stochastic-optimistic case, for example, potentially lower realizations of future crop productivity index

result in larger current-period agricultural land allocation as compared to the deterministic-optimistic solution. For other model320

variables, due to resource limits (e.g., the total land area is unchanged over time) and other constraints, the impact of uncertainty

is theoretically difficult to assess. Finally, to ensure consistent interpretation of deterministic and stochastic solutions, the right-

hand side of Figure 3 also shows the difference range between the deterministic-optimistic and deterministic-pessimistic cases

relative to their deterministic baselines (using the same markers as on the left-hand side of Figure 3).

We start a discussion of the left-hand side of panels (a)-(e) of Figure 3, which shows the optimal land use paths under perfect325

foresight. Given the methodological scope of the paper, we will cover these results briefly. Interested readers should refer to

Steinbuks and Hertel (2016) for a more detailed analysis of the perfect foresight model.

Beginning with the description of the baseline scenario, we see that, in the first half of the coming century, the area ded-

icated to food crops increases, peaking around mid-century and declining significantly thereafter (panel a), as population

growth declines while crop production and food processing technologies improve. Consistent with the literature on 2G biofu-330

els’ deployment potential (National Research Council, 2011), absent aggressive GHG regulations and biofuels’ policies, land

allocation for second-generation biofuels remains close to zero until the second half of the coming century (panel b). It then

10Since the SCEQ algorithm is based on simulation, additional simulations could lead to a wider range, and our current solution could underestimate the

range in comparison with the range from all possible simulation paths. The difference will, however, be small and won’t affect the economic significance of

the main findings.
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Figure 3. Optimal Global Land Use Paths
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becomes viable as fossil fuels become scarce and the costs of producing second-generation biofuels decline. This results in

greater land requirements for second-generation biofuels crops. As substitution of pasture land for animal feed in livestock

production increases (Taheripour et al., 2013), global pasture area declines while managed forest area increases throughout the335

entire century (panels c and d). Finally, unmanaged forest areas decline in response to greater requirements for agricultural

land (panel e), while protected forest areas will more than double by the end of the coming century in light of strong growth in

the demand for ecosystem services (panel f). The other two scenarios exhibit broadly similar dynamics.

We now turn to our main findings about the impacts of uncertainty in the crop productivity index on the distribution of

global land resources depicted on the right-hand side of panels (a)-(e) of Figure 3. Compared to deterministic scenarios, this340

uncertainty results in additional redistribution of land resources to offset the impact of potentially lower yields. The key reason

behind this finding is that social preferences exhibit relative risk aversion (Arrow, 1965; Pratt, 1964) in this stochastic appli-

cation of the FABLE model. Owing to risk aversion and high adjustment costs of future land conversion, some redistribution

takes place as a precautionary policy, even in the absence of actual changes in the states of climate or technology. This is a

well-known theoretical result in environmental economics literature (Tsur and Zemel, 2014). Compared to the deterministic345

baseline scenario, the median (i.e., the 50 percent quantile) path of global land use that corresponds to the “medium” state of

climate (J1,t = 3) and the “medium” technological state (J2,t = 2) foresees a smaller use of land for food crops (panel a), and

greater use of land for 2G biofuels’ crops (panel b), managed forests (panel d), and protected land resources (panel f). The

differences between stochastic and deterministic paths are small and economically insignificant for all other land resources.

This is because land conversion costs of agricultural land for other types of land become larger in the presence of uncertainty.350

These other types of land have higher adjustment costs of conversion associated with additional time costs of regrowing lumber

and livestock and irreversibilities in accessing protected land areas. Land rotation between food crops and 2G biofuels crops

is less costly in the FABLE model. This result is consistent with earlier studies that find that closer integration with the energy

sector offers greater potential for food-energy substitution and thus also a greater resilience against adverse climate conditions

affecting food crop yields (Diffenbaugh et al., 2012; Verma et al., 2014).355

While the direction of the effect of the uncertainty in the crop productivity on land conversion can be inferred from the

economic theory of environmental and natural resource management under uncertainty (see, e.g., Tsur and Zemel (2014) and

references therein), the extent to which this uncertainty propagates into land conversion depends critically on chosen model

structure and parameters. For example, Alexander et al. (2017, p.1) find that even in the absence of intrinsic uncertainty,

“systematic differences in land cover areas are associated with the characteristics modeling approach are at least as great as360

the differences attributed to scenario variations”. Depending on the assumptions on the substitution of land for other resources,

the size of technological progress, and the responsiveness of demand for land-based goods and services to changes in crop

productivity, this magnitude can be substantially different from other land use models. However, as we see in Figure 3, for the

same model parameters, the range of land conversion is considerably smaller for the dynamic stochastic model compared to

the deterministic scenario analysis. Unlike deterministic analysis, where the solutions paths always stay on a known ‘good’ or365

‘bad’ trajectory, stochastic analysis allows for future states not to stay in their ‘best’ or ‘worst’ stage. Consequently, optimal

land conversion decisions in the stochastic application of the FABLE model are less extreme.
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Turning to a specific example, we see from Figure 3, panel (a) the difference between the most extreme paths of the stochastic

crop productivity index is about 160 million hectares by 2100 or about 11 percent of the total agricultural area dedicated to food

crops. Much of that variation can be attributed to the most extreme (i.e., falling beyond 10th and above 90th percent quantiles)370

realizations of crop productivity. In line with the argument above, this is because the climate and technological states affecting

crop yields are reversible in the stochastic model (that is, if the current state is “bad” (or “good”), it could be “good” (or “bad”)

in the future).

Compared with the deterministic model under the pessimistic (or optimistic) scenario, the social optimum in the stochastic

model requires a smaller (or greater) conversion of other types of land to cropland. This is because when the current state375

of the crop technology index is the worst (best), its future states cannot be worse (better) and have a nonzero probability of

being better (worse). The expected future yields will then be better (worse) than the deterministic-pessimistic (optimistic)

scenario. As the size of expected crop yields affects the magnitude of the land conversion decisions, the range of stochastic

model solutions for agricultural land will be smaller than the range between the most extreme deterministic model solutions.

Note this result may not hold if the model solution space is unbounded. This concern doesn’t apply to the stochastic FABLE380

model because (i) the model’s time horizon is finite; (ii) the crop technology shocks are discrete and finite (hence bounded)

based on scientific projections used for the model’s calibration; (iii) all of the model’s state variables (land and fossil fuel

resources) are bounded because the total land and the total fossil fuel resources are finite; and (iv) we impose bounds on model

decision variables based on the theory of economic dynamics (Barro and Sala-i Martin, 2004), such as strictly positive and

finite consumption and output of land-based goods and services; land conversion cannot exceed the total supply of land). The385

solution space, therefore, must also be bounded because the extent of movement of optimal land uses in any direction is limited

by the constraints mentioned above.

