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Abstract. As the number of models in Coupled Model Intercomparison Project (CMIP) archives increase from generation to

generation, there is a pressing need for guidance on how to interpret and best use the abundance of newly available climate

information. Users of the latest CMIP6 seeking to draw conclusions about model agreement must contend with an "ensem-

ble of opportunity" containing similar models that appear under different names. Those who used the previous CMIP5 as a

basis for downstream applications must filter through hundreds of new CMIP6 simulations to find several best suited to their5

region, season, and climate horizon of interest. Here we present methods to address both issues, model dependence and model

subselection, to help users previously anchored in CMIP5 to navigate CMIP6 and multi-model ensembles in general. In Part

I, we refine a definition of model dependence based on climate output, initially employed in Climate model Weighting by

Independence and Performance (ClimWIP), to designate discrete model families within CMIP5/6. We show that the increased

presence of model families in CMIP6 bolsters the upper mode of the ensemble’s bimodal effective Equilibrium Climate Sen-10

sitivity (ECS) distribution. Accounting for the mismatch in representation between model families and individual model runs

shifts the CMIP6 ECS median and 75th percentile down by 0.43◦C, achieving better alignment with CMIP5’s ECS distribution.

In Part II, we present a new cost-function minimization-based approach to model subselection, Climate model Selection by

Independence, Performance, and Spread (ClimSIPS). ClimSIPS selects sets of CMIP models based on the relative importance

a user ascribes to model independence (as defined in Part I), model performance, and ensemble spread in projected climate15

outcome. We demonstrate ClimSIPS by selecting sets of three to five models from CMIP6 for European applications, eval-

uating the performance from the agreement with the observed mean climate, and the spread in outcome from the projected

midcentury change in surface air temperature and precipitation. To accommodate different use cases, we explore two ways to

represent models with multiple members in ClimSIPS, first, by ensemble mean and second, by an individual ensemble member

that maximizes midcentury change diversity within CMIP overall. Because different combinations of models are selected by20

the cost function for different balances of independence, performance, and spread priority, we present all selected subsets in

ternary contour "subselection triangles" and guide users with recommendations based on further qualitative selection standards.

ClimSIPS represents a novel framework to select models in an informed, efficient, and transparent manner and addresses the

growing need for guidance and simple tools so those seeking climate services can navigate the increasingly complex CMIP

landscape.25
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1 Introduction

Since its inception in 1995, the Coupled Model Intercomparison Project (CMIP) has guided the climate science community in a

coordinated effort to understand how climate variability and change are represented by coupled ocean-atmosphere–cryosphere–land

general circulation models (GCMs; Meehl et al., 1997, 2000; Taylor et al., 2012; Eyring et al., 2016). The backbone of inter-

national climate assessments (IPCC, 2021), CMIP’s common experiments have generated a range of possible future climate30

outcomes representative of a range of modeling strategies, socioeconomic decision-making, and inherent systemic internal

climate variability. Generation to generation, CMIP model archives have grown, due to the participation of new modeling cen-

ters and to the recognition that multiple realizations of a single model provide valuable estimates of uncertainty arising from

internal variability (e.g. Haughton et al., 2014; Deser et al., 2020; Maher et al., 2021a). Though these larger multi-model ensem-

bles represent advancements in global coordination and uncertainty representation, they present interpretation and utilization35

challenges for downstream users (Dalelane et al., 2018).

1.1 The composition of CMIP

Interpreting results derived from multiple CMIP models is complicated by the fact that CMIP is an "ensemble of opportunity";

the project assembles all available climate projections that adhere to its simulation guidelines (Knutti et al., 2010). This inclu-

sive strategy collects "best guesses" from modeling groups with the capacity to participate, which range from long-running,40

well-funded climate model development programs to brand-new groups with the computational resources to run a version of

an existing climate model. While being inclusive, such ensembles of opportunity are not designed to be a representative sample

of multi-model uncertainty in the way most would envision. For example, one might consider a representative sample of multi-

model uncertainty to be a distribution put forth by a set of distinct climate models with different but plausible strategies for

simulating the Earth system, equally represented by a single model run. Further, each of those distinct models could be repre-45

sented by several runs that start from slightly different states (initial condition ensemble members) to reflect internal variability

and by several runs that differ by parameter values (perturbed physics ensemble members) to reflect parametric uncertainty

(Parker, 2013), with the same number of runs for each model to maintain equal representation.

