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Abstract. Polyphase deformation of continental crust is analysed through physical analogue models for settings where 

platform-basin geometries at passive continental margins are subject to subsequent shortening and orogenesis. In a first stage, 

segmentation of the brittle and brittle-ductile models into basins and platforms is achieved by extension. Basins are partly 10 

filled with brittle material to allow for a strength differencesdifference between basin and platform realms, simulating relatively 

weaker, incompetent deposits of grabens surrounded by competent pre-rift basement or carbonate platform rock, respectively. 

In a second stage of deformation, contraction parallel toand oblique (10 to 20 degrees) with respect to the basin axes has been 

applied leading to the inversion of earlier formed basins. The experiments show that the simple presence of an inheritedstrength 

contrasts across platform-basin configurationtransitions controls the localisation and overall style of compressional 15 

deformation, no matterirrespective of the nature of including the basal décollement (frictional orversus viscous basal 

décollements, of varying), the rheology of the basin fill, or of changing platform-basin thickness ratios. Orientations of thrust 

faults change laterally across inherited platform-basin transitions throughout all experiments; higher obliquity of basin 

inversion leadingleads to stronger alignment of thrust curvature of thrusts with respect to the orientation of pre-existing rift 

axes. VariationsAt individual thrust faults, variations in the strike of thrust fronts are accompanied bywith changes of the 20 

shortening direction along one single fault and time step. Furthermore, our models support localisationduring incremental 

phases of deformation in areas of lateral strength contrasts, as platform-basin transitions represent. Reactivation of normal 

faults occurs in oblique basin inversion settings only, favourably at platform-basin transitions where the normal faults face the 

shortening direction. The amount and style of fault reactivation depend on the material used. Both parallel and oblique 

inversion Our experiments can be applied to polyphase deformed continental crust,are relevant for natural cases such as, e.g., 25 

the Dolomites Indenter of the eastern Southern Alps. Our models involving two phases of deformation, suggest that underlining 

the whole tectonic evolution of the Dolomites Indenter is controlled by importance of inherited geologic features. Fault slip 

data and for the subsequent shortening directions from fold axes from our field case study alonggeometries. Field structural 

data from the western segment of the Belluno thrust of the Valsugana fault system support predicted variations of thrust fault 

orientation and a lateral change in shortening direction (from SSW to SSE along strike) along one single fault. Based on our 30 

modelling results, we infersuggest that this variability of thrust fault orientation and shortening directions depends on, 
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controlled by inherited structures and do, is consistent with strain partitioning during a single phase of deformation and does 

not necessarily reflect different deformation phases. 

Keywords. Crustal-scale analogue modelling, parallel to oblique basin inversion, polyphase deformation, lateral strength 

contrasts, eastern Southern Alps, Dolomites Indenter.  35 

1 Introduction 

Shortening of passive continental margins is typicallyoften associated with the reactivation of inherited normal faults, inversion 

of sedimentary basins, and their incorporation in fold- and thrust belts (e.g., Turner and Williams, 2004; Cooper and Warren, 

2020). Inverted sedimentary basins are known from numerous orogenic settings worldwide, from, e.g., the European Alps 

(Boutoux et al., 2014; Gillcrist et al., 2015; Granado et al., 2016; Oswald et al., 2018; Héja et al., 2022), the Apennines 40 

(Scisciani et al., 2001; Pace et al., 2014), the Pyrenees (Tavani et al., 2011; Mencos et al., 2015), Iberia (Ramos et al., 2017), 

the Atlas Mountains of Morocco (Beauchamp et al., 1999) and Algeria (Bracène and Froizon De Lamotte, 2002), and from the 

South American Andes (Kley and Monaldi, 2002; Giambiagi et al., 2003; Kley et al., 2005; Carrera et al., 2006). For 

understandingAnalogue modelling is frequently used for studying complex and large-scale 3D tectonicdeformation patterns 

resulting from superposed extensionextensional and compressioncompressional deformation phases, tectonic inversion was 45 

already long studied through analogue (e.g., Buchanan and Mcclay, 1991; Sassi et al., 1993; Brun and Nalpas, 1996; Amiliba 

et al., 2005; Panien et al., 2005; Mattioni et al., 2007; Yagupsky et al., 2008; Cerca et al., 2010; Yamada and Mcclay, 2010; 

Bonini et al., 2012; Di Domenica et al., 2014; Granado et al., 2017; Deng et al., 2020; Zwaan et al., 2022) and. Together with 

numerical modelling (Buiter et al., 2006; Panien et al., 2006; Buiter et al., 2009; Granado and Ruh, 2019; Ruh, 2019) 

modelling.fundamental insights are obtained allowing to infer favourable mechanic and kinematic conditions for basin 50 

inversion. These studies confirm conceptual ideas (e.g., Sibson, 1985) and demonstrate that fault reactivation in inversion 

settings indeed strongly depends on the orientation and the dip angle of pre-existing faults or crustal discontinuities and on the 

rheology of rocks in foot- and hanging walls. Additionally, a combination of lateral, stratigraphically controlled, mechanical 

differencesvariations and pre-existing structures in basement or cover sequences often controls the location of so called 

transverse or transfer zones, which connect differingdifferent styles of deformation along strike of thrust belts (Thomas, 1990). 55 

Within the European Alps, a prominent example of inverted sedimentary basins, which are now part of a fold- and thrust belt 

is the polyphase deformation history of, is the eastern Southern Alps. The relationship between Mesozoic extension, resulting 

in laterally distinct stratigraphic successions related to the structuration of the Adriatic crust into basins and platforms 

(Bernoulli and Jenkyns, 1974; Winterer and Bosellini, 1981; Sarti et al., 1992; Bertotti et al., 1993), and Cenozoic compression 

was intensively discussed by Doglioni (1987, 1991, 1992), as their interaction is crucial to understand the tectonic evolution 60 

of the eastern Southern Alps. Based on field evidences from the Dolomites (eastern Southern Alps Eeast of Bozen/Bolzano, 

Wwest of the Cadore region and N of Valsugana fault system) and the Venetian Pre-Alps (eastern Southern Alps Ssouth of 

Valsugana fault system towards the Venetian plain) (Doglioni, 1991, 1992; Schönborn, 1999), and from the Friuli-Alps 
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(eastern Southern Alps Eeast of Cadore region, W of the Italian-Slovenian border) (Nussbaum, 2000), contrasting ideas for 

the evolution of inversion structures were proposed. 65 

Through a series of crustal scale analogue modelsexperiments, we investigate the effect of an early extensional phase leading 

to differentiation of the crust in platforms and basins on a later compressional phase, which is relevant for the discussion of 

inversion tectonics in settings such as the eastern Southern Alps. In particular, we test the hypothesis that pre-existing NNE-

SSW trending normal faults are of paramount importance for understanding and explaining Paleogene to Neogene crustal 

deformation of the Dolomites Indenter. More precisely, we aim at demonstrating causal relationships between lateral changes 70 

of thrust fault orientations and the inherited fault-bound basin to platform transitions in extended crust. We substantiate our 

findings by comparison with field observations, e.g., with the Belluno area, where the western (i.e., Trento) platform merges 

into the eastern (i.e., Belluno) basin. 

2 Geological setting of the Dolomites Indenter 

In the evolution of the European Alps, the Adriatic plate is traditionally considered as rigid indenter (i.e., Adriatic indenter) 75 

(Schmid et al., 2004) and research mainly focused along its confining fault system, e.g., the Periadriatic fault system, the 

Giudicarie belt, and the Valsugana and Montello fault systems (Fig. 1) and areas to the north elucidating collision and extrusion 

tectonics (Ratschbacher et al., 1991; Scharf et al., 2013; Favaro et al., 2017; Rosenberg et al., 2018). An indenter is known as 

a piece of rigid continental crust which, after collision, moves into weaker parts of an orogen (Tapponnier et al., 1986; Reiter 

et al., 2018)In continent-continent collision settings, an indenter is defined as a piece of relatively rigid continental lithosphere 80 

which, upon collision, deforms weaker lithosphere in front (Tapponnier et al., 1986). In the evolution of the European Alps, 

the Adriatic plate is traditionally considered as rigid tectonic element often referred to as Adriatic Indenter (e.g., Schmid et al., 

2004) and research mainly focused along its confining fault system, e.g., the Periadriatic fault system, the Giudicarie belt, and 

the Valsugana and Montello fault systems (Fig. 1) and areas to the north elucidating collision and extrusion tectonics 

(Ratschbacher et al., 1991; Scharf et al., 2013; Favaro et al., 2017; Rosenberg et al., 2018). Following Schmid et al. (2004), 85 

we use the term Adriatic (micro)plate as part of greater Apulia which is located south of the Periadriatic fault system; Apulia 

being paleogeographically understood as consisting of all continental realms between the Neotethys in the south and the Alpine 

Tethys in the north. However, the structure of the northernmost part of the Adriatic microplate within the eastern Southern 

Alps of Italy and Slovenia, referred to as Dolomites Indenter (Rosenberg et al., 2007), demonstrates significant internal 

deformation. This continental indenter contains the structural memory of Permian and Late Triassic to Early Jurassic 90 

extensional phases, which possibly controls thrust fault orientations related to Neogene to recent fold-and-thrust belt formation 

(Bosellini, 1965; Doglioni, 1992) in the eastern Southern Alps, with mainly in-sequence deformation towards its external 

southern parts (Selli, 1998; Castellarin et al., 2006). 

The eastern Southern Alps are bordered by the Pustertal-Gailtal fault (a part of the Periadriatic fault system) to the north, the 

Venetian plain to the south and the Giudicarie fault system and the Giudicarie belt to the west (Fig. 1a). The term “eastern 95 
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Southern Alps equals the term ” is used synonymously to “Dolomites Indenter, which in turn equals” and refers to the eastern 

part of the Adriatic indenter. The Indenter. Therefore, the Dolomites Indenter therefore represents the front of the Neogene to 

ongoing N(W)-directed continental indentation of Adria into Europe. The indentation leads to the offset of the Periadriatic 

fault system along the Giudicarie fault system (Pomella et al., 2011), to the doming of the Tauern Window (Scharf et al., 2013; 

Schmid et al., 2013; Favaro et al., 2017; Rosenberg et al., 2018), to eastward lateral extrusion of crustal fragments of the 100 

Eastern Alps (Ratschbacher et al., 1991; Rosenberg et al., 2007), and to overall S-directed folding and thrusting of the eastern 

Southern Alps (Doglioni and Bosellini, 1987). In order to asses whether and how inherited platform-basin geometries affect 

younger, Alpine deformation, it is of importance toIn the following sections we characterise the Permian to Jurassic extension 

and Paleogene to Neogene shortening of the Dolomites Indenter. in order to asses whether and how inherited platform-basin 

geometries affect younger, Alpine deformation.  105 

 

[Figure 1] 

2.1 Permian to Jurassic extensional phases 

A first rifting event affecting the Adriatic crust started during the Lower Permian and was related to the opening of the 

Neotethys (i.e., Meliata-Hallstatt Ocean) Early Permian and was related to large-scale intracontinental dextral transform shear 110 

(Muttoni et al., 2003) (or to the opening of the Neotethys (i.e., Meliata-Hallstatt Ocean) according to, e.g., Stampfli and Borel, 

2002; Stampfli et al., 2002; Schmid et al., 2004). Extension lead to the formation of N-S trending normal faults and ENE 

trending. Late Permian to Upper Triassic (Carnian) extension (Bertotti et al., 1993) lead to the formation of N-S striking normal 

faults and ENE striking transfer faults (Doglioni, 1991), accompanied by the deposition of the up to ~2 km thick Athesian 

Volcanic Complex (Bosellini et al., 2007; Morelli et al., 2007; Marocchi et al., 2008; Brandner et al., 2016) (Figs. 1b, 2a). A 115 

second rifting event during the Late Triassic to Early Jurassic, associated with the opening of the Alpine Tethys (Sarti et al., 

1992; Schönborn, 1999; Nussbaum, 2000; Masetti et al., 2012; Picotti and Cobianchi, 2017) (or to the opening of the Neotethys 

Ocean according to, e.g., Vrabec et al. (2009)),(or to the opening of the Neotethys Ocean according to, e.g., Vrabec et al., 

2009), segmented the Adriatic passive continental margin into submarine carbonate platforms and basins, which are bordered 

by N(NE)-S(SW) trendingstriking, crustal-scale normal faults (Winterer and Bosellini, 1981; Doglioni, 1991; Sarti et al., 1992; 120 

Bertotti et al., 1993; Selli, 1998; Busetti et al., 2010; Picotti and Cobianchi, 2017; Le Breton et al., 2021) (Figs. 1b, 2b). These 

normal faults reach into the upper and middle crust to depths of about 10 km (Martinelli et al., 2017) or to 20 km (Masetti et 

al., 2012)(e.g., Pogallo fault in Handy, 1987; Lugano fault in Bertotti, 1990), and are associated with minor normal faults 

reaching down to about 4 to 7 km depth (Pieri and Groppi, 1981Bertotti et al., 1993). 

From west to east, four major domains, bounded by N-S striking rift faults, were formed: the Lombardian basin, the Trento 125 

platform, the Belluno basin, and the Friuli platform (Winterer and Bosellini, 1981) (Figs. 1b, 2). The Lombardian basin has 

the Ballino-Garda line, which is part of the Giudicarie belt, at its eastern border towards the Trento platform and therefore 

belongs to the western Southern Alps. The Trento platform is located east of the Ballino-Garda line and is split into a northern 
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and a southern part by the SW-NE trending Valsugana fault system. The northern Trento platform shows differential syn-

sedimentary subsidence (Sarti et al., 1992; Martinelli et al., 2017) (Figs. 1b, 2) and its location approximately coincides with 130 

the extent of the Permian Athesian Volcanic Complex (Fig. 1b). The southern Trento platform (i.e., Venetian Pre-Alps) shows 

a thicker and more continuous sedimentary cover than the northern Trento platform (Fig. 2a). The Belluno basin is narrower 

in its W-E extent and shows a more complex geometry compared to basins west of the Ballino-Garda line as it is N-trending 

in its central part, but NE-trending towards the Carnia region (Sarti et al., 1992). Whether and how the Belluno basin merges 

into the Slovenian basin, located north of the Friuli platform and NE of the Belluno basin (Fig. 1b), is topic of 135 

discussiondiscussions (Smuc and Goričan, 2005; Van Gelder et al., 2015). The Friuli platform (i.e., Dinaric carbonate platform 

(Smuc, 2005))(i.e., Dinaric carbonate platform in Smuc, 2005) shows stable shallow water sedimentation during most of the 

Jurassic and Cretaceous (Nussbaum, 2000; Merlini et al., 2002; Kastelic et al., 2008; Picotti and Cobianchi, 2017; Moulin and 

Benedetti, 2018) and merges intotransitions to the vast Adriatic carbonate platform (Vlahović et al., 2005) to the southeast. 