Thus, the agricultural land area in the deterministic pessimistic (or optimistic) scenario is larger (or smaller) than the largest

(or the smallest) path in the stochastic simulations. For example, in 2100, under the deterministic-pessimistic scenario, the

cropland deviation from the deterministic-baseline scenario is about 110 million hectares, which is 30 percent larger than the390

largest deviation under the stochastic simulations and more than half of the deviation above the 90% quantile of the stochastic

crop technology index. This result (along with similar results for other land types) demonstrates that scenario analysis can

significantly overstate the magnitude of expected agricultural land conversion under uncertain crop yields.

5.2 Optimal Path of Land-Based Goods and Services under Crop Yield Uncertainty

We now turn to the discussion of optimal paths of land-based goods and services (4), keeping the same presentation structure395

as in the previous section. Deterministic model scenarios (shown on the left-hand side panels of Figure 4) for land-based goods

and services largely mimic trajectories of associated land resources. Specifically, we see steady increases in the production

of food crops (panel a), including livestock and biofuels feedstock, peaking around mid-century and moderating thereafter

as consumers satiate their food requirements and the technology of food marketing and processing improves. By 2100, crop

production for the livestock feed levels off and even begins to decline. Production of both first- and second-generation biofuels400

grows as oil becomes more scarce along the baseline path and agricultural yields increase (panels b and c). Along that optimal
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Figure 4. Optimal Paths of Land-Based Goods and Services
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path, first-generation biofuels never become a large source of energy consumption, while the production of second-generation

biofuels takes off sharply and expands rapidly after 2040 as they become cost-competitive relative to increasingly costly fossil

fuels. Production of livestock increases throughout the coming century (panel d), reflecting shifting diets and the growing

demand for processed meat as population income increases (Foley et al., 2011). Production of timber also expands with the405

growing demand for timber products and further improvements in forest yields (panel e). Finally, the consumption of ecosystem

services increases throughout most of the coming century as the demand for ecosystem services increases and more natural

forest lands become institutionally protected (panel f).

The results of the dynamic stochastic model simulations (shown on the right-hand side panels of Figure 4) show that un-

certainty in the crop productivity index has a profound effect on the optimal consumption paths of food crops, biofuels, and410

livestock, and much smaller effect on consumption paths of merchantable timber and ecosystem services. This result is not very

surprising as crop productivity does not directly affect the production of timber and ecosystem services, whereas indirect land

use change effects are relatively small in this stochastic application of the FABLE model. Observe that, unlike land use paths,

consumption of land-based goods and services is a decision rather than a state variable, and therefore, there are no significant

differences between deterministic and stochastic consumption paths.415

Focusing on the larger impacts, we see that between the most extreme paths of the stochastic crop productivity index, the

production of food crops varies by about 5.3 billion tons along both deterministic and stochastic policy paths. This is a sizable

change, which suggests a significant variation in levels of consumption in 2100 along different paths of the stochastic crop

productivity index. In the FABLE model, much of the variation in the optimal path of food crops comes on the demand side,

with the crop productivity decline resulting primarily in the reduced consumption of processed crops and livestock.11 As shown420

above, the uncertainty-induced supply response is relatively small along the extensive margin in the dynamic stochastic model

(i.e., land conversion). In the appendix (Figure A.2, panel a), we show that the supply response on the intensive margin is

smaller, with the ratio of fertilizers to cropland increasing by less than 6 kg/Ha (or eight percent) under extreme realizations

of climate and technology uncertainties. About half of that variation corresponds to the most extreme (i.e., falling beyond

10th and above 90th percent quantiles) realizations of crop productivity. This result indicates that extreme uncertainty in crop425

productivity could have a significant impact on food consumption over the coming century.

Uncertainty in food crop yields has important implications for the production of the first-generation biofuels that are directly

affected by both climate and technology states of food crop yields. The difference between the best and worst states of the

crop productivity index is about 31 million tons of oil equivalent, which exceeds their expected baseline production in 2100.

Although climate and technology states of food crop yields do not directly affect yields of the second-generation biofuels crops,430

production of second-generation biofuels is nonetheless affected through indirect substitution effects of food for energy in the

11Demand for land-based goods and services in the FABLE model is governed by the AIDADS demand system designed to encompass consumption

behavior across a wide range of incomes (Rimmer and Powell, 1996). This is essential for a dynamic model of the global economy. We have estimated three

key parameters for each commodity category – the subsistence level of consumption, the marginal budget share at very low (subsistence) income, and the

marginal budget share at very high levels of income. The former two are large for food products. In the FABLE model, baseline households become wealthier,

and the marginal budget share for food items and the subsistence share become very small, approaching zero for very high incomes. Consequently, households’

demand response becomes larger.
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FABLE demand system. There is a sizable variation in the production of second-generation biofuels between extreme paths of

the stochastic crop productivity index, which accounts for 450 Mtoe, or about 30 percent of their total production in 2100.

Given the important contribution of livestock feed in the production of livestock, we can see its production is smaller in the

pessimistic scenario and larger in the optimistic scenario. The difference in livestock production between the optimistic and435

pessimistic scenarios accounts for about 550 million tons. As the significance of animal feed in livestock production grows

over time, the effect of uncertain crop yields becomes more pronounced. Similar to the result for food crops, the most extreme

paths of crop productivity account for about a third of all variation in livestock production.

6 Conclusions

This paper shows the effects of uncertainties associated with nonstationary biophysical processes and technological change on440

the optimal allocation of natural resources in the long run. In doing so, it applies SCEQ, a cutting-edge computational method

for solving nonstationary dynamic high-dimensional stochastic problems, to FABLE, a multi-sectoral dynamic model of global

land use.

The study focuses on uncertainty in future crop yields, one of the core uncertainties affecting the evolution of global land

use in the long run. Combining scenarios from global climate models and high-resolution output from spatial crop simulation445

models for four major crops, it comes up with a plausible range of realizations of climate shocks and their effect on future crop

yields. These estimates are supplemented with an extensive survey of recent agro-economic and biophysical studies assessing

the potential for closing yield gaps as well as attaining further advances in potential yields through plant breeding.

The paper’s key insight is to illustrate the magnitude of optimal land conversion decisions in the context of different re-

alizations of stochastic crop productivity. Consistent with the economic theory of natural resource management under uncer-450

tainty, the agricultural productivity shocks due either to adverse climate impacts or unexpected limits on further technological

progress, resulting in additional conversion of scarce land resources to offset the impact of potentially lower yields. Owing to

intertemporal substitution, some of that conversion takes place even in the absence of actual realization of the climate shocks

or technology outcomes. This expansion is accompanied by changes in the consumption of processed food, livestock, and

biofuels- the land-based products most affected by changes in crop productivity.455

The chosen model (FABLE) seeks to balance computational complexity and economic tractability. It thus ignores many

features that are standard in more advanced computational land and other resource use models. Future research should focus

on integrating economic decisions under uncertainty into large dynamic natural resource models that feature spatial disaggre-

gation at the regional or zonal level, a more extensive representation of the energy sector, and different types of resources and

their production derivatives. Another promising research direction would be to incorporate a more detailed representation of460

uncertain states backed by an econometric analysis that recovers underlying distributions of uncertain natural resource drivers

over time.
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ibrated based on the GTAP land use database and publicly available data sources. Calibration details are available in the appendix. The465
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Appendix A: FABLE Model Description

This section describes key elements of the FABLE model, as well as its equations, variables, and model parameters. For a

full description of the model, including details on model baseline calibration and extensive sensitivity analysis, please refer to

Hertel et al. (2016) and Steinbuks and Hertel (2016) and technical appendices therein.480

A1 Primary Resources

Primary resources comprise land, liquid fossil fuels, and other primary inputs, e.g., labor and capital. The supply of land is fixed

and faces competing uses that are determined endogenously by the model. The flow of liquid fossil fuels evolves endogenously

along their optimal path, accounting for exogenous discoveries in new fossil fuel reserves. The endowment of other primary

inputs is exogenous and evolves along the prespecified global economy growth path.485

A1.1 Land

The total land endowment in the model, Ltotal, is fixed. It belongs to a global planner, which fully redistributes land rents

back to consumers of land-use goods and services. For each period of time t there are four profiles of land in the economy.
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They include unmanaged forest land, LN , agricultural land, LA, pasture land, LP , and commercially managed forest land, LC .

