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Abstract. As the number of models in Coupled Model Intercomparison Project (CMIP) archives increase from generation to

generation, there is a pressing need for guidance on how to interpret and best use the abundance of newly available climate

information.
:::::
Users

::
of

:::
the

:::::
latest

:
CMIP6 users seeking to draw conclusions about model agreement must contend with an "en-

semble of opportunity" containing similar models that appear under different names. Those who used
:::
the

:::::::
previous

:
CMIP5

as a basis for downstream applications must filter through hundreds of new CMIP6 simulations to find several best suited to5

their region, season, and climate horizon of interest. Here we present methods to address both issues, model dependence and

model subselection, to help users previously anchored in CMIP5 to navigate CMIP6
::
and

:::::::::::
multi-model

:::::::::
ensembles

::
in

::::::
general. In

Part I, we refine a definition of model dependence based on climate output, initially employed in Climate model Weighting by

Independence and Performance (ClimWIP), to designate discrete model families within CMIP5/6. We show that the increased

presence of model families in CMIP6 bolsters the upper mode of the ensemble’s bimodal effective Equilibrium Climate Sen-10

sitivity (ECS) distribution. Accounting for the mismatch in representation between model families and individual model runs

shifts the CMIP6 ECS median and 75th percentile down by 0.43◦C, achieving better alignment with CMIP5’s ECS distribution.

In Part II, we present a new , cost-function minimization-based approach to model subselection, Climate model Selection

by Independence, Performance, and Spread (ClimSIPS), that
:
.
::::::::
ClimSIPS

:
selects sets of CMIP models based on the relative

importance a user ascribes to model independence (as defined in Part I), model performance, and ensemble spread in projected15

climate outcome. We demonstrate ClimSIPS by selecting sets of three to five models from CMIP5/6
::::::
CMIP6

:
for European

applications, evaluating the performance from the agreement with the observed mean climate, and the spread in outcome

from the projected midcentury change in surface air temperature and precipitation. To accommodate different use cases, we

explore two ways to represent models with multiple members in ClimSIPS, first, by ensemble mean and second, by an indi-

vidual ensemble member that maximizes midcentury change diversity within CMIP overall. Because different combinations20

of models are selected by the cost function for different balances of independence, performance, and spread priority, we

present all selected subsets in ternary contour "subselection triangles" and guide users with recommendations based on further

qualitative independence, performance, and spread standards. In CMIP6, we find that recommended subsets are populated

primarily by members of several model families defined in Part I due to an inverse relationship between performance and

independence. In CMIP5, recommended subsets feature model combinations used in the European branch of the Coordinated25

Regional Downscaling Experiment (EURO-CORDEX), suggesting the independence, performance, and spread metrics used
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in ClimSIPS are appropriate for European applications in CMIP6 and beyond
:::::::
selection

::::::::
standards.

:::::::::
ClimSIPS

::::::::
represents

::
a
:::::
novel

:::::::::
framework

::
to

:::::
select

::::::
models

::
in

::
an

:::::::::
informed,

:::::::
efficient,

:::
and

::::::::::
transparent

::::::
manner

::::
and

::::::::
addresses

:::
the

:::::::
growing

::::
need

:::
for

:::::::
guidance

::::
and

:::::
simple

:::::
tools

::
so

:::::
those

::::::
seeking

:::::::
climate

:::::::
services

:::
can

:::::::
navigate

:::
the

::::::::::
increasingly

::::::::
complex

:::::
CMIP

:::::::::
landscape.

1 Introduction30

Since its inception in 1995, the Coupled Model Intercomparison Project (CMIP) has guided the climate science community in a

coordinated effort to understand how climate variability and change are represented by coupled ocean-atmosphere–cryosphere–land

general circulation models (GCMs; Meehl et al., 1997, 2000; Taylor et al., 2012; Eyring et al., 2016). The backbone of inter-

national climate assessments (IPCC, 2021), CMIP’s common experiments have generated a range of possible future climate

outcomes representative of a range of modeling strategies, socioeconomic decision-making, and inherent systemic internal35

climate variability. Generation to generation, CMIP model archives have grown, due to the participation of new modeling cen-

ters and to the recognition that multiple realizations of a single model provide valuable estimates of uncertainty arising from

internal variability (e.g. Haughton et al., 2014; Deser et al., 2020; Maher et al., 2021a). Though these larger multi-model ensem-

bles represent advancements in global coordination and uncertainty representation, they present interpretation and utilization

challenges for downstream users (Dalelane et al., 2018).40

1.1 The composition of CMIP

Interpreting results derived from multiple CMIP models is complicated by the fact that CMIP is an "ensemble of opportunity";

the project assembles all available climate projections that adhere to its simulation guidelines (Knutti et al., 2010). This inclu-

sive strategy collects "best guesses" from modeling groups with the capacity to participate, with that capacity ranging
:::::
which