 140 

[Figure 2] 

 

2.2 Paleogene to Neogene shortening 

Continental collision between Adria and Europe resulted in a first compressional phase (i.e., Pre-Adamello phase) within the 

western Southern Alps (i.e., Insubric Indenter west of the Giudicarie belt; Rosenberg et al. (2007))(i.e., Insubric Indenter west 145 

of the Giudicarie belt; Rosenberg et al., 2007) which is mostly S-directed (Schönborn, 1990; Carminati et al., 1997), preceding 

the Adamello intrusion and therefore pre-middle Eocene in age (Zanchi et al., 2012; Zanchetta et al., 2013) and not documented 

within the eastern Southern Alps (Castellarin et al., 1992). During the Paleogene, the eastern Southern Alps were in a foreland, 

pro-wedge position to Dinaric post-collisional shortening (Ustaszewski et al., 2010). Especially the eastern part of the eastern 

Southern Alps, from Gadertal/Val Badia eastward, shows mainly thin-skinned (Doglioni, 1987), WSW- to SW-directed 150 

Dinaric shortening (Doglioni and Bosellini, 1987; Caputo, 1996; Keim and Stingl, 2000; Nussbaum, 2000) of about 10-15 km 

(Doglioni, 1992), whereas the western Venetian plain and the western Dolomites were representing the foreland to the external 

Dinarides (Poli et al., 2021). After a short phase of extension and transtension accompanied by volcanism (i.e., Veneto 

Volcanic Province, Zampieri (1995); Beccaluva et al. (2007)) within the southern Trento platform NE of Verona (Fig. 1b), 

SSE-directed shortening in the eastern Southern Alps starts in Late Oligocene (Fantoni and Franciosi, 2010; Vignaroli et al., 155 

2020) to Miocene (Venzo, 1940; Castellarin and Cantelli, 2000) times.After a short phase of extension and transtension 

accompanied by volcanism (i.e., Veneto Volcanic Province, Zampieri, 1995; Beccaluva et al., 2007) within the southern Trento 

platform, NE of Verona (Fig. 1b), SSW-directed shortening in the eastern Southern Alps starts in Late Oligocene and SSE-

directed shortening in Miocene (Venzo, 1940; Castellarin et al., 1992; Castellarin and Cantelli, 2000) times. From the Late 

Oligocene onwards, the eastern Southern Alps represent the retro-wedge of the Alpine orogen (Castellarin and Cantelli, 2000). 160 

The Late Triassic to Jurassic platform-basin configuration was shortened and inverted; the Dinaric fold-and-thrust belt got 
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overprinted by overall SSE-directed deformation (Mellere et al., 2000; Placer et al., 2010). From north to south, the major 

Neogene faults within the eastern Southern Alps are (i) the Valsugana fault system, including Valsugana and Belluno thrusts 

and its N-directed back-thrusts, the Villnöss/Funes and Würzjoch/Passo delle Erbe faults (ii) the blind Bassano-Valdobbiadene 

thrust with the Bassano anticline in its hanging wall and its N-directed back-thrust, the Val di Sella back-thrust (Selli, 1998), 165 

and (iii) the blind Montello thrust with the Montello anticline in its hanging wall, representing the most external structural 

feature of the eastern Southern Alps (Picotti et al., 2022). 

The main shortening phase within the Dolomites Indenter (i.e., Valsugana phase) takes place during the Miocene (17-9 Ma), 

according to the available butand is constrained by scarce thermochronological datasetdata (Zattin et al., 2006; Pomella et al., 

2012; Heberer et al., 2017). Crystalline basement in the hanging wall of the Valsugana thrust clearly shows Neogene thick-170 

skinned thrusting in the western part of the eastern Southern Alps (i.e., western Dolomites), but does not crop out in eastern 

part of the eastern Southern Alps (Friuli region) above the main thrust. Serravallian to Tortonian sediments are deformed by 

the Valsugana thrust (Doglioni, 1992), representing the final push along the Valsugana fault system. Pliocene sediments are 

folded above the frontal triangle zone of the Montello thrust (Doglioni, 1992; Ortner et al., 2016).Further south, Pliocene 

sediments are folded above the frontal triangle zone of the Montello thrust (Venzo, 1977). According to recent studies of 175 

Anderlini et al. (2020), Jozi Najafabadi et al. (2021), and Picotti et al. (2022), the Bassano-Valdobbiadene and the frontal 

Montello thrusts are seismically active at present. 

Mesozoic structures are frequently reactivated during the Neogene, as, e.g., the Permian normal Calisio and Schio-Vicenza 

faults as strike-slip faults or cross-cut in shallower angles as, e.g., the dextral Paleo-Valsugana fault (Selli, 1998). Normal 

faults related to platform-basin transitions are reactivated according to their dip angle and dip direction and lead to lateral 180 

ramps for Neogene thrusts. According to Doglioni (1992), E-dipping Mesozoic normal faults have predominantly been cut 

and involved in the alpineAlpine fold-and-thrust belt without major reactivations, whereas W-dipping Mesozoic normal faults 

seem to often to be strongly deformed and reused as thrust planes or by sinistral transpression, as it is the case for, e.g., the 

Giudicarie belt. In the eastward prolongation of the Bassano-Valdobbiadene thrust, at the transition of Belluno basin and Friuli 

platform, the Caneva line (i.e., Cansiglio line) represents a lateral ramp (Doglioni, 1991; Schönborn, 1999; Picotti et al., 2022). 185 

Neogene structures stack platform regions onto basin regions, as, e.g., the Belluno thrust, which brings competent successions 

of the Trento platform onto more incompetent stratigraphy of the Belluno basin. (Doglioni, 1991, 1992). 

The amount of shortening along the Valsugana fault system is approximately 15 km (Selli, 1998). However, recent studies 

show 6 to 8 km of shortening along the Belluno fault only (Zuccari et al., 2021), leading potentially to more shortening along 

the whole Valsugana fault system. According to Verwater et al. (2021), the amount of shortening across the eastern Southern 190 

Alps depends on competence contrasts and on thickness variations of sedimentary successions due to laterally heterogeneous 

paleogeographic domains. Therefore, competent platform successions show less shortening compared to basinal regions as, 

e.g., the Belluno basin, where the spacing of thrusts is especially narrow and the southern thrust front is located remarkable 

far north (Doglioni, 1992). 
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2.3 Sedimentary succession and mechanical significance 195 

In general, the stratigraphy of the eastern Southern Alps is characterised by a VariscianVariscan metamorphic basement, 

Permian volcanic rocks (Athesian Volcanic Complex, limited to the northern Trento platform), and a Late Permian to Neogene 

sedimentary succession (Winterer and Bosellini, 1981) (Fig. 2). The sedimentary succession shows minor differences in W-E 

extent across Adria during the UpperLate Permian and Triassic, except stronger subsidence in the Lombardian basin (Sarti et 

al., 1992; Bertotti et al., 1993; Picotti et al., 1995) and stronger Ladinian volcanism in the western part of the eastern Southern 200 

Alps, but becomes strongly heterogeneous during Late Triassic to Jurassic extension (syn-rift sediments). Lateral and vertical 

facies changes known from several places within the eastern Southern Alps are, aside to normal faults, are other expressions 

of the platform-basin configuration of the Mesozoic passive continental margin (Abbots, 1989; Doglioni, 1992; Picotti and 

Cobianchi, 1996; Selli, 1998; Franceschi et al., 2014; Picotti and Cobianchi, 2017). 

Especially the northern Trento platform shows remarkable unconformities from the Jurassic onwards with, e.g., a fully eroded 205 

Mesozoic cover on top of the Athesian Volcanic Complex or a strongly reduced Jurassic (Winterer and Bosellini, 1981; 

Beccaro et al., 2002) to Cretaceous (Lukeneder, 2010) succession overlying the Athesian Volcanic Complex north of the 

Valsugana fault system (Fig. 2a). Within the southern Trento platform, the stratigraphic succession reaches into the Paleogene 

to Miocene (Fig. 2a) with bioclastic to marly sedimentslimestone and marls (Doglioni and Carminati, 2008; Vignaroli et al., 

2020). During the lower Jurassic, at the footwall of the rifted marginsmajor normal faults of the Trento and Friuli platforms, 210 

massive shallow water carbonates were deposited, whereas deep-water sediments occurred in the Belluno basin; oolitic 

limestone, shed from the platforms, transitions both realms (Masetti et al., 2012; Franceschi et al., 2014; Masetti et al., 2017; 

Picotti and Cobianchi, 2017) (Fig. 2b). The Slovenian basin shows a sediment thickness comparable to the Belluno basin (Fig. 

2), but developed earlier (Ladinian) and is deeper marine (Goričan et al., 2012; Rožič et al., 2018). 

The main detachment horizon for thick-skinned deformation in the eastern Southern Alps is located at depth between 15 and 215 

20 km, supported by recent local earthquake data (Jozi Najafabadi et al., 2021). For thin-skinned deformation, the two main 

detachment horizon are (i) evaporite-bearing facies associationsshales of the Late Permian to Early Triassic Bellerophon 

Formation (Doglioni and Bosellini, 1987; Nussbaum, 2000), which thickens from W (no Bellerophon Formation west of Val 

d’Adige/Etschtal) to E, reaching a maximum thickness of approximately 400 m in the E (Noé, 1987; Massari and Neri, 1997), 

and therefore the main detachment for SW-directed Dinaric structures and (ii) the alternate succession of evaporite, shales, 220 

and marls of the Carnian Raibl Group (Nussbaum, 2000) with a maximum thickness of about 250 m (De Zanche et al., 2000). 

3 Analogue modelling approach 

AInspired by the case of the Dolomites Indenter (section 2), a series of 12 crustal-scale brittle and brittle-ductile analogue 

experiments provide insights in the structural evolution of continental upper to middle crust subject to extension followed by 

contraction. The experiments are designed such to allow for the opening of multiple extensional basins separated by platform-225 

type areas, a structural configuration that is frequently observed in passive margin settings where the continental shelf is 
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dissected by graben structures and where the shelf transitions to the deeper basindeep basins (Mandl, 2000; Berra et al., 2009; 

Sapin et al., 2021). Subsequent contractionContraction of the earlier formed graben structures of variable width allows for 

testing the influence of inherited structures and basin geometries on the style of a younger contractional deformation phase, as 

well as timing and localisation of uplift of the inverted graben structures and their transition to platform areas. Key parameters 230 

of this study include the thickness differences between platforms and basins, the rheological stratification of the model crust, 

and the angle of obliquity between extensional and compressional deformation phases.(i) the angle of obliquity (0°, 10° or 

20°) of shortening with respect to the strike of the first phase rift structures, (ii) the basal décollement rheology, and (iii) the 

basin fill rheology, and form the basis for grouping the experiments in three major sets (Table 1). The experiments have been 

designed to allow comparison with the Dolomites Indenter of the eastern Southern Alps, but are from a conceptional point of 235 

view also applicable to relevant for other regions affected by multiple deformation phases.where rift structures are inverted at 

low angle to the rift axes. 

 

[Table 1] 

 240 

3.1 Set-up and geometries of analogue models 

Model setups and the modelling results are described within a geographic frame where the north direction is aligned with the 

strike of the velocity discontinuity (VDdiscontinuities (VD1 and VD2) and thus the strike of the basin axes (Fig. 3a-c). All 

experiments are built on a table and on top of one fixed and two mobile plastic sheets of 1,0 mm thickness. Pre-deformation 

rotation ofPositioning the fixed sheet by 10 and 20 degrees VDs obliquely with respect to the extension direction backstop 245 

allows for the formation of graben structures, which are at high angle angles of 10 and 20 degrees to the shortening 

phasedirection (Fig. 3a-c). The mobile plastic sheets are attached to two separatedindividual engines which simulate extension 

by pulling the mobile sheets in opposite directions from underneath the fixed sheet at constant velocity but opposite directions 

(of 5 cm/h or 2.5 cm/h for brittle or brittle-ductile experiments, respectively (Table 1, Fig. 3a-c). Lower velocities yield 

differential stresses for the ductile layers, that allow for mechanical decoupling at the transition from brittle to ductile layers, 250 

ensuring that the ductile layer acts as a décollement. As such the transition from the fixed to the mobile plastic sheets predefines 

VDs along the western and eastern margins of the fixed plastic sheet. This kinematic boundary condition leads to asymmetric 

extension on either side of the fixed sheet comparable to proposed extensional geometries of the northern Adriatic plate margin 

(Sarti et al., 1992; Masetti et al., 2012). The extensional phase was terminated after 5,0 cm of displacement of the eastern 

mobile sheet, whereas it continued to 9,0 cm of displacement at the western mobile sheet, producing (Fig. 3a-c), leading to 255 

sedimentary basins of different size comparable to the relatively narrow Belluno and wide Lombardian basins in the Southern 

Alps (Winterer and Bosellini, 1981; Bertotti et al., 1993; Picotti and Cobianchi, 2017). 

 

[Figure 3] 



 

9 

 260 

Additional to pre-existing discontinuities and obliquity in basin inversion we apply lateral changes in mechanical stratigraphy 

to our experiments. Lateral strength contrasts resultresulting from (i) pre-existing deformation due to the first extensional 

phase, (ii) syn-extensional basin fill material, and (iii) lower thickness of the basinal succession compared to the platform 

succession. Regarding (ii), usingUsing different material for the basin fill than for platforms simulates relatively weaker, 

incompetent graben deposits of grabens compared to surrounding competent pre-rift basement or carbonate platform rock, 265 

respectively. In our analogue models we tackle this by using, e.g., homogeneous layers of quartz sand for the initial, non-

stretched model, simulating competent crust, which was extended in a first phase of deformation. Syn- to post-extensional 

sedimentation has been applied toin the resulting grabens by manually by sieving either quartz sand, feldspar sand or glass 

beads into the graben structures after approximately each cm of extension (Fig. 4a). The resulting grabens were filled up to a 

platform-basin thickness ratio of (i) 0,.7 to 0,.8 for underfilled basins using quartz sand only (models 1-7) or (ii) 1,0 for filled 270 

basins using either quartz sand (model 4), glass beads (model 11) or 8), feldspar sand (model 9), or glass beads (models 10-

12), simulating relatively incompetent rock compared to the platforms (Fig. 4a). TheMinor thickness variation of underfilled 

basins (models 1-3 and 5-8) of (i7) is a consequence of the handling technique. For (ii) we chose a platform-basin ratioratios 

of 1,0 for modelling the lateral strength differencedifferences between platforms and basins only in terms of are achieved by 

varying the material properties, not in terms of varying material thickness. of the basin fill.  275 

Once the extensional phase is finished, the mobile plastic sheets are detached from their engines and fixed to the table. 

Subsequent contraction of the extensional basins is achieved by pushing the rigid backstop at constant velocity into the 

experiment. The velocity of the moving wall is 3,0 cm/h or 2,.5 cm/h for brittle or brittle-ductile experiments, respectively. 

(Table 1). The compressional phase was terminated after 9,0 cm of shortening. Experiments consisting of brittle material only 

are confined by a rigid backstop in the north, aluminum bars in the east and west and have an open boundary in the south, 280 

whereas brittle -ductile models also have their southern boundary confined with aluminium bars to prevent the outflow of 

ductile material. A wider backstop was used in experiments 4 and 8 to model the evolution of the western basin in an oblique 

inversion setting with straight outlines only. AllMost other oblique inversion models show a kink in the transition from the 

western basin to the western platform, because of limited space of setup arrangements, which is not of influence for the 

modelling results.. This simplification does not influence the modelling results, because shortening is stopped prior to 285 

deformation reaching this kink. However, a wider backstop was used in experiments 7 and 8 to test the sensitivity of modelling 

results on model size. An overview of modelling setups is provided in Table 1. 