The agricultural land area can be allocated for the cultivation of food crops (denoted LA,c), and second-generation biofuels490

feedstocks (denoted LA,b2). We assume that the natural forest land consists of two types. Institutionally protected land, LR,

includes natural parks, biodiversity reserves, and other types of protected forests. This land is used to produce ecosystem

services for society, and cannot be converted to commercial land. Unmanaged natural land, LN , can be accessed and either

converted to managed land or to protected natural land. Once the natural land is converted to managed land, its potential

to yield ecosystem services is diminished. This potential can be partially restored for managed forests with significant land495

rehabilitation costs incurred. The use of managed land can be shifted between cropland, forestland, and pasture land (see

Figure 1 in the main manuscript for a graphical representation of these transitions). We denote land transition flows from land

type i to land type j as ∆i,j (a negative value means a transition from land type j to land type i). Equations describing the

allocation of land across time and different uses are as follows:

Ltotal =
∑

i=A,P,C,N,R

Li
t (A1)500

LA = LA,c +LA,b2 (A2)

LN
t+1 = LN

t −∆N,A
t −∆N,R

t +∆C,N
t (A3)

505

LA
t+1 = LA

t +∆N,A
t −∆A,P

t +∆C,A
t (A4)

LP
t+1 = LP

t +∆A,P
t (A5)

LR
t+1 = LR

t +∆N,R
t (A6)510

Equations (A1) and (A2) define, respectively, the composition of total land and agricultural land in the economy. Equations

(A3)-(A5) describe the transitions for unmanaged land, agricultural land, and pasture land.12 Equation (A6) shows the growth

path of protected natural land.

12Equations (A2) and (A4) do not account for the transition from forestry to pasture land. Throughout the past century, tropical forests, particularly in the

Latin America region, have been extensively converted to pasture land (Barbier et al., 1994). However, in the FABLE model, the conversion of forest land to

pasture is never optimal as cropland has higher productivity for cattle breeding at the same conversion (stumpage) cost.
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Accessing the natural lands comes at a cost associated with building roads and other infrastructure (Golub et al., 2009).

In addition, converting natural land to reserved land entails additional costs associated with passing legislation to create new515

natural parks. We denote the natural land access, rehabilitation, and protection costs asCN,A,R, CC,N , andCN,R, respectively.

There are also costs of switching between the cropland and the pasture land, denoted as CA,P . We assume that all these costs

are continuous, monotonically increasing, and strictly convex functions of converted land. Since we are not aware of empirical

studies estimating the magnitudes of long-term adjustment costs in land conversion problems we choose to calibrate these

parameters to match historical land conversion patterns. There are no additional costs of natural land conversion to commercial520

land, as the revenues from deforestation offset these costs.

Managed forests are characterized by vmax vintages of tree species with vintage ages v = 1, ...,vmax. At the end of period

t each hectare of managed forest land, LC
v,t, has an average density of tree vintage age v, with the initial allocation given and

denoted by LC
v,0. The forest rotation ages and management are endogenously determined. Each period the managed forest land

can be either planted, harvested, or left to mature. The newly planted trees occupy ∆C,C hectares of land, and reach the average525

age of the first tree vintage next period. The harvested area of tree vintage age v occupies ∆C,H
v hectares of forest land. The

difference between the harvested area of all tree vintage ages and the newly planted area is used for cropland, i.e.,

∆C,A
t =

∑
v

∆C,H
v,t −∆C,C

t

The following equations describe land use of managed forests:

LC
t =

vmax∑
v=1

LC
v,t, (A7)530

LC
v+1,t+1 = LC

v,t −∆C,H
v,t , v < vmax − 1 (A8)

LC
vmax,t+1 = LC

vmax,t −∆C,H
vmax,t −∆C,N

t +LC
vmax−1,t −∆C,H

vmax−1,t (A9)

LC
1,t+1 = ∆C,C

t . (A10)

Equation (A7) describes the composition of managed forest area across vintages. Equation (A8) illustrates the harvesting535

dynamics of forest areas with the ages vmax − 1 and vmax. Equation (A10) shows the transition from the planted area to new

forest vintage area.

The average harvesting and planting costs per hectare of new forest planted, co,H , and co,C , are invariant to scale and are

the same across all vintages. Harvesting managed forests and conversion of harvested forest land to agricultural land is subject

to additional near term adjustment costs, cH . The specific functional forms of land conversion costs are shown in section C,540

equations (C33)-(C38).

Thus, we have defined the vector of land state variables:

L=
(
LN ,LA,LP ,LR,LC

1 , ...,L
C
vmax

)
and its associated transition laws.
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A1.2 Fossil Fuels545

The initial stock of liquid fossil fuels, XF , is exogenous, and each period of time t adds a new amount of fossil fuels, ∆F,D,

which reflects exogenous technological progress in fossil fuel exploration. This technological progress comprises of both

discoveries on new exploitable oil and gas fields, as well as development of new technologies for extraction of non-conventional

fossil fuels. The economy extracts fossil fuels, which have two competing uses in our partial equilibrium model of land-use.

A part of extracted fossil fuels, ∆F,n
t , is converted to fertilizers that are further used in the agricultural sector. The remaining550

amount of fossil fuels, ∆F,E
t , is combusted to satisfy the demand for energy services. The following equation describes supply

of fossil fuels:

XF
t+1 =XF

t −∆F,E
t −∆F,n

t +∆F,D
t . (A11)

The cost of fossil fuels, cF , reflects the expenditures on fossil fuels’ extraction, refining, transportation and distribution, as well

the costs associated with emissions control (e.g., Pigovian taxes) in the non-land-based economy. We assume that the cost of555

fossil fuels is a nonlinear quadratic function with accelerating costs as the stock of fossil fuels depletes (Nordhaus and Boyer,

2000):

cFt = ξF1

(
∆F,E

t +∆F,n
t

)2(XF
0 +∆F,D

t

XF
t +∆F,D

t

)
, (A12)

where the parameter ξF1 captures the curvature of the liquid fossil fuel cost function.