In reality, though, CMIP6 features over 60 uniquely named models (and counting) while its predecessor CMIP5 featured

on the order of 40. Uniquely named models range in terms of representation within the ensemble, from a single model run to50

several member perturbed physics ensembles to 50-member single model initial condition large ensembles. Modeling centers

often contribute several versions of their base model under different names as well (Leduc et al., 2016); these variants differ

by, for example, the spatial resolution of some model components or entire sub-models (see Brands et al., 2023), which may

influence their simulated climate in ways that are difficult to anticipate. Adding further complexity, models actually fall over

a spectrum that ranges from effective replicates to fully independent entities. Different models share historical predecessors55

(Masson and Knutti, 2011; Knutti et al., 2013), conceptual frameworks, and, in some cases, source code (Boé, 2018; Brands,

2022b; Brands et al., 2023). An active field of research has developed to identify and manage these "hidden dependencies"

through weighting or subselection of the broader CMIP archives (e.g. Bishop and Abramowitz, 2013; Sanderson et al., 2015;
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Knutti et al., 2017; Brunner and Sippel, 2023), but open questions remain, particularly with regards to how best to determine

dependence within multi-model ensembles (Abramowitz et al., 2019; Annan and Hargreaves, 2017).60

Dependence is important to identify within multi-model ensembles because a common assumption is that when models

converge to the same outcome, their consensus suggests certainty or robustness (Parker, 2011, 2013). Dependence undermines

this assumption, because robustness requires different modeling approaches to agree. Because CMIP is not systematically

designed to equally sample different modeling approaches, ensemble agreement could be coming from a diverse set of models

or could simply be coming from the same (or similar) models supporting an outcome repeatedly (Pirtle et al., 2010). Redundant65

agreement reflects certainty in a particular model’s outcome, but does not mean that that model’s outcome is necessarily

correct nor that we should be more confident in that outcome overall. Too many highly dependent entities within an ensemble

clearly shift and/or narrow uncertainty estimates (Merrifield et al., 2020), so it is, therefore, crucial to systematically identify

dependencies and evaluate how they affect distributional statistics before statements about robustness or uncertainty are made.

One method that has been developed to ward against over-confident multi-model climate uncertainty estimates is Climate70

model Weighting by Independence and Performance (ClimWIP; e.g. Knutti et al., 2017; Lorenz et al., 2018; Brunner et al.,

2019, 2020b). ClimWIP uses model output variables to identify (1) potential issues that preclude a model from successfully

simulating a realistic future climate response (performance) and (2) similarities that suggest a model is a duplicate or close

relation of another in the ensemble (independence). Initial versions of ClimWIP based performance and independence def-

initions on the same set of predictors, which lead to concerns about convergence to reality. The basic concern was that as75

models improved, their (valid) agreement towards an outcome would be interpreted as dependence and result in them being

downweighted. To address this concern, separate sets of predictors were introduced to define performance and independence

within ClimWIP to allow for a straightforward and universal definition of dependence in line with prior knowledge of model

origin (Merrifield et al., 2020).

In addition to providing an operational definition of dependence that can be used to contextualize CMIP-derived results,80

ClimWIP has the advantage of being available for general open use (Sperna Weiland et al., 2021; Gründemann et al., 2022)

as part of the Earth System Model Evaluation Tool (ESMValTool; Righi et al., 2020). In the first part of this study, we revisit

and refine ClimWIP’s definition of dependence using long-term, large-scale climatological "fingerprints" that enhance the

spread between models and reduce internal variability. We show that distances between different climate models, versions

of the same model, or even between initial condition members derived from climatological fingerprints delineate levels of85

dependence within CMIP more precisely than distances based on previous predictor sets. This allows us to better illustrate how

ensemble composition has changed from CMIP5 to CMIP6 in low-dimensional projected space. These intermember distances

also reveal the presence of broader "model families" within CMIP comprised of similar models from different institutions.