 

[Figure 4] 

 290 
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3.2 Model material and scaling 

The analogue experiments presented in this study consist of brittle or a combination of brittle-ductile layers representing 

continental upper crust, which is either entirely brittle or brittle with a ductile layer at the base (Fig. 4a). The latter simulates 

crustal layers below the brittle-ductile transition (models 6 and 87). Layers of colored, dry quartz sand represent the brittle pre-

rift crust in all models, whereas the ductile layer consists of polydimethylsiloxane (PDMS silicon polymer), mixed with 295 

Rhodorsil gomme., representing the ductile crust below the brittle-ductile transition. The ductile material has a density of 1500 

kg/m³, a viscosity of 3,.8 x 104 Pas, and shows slightly non-Newtonian behaviour (n = 1,.15) (Table 2). The properties of the 

ductile material have been determined with a pycnometer and a coni-cylindrical viscometer, respectively. Variations to these 

setups entail a layer of glass beads at the base of the brittle crust simulating a weak, frictional décollement comparable to what 

has been used by Cotton and Koyi (2000). The influence of sediment strength on subsequent deformation geometries during 300 

the inversion phase is accounted for by varying the granular material representing the syn-extensional sediments. These include 

quartz sand (model 48), feldspar sand (model 129) and glass microbeads (models 9 and 1110-12). The mechanical properties 

of all brittle and ductile materials used in this study are summarized in Table 2 and are described in detail in Willingshofer et 

al. (2018)Klinkmüller et al. (2016) and KlinkmüllerWillingshofer et al. (20162018). 

 305 

[Table 1] 

[Table 2] 

 

Scaling of all models follows standard scaling procedures described in the pioneering works of Hubbert (1937) and 

Weijermaars and Schmeling (1987). With a length-scale ratio of L* (Lmodel/Lnature) = 1,.25 x 10-6, 1,0 cm in the model 310 

represents 8,0 km in nature (1:800.000). As such the initial and final model widths (after extension) scale to 352 and 464 km 

in nature, respectively. For modelling contraction of oblique rift structures, models 47 and 8 have been increased in sizewidth 

to minimize boundary effects; a larger backstop of 85leading to a final model width of 73 cm, scaling to 680584 km in nature, 

was used. For the adopted length scaling, the brittle-ductile transition of our analogue models is at a depth of 16 km in nature, 

which agrees with earlier published estimates of the brittle-ductile transition in the eastern Southern Alps (Willingshofer and 315 

Cloetingh, 2003; Viganò and Martin, 2007; Laubscher, 2010). At this depth the vertical stress (i.e., lithostatic stress) in, e.g., 

the platform regions of our experiments, is 590 Pa, corresponding to 880 MPa in nature, which results in a stress-scale ratio of 

6,.7 x 10-7. Strength profiles (Fig. 4b) are representative for the initial conditions and have been calculated following Brun 

(2002). The density-scale ratio ρ* (ρmodel/ρnature) yields 0,Weijermars (1997); Brun (2002). The density-scale ratio ρ* 

(ρmodel/ρnature) yields 0.54 as the density of our model material, e.g., quartz sand, is 1500 kg/m³, representing densities of 2800 320 

kg/m³ of natural upper to middle crust (e.g., Ebbing, 2004; Faccenda et al., 2007; Šumanovac et al., 2009). The velocity for 

our brittle-ductile models is scaled after a time-scale ratio t* = 1,.93 x 10-11 calculated as: 

𝑡∗ =
1

𝜀∗
             (1) 
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with ε* referring to the shear strain rate ratio equaling: 

𝜀∗ =
𝑣∗

𝐿∗
             (2) 325 

where the velocity ratio v* is 6,.49 x 104 and scales 2,.5 cm/h of model velocity rate to 0,.33 cm/a to nature, representing 50 

km of shortening within a period of 15 Ma. This shortening rate correlates well with estimates form orogenic belts such as the 

eastern Southern Alps (Doglioni, 1987, 1991; Nussbaum, 2000). The velocity of the moving wall for brittle-ductile experiments 

simulates a compressional model strain rate of 1,.13 x 10-3, corresponding to 2,.18 x 10-14 in nature. The viscosity of the ductile 

model material of 3,.8 x 104 Pas scales to natural viscosities of approximately 1021 Pas, representing, according to, e.g., Hirth 330 

et al. (2001), quartz dominated ductile middle curst below the brittle-ductile transition. (Hirth et al., 2001). 

3.3 Monitoring and analysis of experiments 

During the experimental runs, the model surface is monitored by top-view photographs (using a Panasonic Lumix DC-G9 with 

20,.3 megapixels) and a 3D surface scanner in order to trace changes in surface deformation. Top-view pictures and 3D surface 

scans have been taken at regular time intervals. For brittle and brittle-ductile experiments, the translation displacement between 335 

two successive top-view photographs is 0,.15 cm and 0,.125 cm, between two surface scans 0,.75 cm and 0,.625 cm, 

respectively. Adding coffee grains as tracers on the model surfaces facilitated calculating incremental particle displacements 

using particle image velocimetry (PIV) analysis (PIVlab, Thielicke and Stamhuis, 2004) and PIV-derived strain analysis 

(strainmap, Broerse et al., 2021). The strainmap tool of Broerse et al. (2021) further enables to determine strain types (e.g., 

extension, strike-slip, shortening and transitions) occurring during the respective model runs from the ratio of the largest to the 340 

smallest principal strain. The conversion of 3D surface scan data into digital elevation models enables tracing of the 

topographic evolution during the compressional deformation phase. After the model run, layers of black and natural coloured 

quartz sand are implemented as post-kinematic covers in order to preserve topography. Water sprinkled on the sand increases 

cohesion and enables sectioning the experiments for studying internal deformation in 2D. Photographs of 2D cross-sections 

(using Panasonic Lumix DC-G9 with 20,.3 megapixels) are then put back together to a quasi 3D model using Midland Valley’s 345 

MOVE software, in order to follow fault geometries laterally throughout the model. 

3.4 Limitations and simplifications of analogue models 

Potential influences leading to strain localisation like (i) surface processes (e.g., erosion, or sediment transport or deposition 

of sediments), (ii) isostasy or (iii) temperature dependence through depthof materials are absent in our physical analogue 

modelling techniques and hence mark major limitationsmodels. The viscosity of the ductile layer is therefore invariant to 350 

depth, what is widely accepted in analogue modelling studies (Davy and Cobbold, 1991), but can be adapted through 

implementing appropriate uniform viscosities. Regarding (ii), theThe absence of an asthenospheric layer excludes isostatic 

compensation of the model layers and therefore leads, in brittle- to an overestimation of the evolving topography. Shortening 

is mainly accommodated by (ductile models, to) thickening of the ductile base layer. Ductile thickening accommodates 
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deformation during the shortening phase mainly in uplift, localising theclose to the moving wall where strain in systems 355 

oflocalises to form symmetric fore- and back-thrusts, which develop close to the moving wall. Despite those simplifications, 

the presented experiments resemble first-order deformation processes of a polyphase deformed continental crust and possible 

influences of erosion and sedimentation on the localisation of faults or on fault geometries in general are acknowledged 

(Graveleau et al., 2012) are acknowledged.. 

4 Modelling results 360 

In the following sections, the results of our analogue modelling study are described, starting with a detailed description of the 

“reference model” (model 1, Fig. 5). Thereafter we comparatively describe the models based on interpreted top-view 

photographs, interpreted cross-sections of the final stage of the specific experiment, PIV analyses, and PIV-derived strain 

analyses, and by the use of topographic profiles extracted from digital elevation models.. Note that the transpressional 

deformation at the western side of the western basin of model 47 and model 8 is a result of the modelling setup with a wider 365 

backstop and not relevant for comparison with the natural prototype. The term thrust system (i.e., thrust sheet) is used in the 

following for a combination of fore-thrust and accompanying back-thrust(s). 

4.1 Reference model, model 1 

Model 1 (Fig. 5) is an entirely consists only of brittle model (i.e., material (quartz sand for both for, platforms and basin 

fillings) wherefill) and basin inversion is parallel to the strike of the rift structures. The strength difference between platforms 370 

and basins is simulated by a variation in thickness of the sand layers (i.e., underfilled basins) (Table 1, FigFigs. 3a).  and 4a). 

Model 1 serves as reference model as it is the relatively simplest experiment of our study and allows for comparison to all 

other experiments, which represent variations to the reference model. 

During extension, two asymmetric grabensgraben structures, separated by one platform, form, each with a major, high-angle 

normal fault above the basal VDs (i.e., west and east of the western platform) (; see interpreted top-view picturephotograph in 375 

Fig. 5a, cross-section c-c’ in Fig. 5g). As the basal kinematic boundary condition is opposite for both graben structures, the 

major normal faults dip in opposite directions. Accompanying the major normal faults with largeLarge offset (e.g., 1,.2 cm 

offset along major normal faults of model 1 in cross-section c-c’ in Fig. 5g) normal faulting on the stationary (i.e., referring to 

the fixed plastic sheet beneath the deformable parts of the model) side of the evolving graben, this first extensional phase also 

creates  is coeval with the formation of a large number of small-offset normal faults with smaller offsets on the moving (i.e., 380 

referring to the mobile plastic sheet beneath the deformable parts of the model) side. All normal faults evolve perpendicular 

to the extension direction of extension, are parallel to each other, appear straight, and dip towards the center of the main graben 

with an average dip angle of 63°. At the end of extension, model 1 consists of two basins and two platforms, which are 

perpendicular to the backstop (Fig. 5a, cross-section c-c’ in Fig. 5g). The crust was thinner at the locations of the basins (1,.4 

cm average thickness) compared to the platforms (2,0 cm), leading to a platform-basin thickness ratio of 0,.7 representing 385 
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lateral mechanical strength differences (Fig. 4b, cross-section c-c’ in Fig. 5g), which, simulates overall weaker basin domains 

(e.g., alternationequivalent to alternations of limestone, marl, clay) compared to non-stretched platform areas (e.g., basement 

rock, carbonate platforms). Note that the strike-slip fault north of the eastern platform (Fig. 5a-d) is a result of the modelling 

setup, which bears no major implication for the modelling result during contraction. 

Early stages of parallel basin inversion (Fig. 5b) already show curved thrust faults forming at platform-basin transitions (thrusts 390 

1 of thrust sheet I in Fig. 5b), where the relatively weaker basins transitionstransition to the stronger platforms. The evolving 

thrust faults clearly show anastomosing patternsorientations at their fronts and cross-cut pre-existing normal faults without 

reactivation of the latter.  

 

[Figure 5] 395 

 

After 4,.5 cm of shortening (Fig. 5c), a second, in-sequence thrust system II evolves, showing a curved thrust front, which is 

more distinct at the transition from the central western platform to the western basin than into the eastern basin. The cumulative 

strain map after 4,.5 cm of shortening (Fig. 5d) shows shortening close to the backstop especially in and close to basinal areas 

(grey arrows in Fig. 5d), extension in the hanging wall of thrust system I within platform areas, and shortening at the fronts of 400 

both thrust systems I and II. Parallel basin inversion is here most probably compensated by back-thrusting, as fault reactivation 

in such a high angle is not the favoured mechanism. Cross-sections of the final shortening stage of model 1 (sections a-a’ and 

b-b’ in Fig. 5g) reveal the platform hosted back-thrusts 2, 4, 5 (section a-a’ in Fig. 5g) and basin hosted back-thrusts 2, 3, 6 

(section b-b’ in Fig. 5g) which were active at 4,5 cm of shortening. The prominent back-thrust 6 of the eastern basin (section 

b-b’ in Fig. 5g) is traceable on the model surface from 4,5 cm of shortening onwards (Fig. 5c-f).Basin inversion is here most 405 

probably compensated by back-thrusting, as the orientation of early formed normal faults is not favourable for reactivation.  

By the end of shorteningthe contractional phase (Fig. 5e-f, cross-sections a-a’ and b-b’ in Fig. 5g), the thrust front of the third 

and most external thrust system III is located further towards the foreland on platforms than in basinal areas (Fig. 5e-f, cross-

sections a-a’ and b-b’ in Fig. 5g). Pre-existing normal faults are cross-cut and transported piggy back as shown in Fig. 5e. The 

localisation of deformationDeformation in basinal areas is represented by backstepping of oblique thrust fronts towards the 410 

hinterland. (Fig. 5e-f, cross-sections a-a’ and b-b’ in Fig. 5g). Backstepping follows the orientation of the platform-basin 

boundary. In model 1, where platform-basin boundaries are parallel (0° obliquity) to the shortening direction, the orientation 

of the thrust front at the transition from platform to basin is at high angle (~55°) to the overall strike of the mountain belt. 

Platform thrusts link with basin thrusts in the center of the respective basins (Fig. 5e-f). 

Pre-existing normal faults are cross-cut by contractional faults and transported piggy back as shown in Fig. 5b-f. The 415 

extensional cumulative strain type which dominates the hanging walls of thrust systems I and II in platform areas (Fig. 5f), is 

a result of the passive uplift of thrust systems in the hinterland of the model orogen with in-sequence character. Passive uplift 

occurs along reactivated fore- and accompanying back-thrusts of the specific thrust systems. Fault reactivation is shown by 

two separate back-thrusts (back-thrusts 4 and 5 in cross-section a-a’ in Fig. 5g), which root in one single fore-thrust 3 (cross-
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section a-a’ in Fig. 5g). Both back-thrusts 4 and 5 cross-cut fore-thrust 1 and therefore indicate a younger age. Due to this 420 

reactivationReactivation of fore-thrust 3 and the cross-cuttingleads to steepening of fore-thrust 1,earlier formed thrusts and 

uplift of thrust system I with its initial fore-thrust 1 and back-thrust 2 (section a-a’ in Fig. 5g) steepens along fore-thrust 1 and 

gets uplifted passively by younger thrusts 3 to 5 ((cross-section a-a’ in Fig. 5g).  

Overall, the style of thrusting documented in model 1 is a combination of foreland vergent pop-up systems, with in-sequence 

thrusting. Back-thrusts are either reactivated several times or formed new, meaning existing foreland-directed thrust faults 425 

being cross-cut by younger back-thrusts (e.g., fore-thrust 1 being cut by back-thrusts 4 and 5 in cross-section a-a’ in Fig. 5g). 

The style of thrusting varies laterally, across platforms and basins, as both ramps and flats are longer on platforms (e.g., 4 cm 

ramp length of thrust 3 in cross-section a-a’ in Fig. 5g) compared to those of basinal areas (e.g., 1,.4 cm ramp length of thrusts 

5 and 7 in cross-section b-b’ in Fig. 5g), what is in accordance with the undulating surface expression of the thrust systems in 

map-view (Fig. 5e-f). The wavelengths of thrusts (i.e., the distance between the transition of lower flat to ramp of two adjacent 430 

thrusts) are longer on platforms compared to basin realms in parallel inversion models, e.g., 8,.6 cm for platform hosted thrusts 

3 to 6 (western platform, Fig. 5e-f, cross-section a-a’ in Fig. 5g) and 6,0 cm for basin hosted thrusts 7 to 8 (eastern basin, Fig. 

5e-f, cross-section b-b’ in Fig. 5g). As normal faults are cut rather than reactivated during shortening, the basins are inverted 

and uplifted by closer spaced thrust imbrication compared to platforms (e.g., thrusts 4 and 7 in cross-section b-b’ in Fig. 5g). 

This difference is related to thickness variations of the crust at the onset of shortening. 435 

4.2 Parametrical study 

In the following, we describe and compare modelling results with variations inthree sets of experiments, which focus on (i) 

the obliquity of inversion (Fig. 6), (ii) the basal décollement rheology at base of the model (Fig. 8), and (iii) the strength of the 

basin fill (Fig. 10) with respect10), and compare the results to the reference model (model 1, Fig. 5). 