A1.3 Other Primary Resources560

The initial endowment of all other primary resources in the non-land-based economy, such as labor, physical and human

capital, and materials inputs, XO, is exogenous in this model. We assume that the growth rate of all other primary resources is

a weighted average of the population growth, which reflects demographic changes, and the physical capital growth, κo,X . The

following equation describes the supply of other primary inputs:

XO
t =XO

0

[
αo,l Πt

Π0
+
(
1−αo,l

)(
1+κo,X

)t]
, (A13)565

where Πt is the economy’s population, and αo,l is the share of population growth to the growth rate of all other primary

resources. Other primary inputs can be used for the production of land-based goods and services or converted to final goods

and services in the non-land economy. The production costs incurred by using these inputs are exogenous and have an ‘iceberg’

representation, i.e., they are subtracted from the gross output of land-based goods and services. Thus, state variables for

resources other than land are defined as:570

X= (XF ,XO).

As XO is exogenous and deterministic, it is a degenerated state variable and not counted as a state variable for model solution

purposes.
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A2 Intermediate Inputs

We analyze six intermediate inputs used in the production of land-based goods and services: petroleum products, fertilizers,575

crops, biofuels, and raw timber. Fossil fuels are refined and converted to either petroleum products, xp, that are further com-

busted, or to fertilizers, xn, that are used to boost yields in the agricultural sector. Agricultural land and fertilizers are combined

to grow food crops, xc or 2G biofuels crops, xc,b2. Food crops can be further converted into processed food and 1G biofuels,

xb1, or used as an animal feed, xc,l. 2G biofuels crops can only be converted into 2G biofuels, xb2. 1G biofuels substitute

imperfectly for liquid fossil fuels in final energy demand, whereas 2G biofuels and liquid fossil fuels are the perfect substi-580

tutes The food crops used as animal feed and pasture land are combined to produce raw livestock, xl. Harvesting managed

forests yield raw timber, xw, that is further used in timber processing. The production functions for intermediate inputs can be

illustrated by the following equations

xjt = gj

(
∆

F,{E,n}
t ,L

{A,P}
t ,

∑
v

∆C,H
v,t ,xc,{l,b}

)
, j = p,n,c,b, l,w. (A14)

where ∆
F,{E,n}
t represents that either ∆F,E

t or ∆F,n
t is an argument of gj , similarly for L{A,P}

t and xc,{l,b}. The specific585

functional forms of gj (·) are shown in section C, equations (C13)-(C21).

A3 Final Goods and Services

We consider five per capita land-based services that are consumed in the final demand: services from processed crops, yf , live-

stock, yl, energy, ye, timber, yw, and ecosystem services, yr. Processed crops, livestock, and timber are respectively products

of food crops, raw livestock, and timber processing. The production of energy services combines liquid fossil fuels with the590

biofuels, and the resulting mix is further combusted. The ecosystem services are the public good to society, which captures

recreation, biodiversity, and other environmental goods and services. To close the demand system, we also include other goods

and services, yo, which comprise of consumption of other primary inputs not spent on the production of land-based goods and

services. We have defined all state variables for the deterministic model:

S := (L,X),595

and the vector of decision variables

at := (∆N,A
t ,∆N,R

t ,∆C,N
t ,∆A,P

t ,∆C,A
t ,∆C,H

1,t , ...,∆C,H
vmax,t,∆

C,C
t ,∆F,E

t ,∆F,n
t ,LA,F

t ,LA,B
t ,xt,yt),

where xt ≡ [xpt ,x
n
t ,x

c
t ,x

b
t ,x

l
t,x

w
t ,x

c,l
t ,xc,bt ] and yt =

(
yft ,y

l
t,y

e
t ,y

w
t ,y

r
t ,y

o
t

)
. The production functions for final per capita

land-based goods and services can be illustrated by the following equation:

yit = Yi
t (St,at) , i= f, l,e,w,r. (A15)600
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where some arguments in Yi
t (·) could be redundant. It follows from equation (A15) that production of final goods and services

involves the combination of land resources and intermediate inputs. The specific functional forms of Yi
t (·) are shown in section

C, equations (C22)-(C28), which are functions of L and {xj}. All these equations constitute a part of the feasibility constraint

at ∈ Dt(St).

The production of intermediate inputs or final land-based goods and services i incurs costs, co,i, that are subtracted from605

available other primary resources. The remaining amount of other primary resources is converted into other goods and services,

which are subsequently consumed in final demand. As the focus of this model is on the utilization of land-based resources, we

introduce the other goods and services, yo, in a very simplified manner. We introduce no additional cost of producing other

goods and services, assuming that it is reflected in the size of the endowment of other primary inputs. The specific functional

form for yo is shown in section C, equation (C27).610

A4 Preferences

The economy’s per-capita utility, u, is derived from the per capita consumption of processed crops, livestock, timber, energy

and ecosystem services, and other goods and services. Following the macro economic literature, we assume constant relative

risk aversion utility,

u(y) =
C(y)1−γ

1− γ
, (A16)615

where is the per capita consumption bundle of goods and services, C(y) is a nonlinear aggregator over y, and γ is the coefficient

of relative risk aversion, which captures the economy’s attitude to uncertain events. We choose a non-homothetic AIDADS

preference (Rimmer and Powell, 1996) to compute C(y) implicitly:

log(C(y)) =
∑

q=f,l,e,w,r,o

(
αq +βqC(y)
1+ C(y)

)
log
(
yq − yq

)
(A17)

where α, β, and yq are positive parameters with
∑

qαq =
∑

q βq = 1. These preferences place greater value on eco-system620

services, and smaller value on additional consumption of food, energy, and timber products as society becomes wealthier.

When γ = 1, our utility function is equivalent to the AIDADS utility.

A5 Welfare

We denote the transition laws of land, (A3)-(A6) and (A8)-(A10), as

Lt+1 =GL
t (St,at), (A18)625

and the transition laws for other resources, (A11)-(A13), as

Xt+1 =GX
t (St,at). (A19)
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Combining (A18) and (A19), we have

St+1 =Gt(St,at) (A20)

for the deterministic model in the notations of Section 2.630

The objective of the planner is to maximize the total expected welfare, which is the cumulative expected utility (i.e., a sum

of utilities in each state weighted by the probability of each state in a given period) of the population’s consumption of final

goods and services, y, discounted at the constant rate δ > 0. The planner allocates managed agricultural, pasture, and forest

lands for crop, livestock, and timber production, the scarce fossil fuels, and protected natural forests to solve the following

problem:635

max
a

∞∑
t=0

δtU(St,at) (A21)

subject to the transition laws (A20) and the feasibility constraints

Ft(St,at)≥ 0

which include (A15), (C22)-(C28), (C27), (A17) and nonnegativity constraints for the variables. Here

U(St,at) = u(yt)Πt640

is the utility function in the notations of Section 4.