::::
range

:
from long-running, well-funded climate model development programs to newly-available computational resources for45

running
::::::::
brand-new

::::::
groups

::::
with

:::
the

::::::::::::
computational

::::::::
resources

::
to

::::
run a version of an existing climate model. While being inclu-

sive, such ensembles of opportunity are not designed to be a representative sample of multi-model uncertainty in the way most

would envision. For example, one might consider a representative sample of multi-model uncertainty to be a distribution put

forth by a set of distinct climate models with different but plausible strategies for simulating the Earth system, equally repre-

sented by a single model run. Further, each of those distinct models could be represented by several runs that start from slightly50

different states (initial condition ensemble members) to reflect internal variability and by several runs that differ by parameter

values (perturbed physics ensemble members) to reflect parametric uncertainty (Parker, 2013), with the same number of runs

for each model to maintain equal representation.

In reality, though, CMIP6 features over 60 uniquely named models (and counting) while its predecessor CMIP5 featured on

the order of 40. Uniquely named models range in terms of representation within the ensemble, from a single model run to sev-55

eral member perturbed physics ensembles to 50-member single model initial condition large ensembles. modeling
::::::::
Modeling

centers often contribute several versions of their base model under different names as well (Leduc et al., 2016); these vari-

ants differ by, for example, the spatial resolution of some model components or biogeochemical cycling
:::::
entire

::::::::::
sub-models

2



:::
(see

::::::::::::::::
Brands et al., 2023

:
), which may influence their simulated climate in ways that are difficult to anticipate. Adding further

complexity, even uniquely named models from different modeling centers fall along a spectrum of uniqueness
::::::
models

:::::::
actually60

:::
fall

::::
over

:
a
::::::::
spectrum

:::
that

::::::
ranges

::::
from

::::::::
effective

::::::::
replicates

::
to

::::
fully

:::::::::::
independent

::::::
entities. Different models share historical prede-

cessors (Masson and Knutti, 2011; Knutti et al., 2013), conceptual frameworks, and, in some cases, source code (Boé, 2018)

::::::::::::::::::::::::::::::::::::::
(Boé, 2018; Brands, 2022b; Brands et al., 2023). An active field of research has developed to identify and manage these "hid-

den dependencies" through weighting or subselection of the broader CMIP archives (e.g. Bishop and Abramowitz, 2013; Sanderson et al., 2015; Knutti et al., 2017)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bishop and Abramowitz, 2013; Sanderson et al., 2015; Knutti et al., 2017; L. and S., 2023), but open questions remain,65

particularly with regards to how best to determine dependence within multi-model ensembles (Abramowitz et al., 2019; Annan

and Hargreaves, 2017).

Dependence is important to identify within multi-model ensembles because it undermines the notion that when different

approaches
:
a
::::::::
common

:::::::::
assumption

::
is

::::
that

::::
when

:::::::
models converge to the same outcome,

::::
their consensus suggests certainty or ro-

bustness (Parker, 2013). Robustness requires that (1) a hypothesized outcome is likely to be true, (2) available evidence supports70

the hypothesized outcome, and (3) the hypothesized outcome holds even if some assumptions within the body of supporting

evidence fail (Parker, 2011). As an example, that global temperatures rise with increasing greenhouse gas concentrations in

the atmosphere is an hypothesized outcome in climate science that is likely to be true. Many independent lines of evidence

support this hypothesized outcome (e.g. Foote, 1856; Mitchell, 1989; Sherwood et al., 2020) and climate models that make

different assumptions about how the Earth system should be modelled do as well, increasing confidence. Finally, even if75

an assumptionmade in one climate model is found to be incorrect, the hypothesized outcome is secure (or still likely to be true)

due to the diversity of the supporting evidence (Staley, 2004).

One can then see how important different modeling approaches are to robustness statements that are made in a solely

multi-model context. Different modeling approaches are the diversity in the supporting evidence required for both the confidence

in and security of an outcome.
::::::::::::::::
(Parker, 2011, 2013)

:
.
:::::::::::
Dependence

::::::::::
undermines

:::
this

::::::::::
assumption,

:::::::
because

::::::::::
robustness

:::::::
requires80

:::::::
different

::::::::
modeling

::::::::::
approaches

::
to

:::::
agree.

:
Because CMIP is not systematically designed to equally sample different modeling

approaches, ensemble agreement could be coming from a diverse set of models or could simply be coming from the same (or

similar) models supporting an outcome repeatedly (Pirtle et al., 2010). Redundant agreement reflects certainty in a particular

model’s outcome, but does not mean that that model’s outcome is necessarily correct nor that we should be more confident

in that outcome overall. Too many highly dependent entities within an ensemble clearly shift and/or narrow uncertainty esti-85

mates (Merrifield et al., 2020), so it is, therefore, crucial to systematically identify dependencies and evaluate how they affect

distributional statistics before statements about robustness or uncertainty are made.