4.2.1 Influence of obliquity of inversion 440 

Models 2 (Fig. 6a-c) and 3 (Fig. 6d-f) represent models where the inversion has taken place at angles of 10 and 20 degrees 

with respect to the rift axes (Table 1, Fig. 3b-c), respectively. Similar to model 1, both models are brittle only, have a platform-

basin thickness ratio of 0,.7 to 0,.8 (i.e., underfilled basin) (Table 1) and a syn-extensional basin fill consisting of quartz sand 

(Fig. 4a). . OverallTherefore, models 21-3 represent set 1 of our experiments and 3 produced close to similar basin-platform 

geometries byaim at studying the end of the extensional phase (compare Fig. 5influence of obliquity (0, 10 and Fig. 6).20 445 

degrees, respectively) of inversion on fault-reactivation and the kinematics and structural style of the evolving fold and thrust 

belt (Table 1).  

The analysis of obliqueOverall, models 2 and 3 produced close to similar basin inversion models shows that-platform 

geometries by the end of the extensional phase (Fig. 6a-b and 6d-e) and the curvature of the thrust fronts in map-view increases 

withaligns to the orientation of the platform-basin boundary between western platform and eastern basin when increasing 450 

obliquity (compare Fig. 6a-b for 10° obliquity with Fig. 6d-e for 20° obliquity). In models 2 and 3, this curvature is maximum 
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at platform Compared to model 1, the deviation of the strike of contractional faults across platform-basin transitions wherefrom 

the overall strike of the trustsmodel orogen is at angles of 50 to 60 degrees with respect to the shortening direction~40° for 

model 2 and ~30° for model 3 (e.g., thrusts 5 of model 2 and 3 shown in Fig. 6a-b and Fig. 6d-e, respectively). We note that 

angles of maximum 45° are obtained for models with parallel basin inversion.Thus, higher angles between basin axes and 455 

shortening direction, lead to less curvature of the thrust front relative to the overall strike of the mountain belt (e.g., ~30° for 

model 3 versus ~55° for model 1).  

Platform thrusts Different to model 1, platform thrusts of models 2 and 3 preferentially link with basin thrusts preferred at the 

eastern border of the grabens, e.g., at the transition from the eastern basin to the eastern platform (Fig.  (Fig. 6a-b, d-e), whereas 

in model 1, thrusts connect in the center of the respective basin (Fig. 5e-f). Therefore, the location of lateral ramps and transfer 460 

zones shifts in oblique basin inversion models further towards the platform-basin transition. Additionally, the difference of 

wavelengths of thrusts between platform and basinal areas is more pronounced in experiments with oblique basin inversion 

(compare Fig. 6c, f) compared to models5g with parallel basin inversion (Fig. 5g6c, f). The wavelength of thrusts is, e.g., for 

platform hosted thrusts 5 to 7 of model 2 (western platform, Fig. 6a-b, cross-section a-a’ in Fig. 6c) is 12 cm, whereas it is 

only 0,.8 cm for basin hosted thrusts 6 to 7 (eastern basin, cross-section b-b’ in Fig. 6c). ComparableModel 3 shows comparable 465 

differences in wavelength of thrusts from platforms toand basins shows model 3, e.g., 7 cm for platform hosted thrusts 3 to 5 

(western platform, Fig. 6d-e, cross-section a-a’ in Fig. 6f) and 1 cm for basin hosted thrusts 4 to 5 (eastern basin, cross-section 

f-f’ in Fig. 6f). Both inIn model 2 and model 3, ramps and especially flats of thrusts on platforms are particularly longer (e.g., 

5 cm ramp length of thrust 5 of model 2 in cross-section a-a’ in Fig. 6c and 4 cm ramp length of thrust 5 of model 3 in cross-

section e-e’ n Fig. 6f) compared to thrusts within basins (e.g., 4 cm ramp length of thrust 7 of model 2 in cross-section b-b’ in 470 

Fig. 6c and 3 cm ramp length of thrust 8 of model 3 in cross-section f-f’ in Fig. 6f).  

 

[Figure 6] 

 

Models with oblique basin inversion seem to favour the development of laterally shorter (thrust sheets III and IV in model 2 475 

in Fig. 6a-b and thrust sheets III and IV in model 3 in Fig. 6d-e) and isolated thrust systems (thrust sheet II in model 2 in Fig. 

6a-b and thrust sheet II in model 3 in Fig. 6d-e). Model 2 (Fig. 6a-c) and model 3 (Fig. 6d-f) both show an initial thrust system 

I, which was laterally continuous over the entire model width, comparable to parallel basin inversionmodel 1 (Fig. 5). However, 

thrust system II of models 2 and 3 is limited to the transition of the eastern basin to the western platform only. Thrust system 

III in model 2 (Fig. 6a-c) shows, althoughAlthough very narrow in N-S direction within the eastern basin (Fig. 6a-b, sections 480 

b-b’ and c-c’ in Fig. 6c), a W-E extent, thrust system III in model 2 extents over the entire width of the model, (Fig. 6a-c), 

whereas thrust system IV in model 3 (Fig. 6d-f), with increased obliquity compared to model 2, terminates within the eastern 

basin and does not reach the eastern platform. Thrust (Fig. 6d-f). Also, thrust sheets IV and V in model 2 (Fig. 6a-c) both6a-

c) and thrust sheet III in model 3 (Fig. 6d-f) terminate within the eastern basin, either as western or eastern termination. Thrust 

sheet III in model 3 (Fig. 6d-f) is isolated and only present within the eastern platform and the eastern basin. This is in contrast 485 
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with parallel basin inversion, where thrust systems I to III can be found with aare laterally continuous development of the 

deformation front all over the model’s W-E extent (model 1, Fig. 5).along the entire model width.  

In the case of oblique basin inversion, parts of platform sequences get thrusted over basinal sequences as shown at the transition 

of the western platform to the eastern basin along thrust 7 of model 2 (Fig. 6a-b) or thrust 5 of model 3 (Fig. 6d-e). Additionally, 

parts of basinal sequences get thrust over platform sequences (thrust 4 in cross-section c-c’ in Fig. 6c, thrust 8 in cross-section 490 

f-f’ and thrust 5 in cross-section g-g’ in Fig. 6f). Otherwise, thrust faults cross-cut pre-existing normal faults and either 

overthrust them and/or transport them piggy back. In model 2, pre-existing normal faults are mostly cross-cut by younger 

thrust faults throughout the experiment, with an exception within the imbricated stack of thrusts of the eastern basin (thrusts 

4-7 in section b-b’ in Fig. 6c),, where pre-existing normal faults get reactivated in oblique slip mode (thrusts 4, 6-7 in cross-

section b-b’ and thrusts 5 and 7 in cross-section c-c’ in Fig. 6c). Thrusts 4, 6 and 7 of cross-section b-b’ (Fig. 6c) and thrusts 495 

5 and 7 of cross-section c-c’ (Fig. 6c) of model 2 (Fig. 6a-c) incorporate fully reactivated normal faults up to their initial 

termination at the boundary between syn- and post-rift sediments (cross-section d-d’ in Fig. 6c) and cut through post-rift 

sediments to the model surface. Thrusts 6 and 7 of in cross-section c-c’ (Fig. 6c) are, together with non-reactivated normal 

faults, passively steepened by the younger in-sequence fore-thrust 8 (cross-section c-c’ in Fig. 6c). InCompared to model 32, 

oblique reactivation of pre-existing normal faults as thrust faults is more common further in the hinterland of the model 3 500 

orogen (thrusts 5-6 in cross-section f-f’ and thrust 5 in cross-section g-g’ in Fig. 6f) compared to model 2 where fault 

reactivation is located further towards the foreland (thrusts 4, 6-7). Furthermore, in section b-b’ and thrusts 6-7 in section c-c’ 

in Fig. 6c). In model 3, normal faults are (i) if reactivated, fully reactivated as compressional faults (e.g., thrusts 5-6, 8 in cross-

section f-f’ and thrusts 4 and 7 in cross-section g-g’ in Fig. 6f), comparable to those in model 2, (ii)and cross-cut by younger 

back-thrusts (e.g., thrust 9 in cross-section g-g’ in Fig. 6f) and (iii)). Overall, in oblique inversion models, pre-existing normal 505 

faults are favoured areas ofwhere deformation re-localisationlocalises (e.g., thrust 7 in cross-section g-g’ in Fig. 6f grows 

towards the pre-existing normal fault and reactivates it).), compared to parallel inversion models. 

Regarding the obliquity ofFor inferring oblique slip alongon thrust faults, zoom-ins on the strain type and time evolution 

diagrams of the incremental and cumulative strain types of selected points of models 2 and 3 are provided in Fig. 7. For model 

2, points (a) and (b) (upper left-hand panel in Fig. 97) are positioned in the footwall of the thrust fronts of thrust systems II 510 

and III within the eastern basin, respectively. The evolution of the two principal stretches λ (Hencky strains) shows increasing 

shortening at the thrust front after 50 min in model time for point (a) and slightly later (80 min) for point (b) (middle column 

in Fig. 7a-b). The dominant strain type for both points (a) and (b) is shortening (dilatation < 1, see right column in Fig. 7a-b), 

but the incremental strain type plots in between strike-slip and shortening/extension (right column in Fig. 7a-b), indicating 

transpressive to transtensive motion along the thrusts. For point (a), the temporal evolution of the incremental strain type 515 

deciphers a change from thrusting to strike-slip to extension (right column of Fig. 7a); for point (b) transpression until 

approximately 140 min in model time, leading into pure shortening. ComparableCompared to model 2, points (c) and (d) of 

model 3 (middle left-hand panel in Fig. 7), which are positioned at the thrust fronts of thrust systems II and IV within the 
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eastern basin, respectively, show shortening as dominant strain type with increased oblique slip motion of point (c) towards 

the end of the model run.  520 

 

[Figure 7] 

 

4.2.2 Influence of basal décollement rheology  

When combiningModels 4-7 comprise set 2 of our experiments and focus on the influence of basal décollement rheology 525 

(Table 1) for conditions of parallel (models 4 and 6) and oblique (models 5 and 7) inversion. Variations of basal décollement 

strengths for parallel inversion setups (models 4 and 6, Table 1) have been included for completeness but will not be discussed 

in detail because of less relevance for the natural example. Instead, we focus on models with an obliquity of 20° between pre-

existing structures and the shortening direction, and a variation of basal décollement strength and behaviour,.  

The modelling results highlight major differences in (i)related to the number of thrust sheets forming and (ii)the style of fault 530 

reactivation are observable.. Model 75 (Fig. 8a-c) shows oblique (20°) basin inversion of an entirely brittle model where a 0,6 

cm thick layer of glass beads below the brittle crust of quartz sand simulates the presence ofis characterized by a frictional 

décollement (Table 1, and model 7 (Fig. 4a). Model 8 (Fig. 8d-f) represents oblique (20°) basin inversion of a brittle-ductile 

model with a 0,6 cm thick e) by a viscous layerdécollement below the brittle crust. The latter has the same thickness as set 1 

experiments (Table 1, brittle/ductile setup in Fig. ). In both4a). Both models 7the thickness of the décollement is 0.6 cm and 8 535 

have athe platform-basin thickness ratio ranges between 0,.7 and 0,.8 (i.e., underfilled basin) (Table 1, Fig. 4). Notably, 

thephase 1 extensional basins are wider and more normal faults developed in case of a viscous décollement (compare cross-

section c-c’ of Fig. 8c with 7f).cross-section f-f’ of Fig. 8f). As such, normal faults reach fartherfurther into the platforms (e.g., 

western platform in Fig. 8d-e) and), are mostly parallel but , in some instances curved, and offset across strike through relay 

ramps (Fig. 8d-e). 540 

In map-viewUpon shortening, model 75 (Fig. 8a-b) and model 87 (Fig. 8d-e) both show curved thrust fronts in map-view. At 

an early stage of deformation (i.e., thrust sheet I of model 75 and 87, Fig. 8a-b, d-e), the thrust front undulates but is 

approximately at the same distance from the backstop, forat the platform as well as basin areas. At the final stage of deformation 

(i.e., 9 cm of shortening, Fig. 8a-b, d-e), the thrust front steps back in basinal areas and is located further towards the foreland 

on platforms. Comparable to oblique inversion models 2 and 3, the strike of the thrusts where (Fig. 8a-b, d-e). Thrust curvature 545 

isshows maximum isalignment to the orientation of basin boundaries at angles of 55 to 60 degrees~30° with respect to the 

overall strike of the orogen (Fig. 8a-b, d-e). shortening direction (e.g., transition of platform hosted thrust 4 to basin hosted 

thrust 5 of model 7 within the eastern basin in Fig. 8a-b). Deformation is consistently concentrated at eastern borders of the 

respective basins, independent of variations in basal décollement material at the base of the model (Fig. 8a-b, d-e). This is 

shown by obliquely striking thrusts evolving on the eastern platform and connectingwhich connect with basin hosted thrusts 550 
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atin the eastern borderbasin through lateral ramps as indicated in the cumulative strain maps, which show predominance of the 

eastern basincompressional deformation (Fig. 8b and 8e).8a-b, d-e).  

 

[Figure 8] 

 555 

Lateral ramps and transfer zones of platform thrusts to basin thrusts strike oblique, the setting being mostly compressional (red 

colours in cumulative strain maps in Fig. 8b, e). However, the compressional domain is accompanied by slight we also find 

indications for incremental oblique slip movements, as in zoom-ins onof the strain type and time evolution diagrams of the 

incremental and cumulative strain types for for selected points of models 5 and 7 and 8 show (Fig. 9). For model 75, points (a) 

and (b) (upper left-hand panel in Fig. 9) are positioned in the footwall of the thrust front of thrust system II. The actual thrust 560 

front location is shown through areas of strongest convergence of black material lines in the zoom-in panels of the strain type 

(left column in Fig. 9a-b). The evolution of the two principal stretches shows increasing shortening at the thrust front after 115 

min in model time for point (a) and slightly earlier (105 min) for point (b) (middle column in Fig. 9a-b), the latterwhich is 

located (i) closer to the moving wall and (ii) within the eastern basin where the model crust is thinner compared to the platform. 

The dominant strain type for both points (a) and (b) is shortening (dilatation < 1, see right column in Fig. 9a-b), but the 565 

incremental strain type for point (b) plots in between strike-slip and shortening (right column in Fig. 9b), referring tosuggesting 

lateral variations in oblique slip along the thrust front of thrust system II and slightly higher oblique slip within the eastern 

basin (towards the eastern platform) than on the western platform. The difference). Differences in the amount of lateral oblique 

slip applies to the fault kinematics are also observed at the thrust front of model 87 (points (c) and (d) in the middle left-hand 

panel in Fig. 9), where). There, point (d), located at the footwall of the frontal thrust of thrust system II within the eastern 570 

basin, shows, describes most of the time purelypure strike-slip motion (right column in Fig. 9d), underlined by an equal 

deformation magnitude of the two principal stretches (middle column in Fig. 9d).9d). Instead, point (c), located on the western 

platform, shows mostly shortening, but anwith incremental strain type plotting between types characterised by strike-slip and 

shortening, referring to slight oblique slip strongly overprinted by shortening (middle and right columns in Fig.  (Fig. 9c). The 

onset of deformation in brittle-ductile model 8 is, for points (c) and (d), right at the model start (middle column in Fig. 9c-d). 575 

When using glass beads or a viscous layer as basal décollement instead of quartz sand only, two major thrust systems (Fig. 8) 

instead of three (model 1, Fig. 5) or four to five thrust systems (model 2 and model 3, Fig. 6) form. Both, model 75 and model 

8,7 show an initial thrust system I with a W-E strike covering the entire width of the models. Thrust system II of model 75 has 

its eastern termination within the eastern basin, whereas thrust system II of model 87 extends from the western basin towards 

the eastern platform. In map view, the style of deformation and thrust system evolution of model 7 is comparable to that of 580 

model 3 (Fig. 6d-e), but with longer (by ca. 1 cm) ramps and flats (compare cross-sections in Figs. 6 and 78).  