Appendix B: Quantifying the Uncertainty in Crop Yields

B1 Uncertainty in Agricultural Technology

Advances in crop technology are very difficult to predict due to four interconnected factors (Fischer et al., 2011). First, there

is significant uncertainty about the potential for exploiting large and economically significant yield gaps (i.e., the differences645

between observed and potential crop yields) in developing countries, especially those in Sub-Saharan Africa. A second and

closely related point is that it is unclear how fast available yield-enhancing technologies can be adopted at a global scale. Third,

there is a significant variation in developing countries’ institutions and policies that make markets work better and provide a

conducive environment for agricultural technology adoption. Finally, while plant breeders continue to make steady gains in

further advancing crop yields, progress depends on the level of funding provided for agricultural research. This has proven to be650

somewhat volatile, with per capita funding falling in the decades leading up to the recent food crisis (Alston and Pardey, 2014).

The food price rises since 2007 have stimulated new investments. However, whether this interest will be sustained remains to be

seen. Overall, progress from conventional breeding is becoming more difficult. Transgenic (genetic modification) technologies

have a proven record of more than a decade of safe and environmentally sound use, and thus offer huge potential to address

critical biotic and abiotic stresses in the developing world. However, expected yield gains, costs of further developing these655

technologies, and the political acceptance of genetically modified foods are all highly uncertain.
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To quantify the extent to which the advances in crop technology can further boost agricultural yields over the next century,

we first need to assess the magnitude of existing yield gaps at the global scale. In a comprehensive study, Lobell et al. (2009)

report a significant variation in the ratios of actual to potential yields for major food crops across the world, ranging from 0.16

for tropical lowland maize in Sub-Saharan Africa to 0.95 for wheat in Haryana, India. For the purposes of this study, we employ660

the results of Licker et al. (2010), who conduct comprehensive yield gap analysis using global crop dataset of harvested areas

and yields for 175 crops on a 0.5◦ geographic grid of the planet for the year 2000. Using these estimates, we calculate the

global yield gap as the grid-level output-weighted yield gap of the four most important food crops (wheat, maize, soybeans,

and rice). The resulting estimate suggests that average yields are 53% of potential yields, which is close to the median estimates

by Lobell et al. (2009). As a further robustness check we employ the Decision Support System for Agrotechnology Transfer665

(DSSAT) crop simulation model (Jones et al., 2003), run globally on a 0.5 degree grid in the parallel System for Integrating

Impacts Models and Sectors (pSIMS; Elliott et al. 2014b) to simulate yields of the same four major food crops under best

agricultural management conditions and compare simulated yields to their observed yields. The resulting yield gap estimates

were not substantially different.

In the optimistic (i.e., “good”) state of advances in crop technology, we assume that yields continue to grow linearly through-670

out the coming century, eliminating the yield gap by 2100. This high yield scenario rests on the assumption of continued strong

growth in investment in agricultural research and development, widespread acceptance of genetically modified crops, continu-

ing institutional reforms in developing countries, and public and private investments in the dissemination of new technologies.

The erosion of any one of these component assumptions will likely result in a slowing of crop technology improvements. And

there are some grounds for pessimism. In a comprehensive statistical analysis of historical crop production trends, Grassini675

et al. (2013) note that

“despite the increase in investment in agricultural R&D and education [...] the relative rate of yield gain for the

major food crops has decreased over time together with evidence of upper yield plateaus in some of the most

productive domains. For example, investment in R&D in agriculture in China has increased threefold from 1981

to 2000. However, rates of increase in crop yields in China have remained constant in wheat, decreased by 64% in680

maize as a relative rate and are negligible in rice. Likewise, despite a 58% increase in investment in agricultural

R&D in the United States from 1981 to 2000 (sum of public and private sectors), the rate of maize yield gain has

remained strongly linear.”

To capture the possibility of much slower technological improvement in the coming century, we specify two more pessimistic

scenarios. In the “medium” state of technology, rather than closing the yield gap by 2100, average yields in 2100 are just685

three-quarters of yield potential at that point in time. In the “bad” state of technology, there is no technological progress, and

the crop yields stay the same as at the beginning of the coming century. This is the path on which we begin the simulation

in 2004. As previously noted, we then specify probabilities with which the crop technology index evolves across the different

states of technology.
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B2 Uncertainty in Climate Change Impacts690

In addition to crop technology uncertainty, there is great uncertainty about the physical environment in which this technology

will be deployed. In particular, long-run changes in temperature and precipitation are likely to have an important impact on

land productivity in agriculture (IPCC, 2014), and, therefore, the global pattern of land use. Quantification of the impact of

climate change on agricultural yields requires coming to grips with three interconnected factors (Alexandratos, 2011). First,

there is significant uncertainty in future GHG concentrations along the long-run growth path of the global economy. Second,695

the General Circulation Models (GCMs) developed by climate scientists to translate these uncertain GHG concentrations

into climate outcomes disagree about the spatially disaggregated deviations of temperature and precipitation from baseline

levels. Finally, there is significant uncertainty in the biophysical models used to determine how changes in temperature and

precipitation will affect plant growth and the productivity of agriculture in different agroecological conditions. The impact

of climate change on food crop yields depends critically on their phenological development, which, in turn, depends on the700

accumulation of heat units, typically measured as growing degree days (GDDs). More rapid accumulation of GDDs due to

climate change speeds up phenological development, thereby shortening key growth stages, such as the grain-filling stage,

hence reducing potential yields (Long, 1991). However, rising concentrations of CO2 in the atmosphere result in an increase in

potential yields due to improved water use efficiency, often dubbed the “CO2 fertilization effect” (Long et al., 2006). Sorting

out the relative importance of these effects and achieving greater confidence in evaluations of climate impacts on agricultural705

yields remains an important research question in the agronomic literature (Cassman et al., 2010; Rosenzweig et al., 2014).

To quantify the uncertainty in climate impacts on agricultural yields, we use ISIMIP fast-track crop simulation model data

(Rosenzweig et al., 2014). Specifically, we obtain results of four crop simulation models: GEPIC (Liu et al., 2007), LPJmL

(Bondeau et al., 2007), pDSSAT (Jones et al., 2003), and PEGASUS (Deryng et al., 2011). All models are run globally on a

0.5◦ grid over the period between 1971 and 2099 and weighted by the output of four major food crops (maize, soybeans, wheat,710

and rice). Since the FABLE model is not spatially explicit, we further aggregate gridded crop yields at a global scale using

weights of the size of the aggregate crop output per grid cell. To ensure simulation results’ comparability with the structural

parameters of the FABLE model, all models are run under Representative Concentration Pathways 6.0W/m
2 (RCP6) GHG

forcing scenario (Moss et al., 2008). We also consider alternative assumptions on CO2 fertilization effects. Observe that our

results are based on four crop simulation models though Rosenzweig et al. (2014) consider seven crop simulation models. The715

remaining three models have fewer crops and/or temporal frames for model baseline and are thus omitted. Rosenzweig et al.

(2014) find that five models, including GEPIC, LPJmL, and pDSSAT models considered in this analysis, yield broadly similar

predictions. One model (LPJ-GUESS) not covered here has much higher variation in predicted crop yields under different

climate scenarios. Our results may, therefore, understate the range of uncertainty of climate change impacts on potential crop

yields.720

To quantify uncertainty in temperature increases due to climate change, we employ outputs for five global climate models

(GCM): GFDL-ESM2M (Dunne et al., 2013), HadGEM2-ES (Collins et al., 2008), IPSL-CM5A-LR (Dufresne et al., 2012),
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MIROC-ESM-CHEM (Watanabe et al., 2011), and NorESM1-M (Bentsen et al., 2012). For each of the simulations, we fit a

linear trend to parsimoniously characterize the evolution of crop yields in the face of climate change over the coming century.