One method that has been developed to ward against over-confident multi-model climate uncertainty estimates is Climate

model Weighting by Independence and Performance (ClimWIP; e.g. Knutti et al., 2017; Lorenz et al., 2018; Brunner et al.,

2019, 2020b). ClimWIP uses model output variables to identify (1) potential issues that preclude a model from successfully90

simulating a realistic future climate response (performance) and (2) similarities that suggest a model is a duplicate or close

relation of another in the ensemble (independence). Initial versions of ClimWIP-based
::::::::
ClimWIP

:::::
based

:
performance and inde-

pendence definitions on the same set of predictors, which lead to concerns about convergence to reality. The basic concern was
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that as models improved, their (valid) agreement towards an outcome would be interpreted as dependence and result in them

being downweighted. To address this concern, separate sets of predictors were introduced to define performance and indepen-95

dence within ClimWIP to allow for a straightforward and universal definition of dependence in line with prior knowledge of

model origin (Merrifield et al., 2020).

In addition to providing an operational definition of dependence that can be used to contextualize CMIP-derived results,

ClimWIP has the advantage of being available for general open use (Sperna Weiland et al., 2021)
:::::::::::::::::::::::::::::::::::::::::::::
(Sperna Weiland et al., 2021; Gründemann et al., 2022)

as part of the Earth System Model Evaluation Tool (ESMValTool; Righi et al., 2020). In the first part of this study, we revisit100

and refine ClimWIP’s definition of dependence using long-term, large-scale climatological "fingerprints" that enhance the

spread between models and reduce internal variability. We show that distances between different climate models, versions of

the same model, or even between initial condition members derived from climatological fingerprints delineate levels of de-

pendence within CMIP more precisely than distances based on previous predictor sets. This allows us to better illustrate how

ensemble composition has changed from CMIP5 to CMIP6 in low-dimensional projected space. These intermember distances105

also reveal the presence of broader "model families" within CMIP
::::::::
comprised

::
of

::::::
similar

:::::::
models

::::
from

::::::::
different

:::::::::
institutions. In

light of this, we determine a potential point of separation between model families and individual runs in
:::::
models

:::
in

:::::::
families

:::
and

:::
the

:::
rest

::
of

:
CMIP5 and CMIP6 (henceforth CMIP5/6) and validate the resulting family designations using model metadata.

Finally, to better understand how dependence may affect CMIP uncertainty estimates, we investigate how restricting represen-

tation to one "vote" per family constrains distributions of effective equilibrium climate sensitivity (ECS) (Gregory et al., 2004)110

:
;
::::::::::::::::
Gregory et al., 2004

:
).

Sections 2 through 4 comprise Part I of this study. Section 2 details the CMIP5/6 base ensembles used throughout. In

Section 3, refinements made to ClimWIP’s dependence strategy for the purpose of defining model families are described.

Model families designations are put forward in Section 4 and subsequently employed to introduce a one vote per family

constraint on ECS in CMIP5/6.115

1.2 CMIP for downstream applications

Understanding dependencies within a multi-model CMIP ensemble is only the first step to designing an ensemble suitable for

a downstream climate service application (Dalelane et al., 2018). For many applications, using the entirety of a modern CMIP

archive may be
::
is too computationally expensive. It has been widely assumed within the impact and regional modeling commu-

nities that a subset of several CMIP simulations will suffice for most tasks, provided the subset retains key characteristics of the120

larger selected-from ensemble such as spread (e.g. Evans et al., 2013; McSweeney and Jones, 2016; Christensen and Kjellström, 2020; Kiesel et al., 2020; Qian et al., 2021)

. For example, CMIP5-era guidance from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX)

recommended participants drive regional climate models with the largest available subset of general circulation models selected

based on factors such as historical model quality, ECS, or the retention of full ensemble spread in projected climate change

signals (Benestad et al., 2021). Conscientious of computational burden, CORDEX proposed a minimum subset of three CMIP5125

models, NorESM1, MPI-ESM, and HadGEM2-ES, with a further two models, GFDL-ESM and EC-EARTH, recommended

as secondary alternatives (CORDEX, 2018). For CMIP6, CORDEX has yet to offer these firm recommendations. Instead,

4



it contends that though model subselection approaches exist, there is no commonly accepted methodology on how to select a

subset of GCMs for downscaling (CORDEX, 2021).
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Evans et al., 2013; McSweeney and Jones, 2016; Christensen and Kjellström, 2020; Kiesel et al., 2020)

:
.130

The questions are then: how should one select the representative CMIP6 subset
:
a
::::::::::::
representative

:::::
subset

:::::
from

:
a
:::::::::::
multi-model

::::::::
ensemble for a specific task? How many simulations are necessary? Should those simulations come from independent models

so that model agreement means something (Sanderson et al., 2015)? Should they come from models that are considered well

suited in reproducing observed climate in a particular region or season to inspire fidelity in the projected outcomes (Ashfaq

et al., 2022)? Should the subset prioritize having extreme cool/wet and hot/dry representatives, while also sampling possible135

climatic states in between (Qian et al., 2021)?