In cross-sectional view, normal faults dip shallower and are slightly more listric in style of the normal faults compared to using 

quartz sand only (compare Fig. 5 and Fig. 6) or a viscous layer below quartz sand (Fig. 8d-f). Therefore, decreasing dip-angles 

towards lower parts of the faults in combination with 20° of obliquity between inherited structures and shortening direction 
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lead tofavouring their reactivation of normal faultsparticularly at very low dip angle, most likelymostly along W -dipping 585 

normal faults, and in fault segments close to the backstop where the orogen is at maximum height (thrusts 1-5, 7 in cross-

section b-b’ in Fig. 8c). Due to the initial phaseExamples of extension, the layer of glass beads (model 7, Fig. 8a-c) and silicon 

putty (model 8, Fig. 8d.f) thins out in basinal areas (sections b-b’ and c-c’ in Fig. 8c, sections e-e’ and f-f’ in Fig. 8f) and 

normal faults steepen and show a decrease in listric behaviour towards areas of lower glass beads and silicon putty thickness, 

respectively (sections b-b’ and c-c’ in Fig. 8c, sections e-e’ and f-f’ in Fig. fault reactivation include 8f). This is directly related 590 

to a limited amount of reactivated normal faults as thrust faults in models 7 and 8. In model 7 only the lowest fault segment of 

thrusts 1 and 3-5 represents reactivation of an inherited normal fault; in model 8 only5 (cross-section b-b’ in Fig. 8c) and the 

lowest fault segment of thrust 5 in model 7 (cross-section e-e’ in Fig. 8f). . Instead, both in Compared to brittle-only models, 

in basin areas of models 75 and 8,7, where the décollements are thinned most, less listric faults are observed opposing their 

reactivation. Often normal faults mostly get folded and cross-cut by thrust faults as their dip angle mostly exceeds 45° and 595 

their dip direction varies between W- and E-dipping (cross-section b-b’ in Fig. 8c and cross-section e-e’ in Fig. 8f).  

 

[Figure 9] 

 

For model 87, the area of deformation affected by shortening is comparable to brittle-only models, but the viscous layer 600 

facilitates transfer of deformation to the external part of the thrust system where inversion of normal faults takes place (e.g., 

in the footwall of forfore-thrust 5 in cross-section e-e’ in Fig. 8f). Other than in brittle-only models, where deformation jumps 

towards the foreland when a specific thickness of the thrust sheet is reached, in model 87 shear zones close to the backstop 

within the ductile layer lead to polyphaserepeated reactivation of thrust sheet I (thrust 1 in cross-section d-d’ in Fig. 8f, thrusts 

1-4 in cross-section e-e’ in Fig. 8f). Because of imbricationImbrication within the thrust sheet I and simultaneous growth of 605 

the orogen, the  yields extensional cumulative strain type of thrust sheet I is strongly dominated by extensionat the surface 

(Fig. 8e). In general, thrusts of set 2 experiments evolved in-sequence, with a vergence varying from mostly pop-up structures 

using a ductile layer (cross-sections d-d’, e-e’ in Fig. 8f) to foreland-directed using glass beads as basal detachment (cross-

sections a-a’, b-b’ in Fig. 8c). 

In general, the thrusts evolved in both experiments in-sequence, with a vergence varying from mostly pop-up structures using 610 

a ductile layer (sections d-d’, e-e’ in Fig. 8f) to foreland-directed using glass beads as basal detachment (sections a-a’, b-b’ in 

Fig. 8c). 

4.2.3 Influence of basin fill rheology 

In models 11 and 12, glass beads and feldspar sand represent8-10 of set 3, the basin fill, respectively, instead consists of either 

quartz sand (model 4)., feldspar sand or glass beads (Table 1), and oblique shortening conditions apply. Models 4, 11,11 and 615 

12 of set 3, with glass beads as basin fill and 12parallel inversion, will not be discussed in detail. Models 8-10 show that a 

platform-basin thickness ratio of 1 basically leads to smaller differences in wavelengths of thrustsdeformation on platforms 
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and in basins compared to experiments with platform-basin thickness ratios of 0,.7 to 0,.8 (Table 1, model 1 in Fig. 5, models 

2 and 3 in Fig. 6, models 75 and 87 in Fig. 8).  

For models 119 and 1210, lateral differences in thrust orientations (e.g., curved fore-thrust 4 in model 11 in Fig. 5d-e and 5 in 620 

model 129 in Fig. 10d-e and 4 in model 10 in Fig. 5g10g-h) are similar to other oblique inversion models shown in this study 

(e.g., models 2 and 3 in Fig. 6, models 7 and 8 in Fig. 8), withyet the strike of the thrusts where maximum curvature is 

maximum at platform-basin transitions being at slightly higherlower angles of 70°(~25°) with respect to the shortening 

direction (e.g., transition of platform hosted thrust 4 to eastern basin of overall strike of the mountain belt (e.g., model 11 in 

Fig. 10d-e). Instead, in model 4,10, Fig. 10g-h). In contrast, in models where the basin fill has the same properties as the 625 

platform and is of equal thickness (model 8, Fig. 10a-b) thrusts do not change their orientation laterally across platform 

boundaries. (Fig. 10a-c). This suggests that, when using the same thickness of quartz sand both for platforms and basins, the 

strength differencedrop along the normal faults is not sufficient to produce changes in thrust orientation, but you also 

needadditional lateral strength contrasts are needed as provided by a weaker basin fill, as glass beads of. In model 11 or feldspar 

sand of model 12 as basin fill simulate. 630 

Ramps8, ramps of thrust faults show similar extents length-scales of ca. 4 cm on platforms and in basins (e.g., 4 cm ramp 

length of platform hosted thrust 8 of model 4 in cross-section a-a’ inof Fig.9c compared to 4 cm ramp length of basin hosted 

10c or thrust 10 of model 4 in cross-section b-b’ in Fig. 10c), whereas flat parts of thrust faults are slightly shorter (by ca. 1 

cm) in basinal realms (e.g., 3 cm flat length for platform hosted thrust 5 of model 12 in section i-i’ in Fig. 10i compared to 2 

cm of flat length of basin hosted thrust 8 of model 12 in section k-k’ in Fig. 10i) or are partly not properly visible due to 635 

stronger imbrication in basinal realms. Exceptions are long flats in basinal realms of models 4 and 11 above sets of non-

reactivated normal faults (e.g., 5 cm of flat length of thrust 8 of model 4 in section c-c’ in Fig. 10c and 4 cm of flat length of 

thrust 8 of model 11 in section g-g’ in Fig. 10f)..  

 

[Figure 10] 640 

 

DeformationIn set 3 experiments, deformation localises at the position of pre-existing normal faults and contractional faults 

grow from there (e.g., thrusts 1-6 in cross-section b-b’ in Fig. 10c, thrusts 1-98 in cross-section f-f’ in Fig. 10f, thrusts 1-89 in 

cross-section j-j’ in Fig. 10i). Concentration of deformation appears again preferred at eastern borders of basins, i.e., where 

thrust faults of the younger deformation phase interact with and partly reactivate pre-existing, mostly W-dipping, normal faults 645 

(e.g., fully reactivated normal faults as thrust faults 4, 6, 5-8, 10 in cross-section f-f’ in Fig. 10f or thrust faults 5-4, 6, 8, 10 in 

cross-section j-j’ in Fig. 10i). Normal faults of model 48 dip slightly steeper and are mostly cross-cut by thrusts (e.g., by fore-

thrusts 1 to 6 in cross-section b-b’ or by fore-thrusts 7-8 in cross-section c-c’ in Fig. 10c), as normal faults dip slightly steeper 

in model 4 (quartz sand basin fill; section d-d’ in Fig. 10c) compared to model 11 (glass beads basin fill; section h-h’ in Fig. 

10f) and model 12 (feldspar sand basin fill; section l-l’ in Fig. 10i). ). The lower friction coefficient of glass beads compared 650 

to quartz sand and feldspar sand lead to leads to shallower (average of 55°) dipping faults (normal and reverse faults) (model 
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11; sections f-f’, g-g’, and h-h’ in Fig. 10f). However, normal faults get reactivated most in model 12 (normal faults (model 

10; cross-sections j-j’ and, i-i’, k-k’ in Fig. 10i10i). However, this does not lead to more reactivation of normal faults. In 

contrast, fault reactivation is most prominent in model 9 (cross-sections f-f’ and g-g’ in Fig. 10f), where fully reactivated 

normal faults as compressional faults reach the model surface within thrust system II (thrusts 6-8 in cross-section k-k’g-g’ in 655 

Fig. 10i10f). 

Fault reactivation and moreOverall, pronounced foreland transport along major thrust faults (i.e., a wider orogen in N-S 

direction) are , compare cross-section i-i’ in Fig. 10i with cross-sections e-e’ in Fig. 10f and a-a’ in Fig. 10c) is the characteristic 

mechanismsmechanism for models incorporating glass beads as basin fill (model 11; Fig. 10d-f10g-i), where the growth of the 

orogen in height is lower compared to models 48 and 129. Fault reactivation and orogen growth in height are the dominating 660 

mechanisms when using feldspar sand as basin fill (model 129; Fig. 10g-i10d-f). The overall deformation style is in-sequence 

for all experiments with a platform-basin thickness ratio of 1,and mostly foreland directed when using glass beads and feldspar 

sand; but using quartz sand as basin fill leads to a combination of foreland directed thrusts and pop-up structures. 

5 Discussion of modelling results 

In the following sections, we summarise (Fig. 11) and discuss the experimental results and compare them with previous studies. 665 

5.1 Summary of modelling results 

Our experiments show that the style and orientation of contractional structures isare strongly affected by the inherited rift 

geometry and the rheology of the basin fill. In particular, orientations of thrust fronts vary laterally across the inherited 

structures in all models, except for model 48 (Fig. 10a-b), where the there is effectively no strength difference of the materials 

used forbetween platforms and basins (i.e., quartz sand) was too low.at the onset of shortening. A reduction of strength along 670 

first phase normal faults is in these cases insufficient to influence the orientation of the evolving thrust structures. The oblique 

strike of thrusts across platform boundaries is accompanied by slightanalysis of incremental strain shows that oblique slip 

along thrust faults and reactivated normal faults as thrust faults in oblique inversion models, shown by temporal evolution of 

incremental strain at key locations in selected modelspredominantly occurs across platform boundaries where the strike of 

contractional faults deviates from the overall strike of the mountain belt by ca. ~30° (e.g., Figs. 7 and 9). 675 

Models where shortening was oblique to the rift axes (10 and 20 degrees) and the platform-basin thickness ratios were less 

than 1 lead toshow (i) a shift of the transfer zone of thrust faults connecting platformplatforms with basin realms from basin 

centers (e.g., parallel inversion of model 1 in Fig. 5) to platform-basin transitions, and (ii) a marked variability of thrust strikes 

of updown to 70o~25o with respect to the shortening directionoverall strike of the mountain belt (compared to an average of 

3755° for parallel inversion models). Additionally, such kinematic boundary conditions favouroblique shortening favours the 680 

reactivation of W-dipping normal faults (e.g., normal faults 4, 6-7 in cross-section b-b’ in Fig. 6c, normal faults 4 and 7 in 

cross-section g-g’ in Fig. 6f) whereas E-dipping normal faults are preferentially cut by contractional structures leading to 
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thrusting of platforms on top of basin sequences and an increase of ramp lengths. Ramps and flats are especially shorter in 

basins in parallel inversion models as basins consist initially of thinner crust (e.g., compare cross-section b-b’ of parallel 

inversion model 1 in Fig. 5g with cross-section b-b’ of oblique (10°) inversion model 2 in Fig. 6c). 685 

Models including a frictional basal décollement result in (i) shallower dipping normal faults with an average dip of 55° 

compared to models without (average dip of 63°), (ii) fewer thrust systems (two instead of three or more in models without 

basal décollement), (iii) longer ramps and flats especially on platforms, and (iv) fewer back-thrusts. Models with a viscous 

basal décollement show (i) curved and through relay ramps offset normal faults with relay ramps in between fault segments, 

(ii) deformation spreadingbeing distributed over larger areas due to distribution of deformation within the ductile layer, (iii) 690 

normal faults not incorporated in the fold-and-thrust belt experiencingfault reactivation as thrust faultsat distance to the model 

orogen (e.g., reactivated normal fault in the footwall of fore-thrust 5 in cross-section e-e’ in Fig. 8f), and (iv) fewer thrust 

systems similar to models with a frictional basal décollement. 

Models with higher platform-basin thickness ratios of 1 and variable material for the basin fill (i.e., other than quartz sand) 

result in (i) more thrusts (e.g., up to 10 thrust faults in the eastern basins of model 4Fig. 10f and 11 in section b-b’ of Fig. 10c 695 

and section f-f’ in Fig. 10c, respectively10i), (ii) even narrower spacing of thrustsmore fault reactivation within basins 

compared to basins of otherduring oblique (20°) inversion models presented in this study (e.g., model 3 in Fig. 5d6d-f and 

models 5 and models 7-8 in Fig. 8), and (iii) less lateral variations ofvariation in thrust orientationsorientation across platform-

basin boundaries. 

 700 
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5.2 Do inherited extensional structures trigger strain localisation during contraction? 

Basins in general, as well as normal faults at platform borders, represent natural weakness zones in which deformation 

concentrateslocalises during parallel to oblique basin inversion (Doglioni, 1992; Munteanu et al., 2013). Results of all models 705 

presented in this study confirm that deformation localises in areas of lateral strength contrasts in the crust such as transitions 

from platforms to basins, which are characterised by intense faulting and a change from basement or platform to basin 

sequences (Figs. 5, 6, 8, 10, 11). With respect to the former, friction is decreased by about 17% for the quartz sand wherein 

the normal faults developed as shown by ring-shear experiments inferring frictional properties for peak- and reactivation 

conditionsUpon faulting, friction decreases within the quartz sand by about 17 % (Willingshofer et al., 2018). A Furthermore, 710 

ring shear tests constrain fault reactivation for the analogue material for friction coefficientcoefficients of ca. 0.52 for fault 

zone material falls thus within the possible range of friction. For such values for reactivating reactivation of normal faults 

dipping at 60° is expected (Sibson, 1995). In contrast, analogue modelling studies using materials with higher reactivation 

friction reported less evidence of fault reactivation (Panien et al., 2005), leading to localisation of deformation at the position 

of the normal faults. However, we do not find a correlation between strain localisation and the position of the normal faults in 715 
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cases where there is no strength contrast from platform to basin fill, suggesting that the reduction of strength along the normal 

faults in our experiments is insufficient to trigger strain localisation. Instead, our modelling results suggest that lateral strength 

variations related to the transition from rigid platforms to the weak basin fill are required for strain to localise at platform-basin 

transitions. These results are consistent with earlier modelling studies demonstrating the importance of strength variations in 

the crust for the localisation of deformation (Brun and Nalpas, 1996; Sokoutis and Willingshofer, 2011; Bonini et al., 2012; 720 

Calignano et al., 2015; Auzemery et al., 2020). 