In light of this, we determine a potential point of separation between models in families and the rest of CMIP5 and CMIP6

(henceforth CMIP5/6) and validate the resulting family designations using model metadata. Finally, to better understand how90

dependence may affect CMIP uncertainty estimates, we investigate how restricting representation to one "vote" per family

constrains distributions of effective equilibrium climate sensitivity (ECS; Gregory et al., 2004).
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Sections 2 through 4 comprise Part I of this study. Section 2 details the CMIP5/6 base ensembles used throughout. In

Section 3, re�nements made to ClimWIP's dependence strategy for the purpose of de�ning model families are described.

Model families designations are put forward in Section 4 and subsequently employed to introduce a one vote per family95

constraint on ECS in CMIP5/6.

1.2 CMIP for downstream applications

Understanding dependencies within a multi-model CMIP ensemble is only the �rst step to designing an ensemble suitable for

a downstream climate service application (Dalelane et al., 2018). For many applications, using the entirety of a modern CMIP

archive is too computationally expensive. It has been widely assumed within the impact and regional modeling communities100

that a subset of several CMIP simulations will suf�ce for most tasks, provided the subset retains key characteristics of the larger

selected-from ensemble such as spread (e.g. Evans et al., 2013; McSweeney and Jones, 2016; Christensen and Kjellström, 2020;

Kiesel et al., 2020).

The questions are then: how should one select a representative subset from a multi-model ensemble for a speci�c task? How

many simulations are necessary? Should those simulations come from independent models so that model agreement means105

something (Sanderson et al., 2015)? Should they come from models that are considered well suited in reproducing observed

climate in a particular region or season to inspire �delity in the projected outcomes (Ashfaq et al., 2022)? Should the subset

prioritize having extreme cool/wet and hot/dry representatives, while also sampling possible climatic states in between (Qian

et al., 2021)?

We posit that all three considerations, model individuality (henceforth, independence), model suitability for a task (hence-110

forth, performance), and model outcome range (henceforth, spread), should be taken into account when subselecting from

the CMIP archive. Existing subselection methods are typically based on two of the three considerations and can be broadly

grouped into performance-based or spread-based categories.

While subselection can be based on performance alone (Ashfaq et al., 2022), studies that evaluate performance-based sub-

selection tend to do so in conjunction with independence (Evans et al., 2013; Sanderson et al., 2015; Herger et al., 2018;115

Di Virgilio et al., 2022; Palmer et al., 2023). Evans et al. (2013) succinctly demonstrated that for small subsets to re�ect the

spread of larger ensembles, it is more important to account for model independence (de�ned in the study following Bishop and

Abramowitz (2013)) than for model performance. Selection by model performance is usually anticipated to reduce ensemble

spread, which can also pose issues if there is an interest in reproducing the mean of the base ensemble. Herger et al. (2018)

established that an ensemble selected based on a performance ranking was sometimes worse at reproducing the base ensemble120

mean than an ensemble selected at random. Using a comprehensive method to select diverse and skillful model subsets from

CMIP5, Sanderson et al. (2015) found the multi-model ensemble to be a "rather heterogeneous, clustered distribution, with

families of closely related models lying close together but with signi�cant voids in-between model clusters" via EOF analysis.