Figure A1 summarizes simulation results for four crop simulation models and five climate models (with and without fertil-725

ization effects) in 2100, normalized relative to assumed yield potential in the absence of climate change. There is significant

heterogeneity in terms of both direction and magnitude of climate impacts on agricultural yields across global climate models

when the CO2 fertilization effect is considered.13 Regardless of the chosen climate model, for the scenario with fertilization

effects, two out of four crop simulation models (LPJmL and pDSSAT) predict a moderate increase in potential yields (5-15

percent), whereas the PEGASUS model predicts a large decline in potential yields (20-30 percent). The GEPIC model predicts730

that on average crop yields will be little changed, showing a small increase in crop yields for some climate models and a

small decline for other models. The predictions of LPJmL and pDSSAT models are reversed when CO2 fertilization effects are

removed, showing a decline of about 10-15 percent in potential yields. The PEGASUS model predicts an even larger decline

in potential yields (30-35 percent), whereas the predictions of GEPIC model show a moderate decline of about 5-10 percent in

potential yields.735

Given a large variation in model predictions, we construct 5 states for potential crop yields under uncertain climate change.

These states correspond to quintiles of the distribution of different model outcomes for potential crop yields by 2100. Under

two optimistic states of the world, we observe a 2 and 15 percent increases in potential crop yields relative to the model baseline

whereby significant CO2 fertilization effects offset the negative effects of climate change. For the next two states, we see a 15

and 19 percent declines in potential crop yields relative to model baseline whereby CO2 fertilization effects are either small or740

nonexistent, and the negative effects of climate change tend to prevail. Finally, under the most pessimistic states of the world,

drastic adverse effects of climate change combined with the absence of any CO2 fertilization effects result in a 36 percent

decline in potential crop yields relative to the model baseline.

B3 Transition probabilities

The five possible values of the climate state J1,t are J1,1 = 0.64, J1,2 = 0.85, J1,3 = 0.89, J1,4 = 1.02, and J1,5 = 1.15, and745

its probability transition matrix is

P1 =



0.5 0.25

0.5 0.5 0.25

0.25 0.5 0.25

0.25 0.5 0.5

0.25 0.5


13Field trials show that higher atmospheric CO2 concentrations enhance photosynthesis and reduce crop water stress (Deryng et al., 2016). This fertilization

effect interacts with other factors such as nutrient availability, and current-generation crop models are characterized by large uncertainties regarding net CO2

fertilization potentials at larger spatial scales. In line with previous studies (Rosenzweig et al., 2014; Elliott et al., 2014a; Jägermeyr et al., 2016) we use a

constant CO2 case as pessimistic assumption regarding climate change effects, and a transient CO2 case according to the RCP concentration pathways to

reflect a more optimistic case.
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where P1,i,j represents the probability from the j-th value of J1,t to the i-th value, for 1≤ i, j ≤ 5. The three possible values

of the technological state J2,t are J2,1 = 1.45, J2,2 = 1.675, and J2,3 = 1.9, and its probability transition matrix is

P2 =


0.4423 0.1416 0.1311

0.4139 0.669 0.4367

0.1438 0.1894 0.4322

 ,750

where P2,i,j represents the probability from the j-th value of J2,t to the i-th value for 1≤ i, j ≤ 3. We assume that J2,t is

independent of J1,t.

B4 Model

After we add the risks, the state vector becomes

S := (L,X,J)755

where Jt = (J1,t,J2,t). And J is a Markov chain so it can be represented as Jt+1 =GJ
t (Jt, ϵt) where ϵt is a vector of shocks

with zero means. The problem is

max
a

E

{ ∞∑
t=0

δtU(St,at)

}
(B1)

subject to

Lt+1 = GL
t (St,at)760

Xt+1 = GX
t (St,at)

Jt+1 = GJ
t (Jt, ϵt)

and at ∈ Dt(St) representing the feasibility constraints, that is, inequality constraints and the equations other than the above

transition laws. The above transition laws are just a special case of

St+1 = Gt(St,at, ϵt)765

in the notations of Section 2 of this Appendix, so we can implement the SCEQ method to solve the dynamic stochastic

programming problem. Since our time of interest is T ∗ = 100 years, we change the problem (B1) to have a finite horizon with

T = 400 years as a larger T has little impact on our solution in the first 100 years.

In the step 2 of Algorithm 1 for the solution at time s, we replace ϵt by its zero mean to have St+1 =Gt(St,at,0), that is,

Jt+1 =GJ
t (Jt,0). But this Jt+1 =GJ

t (Jt,0) is only for simplicity in notations. In fact, since J is a Markov chain, we replace770

Jt by its mean conditional on the realized value of Js (i.e., its certainty equivalent approximation):

[J1π1,t,s, J2π2,t,s]
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for all t≥ s, where J1 = (J1,1, ...,J1,5), J2 = (J2,1,J2,2,J2,3), π1,t,s and π2,t,s are two column vectors representing proba-

bility distributions of J1,t and J2,t conditional on the realized values of J1,s and J2,s respectively. If the realized values of J1,s

and J2,s are J1,i and J2,j respectively, then we have π1,t,s = P t−s
1 π1,s,s and π2,t,s = P t−s

2 π2,s,s, where π1,s,s is a length-5775

column vector with 1 at the ith element and 0 everywhere else, and π2,s,s is a length-3 column vector with 1 at the jth element

and 0 everywhere else.

Appendix C: Model Equations, Variables and Parameters

C1 Equations

Land Use780

L=
∑

i=A,P,C,N,R

Li
t (C1)

LN
t+1 = LN

t −∆N,A
t −∆N,R

t +∆C,N
t (C2)

LA
t = LA,c

t +LA,b2
t (C3)

LA
t+1 = LA

t +∆N,A
t −∆A,P

t +∆C,A
t (C4)785

LP
t+1 = LP

t +∆A,P
t (C5)

LR
t+1 = LR

t +∆N,R
t (C6)

LC
t =

vmax∑
v=1

LC
v,t, (C7)

LC
v+1,t+1 = LC

v,t −∆C,H
v,t , v < vmax − 1 (C8)
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LC
vmax,t+1 = LC

vmax,t −∆C,H
vmax,t −∆C,N

t +LC
vmax−1,t −∆C,H

vmax−1,t, (C9)790

LC
1,t+1 =∆C,C

t (C10)

∆C,H
v,t ≤ LC

v,t, v < vmax

∆C,H
vmax,t +∆C,N

t ≤ LC
vmax,t

∆C,A
t =

vmax∑
v=1

∆C,H
v,t −∆C,C

t

Fossil Fuels795

XF
t+1 =XF

t −∆F,E
t −∆F,n

t +∆F,D
t (C11)