Previous studies have furthermore shown that localizationlocalisation of deformation through the reactivation of pre-existing 

faults, is favoured when the shortening direction is at angles smaller than 45° with respect to the strike of the inherited 

discontinuities (e.g., Nalpas et al., 1995; Brun and Nalpas, 1996; Amiliba et al., 2005; Panien et al., 2005; Del Ventisette et 

al., 2006; Yagupsky et al., 2008; Deng et al., 2020) or the fault is substantially weakened by clay smearing (e.g., Marques and 725 

Nogueira, 2008) or elevated pore-fluid pressure (Sibson, 1995). Yet the latter is not part of our experimental work, our 

modelling results support these earlier findings as demonstrated by the fact that inherited normal faults are more often 

reactivated upon oblique inversion. Additionally, we note that normal faults dipping against the direction of shortening (W-

dipping normal faults in our models) seem to be better oriented for reactivation than E-dipping normal faults (Figs. 6, 8, 10). 

Consequently, E-dipping normal faults are preferentially cut by newly formed thrust faults. A similar relationship has been 730 

described by Panien et al. (2005). 

Lateral strength variations caused by the transition from rigid platforms to the weak basin fill is supported through tighter 

spacing and therefore a higher number of in-sequence thrusts (e.g., compare platform section e-e’ and basin sections f-f’ and 

g-g’ of model 11 in Fig. 10f). These results are consistent with earlier modelling studies demonstrating the importance of 

strength variations in the crust for the localisation of deformation (Brun and Nalpas, 1996; Sokoutis and Willingshofer, 2011; 735 

Bonini et al., 2012; Calignano et al., 2015; Auzemery et al., 2020). 

5.3 Are the vertical motions at platforms different to basins?controlled by the inherited platform-basin configuration?  

The style of thrust faulting is overall comparable on platforms and in basins and mostly in-sequence, the latter is shown as the 

preferred deformation style in many previous analogue modelling studies (e.g., Ellis et al., 2004; Panien et al., 2005; Deng et 

al., 2020). Tighter spacing of thrusts in basinal areas, is mostly depending on the difference of initial crustal thickness 740 

(Mulugeta, 1988) (i.e., platform-basin thickness ratio of 0,7-0,8 in all but models 4, 11, and 12 where it is 1),. Yet accompanied 

with shorter and steeper ramps, this does not lead to enhanced vertical motions within basinal areas. Instead, longer ramps and 

flats on platforms result in higher topography, also at the final stage of the inversion models.. The rheology of the basal 

décollement ishowever, seems to be of importance regardingfor differences in vertical motion across basin boundaries. Using, 

e.g., a viscous basal décollement leads to shearing within the ductile layer close to the backstop within the eastern basin of 745 

model 8 (7 (cross-section e-e’ in Fig. 8f) and therefore to strong uplift of thrust sheet I. Overall, models including a basal 

décollement (i.e., frictional or viscous) show lower vertical motionsless topography than models without (Liu et al., 1992; 

Ravaglia et al., 2006), independent of platforms or basins. 
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Regarding basins, we modelled different basin sizes to conceptually test variations in fault localisations. LargeOur modelling 

setup produces large (western) and small (eastern) rift basins with ranges of basin sizes between 11,0-14,0 cm, average widths 750 

of 12,.2 cm (i.e., western basin) and 8,2-9,5 cm, average 8,.6 cm (i.e., eastern basin), , respectively (Fig. 12a). The style and 

number of thrust faults (e.g., 6 major fore-thrusts within both the western and eastern basins of model 11 in Fig. 10d-e) are 

very similar in large and small basins. Comparing vertical motions in large and small basins, parallel inversion models (e.g., 

model 1 in Fig. 5) show similar vertical motions in both basins, whereas oblique inversion leads to enlarged vertical motions 

within the eastern basin. Due to oblique inversion, western  (Fig. 10g-h) but topography evolutions differ, particularly in cases 755 

where the western platforms get thrusted onto basin successions of eastern basins (e.g., models 2 and 3 in Fig. 6,6, models 5 

and 7 in Fig. 8, models 7 and 8-10 in Fig. 8, models 4, 11, and 12 in Fig. 10), resulting in successive gain of crustal thickness 

compared to the western basin.10). In these cases, more pronounced thickening of the crust results in high topography.  

 

[Figure 12] 760 

 

5.4 What controls the variation in strike directions of the major thrust faults? 

Our analogue models emphasize strong lateral variability in thrust fault orientation across platform-basin transitions (i.e., pre-

existing rheological discontinuities),, which has also been observed by Ravaglia et al. (2004); Di Domenica et al. (2014). The 

lateral variability of thrust fault strikes can be up to 70° with respect to the shortening directionsoverall strike of the model 765 

orogens varies between ~55° for parallel inversion models to ~25° for oblique inversion setups. The close correlation of these 

variations with the platform-basin transitions suggest causal relationships with the orientation of inherited strength variations. 

We also note that this feature is a robust model outcome and not applicable for the exceptional case where the basin is 

completely filled with material of the same strength as the platforms are made of. 

Quantitative differences of thrust front positions from the backstop in both western and eastern basins are presented in Fig. 770 

12b. From a conceptual point of view, deformationDeformation localises in both, large and small basins, but backstepping of 

the thrust front is more profound in larger basins (Fig. 12b) due to more space for lateral ramps. This appliesleading to stronger 

undulationsvariations of thrust faults in experiments where the thrust front is located further towards the hinterland within the 

large basin (i.e., western basin)fault orientations (Fig. 11, Fig. 12b). In other cases, where the thrust front in the large and small 

basin are located at equivalent distances from the backstop (e.g., models 4, 7, 115, 8, 10 in Fig. 12b), the thrust front is either 775 

continuous from the western to the eastern basin or an additional fore-thrust formed separately in the western basin without 

connection towards the eastern basin (e.g., model 7 in Fig. 11m-n). In model 4, the location of the thrust front within the 

western basin is even further in the foreland of the orogen compared to the western platform (Fig. 11g-h, Fig. 12b), what could 

be (i) influenced from the presence of another platform to the west, as a wider backstop was used in this experiment in order 

to conceptually test basin inversion in large basins with straight graben borders or (ii) due to the use of the same material for 780 

platforms and basins (i.e., quartz sand) additional to a platform-basin thickness ratio of 1, resulting in a too low strength 



 

25 

contrast between platforms and basins.model 5 in Fig. 11i-j). Thrust fronts are at approximately the same position in basins 

and platforms and show little variation in orientation when the platform-basin thickness ratio is 1 and no rheologic contrasts 

exists between basins and platforms (e.g., model 8).  

Earlier studies including strength contrasts between basins and surrounding areas by variations in crustal thickness and in basin 785 

fill material yielded similar results (Nalpas et al., 1995; Panien et al., 2005) suggesting that pre-existing lateral heterogeneities 

within the model already prior to the shortening phase and are a major controlling factor for the undulationorientation of the 

thrust faults. As such, their nature is different to variations of thrust orientations related to lateral variation of décollement 

strength (Cotton and Koyi, 2000; Nieuwland et al., 2000). Similar to Nalpas et al. (1995); Panien et al. (2005) we tested the 

influence of basin fill rheology on the evolution of shortening structures. The results consistently indicate the mechanical 790 

stratification of the basin fill exerts a strong control on the style of deformation and the orientation of the shortening structures. 

On the scale of the lithosphere, Calignano et al. (2017) show that pre-existing heterogeneities that are oblique to the shortening 

direction can lead to the formation of oroclines. 

Surprisingly, the above described transfer zones, thecumulative strain on oblique thrust segments that connect basins and 

platforms, show little evidence for strike-slip movement is of thrust-type (Figs. 7 and 9).) and strike-slip dominated phases of 795 

motions are transient features during incremental stages of thrust formation and displacement. We suggest, that this can be 

explained by strain partitioning as described in complex fault systems (Krstekanić et al., 2021; Krstekanić et al., 2022). 

6 Application to polyphase deformation within the Dolomites Indenter of the eastern Southern Alps 

The model outcomes show that the presence of an inherited platform-basin configuration controls the localisation and overall 

style of deformation during the subsequent shortening phase. These first-order results of our crustal-scale analogue modelling 800 

study agree with previous studies of the Dolomites Indenter of the eastern Southern Alps, highlighting the importance of 

inherited Mesozoic structures on Alpine deformation (Doglioni, 1992; Schönborn, 1999; Verwater et al., 2021). Other than in 

previous analogue modelling studies where indenters were assumed rigid (Tapponnier et al., 1982; Ratschbacher et al., 1991; 

Luth et al., 2013a; Luth et al., 2013b; Krstekanić et al., 2021; Krstekanić et al., 2022), we focus on indenter internal deformation 

and therefore follow Sokoutis et al. (2000); Willingshofer and Cloetingh (2003); Van Gelder et al. (2017), stating indenters 805 

are never completely rigid., by using a deformable indenter. Kinematically, the model configuration of oblique (20°) basin 

inversion comes closest to SSE-directed inversion of approximately N-S striking inherited discontinuities within the Dolomites 

Indenter of the eastern Southern Alps. As such model 7, which also resembles the natural example of the Dolomites Indenter 

best on aspects of structural style of extensional structures, the overall style and kinematics of deformation related to the 

subsequent shortening phase, and shortening within basinal areas, has been chosen as our “best fit model” which will be used 810 

for the comparison with the natural example. We remark that our crustal-scale analogue models do not account for strength 

variations with the platforms (e.g., mechanically stronger northern part of the Trento platform, related to the presence of the 

up to 2 km thick Athesian Volcanic Complex; Bosellini et al., 2007) or the evolution 
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6.1 Best fit model for the Dolomites Indenter 

Evaluating all conducted experiments (Fig. 11), the outcome of model 8 (Table 1, Fig. 8d-f) resembles most closely the natural 815 

example of the Dolomites Indenter, particularly on aspects of (i) style of extensional structures, (ii) overall style of the 

subsequent shortening phase and (iii) shortening within basinal areas. Not included in any of our crustal-scale analogue models 

and therefore also not in the best-fit model are (i) a mechanically stronger northern part of the Trento platform, related to the 

presence of the up to 2 km thick Athesian Volcanic Complex (Bosellini et al., 2007) and (ii) the presence of the sinistral 

transpressive Giudicarie fault system delimiting the Dolomites Indenter to the NW (Castellarin and Cantelli, 2000; Viola et 820 

al., 2001; Pomella et al., 2012; Verwater et al., 2021), which strikes slightly oblique to parallel to Late Triassic/Jurassic 

extensional structures and oblique to Neogene compressional structures.is beyond the scope of this study.  

 

6.1 Best fit model for the Dolomites Indenter 

Extensional structures of the best-fit model (model 7, Fig. 8d-f) are characterised by curved fault segments, which are 825 

connected via relay ramps. In this model, normal faulting also affected parts of the Trentino platform resulting in tilted fault 

geometries and half-grabens (Fig. 8d-f). These structures are in accordance with local to regional scale graben structures within 

the platforms of the Dolomites Indenter, e.g., the Seren graben (Doglioni, 1992; Doglioni and Carminati, 2008; Sauro et al., 

2013) located within the hanging wall of the Bassano-Valdobbiadene thrust and probably controlled by inherited Jurassic 

geometries. During subsequent shortening those graben structures partly get reactivated and inverted, both in analogue models 830 

(cross-section e-e’ in Fig. 8f) as in the natural analogue (Sauro et al., 2013). 

The in-sequence deformation style of the shortening phase fits well towith the documented in-sequence thrust sequence of the 

Southern Alps (Doglioni, 1992; Castellarin and Cantelli, 2000). The pop-up structure of thrust system II on the western 

platform of the best-fit model (7 (cross-section d-d’ in Fig. 8f) is in line with, e.g., the so called Asiago (i.e., Sette Comuni) 

pop-up structure between the Bassano-Valdobbiadene fore-thrust and the Val di Sella back-thrust (Fig. 1b) (Barbieri, 1987; 835 

Barbieri and Grandesso, 2007) of the natural analogue Trento platform. The Asiago pop-up is documented as wide box-fold 

becoming narrower when entering the Belluno basin and ending in a transpressive waystructure at the transition of the Belluno 

basin to the Friuli platform (Doglioni, 1990, 1992). A decrease in size of the pop-up structure from the Trento platform towards 

the Belluno basin is also documented in the best-fit model (compare cross-sections d-d’ and e-e’ in Fig. 8f). Comparing the 

style of thrusting on the platform (cross-section d-d’ in Fig. 8f) and in the basin (cross-section e-e’ in Fig. 8f), ramps show 840 

shallower dips in basinal compared to platform successions, resulting in longer ramps on platforms and shorter ramps in basins, 

taking thicker model crust on platforms compared to basins into account.. Flats in basins show different positions compared 

to flats on platforms (lower height and closer to the backstop). This observation is in accordance with models of Doglioni 

(1992), where, e.g., the anticline in the hanging wall of the Bassano-Valdobbiadene thrust (Fig. 1b) is located further external 

on the Friuli platform (i.e., Maniago thrust in Doglioni (1992)) than within the Belluno basin (i.e., Bassano thrust in Doglioni 845 
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(1992)), across the W-dipping normal fault transition zone at the transition from Friuli platform to Belluno basin.1b) is located 

further external on the Friuli platform (i.e., Maniago thrust in Doglioni, 1992) than within the Belluno basin (i.e., Bassano 

thrust in Doglioni, 1992), across the W-dipping normal fault transition zone at the transition from Friuli platform to Belluno 

basin. W-dipping normal faults show, according to Doglioni (1992), especial strong sinistral reactivation (e.g., W-oriented 

faults within the sinistral transpressive Giudicarie belt at the margin of the Trento platform towards the Lombardian basin). In 850 

contrast, our models suggest strike-slip movement (mostly transpression) of (reactivated normal) faults at western boundaries 

of basins (i.e., along E-dipping normal faults) (Fig. 9c-d). This is in accordance with strike-slip transpressive reactivation of 

paleostructurespre-existing structures oriented oblique to the shortening direction along lateral ramps (Schönborn, 1999), like, 

e.g., the Cimolais-Longarone or Tagliamento zones (Nussbaum, 2000). The Cimolais-Longarone zone (Nussbaum, 2000), e.g., 

is located within the Belluno basin, in the hanging wall of the Belluno thrust, directly north of the transfer zone of the Bassano-855 

Valdobbiadane thrust from Belluno basin to Friuli platform (Fig 1b). 

In terms of normal fault reactivation,Our best-fit model 8 shows stronger inversion of shallow W-dipping normal faults (e.g., 

thrust 5 in cross-section e-e’ in Fig. 8f), whereas E-dipping normal faults have more likely been folded and/or cut by 

compressional structures (e.g., folded and cut normal fault in the hanging wall of fore-thrust 4 in cross-section d-d’ and in the 

hanging wall of fore-thrust 1 in cross-section e-e’ in Fig. 8f). Lateral changes in fault reactivation are common at platform-860 

basin transitions, e.g., thrust 7 in cross-section e-e’ in Fig. f, which is independent from the normal fault in its immediate 

footwall; the latter getting reactivated as thrust fault straight E of cross-section e-e’ (Fig. 8d-e). 