CMIP5's interdependencies allowed for stages of subselection, �rst removing redundant simulations (without reducing the ef-

fective number of models), then removing poor performing simulations to improve ensemble mean mean state representation.125

More recently, Di Virgilio et al. (2022) and Palmer et al. (2023) built on these CMIP5-era strategies to support CMIP6 model
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subselection for regional modeling exercises. In Di Virgilio et al. (2022), CMIP6 models, represented by an individual ensem-

ble member, were �rst �ltered by performance for Australian climate applications, with top and mid-tier performers further

evaluated for dependencies based on the methods of Bishop and Abramowitz (2013) and Herger et al. (2018). The study then

went a step further to also assess climate change signal diversity to determine whether their high performing, independent sub-130

set effectively sampled the range of Australian climatic changes in CMIP6. In Palmer et al. (2023), a process-based European

performance assessment for CMIP6 is presented. The study, an extension of the work of McSweeney et al. (2015), also incor-

porates a second �lter based on ClimWIP's dependence de�nition (Brunner et al., 2020b) and notably �nds that regional model

selection can differ from approaches targeting global metrics such as ECS that were central to CMIP5-era model subselection

recommendations (CORDEX, 2018).135

Spread-based subselection or selection with the goal of maximizing climate change signal diversity, is often carried out either

alone (e.g. Semenov and Stratonovich, 2015; McSweeney and Jones, 2016; Ruane and McDermid, 2017; Qian et al., 2021),

or in conjunction with performance (Lutz et al., 2016) or independence (Mendlik and Gobiet, 2016). The clear application

for this approach are impact studies where worst-case scenarios are often of interest. A common thread in spread-maximizing

subselection studies is the concept of a "climate envelope", typically de�ned by changes in spatio-temporal aggregations of140

surface air temperature (SAT) and precipitation (PR) �elds. For example, Lutz et al. (2016) selected models from a base

ensemble initially based on projected changes in SAT and PR means, then re�ned the selection using changes and historical

performance of SAT and PR extreme indices. Similarly, the Representative Temperature and Precipitation GCM Subsetting

(T&P) approach, developed by Ruane and McDermid (2017), sampled SAT and PR changes in terms of deviation from their

respective ensemble medians. This allows for selected model combinations that span the cool/hot, wet/dry quadrants, as well as145

the "neutral" center, of the model ensemble. Qian et al. (2021) further advanced spread-maximizing subselection by evaluating

the T&P approach against the Katsavounidis–Kuo–Zhang (KKZ) algorithm (Katsavounidis et al., 1994), in which members

are recursively selected to best span the spread of an ensemble. While both approaches had merit, the KKZ approach was more

likely than the T&P approach to perform better than a randomly selected �ve-GCM subset in terms of both error in relation to

the full-ensemble mean and coverage of the full-ensemble spread.150

Despite the numerous model subselection approaches available, the process remains somewhat burdensome to users and

often requires several rounds of iterative �ltering before a subset of a user's desired size is reached. And challenges can emerge

depending on the choice of the starting �lter: if performance is used as the starting �lter, there is a risk the user is left with a

set of very similar models that, though high performing, are not independent and perhaps do not effectively sample ensemble

spread. If spread is used as the starting �lter, there is no way for a user to ensure that the models they select projecting the155

worst-case scenarios are realistic to begin with. If independence is used as a starting �lter, which is not a common practice

but perhaps should be, the user can be assured that model agreement is equivalent to robustness, but may struggle to select the

highest performing or most unique projection from each model family.

To address these dif�culties, we present an alternative approach to subselection that allows a user to simultaneously balance

independence, performance, and spread interests and generate a subset of CMIP models of any size tailored to their speci�c160

application. The subselection method, Climate model Selection by Independence, Performance, and Spread (ClimSIPS; Merri-
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�eld and Könz, 2023), leverages a three-term cost function that grants the user freedom to decide how important independence,

performance, and spread are (relative to one another) for the application. We demonstrate ClimSIPS for European climate

applications in the second part of this study. First, the remaining methodological inputs are de�ned, including a performance

score (also derived from ClimWIP) based on climatological biases that affect projections of European climate and a multivari-165

ate SAT and PR change spread metric. We then discuss the mechanics of subselection: the independence, performance, and

spread cost function minimization and its visual representation, the subselection triangle. Because the cost function balances

three interests, different combinations of models are selected as priorities shift. The subselection triangle, a ternary contour

plot, summarizes which combination of models is optimal for each set of priorities.