Other Primary Resources

XO
t =XO

0

[
αo,l Πt

Π0
+
(
1−αo,l

)
(1+κo,2)t

]
(C12)

Intermediate Products

xpt = θpt∆
F,E
t (C13)800

xnt = θn∆F,n
t (C14)

xnt = xn,ct +xn,b2t (C15)

xct = θct

(
αn
(
LA,c
t

)ρn

+(1−αn)(xn,ct )
ρn

) 1
ρn

(C16)
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xc,b2t = θc,b2t

(
αn
(
LA,b2
t

)ρn

+(1−αn)
(
xn,b2t

)ρn
) 1

ρn
(C17)

xb1t = θb1xc,bt (C18)805

xb2t = θb2
((
αb2
)θb2,K

t (K)
ρb2 +

(
1−αb2

)(
xc,b2t

)ρb2
) 1

ρb2

(C19)

xlt = θP
(
αl
(
LP
t

)ρl
+
(
1−αl

)(
xc,lt

)ρl
) 1

ρl (C20)

xwt =

vmax∑
v=1

θwv,t∆
C,H
v,t (C21)

Final Goods and Services

Y f
t = θft

(
xc −xc,b −xc,l

)
(C22)810

Y e
t = θet

(
αe
(
xb1t
)ρe

+(1−αe)
(
xpt +xb2t

)ρe
) 1

ρe (C23)

Y l
t = θltx

l
t, (C24)

Y w
t = θyw

t xwt (C25)

Y r
t = θr

 ∑
i=A,P,C

αi,r
(
Li
t

)ρr
+

1−
∑

i=A,P,C

αi,r

(LN
t + θRLR

t

)ρr

 1
ρr

(C26)

815

Y o
t = θo,1t


XO

t − 1
θo
0
[co,c

xc
t

At
+ co,cb

xc,b2
t

θc,b2
t

+ co,f
Y f
t

θf
t

+ co,pxpt + co,nxnt + co,bxb1t

+co,b2xb2t + co,lxlt + co,yl
θl
0Y

l
t

θl
t

+ co,wt ∆C,H
t + co,ywxwt

+co,rLR
t + cp∆C,C

t +CN
t +CR

t +CF
t +CH

t +CP
t +CC,N

t ]

 (C27)
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yt =
(
yft ,y

l
t,y

e
t ,y

w
t ,y

r
t ,y

o
t

)
=
(
Y f
t ,Y

l
t ,Y

e
t ,Y

w
t ,Y

r
t ,Y

o
t

)
/Πt (C28)

Technology (deterministic)

At =
ATA0e

κct

AT +A0 (eκct − 1)
(C29)

820

θwv,t =

0.00001 if v ≤ v

θ
w

v (1+κwv t) if v > v
,θ

w

v = exp

(
ψa −

ψb

(v− v)

)
(C30)

θit = θi0(1+κi)t, i= f,e, l,yw,o (C31)

Technology (stochastic)

At =
AT (J1,t,J2,t)A0e

κct

AT (J1,t,J2,t)+A0 (eκct − 1)
(C32)825

Costs

CN,A,R
t = ξn0

(
∆N,A

t +∆N,R
t

)
+ ξn1

(
∆N,A

t +∆N,R
t

)2
(C33)

CN,R
t = ξR0 ∆

N,R
t + ξR1

(
∆N,R

t

)2
(C34)

CF
t = ξF1

(
∆F,E

t +∆F,n
t

)2(XF
0 +∆F,D

XF
t +∆F,D

)
(C35)830

CH
t = ξH0

(
∆C,H

t −∆C,C
t

)2
+
∑
v

ξH1
LC
v,t+1 + ξH2

(C36)

CA,P
t = ξP1

(
∆A,P

t

)2
(C37)
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CC,N
t = ξC,N

0 ∆C,N
t + ξC,N

1

(
∆C,N

t

)2
(C38)

Preferences

u(y) =
C (y)1−γ

1− γ
(C39)835

log(C(y)) =
∑

q=f,l,e,w,r,o

(
αq +βqC(y)
1+ C(y)

)
log
(
yqt − yq

)
(C40)

Population

Πt =
ΠTΠ0e

κπt

ΠT +Π0 (eκ
πt − 1)

(C41)

Welfare840

Ω= E

{ ∞∑
t=0

δtU(St,at)

}
. (C42)

with U(St,at) = u(yt)Πt, S := (L,X,J), and

at := (∆N,A
t ,∆N,R

t ,∆C,N
t ,∆A,P

t ,∆C,A
t ,∆C,H

1,t , ...,∆C,H
vmax,t,∆

C,C
t ,∆F,E

t ,∆F,n
t ,LA,F

t ,LA,B
t ,xt,yt).
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Figure A1. Changes in Potential Crop Yields under RCP 6 Scenario in 2100
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Figure A2. Consumption of Fertilizers and Biofuels

39



Table A1. Model Exogenous Variables

Parameter Description Units

Exogenous Variables

∆F,D
t Flow of Newly Discovered Fossil Fuels trillion toe

XO
t Other Primary Goods trillion USD

At Crop Technology Index

θc,b2t 2G biofuels Crop Technology Index

θb2,Kt 2G Biofuels Fixed Factor Decay Index

θwv,t Logging Productivity Index

θft Food Processing Productivity Index

θet Energy Efficiency Index

θlt Livestock Processing Productivity Index

θy
w

t Wood Processing Productivity Index

θot Total Factor Productivity Index

CF
t Fossil Fuel Extraction Cost share of XO

t

CN
t Natural Land Access Cost share of XO

t

CR
t Natural Land Protection Cost share of XO

t

CH
t Managed Forest Conversion Cost share of XO

t

CP
t Pasture Land Conversion Cost share of XO

t

CC,N
t Natural Land Restoration Cost share of XO

t

Πt Population billion people
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Table A2. Model Endogenous Variables

Parameter Description Units

LA
t Agricultural Land Area GHa

LA,c
t Agricultural Land Area, food crops GHa

LA,b2
t Agricultural Land Area, 2G biofuels crops GHa

LP
t Pasture Land Area GHa

LC
t Commercial Forest Land Area GHa

LN
t Unmanaged Natural Land Area GHa

LR
t Protected Natural Land Area GHa

∆N,A
t Flow of Deforested Natural Land GHa

∆N,R
t Flow of Protected Natural Land GHa

∆C,N
t Flow of Restored Natural Land GHa

∆C,A
t Managed Forest Land Converted to Agriculture GHa

∆C,C
t Replanted Forest Land Area GHa

∆C,H
v,t Harvested Forest Land Area of Vintage v GHa

∆A,P
t Agricultural Land Converted to Pasture GHa

XF
t Stock of Fossil Fuels Ttoe

∆F,E
t Flow of Fossil Fuels Converted to Petroleum Ttoe

∆F,n
t Flow of Fossil Fuels Converted to Fertilizers Ttoe

xpt Petroleum Products Gtoe

xnt Fertilizers Gton

xct Food Crops Gton

xc,b2t 2G Biofuels Crops Gton

xb1t 1G Biofuels Gtoe

xb2t 2G Biofuels Gtoe

xlt Livestock Gtoe

xwt Raw Timber Gton

Y f
t Services from Processed Food billion USD

Y e
t Energy Services billion USD

Y l
t Services from Processed Livestock billion USD

Y w
t Services from Processed Timber billion USD

Y r
t Eco-system Services billion USD

Y o
t Other Goods and Services trillion USD
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Table A3. Baseline Parameters