The overall style of compressional deformation documents undulationsvariations of the (frontal) thrust orientations and of the 

fold axes of frontal growth folds across lateral discontinuities (e.g., platform hosted thrust 2 in Fig. 8d-e and cross-section d-

d’ in Fig. 8f stepping back towards the eastern basin), the latter representing anisotropies, like lateral ramps of transfer zones 865 

in, e.g., the upper to middle crust. Similar effects have been shown by Ravaglia et al. (2004), where growth folds in transfer 

zones produce lateral culminations in the folded structures. The style of deformation within the basinal areas of the best-fit 

model 8 is especially well in line with the natural analogue when comparing the model cross-section to geological cross-

sections through (i) the Venetian Alps, where platform (i.e., Trento platform) get thrusted over basinal (i.e., Belluno) 

successions (Doglioni, 1992; Schönborn, 1999) or (ii) the Friuli Alps, where basinal (i.e., Belluno and/or Slovenian basin) 870 

sediments are located north of platform (i.e., Friuli platform) successions and get thrusted over the latter (Kastelic et al., 2008; 

Ponton, 2010). Characteristic for the Friuli Alps is that the steep to the S dipping backthrust is steeply dipping to the S (Fella 

fault), which is cut by several N-verging thrust faults (Merlini et al., 2002; Galadini et al., 2005; Kastelic et al., 2008; Ponton, 

2010; Poli and Zanferrari, 2018). In our best-fit model 8, the position of the fore-thrusts 1-4 (cross-section e-e’ in Fig. 8f) 

indicates polyphase shearing within the ductile layer close to the backstop (cross-section e-e’ in Fig. 8f), supporting the crustal-875 

scale (Poli et al., 2021) high-angle backthrust in, e.g., the model of Venturini (1990). As this shear zone (section e-e’ in Fig. 

8f) does not reach the model surface, discussion about the amount of lateral (dextral referring to Merlini et al. (2002)) 

movement along the fault is not possible.As this shear zone (cross-section e-e’ in Fig. 8f) does not reach the model surface, 

discussion about the amount of lateral (dextral referring to Merlini et al., 2002) movement along the fault is not possible.  
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6.2 Structural observations along the western Belluno fault of the Valsugana fault system 880 

Polyphase deformation within the Dolomites Indenter of the eastern Southern Alps is well known throughout its extent from 

W to Ethrough regional paleostress studies with plenty of studied sites along the whole Southern Alps, dated with a tectonic 

stratigraphic approach (Doglioni, 1991; Carulli and Ponton, 1992; Castellarin et al., 1992; Doglioni, 1992; Polinski and 

Eisbacher, 1992; Caputo, 1996; Castellarin et al., 1998; Castellarin and Cantelli, 2000; Mellere et al., 2000; Venturini and 

Carulli, 2002; Kastelic et al., 2008; Caputo et al., 2010; Abbà et al., 2018; Poli et al., 2021). Additionally, a detailed 885 

reconstruction of the Adria-Europe convergence path, based on the magnetic anomalies of the Atlantic Ocean by Dewey et al. 

(1989), presented by Mazzoli and Helman (1994), suggests similar timing and direction of convergence as observed in the 

paleostress reconstructions of the Southern Alps and other Mediterranean areas (e.g., Fellin et al., 2005; Caputo et al., 2010). 

To compare analogue modelling results with internal deformation of the Dolomites Indenter, fault slip data from existing 

studiesregional studies (e.g., Caputo, 1996; Castellarin and Cantelli, 2000; Caputo et al., 2010) were compiled and 890 

supplemented with new local fault slip data and shortening directions referred from strongly folded strata from the field (Fig. 

13). Overall,), leading to the following main deformational phases within the Dolomites Indenter since the Late Triassic are: 

(i) D0D1 – Late Triassic to Jurassic W-E extension, (ii) D1 – the ?Cretaceous to Paleogene top S-directed pre-Adamello phase 

is mentioned for completeness, but until today only suspected within the eastern Southern Alps, while detected within the 

western Southern Alps west of the Giudicarie belt (Castellarin et al., 1992), (iii) D2 – Paleogene top SW-directed shortening, 895 

mostly thin-skinned (i.e., Dinaric phase), (iviii) D3 – Miocene top S(SE)-directed shortening, mostly thick-skinned (i.e., 

Valsugana phase), (v) Miocene to Pliocene top S-directed shortening, which undulates from top SSW-directedS- to top SSE-

directed and (vi) D5iv) D4 – Pliocene to Pleistocene top E(SE)-directed shortening, mostly transpressive, and with an 

increasing prominence towards the east (Fig. 13).13). A common problem within the polyphase deformed Southern Alps is, 

when cross-cutting relationships can not be found in the field. As this is the case for D3 in our study, shortening directions 900 

changing from top SSW- via top S- to top SSE-directed were combined. Deformation phase D4 clearly cross-cuts previous, 

top S-directed deformation. 

 

[Figure 13] 

 905 

Variations in structural style along strike of thrusts within the Dolomites Indenter were studied by collecting measurements of 

planar (bedding, fault planes, S-C fabrics) and linear (fault striation, fold axes) structural elements along several major faults. 

Here wemajor fault zones between Adige Valley in the west (for location see label Bozen in Fig. 1b) to the Friuli Alps in the 

east (for location see label FriR in Fig. 1b). Here we zoom in and present structural observations along the western segment of 

the Belluno thrust as a case study (Fig. 14a-b14a-b). Our spatially distributed data along major faults across the Dolomites 910 

Indenter were integrated in the compilation of the main deformational phases (Fig. 13). 
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The Belluno thrust belongs to the Valsugana fault system and represents a southern thrust splay of the Valsugana thrust, 

merging into the Valsugana thrust slightly east of Borgo Valsugana (location 1 in Fig. 14b).The Belluno thrust is part of the 

Valsugana fault system and represents a southern thrust splay merging with the Valsugana thrust slightly east of Borgo 

Valsugana (location I in Fig. 14b). The Belluno thrust was mainly active during the Miocene or later (deformation phase D3, 915 

Fig. 13) with an eventual initiation in the Late Oligocene (Vignaroli et al., 2023), has been reactivated several times (Vignaroli 

et al., 2020), and shows seismic activity at present (Areggi et al., 2023). The overall strike of the approximately 20 km long 

and approximately 30° to the N dipping Belluno thrust is WSW-ESE-trending (Vignaroli et al., 2020; Zuccari et al., 2021). 

The hanging wall of the Belluno thrust shows a prime example ofis a S-verging fault-propagation fold (Mt. Coppolo anticline) 

with a sub-vertical forelimb (Vignaroli et al., 2020). The Mt. Coppolo anticline exposes Upper Triassic to Lower Jurassic 920 

shallow water carbonates (Dolomia Principale, Calcari Grigi Group), which are thrusted onto Cretaceous to Paleogene strata 

(Maiolica Formation, Scaglia Variegata Formation, Scaglia Rossa Formation) (D'alberto et al., 1995).(D’Alberto et al., 1995). 

In the western segment of the Belluno thrust, close to where it merges into the Valsugana thrust (Fig. 14b), fault slip data from 

within the footwall of the Belluno thrust shows top SSW-directed shortening, accompanied by strongly folded strata with a 

mean fold axis of 301/14 (1I in Fig. 14a, for location of 1I see Fig. 14b), suggesting SSW-NNE directed shortening. Further 925 

towards the east (location 2II in Fig. 14b), fault slip data from within the footwall of the Belluno thrust mainly shows top S-

directed thrusting, with undulations towards the SSW and the SSE (2II in Fig. 14a, for location of 2II see Fig. 14b). Top S-

directed thrusting is supported by shallow plunging mean fold axes of 265/05 and 091/07 within Jurassic to Cretaceous strata 

in the footwall of the Belluno thrust (2II in Fig. 14a, for location of 2II see Fig. 14b). Data from location 2II origin from west 

of major pre-existing Mesozoic discontinuities within the Trento platform and towards the western boundary of the Belluno 930 

basin, e.g., the Seren graben and the Cismon valley alignment (Sauro et al., 2013). Our data of location II (Fig. 14b) support 

top S-directed thrusting, although mixing of directions can not be excluded totally, as cross-cutting criteria are partly hard to 

discover within the polyphase deformed eastern Southern Alps. Even further towards the east, where the Belluno thrust crosses 

the boundary from the Trento platform towards the Belluno basin (location 3III in Fig. 14b), fault slip data from its footwall 

provides thrusting directions towards SSE, accompanied by a mean fold axis of 250/22 (3III in Fig. 14a, for location of 3III 935 

see Fig. 14b). The along strike change of shortening kinematics from top SSW- via top S- to top SSE-directed in our data can 

be explained by strain partitioning along the Belluno thrust. 

 

[Figure 14] 
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6.3 Variability of deformation styles and thrust fault orientations: Implications of modelling results for the eastern 

Southern Alps 

Fault geometries in map-view of the conducted physical analogue experiments (Fig. 11) show strong resemblance with the 

fault geometries in map-view of the natural prototype (Figs. 1b, 14b). Especially striking are the (i) tighter spacing of thrusts 
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in basinal areas (e.g., Belluno basin), and (ii) curved thrust fronts at platform-basin transitions, e.g.,. Examples of the latter 945 

include the Belluno thrust both at the transition from Trento platform to Belluno basin (Zampieri and Grandesso, 2003) as 

from Belluno basin to Friuli platform or the Bassano-Valdobbiadene thrust at the transition from Belluno basin to Friuli 

platform (Picotti et al., 2022). Observation from (i) match with field descriptionsField observations from the eastern Southern 

Alps, where also show that the spacing of thrusts is tighter within the Belluno basin than on the Trento platform (Doglioni, 

1991; Doglioni and Carminati, 2008). According to Doglioni (1991), both folds and thrusts show reduced wavelengths in 950 

basinal areas in the natural prototype, supporting the tighter spacing of thrusts in basins. Our analogue models support longer 

wavelengths of thrusts on platforms in contrast to shorter wavelengths in basins (Figs. 5, 6, 8, 10). Transitions between 

variations in wavelengths of thrusts appear at platform-basin boundaries, at so called transfer zones. Our models indicate that 

the size of the basin (Fig. 12a) rulescontrols the width of the transfer zone and the lengths of oblique lateral ramps between 

platform and basin domains. Backstepping of the most external thrust front in basins compared to platforms is, in most of the 955 

analogue experiments presented in this study (Fig. 11),(Fig. 11) is more distinct in the western (i.e., Lombardian) basin than 

in the eastern (i.e., Belluno) basin (e.g., Fig. 5c-f). The increasing amount of thrusts in basins compared to platforms is not 

influenced by the basin size. Our study therefore emphasises that the presence of basins representing lateral mechanical 

strength variations (Fig. 4b) is most important for lateral variations of the deformational styles. 

According to fieldField observations, the  suggest an along strike change of shortening direction alongdirections at several of 960 

the studied faults, e.g. the overall SSE-directed Belluno thrust of the Valsugana fault system (Figs. 1b, 14b), changes along 

strike.). In the case of the Belluno thrust, the shortening direction changes from top SSW to top SSE along strike (Fig. 14a-b). 

Field data therefore clearly show varying shortening directions along strike of a single fault. In map-view (Figs. 1b, 14b), this 

variation in shortening direction can be noticed by means of an anastomosing strike of the thrust front. Focusing on this This 

is particularly evident at the western segment of the Belluno thrust (locations 1I to 3III in Fig. 14b), especially along the sector 965 

between locations 2 and 3,) where the Belluno thrust follows the platform boundary of the Trento platform towards the– 

Belluno basin boundary. West of location 2 (between locations 1 and 2),II the Belluno thrust is located further towards the 

foreland, further towards the S, whereas east of location 3III, the Belluno thrust is located further towards the hinterland, 

further towards the N. 

Field data are supported by PIV-analysed top-view pictures of different time steps during the run of various The incremental 970 

particle path in analogue modelling experiments of this study (models (e.g., time step between 15 and 20 % of bulk shortening 

of model 1 in Fig. 14c; time step between 10 and 15 % of bulk shortening of model 75 in Fig. 14d), showing trajectories of 

particles (black arrows in Fig. 14c-d) which indicatecaptured by detailed PIV-analysis is consistent with the field observations 

and indicates temporal variations in movingmovement directions (between SW to SE) at one particular time step of the model 

run. This). The associated change in orientation of the thrust front, which coincides with platform-basin transitions, is a feature 975 

we seeobserve in most of our parallel to oblique basin inversion models (Fig. 11), as a result of different styles of faulting11) 

and highlight the role of pre-existing discontinuities or lateral facies juxtaposition, which are visible in laterally varying 

domains of mechanical strengths, as platforms and basins representthe inversion strain pattern. 
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Taking this information from the field and theField data and crustal-scale analogue models into account, our studymodelling 

results strongly supportssupport previous studies by, e.g., Masetti and Bianchin (1987); Doglioni (1991, 1992); Schönborn 980 

(1999) and suggest that inherited structures, e.g., pre-existing normal faults leading to together with lateral strength variations 

controlled by the platform-basin geometries, controlconfiguration, regulate the style of subsequent compressional deformation 

and are the cause of variations in shortening directions along strike of thrust faults. Our study does not question the importance 

of large-scale paleostress analysis of previous authors (e.g., Caputo, 1996; Castellarin and Cantelli, 2000; Caputo et al., 2010), 

but emphasises the role of pre-existing structures on strain partitioning along regional fault systems.  985 

7 Conclusions 

A series of crustal-scale physical analogue models was performed to investigate the effect of inherited extensional structures 

and lateral strength variations on the style and kinematics of younger compressional deformation, the latterassociated with 

parallel to oblique to the pre-existing structuresbasin inversion. Based on our modelling results, we infer the following:  

1. Modelling results of parallel to oblique basinDuring inversion confirm the localisation of deformation, strain 990 

predominantly localises in areas of lateral strength contrasts, such as transitions from platforms to basins represent.  

2. Curved thrust fronts and lateral ramps coincide with the transition from platforms to basins and are therefore 

controlled by rheological changes including the weakness of inherited extensional faults and the transition to the 

weaker basin fill. These areas, referred to as transfer zones, are the surface expression of thrust connections from 

platform to basin realms. Transfer zones also involve lateral changes in shortening direction along strike of 995 

particularindividual thrust faults. 

3. Reactivation of inherited normal faults is favoured for oblique shortening and predominantly occurs on fault planes 

dipping towards the shortening direction (i.e., the moving backstop). 

4. Although compressive strain dominates, undulatingvariations in thrust frontsfront orientations across platform-basin 

boundaries are accompanied by minortransient incremental oblique slip movements, ranging from transtension to 1000 

predominantly transpression. 

5. Spacing of in-sequence thrusts is larger on platforms and smaller in basins, which is, together with the overall style 

of deformation, less dependent on (i) the material used for the basal décollement, (ii) the style of graben borders, or 

(iii) the size of the basin, but is controlled by the presence of inherited platform-basin configuration.  