ClimSIPS is demonstrated primarily within the CMIP6 ensemble for Central European summer climate applications, be-170

ginning with a toy example. Upon extending the method to the full CMIP6 ensemble, we generate three model subsets and

formulate recommendations to help users navigate the subselection triangle. We compare ClimSIPS outcomes based on how

a model is represented, whether by its ensemble mean (where applicable) or by an individual, spread-maximizing member.

Finally, we generate �ve model subsets for both Central European summer climate and Northern European winter climate

applications. CMIP6 �ve model subselection is highlighted in the main text, while CMIP5 �ve model subselection is included175

as supplementary material.

Part II of this study is a case study of ClimSIPS for European climate applications, detailed in Section 5. Subsection 5.1

centers the de�nitions of performance and Subsection 5.2 the de�nitions of spread for European climate applications in the

ClimSIPS protocol. The protocol is described in detail in Subsection 5.3 and resulting three and �ve model subsets for each

combination of independence, performance, and spread prioritization are presented in Subsection 5.4. To close, concluding180

remarks are made in Section 6.

2 CMIP models

We begin our assessment with ensembles comprised of all models (and all initial condition/perturbed physics ensemble mem-

bers therein) with historical simulations and the highest emissions projection pathways: Shared Socioeconomic Pathway 5-8.5

(SSP585) for CMIP6 model projections (Eyring et al., 2016; O'Neill et al., 2016) and Representative Concentration Pathway185

8.5 (RCP8.5) for CMIP5 model projections (Taylor et al., 2012). For inclusion in Part I, the models also must provide (1)

an estimate of ECS, calculated from a 4� CO2 run using the Gregory method (Gregory et al., 2004) and (2) the following

monthly-mean output �elds (with their abbreviation and model output variable name given in brackets): near-surface 2-meter

air temperature [SAT; tas], precipitation [PR; pr], and sea level pressure [SLP; psl]. Further inclusion into Part II's European

case studies require the additional monthly-mean output �elds of sea surface temperature [SST; tos], and all sky and clear sky190

downwelling shortwave radiation at the surface [rsds and rsdscs, respectively]. All �elds are conservatively remapped onto a

2.5� � 2.5� latitude–longitude grid. At the time of writing, 218 CMIP6 and 75 CMIP5 simulations met the aforementioned

criteria for Part I and 197 CMIP6 and 68 CMIP5 simulations met the further criteria for Part II; additional CMIP6 simulations
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will be considered in subsequent publications as �elds become available in the CMIP6 next generation archive, a standardized

repository used by researchers at ETH Zurich (Brunner et al., 2020a).195

The inclusion requirements each serve a speci�c purpose in the study. Historical SAT, SLP, and PR �elds are explored as

a means to set degrees of model dependence within the CMIP ensembles. The degrees of model dependence are then used to

constrain ECS values through subsetting. Remaining historical model output �elds establish model performance and SSP5-

8.5/RCP8.5 projections establish mid-century climate change spread for Part II's European case studies.

Tables 1 and 2 provide a summary of the CMIP6 and CMIP5 models included in the study, respectively. We assign each200

uniquely named model (37 in CMIP6 and 29 in CMIP5) a numerical identi�er (column 1) to be used throughout Part I.

Model name and member count are also noted, with members labeled as initial condition ensemble members (IC), perturbed

physics ensemble members (PP), or differently initialized ensemble members (DI) for multi-member ensembles. We provide

additional information about members used in Supplementary Tables S1-S3, including full "ripf" identi�ers for CMIP6 and

"rip" identi�ers for CMIP5. The IC designation corresponds to the "r" or realization index, the DI to the "i" or initialization205

index, and the PP to the "p" or physics index. The "f" or forcing index, unique to CMIP6, is shared by all members of each

model.