Parameter Description Units Value

Population

Π0 Population in 2004 billion people 6.39

ΠT Population in time T billion people 10.1

κπ Population Convergence Rate 0.042

Land Use

L Total Land Area billion Ha 8.56

LA
0 Area of Agricultural Land in 2004 billion Ha 1.53

LP
0 Area of Pasture Land in 2004 billion Ha 2.73

LC
0 Area of Commercial Forest Land in 2004 billion Ha 1.62

LN
0 Area of Unmanaged Natural Land in 2004 billion Ha 2.47

LR
0 Area of Protected Natural Land in 2004 billion Ha 0.207

ξn0 Access Cost Function Parameter 0.6

ξn1 Access Cost Function Parameter 105

ξR0 Protection Cost Function Parameter 4.5

ξR1 Protection Cost Function Parameter 400

ξP1 Pasture Conversion Cost Function Parameter 170

ξH0 Forest Conversion Cost Function Parameter 80

ξH1 Forest Conversion Cost Function Parameter 0.004

ξC,N
0 Natural Land Restoration Cost Parameter 0.8

ξC,N
1 Natural Land Restoration Cost Parameter 400

Fossil Fuels

XF
0 Endowment of Fossil fuels in 2004 trillion toe 0.343

∆F,D Flow of Newly Discovered Fossil Fuels trillion toe 0.008

ξF1 Fuel Extraction Cost Function Parameter 2000

Other Primary Goods

XO
0 Endowment of Other Primary Goods in 2004 USD × 1013 3.16

κo,X Growth Rate of Physical Capital 0.0035

αo,l Share of demographic factors in growth of XO
t 0.39

Intermediate Products

θp Petroleum Conversion Factor per toe of ∆F,E
t 0.5

co,p Petroleum Conversion Cost share of XO
t 0.0157
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Table A3: Baseline Parameters (continued)

Parameter Description Units Value

θn Fertilizer Conversion Factor Tton / Ttoe 1.071

co,n Fertilizer Conversion Cost share of XO
t 0.0021

θb1 1G Biofuels Conversion Rate toe/ton 0.283

θb2 2G Biofuels Conversion Rate toe/ton 0.467

K 2G Biofuels Fixed Factor Index 0.005

co,b1 1G Biofuels Conversion Cost share of XO
t 0.00025

co,b2 2G Biofuels Conversion Cost share of XO
t 0.00033

an Share of Agricultural Land in CES function 0.55

ρn CES Parameter for Agricultural Land and Fertilizers 0.123

A0 Crop Technology Index in 2004 13.89

κc Logistic Growth Rate of Crop Technology Index 0.025

co,c Food Crop Production Cost share of XO
t 0.016

θc,b20 2G Biofuels Crop Technology Index in 2004 14.89

κb2 2G Biofuels Fixed Factor Decay Rate 0.05

αb2 Fixed Factor Cost Share in 2G Biofuels Production 0.6

ρb2 CES Parameter for Fixed Factor and Agr. Land -1.5

co,c 2G Biofuels Crops Production Cost share of XO
t 0.022

θP Livestock Technology Index in 2004 0.69

al Share of Pasture Land in CES function 0.35

ρl CES Parameter for Pasture Land and Feed -0.33

co,l Livestock Production Cost share of XO
t 0.0055

ψa Merchantable Timber Yield Parameter 1 5.62

ψb Merchantable Timber Yield Parameter 2 76.5

v Minimum Age for Merchantable Timber Years 11

κwv Timber Yield Gains of Vintage v Share of Yield 0 0.011

cp Forest Planting Cost share of XO
t 0.0001

co,w Forest Harvesting Cost share of XO
t 0.0021

Final Goods and Services

θf0 Food Processing Technology Index in 2004 1.5

κf Food Processing Technology Index Growth Rate 0.0225

co,f Food Processing Cost share of XO
t 0.015

θl0 Livestock Processing Technology Index in 2004 1.7

κl Livestock Processing Technology Growth Rate 0.0025

co,yl Livestock Processing Cost share of XO
t 0.0068
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Table A3: Baseline Parameters (continued)

Parameter Description Units Value

θe0 Energy Technology Index in 2004 1.195

κe Energy Technology Index Growth Rate 0.0225

ρe CES Parameter for Petroleum and Biofuels 0.5

αe Share of Biofuels in CES Function 0.09

θyw

0 Timber Processing Technology Index in 2004 1.52

κyw Timber Processing Technology Growth Rate 0.0225

co,yw Timber Processing Cost share of XO
t 0.0224

θr Ecosystem Services Technology Index 0.71

αA,r Share of Agricultural Land in CES Function 0.02

αP,r Share of Pasture Land in CES Function 0.14

αC,r Share of Managed Forest Lands in CES Function 0.26

ρr CES Parameter for Ecosystem Services 0.123

θR Effectiveness Index of Protected Lands 10

co,r Cost of Recreation Services 0.0296

θo0 Total factor Productivity Index in 2004 1.854

κo Total Factor Index Growth Rate 0.0225

Preferences and Welfare

αf AIDADS Marginal Budget Share at Subsistence

Income for Services from Processed Food

0.189

αl AIDADS Marginal Budget Share at Subsistence

Income for Services from Processed Livestock

0.035

αe AIDADS Marginal Budget Share at Subsistence

Income for Energy Services

0.112

αw AIDADS Marginal Budget Share at Subsistence

Income for Services from Processed Timber

0.036

αr AIDADS Marginal Budget Share at Subsistence

Income for Ecosystem Services

0.049

αo AIDADS Marginal Budget Share at Subsistence

Income for Other Goods and Services

0.579
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Table A3: Baseline Parameters (continued)

Parameter Description Units Value

βf AIDADS Marginal Budget Share at High Income

for Services from Processed Food

0.028

βl AIDADS Marginal Budget Share at High Income

for Services from Processed Livestock

0.011

βe AIDADS Marginal Budget Share at High Income

for Energy Services

0.049

βw AIDADS Marginal Budget Share at High Income

for Services from Processed Timber

0.032

βr AIDADS Marginal Budget Share at High Income

for Ecosystem Services

0.104

βo AIDADS Marginal Budget Share at High Income

for Other Goods and Services

0.776

γf AIDADS Subsistence Parameter for Processed Food 0.45

γl AIDADS Subsistence Parameter for Processed

Livestock

0.003

γe AIDADS Subsistence Parameter for Energy

Services

0.026

γw AIDADS Subsistence Parameter for Processed

Timber Products

0.027

γr AIDADS Subsistence Parameter for Ecosystem

Services

0.028

γo AIDADS Subsistence Parameter For Other Goods

and Services

0.346

γ Risk Aversion Parameter 2

δ Social Discount Rate 0.95
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