TransferredWith reference to the natural analogue, the Dolomites Indenter of the eastern Southern Alps, our modelling results 1005 

strongly suggest that the whole tectonic evolutionalong strike variations of the Dolomites Indenter with variabilities ofthrust 

orientations and associated shortening directions along strike of several thrust faults (e.g.,, as among others documented for 

the Belluno thrust of the Valsugana fault system) is, are the consequence of strain partitioning controlled by inherited structures 

and does not necessarily reflect different regional deformation phases. As such the numberThis shows that local and temporal 



 

32 

variabilities in thrust kinematics constrained by the rock record can be explained by strain partitioning within a stable stress 1010 

field and within a single progressive phase of deformation phases in the Southern Alps may have been overestimated so far..  
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Figure 1. (a) Topographic mapHillshaded digital elevation model (DEM) of the Alpine Arc of western Austria, Switzerland, northern 

Italy and Slovenia overlain by first-order structures of the Alpine orogen (modified from (modified from Schmid et al. (., 2004); (; 

2020)).. The DEM was taken from the European Commission (EU-DEM). Coordinates here and in Fig. 1b are in WGS 84/UTM 

zones 32T and 33T. Abbreviations: PG – Pustertal-Gailtal fault, GFS – Giudicarie fault system, GB – Giudicarie belt, TF – Tonale 

fault, CF – Calisio fault, DI – Dolomites Indenter, II – Insubric indenter. (b) Late Triassic/Jurassic platform-basin configuration 1435 
(modified from (modified from Winterer and Bosellini (, 1981);; Busetti et al. (., 2010);; Masetti et al. (., 2012);; Martinelli et al. (., 

2017);; Picotti and Cobianchi (, 2017);; Picotti et al. (., 2022)) projected over the present day geography and overlain by the tectonic 

map of the Dolomites Indenter (modified from (modified from Schönborn (, 1999);; Castellarin and Cantelli (, 2000);; Schmid et al. 

(., 2004; Ponton, 2010; Viscolani et al., 2020)).. Abbreviation red: VF – Villnöss/Funes fault, WF – Würzjoch/Passo delle Erbe fault, 
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TTF – Tremosine-Tignale fault, VB – Val Bordaglia fault, CF – Calisio fault, VdS – Val di Sella back-thrust. Abbreviation black: 1440 
CadR – Cadore region, CarR – Carnia region, FriR – Friuli region, VB – Val Badia/Gadertal.  
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Figure 2. Paleogeographic domains of the Dolomites Indenter. The location of cross-section A-A’ is indicated in Fig. 1b. (a) Simplified 

stratigraphic columns for each paleogeographic domain (modified from (modified from Bertotti et al. (., 1993);; Picotti et al. (., 1445 
1995);; Picotti and Cobianchi (, 2017);; Verwater et al. (., 2021)). (b) Cross-section (vertically exaggerated!) through the Jurassic 

platform-basin configuration (modified from Winterer and Bosellini (1981); Smuc and Goričan (2005)).  
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. (b) Cross-section (vertically exaggerated!) through the Jurassic platform-basin configuration (modified from Winterer and 

Bosellini, 1981; Smuc and Goričan, 2005).  1450 
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Figure 3. Simplified sketchsketches of the analoguegeometric and kinematic modelling setup post-for brittle only models with 

underfilled basins (set 1, Table 1) depicting pre-extension (left panel) and pre-shortening for (a)(right panel) experimental conditions 

for inversion where the shortening direction is parallel inversion, (b) oblique inversion with an angleto the strike of 80° between 

backstop andthe pre-existingdefined velocity discontinuities, (c) (a), or oblique inversion with an angleangles of 70° between 1455 
backstop10° (b) or 20° (c). The eastern basin (EB) localises at VD1 due to pulling of the mobile sheet 1 below the fixed plastic sheet, 

whereas the western basin (WB) localises at VD2 due to pulling of mobile sheet 2. Mobile sheets 1 and pre-existing discontinuities.2 

are pulled in a direction indicated by the grey arrows. All numbers in Fig. 3a-c without units are in centimeters.
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 Dimensions are the same for all setups in Fig. 3a-c. Abbreviations: VD – velocity discontinuity, TE – total extension, TS – total 

shortening.  1460 
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Figure 4. Modelling setup. (a) Simplified sketches of setup cross-sections for brittle only and brittle/ductile experiments. Cross-

section location is indicated in Fig. 3a. (b) Strength profiles for brittle only and for brittle/ductile experiments for platforms/filled 

basins (platform-basin thickness ratio of 1) and for underfilled basins (platform-basin thickness ratio of 0,.7 to 0,.8). All numbers in 1465 
Fig. 4a without units are in centimeters.  
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Figure 5. Model 1 – reference model, parallel basin inversion, quartz sand only. (a) Interpreted top-view picture after the first phase 

of extension and before shortening (0 % of bulk shortening). (b) Interpreted top-view picture after 2,.25 cm of shortening (5 % of 1470 
bulk shortening). (c) Interpreted top-view picture after 4,.5 cm of shortening (10 % of bulk shortening). (d) Map of cumulative strain 

type after 4,.5 cm of shortening (10 % of bulk shortening). (e) Interpreted top-view picture after 9,0 cm of shortening (20 % of bulk 

shortening), (f) Map of cumulative strain type after 9,0 cm of shortening (20 % of bulk shortening). Visually interpreted structures 

of Fig. 5c, e overlay strain type plots in Fig. 5d, f. Strain colour legend corresponds to Fig. 5d, f. The transparency of areas with a 

strain magnitude below the 90 percentile is increased for supressing areas without significant deformation. (g) Cross-sections of the 1475 
reference model at the end of the experiment. Grey dashed line marks the model topography at the end of the experiment. Black 

and grey layers above the topography line marks the post-kinematic sand cover. Cross-section locations are shown in Fig. 5e.  
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Figure 6. Model 2 and model 3 – oblique (10°, 20°, respectively) basin inversion; quartz sand only. (a) Interpreted top-view picture 1480 
of model 2 after 9,0 cm of shortening (20 % of bulk shortening). (b) Map of cumulative strain type of model 2 after 9,0 cm of 

shortening (20 % of bulk shortening). (c) Cross-sections of model 2 at the end of the experiment. Grey dashed line marks the model 

topography at the end of the experiment. Black and grey layers above the topography line marks the post-kinematic sand cover. 

Cross-section locations are shown in Fig. 6a. Note that cross-sections a-a’, b-b’ and c-c’ are oriented oblique (10°) to the main 

structures. (d) Interpreted top-view picture of model 3 after 9,0 cm of shortening (20 % of bulk shortening). (e) Map of cumulative 1485 
strain type of model 3 after 9,0 cm of shortening (20 % of bulk shortening). Visually interpreted structures of Fig. 6a, d overlay 

strain type plots in Fig. 6b, e. Strain colour legend corresponds to Fig. Fig. 6b, e. The transparency of areas with a strain magnitude 

below the 90 percentile is increased for supressing areas without significant deformation. (f) Cross-sections of model 3 at the end of 

the experiment. Grey dashed line marks the model topography at the end of the experiment. Black and grey layers above the 

topography line marks the post-kinematic sand cover. Cross-section locations are shown in Fig. 6d. Note that cross-sections e-e’, f-1490 
f’ and g-g’ are oriented oblique (20°) to the main structures.  
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Figure 7. Temporal evolution of principal stretches and strain type during the compressionalshortening phase of model 2 (a) at the 

thrust front of thrust system II in the eastern basin and (b) at the thrust front of thrust system III within the eastern basin and of 1495 
model 3 (c) at the thrust front of thrust system II in the eastern basin and (d) at the thrust front of thrust system IV within the 

eastern basin. Upper left-hand panel: strain type (final) and overview of the selected areas (a) and (b) of model 2. Middle left-hand 

panel: strain type (final) and overview of the selected areas (c) and (d) of model 3. Left column: zoom on the strain type including 

the selected grid cell (outlined in red) and neighbouring grid cells (outlined in black). Middle column: temporal evolution of the 

logarithm of the two principal stretches (Henky strain, blue and red line). Right column: temporal evolution of dilatation, cumulative 1500 
strain type, and incremental strain type.  
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Figure 8. Model 75 and model 87 – oblique (20°) basin inversion; variation in material for basal décollement (glass beads and silicon 

putty, respectively). (a) Interpreted top-view picture of model 75 after 9,0 cm of shortening (10 % of bulk shortening). (b) Map of 1505 
cumulative strain type of model 75 after 9,0 cm of shortening (10 % of bulk shortening). (c) Cross-sections of model 75 at the end of 

the experiment. Grey dashed line marks the model topography at the end of the experiment. Black and grey layers above the 

topography line mark the post-kinematic sand cover. Cross-section locations are shown in Fig. 8a. Note that the cross-sections a-a’ 

and b-b’ are oriented oblique (20°) to the main shortening structures. (d) Interpreted top-view picture of model 87 after 9,0 cm of 

shortening (10 % of bulk shortening). (e) Map of cumulative strain type of model 87 after 9,0 cm of shortening (10 % of bulk 1510 
shortening). Visually interpreted structures of Fig. 8a, d overlay strain type plots in Fig. 8b, e. Strain colour legend corresponds to 

Fig. 8b, e. The transparency of areas with a strain magnitude below the 90 percentile is increased for supressing areas without 

significant deformation. (f) Cross-sections of model 87 at the end of the experiment. Grey dashed line marks the model topography 

at the end of the experiment. Black and grey layers above the topography line mark the post-kinematic sand cover. Cross-section 

locations are shown in Fig. 8d. Note that the cross-sections d-d’ and e-e’ are oriented oblique (20°) to the main shortening structures. 1515 
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Figure 9. Temporal evolution of principal stretches and strain type during the compressional phase of model 75 (a) at the thrust 

front of thrust system II on the western platform and (b) at the thrust front of thrust system II within the eastern basin and of model 1520 
87 (c) at the thrust front of thrust system II on the western platform and (d) at the thrust front of thrust system II within the eastern 

basin. Upper left-hand panel: strain type (final) and overview of the selected areas (a) and (b) of model 75. Middle left-hand panel: 

strain type (final) and overview of the selected areas (c) and (d) of model 87. Left column: zoom on the strain type including the 

selected grid cell (outlined in red) and neighbouring grid cells (outlined in black). Middle column: temporal evolution of the 

logarithm of the two principal stretches (Henky strain, blue and red line). Right column: temporal evolution of dilatation, cumulative 1525 
strain type, and incremental strain type.  
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Figure 10. Model 48, model 119 and model 1210 – oblique (20°) basin inversion; variation in material representingof the basinsbasin 

fill (quartz sand, glass beads, and feldspar sand, and glass beads, respectively). (a) Interpreted top-view picture of model 48 after 1530 
9,0 cm of shortening (20 % of bulk shortening). (b) Map of cumulative strain type of model 48 after 9,0 cm of shortening (20 % of 

bulk shortening). (c) Cross-sections of model 48 at the end of the experiment. Grey dashed line marks the model topography at the 

end of the experiment. Black and grey layers above the topography line mark the post-kinematic sand cover. Cross-section locations 

are shown in Fig. 10a. Note that the cross-sections a-a’, b-b’, and c-c’ are oriented oblique (20°) to the main shortening structures. 

(d) Interpreted top-view picture of model 11 after 9,0 after 9 cm of shortening (20 % of bulk shortening). (e) Map of cumulative 1535 
strain type of model 119 after 9,0 cm of shortening (20 % of bulk shortening). (f) Cross-sections of model 119 at the end of the 

experiment. Grey dashed line marks the model topography at the end of the experiment. Black and grey layers above the topography 

line mark the post-kinematic sand cover. Cross-section locations are shown in Fig. 10d. Note that the cross-sections e-e’, f-f’, and g-

g’ are oriented oblique (20°) to the main shortening structures. (g) Interpreted top-view picture of model 1210 after 9,0 cm of 

shortening (20 % of bulk shortening). (h) Map of cumulative strain type of model 1210 after 9,0 cm of shortening (20 % of bulk 1540 
shortening). Visually interpreted structures of Fig. 10a, d, g overlay strain type plots in Fig. 10b, e, h. Strain colour legend 

corresponds to Fig. 10b, e, h. The transparency of areas with a strain magnitude below the 90 percentile is increased for supressing 

areas without significant deformation. (i) Cross-sections of model 1210 at the end of the experiment. Grey dashed line marks the 

model topography at the end of the experiment. Black and grey layers above the topography line mark the post-kinematic sand 

cover. Cross-section locations are shown in Fig. 10g. Note that the cross-sections i-i’, j-j’ and k-k’ are oriented oblique (20°) to the 1545 
main shortening structures.  
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Figure 11. Interpreted top-view pictures and cumulative strain type maps of the final stages of all 12 experiments after 9,0 cm of 1550 
shortening (20 % of bulk shortening). Visually interpreted structures of Fig. 12a11a, c, e, g, I, k, m, o, q, s, u, w overlay strain type 

plots in Fig. 12b11b, d, f, h, j, l, n, p, r, t, v, x. Strain colour legend corresponds to Fig. 12b11b, d, f, h, j, l, n, p, r, t, v, x. The 

transparency of areas with a strain magnitude below the 90 percentile is increased for supressing areas without significant 

deformation. The black arrow in the uppermost row of panels indicates the direction of the shortening direction (i.e., moving wall) 

for all 12 experiments.  1555 
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Figure 12. (a) Chart of basin widths of the western and eastern basins of each experiment, measured at the final stage (20 % of bulk 

shortening) of the experiment in W-E direction, perpendicular to platform boundaries. (b) Histogram showing the distance of the 

thrust fronts in basinal areas from the backstop, measured at the final stage (20 % of bulk shortening) of the experiment on top-1560 
view photographs.   
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Figure 13. Schematic overview of the main deformational phases D0D1 to D5D4 of the eastern Southern Alps (compiled from Caputo 

(1996); Castellarin and Cantelli (2000); Nussbaum (2000Caputo et al. (2010) and this study).  1565 
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Figure 14. (a) Fault slip data with local paleostressstress directions and fold axes with indicated shortening directions of the Belluno 

thrust (Valsugana fault system). Locations 1I to 3III are indicated in Fig. 12b. (b) Late Triassic/Jurassic platform-basin 

configuration (modified from (modified from Winterer and Bosellini (, 1981);; Busetti et al. (., 2010);; Masetti et al. (., 2012);; 1570 
Martinelli et al. (., 2017);; Picotti and Cobianchi (, 2017);; Picotti et al. (., 2022)) projected over the present day geography and 

overlain by the tectonic map of the Dolomites Indenter (modified from (modified from Schönborn (, 1999);; Castellarin and Cantelli 

(, 2000);; Schmid et al. (., 2004; Ponton, 2010; Viscolani et al., 2020)).. Note the change in shortening directions along strike of the 

Belluno thrust. Locations 1I to 3III represent segments of different strike of the Belluno thrust. Coordinates are in WGS 84/UTM 

zones 32T and 33T. Abbreviation red: VF – Villnöss/Funes fault, WF – Würzjoch/Passo delle Erbe fault, TTF – Tremosine-Tignale 1575 
fault, VB – Val Bordaglia fault, CF – Calisio fault, VdS – Val di Sella back-thrust, CL – Caneva line. Abbreviation black: CadR – 

Cadore region, CarR – Carnia region, FriR – Friuli region, VB – Val Badia/Gadertal, Ap – Asiago pop-up structure, Sg – Seren 

graben. (c) PIV analysed top-view picture of parallel basin inversion of model 1 at 18 % of bulk shortening (BS). Black arrows 

indicate vectors of particle flow direction. (d) PIV analysed top-view picture of oblique (20°) basin inversion of model 75 at 12 % of 

bulk shortening (BS). Black arrows indicate vectors of particle flow direction.  1580 
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Table 1. Geometrical model parameters used in this study. Model type: B – brittle, BD – brittle-ductile. Rheology of basal 

décollement: B – brittle, D –ductile. Material of basal décollement: qs – quartz sand, gb – glass beads, sp – silicon putty. Material of 

basin fill: qs – quartz sand, fs – feldspar sand, gb – glass beads. 

   1585 
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Table 2. Properties for brittle and ductile material used in this study. 

 

 