Finally, to familiarize the reader with the concept of model families we will subsequently de�ne, we also list the family

group status of each model. The designation, "INDV", indicates a model is considered to be an individual represented by a

single member. "SME" signi�es that a model is a single model ensemble or an individual represented by multiple members210

(e.g., initial condition ensembles, perturbed physics ensembles, combinations thereof). This means it was not found to be part

of a broader multi-model family or “FAM” by the criteria we subsequently de�ne. In total, the 218 CMIP6 simulations from

37 uniquely named models considered in Part I fall into 19 Groups (7 multi-model families, 8 single model ensembles, and

4 individuals) and the 75 CMIP5 simulations from 29 uniquely named models fall into 20 Groups (8 multi-model families, 5

single model ensembles, and 7 individuals). In Part II, 197 CMIP6 simulations from 34 uniquely named models and 68 CMIP5215

simulations from 26 uniquely named models remain for the subselection exercise (Sup. Tabs. S1-S2).

3 Revisiting Model Dependence

In prior studies, it has been shown that a climate model's origins and evolution can be traced via statistical properties of its

outputs (e.g. Masson and Knutti, 2011; Bishop and Abramowitz, 2013; Knutti et al., 2013). Output-based model identi�cation

can uncover hidden dependencies within the ensemble, e.g. models that are similar because they share components or lineages,220

but not names. The approach also has the advantage that it does not presume model similarity based on name alone; output

from models in active development can evolve substantially from version to version (e.g. Kay et al., 2012; Boucher et al.,

2020; Danabasoglu et al., 2020) while output from the same version of a model run at different modeling centers is often quite

similar (Maher et al., 2021b). Risks arise, though, if model output used to determine similarity converges within a multi-model

ensemble broadly, and thus becomes ineffective at differentiating between dependent and independent models (Brands, 2022b).225

To reduce the risk of similar output con�ating dependent and independent models, we update the model dependence strategy
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Table 1.Summary of the CMIP6 Multi-Model Ensemble. Starred models meet the inclusion criteria for Part I only at the time of writing.

ID Model Name Members Family ID Model Name Members Family

1) ACCESS-ESM1-5 10 (IC) SME 20) MPI-ESM1-2-HR 2 (IC) FAM

2) HadGEM3-GC31-MM 4 (IC) FAM 21) GFDL-CM4 1 FAM

3) KACE-1-0-G 3 (IC) FAM 22) GFDL-ESM4 1 FAM

4) ACCESS-CM2 3 (IC) FAM 23) EC-Earth3* 8 (IC) FAM

5) HadGEM3-GC31-LL 4 (IC) FAM 24) EC-Earth3-Veg* 4 (IC) FAM

6) UKESM1-0-LL 5 (IC) FAM 25) FGOALS-f3-L 1 INDV

7) TaiESM1 1 FAM 26) FGOALS-g3 4 (IC) SME

8) CMCC-ESM2 1 FAM 27) INM-CM4-8 1 FAM

9) CMCC-CM2-SR5 1 FAM 28) INM-CM5-0 1 FAM

10) NorESM2-MM 1 FAM 29) MIROC6 50 (IC) SME

11) CESM2-WACCM 3 (IC) FAM 30) MIROC-ES2L 10 (IC) SME

12) CESM2 5 (IC) FAM 31) MRI-ESM2-0 2 (DI) SME

13) CNRM-CM6-1-HR 1 FAM 32) E3SM-1-1 1 INDV

14) CNRM-ESM2-1 5 (IC) FAM 33) CanESM5 50 (IC,PP) SME

15) IPSL-CM6A-LR 6 (IC) FAM 34) CAS-ESM2-0 2 (IC) SME

16) CNRM-CM6-1 6 (IC) FAM 35) GISS-E2-1-G 6 (IC,PP) SME

17) AWI-CM-1-1-MR 1 FAM 36) MCM-UA-1-0* 1 INDV

18) NESM3 2 (IC) FAM 37) KIOST-ESM 1 INDV

19) MPI-ESM1-2-LR 10 (IC) FAM Totals (Members, Groups) 218 19

from the ClimWIP independence weighting scheme (Brunner et al., 2020b) to revisit the concept of model families within

CMIP.

ClimWIP de�nes model dependence using an intermember distance metric based on long-term, large-scale climatological

averages (Merri�eld et al., 2020). The rationale behind this underlying spatio-temporal aggregation is that it is able to identify230

an initial condition or perturbed physics ensemble as a single model (by averaging over differences due to internal variability

or parameter uncertainty) while simultaneously maintaining varying degrees of differentiation between models in the ensemble

overall. In practice, this balance between reducing intra-model or "within-model" intermember spread while still preserving

inter-model or "between-model" intermember spread is key to a useful de�nition of dependence within CMIP. It was found

that the absolute values of global-scale annual average SAT and SLP climatologies are able to achieve this balance (Merri�eld235

et al., 2020), but to what extent has not yet been evaluated.

Here we explicitly investigate the within-model vs. between-model spread balance in ClimWIP's independence predictors

to ensure they provide a suitable application-agnostic de�nition of model dependence for atmospheric studies. This is done

by testing the sensitivity of the �nal root-mean-square error (RMSE) intermember distance metric to each methodological

choice in ClimWIP, including temporal averaging period, spatial masking strategies, and predictor �eld choices. Intermember240
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Table 2.Summary of the CMIP5 Multi-Model Ensemble. Starred models meet the inclusion criteria for Part I only at the time of writing.

ID Model Name Members Family ID Model Name Members Family

1) ACCESS1-0 1 FAM 16) GFDL-ESM2M 1 FAM

2) ACCESS1-3 1 FAM 17) GFDL-CM3 1 INDV

3) HadGEM2-ES 4 (IC) FAM 18) MIROC5 3 (IC) SME

4) NorESM1-ME 1 FAM 19) MIROC-ESM 1 INDV

5) NorESM1-M 1 FAM 20) GISS-E2-H 5 (IC,PP) FAM

6) CCSM4 6 (IC) SME 21) GISS-E2-R 5 (IC,PP) FAM

7) CESM1-CAM5 3 (IC) SME 22) bcc-csm1-1 1 FAM

8) IPSL-CM5B-LR 1 INDV 23) bcc-csm1-1-m 1 INDV

9) IPSL-CM5A-MR 1 FAM 24) BNU-ESM* 1 FAM

10) IPSL-CM5A-LR 1 FAM 25) inmcm4 1 INDV

11) EC-EARTH* 5 (IC) FAM 26) CanESM2 5 (IC) SME

12) CNRM-CM5 5 (IC) FAM 27) MRI-CGCM3 1 INDV

13) MPI-ESM-MR 1 FAM 28) CSIRO-Mk3-6-0 10 (IC) SME

14) MPI-ESM-LR 3 (IC) FAM 29) FGOALS-g2* 1 INDV

15) GFDL-ESM2G 1 FAM Totals (Members, Groups) 75 20

distance (I ij ) is calculated through pairwise RMSE between ensemble membersi andj for each predictor �eld̂y individually.

Individual predictor RMSEs (� ij ) are de�ned as:

� ij =

s P p
k=1 wk jŷi � ŷj j2

P p
k=1 wk

(1)

which re�ects an RMSE weighted over thep gridpoints in a latitude / longitude domain, withwk indicating the corresponding

cosine latitude weights. Each� ij is normalized by its respective ensemble mean value (� ) and then averaged together to obtain245

a singleI ij for each member pair. As in Merri�eld et al. (2020),I ij is comprised of two individual predictor �elds, global-scale

annual average SAT and SLP climatologies:

I ij =
1
2

2X

l =1

�
� ij

�

�

l

(2)

To �rst order, I ij is robust to methodological choices; the sensitivity testing did not reveal major shifts in whether a model was

considered relatively dependent or independent with respect to the other models in the ensemble (See Figure 1 and Supple-250

mentary Figure S1). However, re�ning each methodological choice sharpens dependence delineations along the spectrum of

dependence and lends further credence to the concept of model families.

The �rst methodological choice we revisit is the length of the climatological period of the global SAT and SLP predictors

(Figure 1). To reduce internal variability on decadal timescales, we extend the predictor climatological period from 1980-2014

(Brunner et al., 2020b) to 1905-2005, a common 101 years from the historical period of both CMIP5 and CMIP6. Illustrating255
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the effect in the CMIP6 ensemble, we �nd reduced intermember distances between initial condition ensemble members, high-

lighted in color, for the 1905-2005 averaging period (Fig.1a) compared to the 1980-2014 period (Fig.1b). The grouping effect

of the longer predictor averaging period helps to further distinguish initial condition / perturbed physics ensemble members

from members of other models (Fig.1, light gray) in most cases. This differentiation is particularly clear in the case of CESM2-

WACCM. The longer climatological averaging period distinguishes its three ensemble members from those of CESM2; with260

the shorter period, the two CESM2 model variants overlap (Fig.1, models 11 and 12). In contrast, though, the longer averaging

period fails to subdue internal variability enough to differentiate EC-Earth3-Veg from its base model, Earth3 (Fig.1, models 23

and 24). The remaining internal variability in EC-Earth's global SAT and SLP �elds is traceable to oscillations in the EC-Earth3

preindustrial control run from which both model variants are branched (Döscher et al., 2022). Functionally, this means that

despite differing by coupled dynamic global vegetation, EC-Earth3 and EC-Earth3-Veg would be identi�ed as one model by265

our independence metric. This ambiguity was also found in a model identi�cation scheme that employs convolutional neural

networks to daily output (Brunner and Sippel, 2023).

As the CMIP6 historical record spans 1850-2014 (Eyring et al., 2016) and the CMIP5 historical record spans 1870-2005

(Taylor et al., 2012), our choice of a 101-year averaging period could have been extended further back in time. However, we

�nd that increasing the period back into the 19th century does not appreciably change intermember distances (not shown).270

Additionally, the 1905 start date may allow for backward-compatibility of the metric with future generations of CMIP should

organizers decide to begin the historical period in the 20th century rather than the 19th century.

The second methodological choice of interest is whether the dependence de�nition bene�ts from a spatial mask applied to the

global SAT and SLP predictors. Spatial masking may not be a necessity; within-model spread can be reduced through temporal

averaging, as seen in Fig. 1 and some level of between-model spread is provided by the choice to use predictor absolute values275

(Merri�eld et al., 2020). Predictor absolute values provide between-model spread because it has not been a priority, historically,

to calibrate or tune a model towards the absolute value of observed SAT or SLP (Mauritsen et al., 2012; Hourdin et al., 2017).

The absolute magnitude of a climatic �eld tends to be seen as secondary to its relative change with respect to a historical base

period for most applications (Jones and Harpham, 2013). The absolute value of global SAT in particular has been identi�ed

as an emergent property of climate models, re�ecting differences underpinned by different model components and physical280

parameterizations (Schmidt, 2014). It is conceivable that in the future, however, the reduction of absolute global biases with

respect to observations will become more of a priority to modeling centers and the between-model spread we use to determine

model diversity will disappear. Several emergent properties de�ned in the CMIP5-era have vanished in CMIP6, making this a

credible concern (Simpson et al., 2021; Sanderson et al., 2021).

Spatial masking can help guard against independence predictor convergence because an atypically-masked model output285

�eld is unlikely to feature in traditional model evaluation or tuning exercises. Further, spatial masks can be explicitly designed

to leave behind "�ngerprints" tailored to meet dependence objectives. Here we design a spatial �ngerprint, shown in Figure

2 for CMIP6 and Supplementary Figure S2 for CMIP5, that bolsters between-model spread and reduces within-model spread

in the ClimWIP independence predictor �elds. The SAT and SLP �ngerprints, shown superimposed on their ensemble mean
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