We posit that all three considerations, model individuality (henceforth, independence), model suitability for a task (hence-

forth, performance), and model outcome range (henceforth, spread), should be taken into account when subselecting from

the CMIP archive. Existing subselection methods are typically based on two of the three considerations and can be broadly

grouped into performance-based or spread-based categories.140

While subselection can be based on performance alone (Ashfaq et al., 2022), studies that evaluate performance-based sub-

selection tend to do so in conjunction with independence (Evans et al., 2013; Sanderson et al., 2015; Herger et al., 2018;

Di Virgilio et al., 2022; Palmer et al., 2023). Evans et al. (2013) succinctly demonstrated that for small subsets to reflect the

spread of larger ensembles, it is more important to account for model independence (defined in the study following Bishop and

Abramowitz (2013)) than for model performance. Selection by model performance is usually anticipated to reduce ensemble145

spread, which can also pose issues if there is an interest in reproducing the mean of the base ensemble. Herger et al. (2018)

established that an ensemble selected based on a performance ranking was sometimes worse at reproducing the base ensemble

mean than an ensemble selected at random. Using a comprehensive method to select diverse and skillful model subsets from

CMIP5, Sanderson et al. (2015) found the multi-model ensemble to be a "rather heterogeneous, clustered distribution, with

families of closely related models lying close together but with significant voids in-between model clusters" via EOF analysis.150

CMIP5’s interdependencies allowed for stages of subselection, first removing redundant simulations (without reducing the

effective number of models), then removing poor performing simulations to improve ensemble mean mean state representa-

tion. More recently, Di Virgilio et al. (2022) and Palmer et al. (2023) built on these CMIP5-era strategies to support CMIP6

model subselection for CORDEX-Australasia and Europe, respectively
:::::::
regional

::::::::
modeling

::::::::
exercises. In Di Virgilio et al. (2022),

CMIP6 models, represented by an individual ensemble member, were first filtered by performance for Australian climate appli-155

cations, with top and mid-tier performers further evaluated for dependencies based on the methods of Bishop and Abramowitz

(2013) and Herger et al. (2018). The study then went a step further to also assess climate change signal diversity to determine

whether their high performing, independent subset effectively sampled the range of Australian climatic changes in CMIP6. In

Palmer et al. (2023), a process-based European performance assessment for CMIP6 is presented. The study, an extension
::
of

the work of McSweeney et al. (2015), also incorporates a second filter based on ClimWIP’s dependence definition (Brunner160

et al., 2020b) and notably finds that regional model selection can differ from approaches targeting global metrics such as ECS

that were central to CMIP5-era EURO-CORDEX recommendations
:::::
model

::::::::::
subselection

:::::::::::::::
recommendations

:::::::::::::::
(CORDEX, 2018).
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Spread-based subselection or selection with the goal of maximizing climate change signal diversity, is often carried out either

alone (e.g. Semenov and Stratonovich, 2015; McSweeney and Jones, 2016; Ruane and McDermid, 2017; Qian et al., 2021),

or in conjunction with performance (Lutz et al., 2016) or independence (Mendlik and Gobiet, 2016). The clear application165

for this approach are impact studies where worst-case scenarios are often of interest. A common thread in spread-maximizing

subselection studies is the concept of a "climate envelope", typically defined by changes in spatio-temporal aggregations of

surface air temperature (SAT) and precipitation (PR) fields. For example, Lutz et al. (2016) selected models from a base

ensemble initially based on projected changes in SAT and PR means, then refined the selection using changes and historical

performance of SAT and PR extreme indices. Similarly, the Representative Temperature and Precipitation GCM Subsetting170

(T&P) approach, developed by Ruane and McDermid (2017), sampled SAT and PR changes in terms of deviation from their

respective ensemble medians. This allows for selected model combinations that span the cool/hot, wet/dry quadrants, as well as

the "neutral" center, of the model ensemble. Qian et al. (2021) further advanced spread-maximizing subselection by evaluating

the T&P approach against the Katsavounidis–Kuo–Zhang (KKZ) algorithm (Katsavounidis et al., 1994), in which members

are recursively selected to best span the spread of an ensemble. While both approaches had merit, the KKZ approach was more175

likely than the T&P approach to perform better than a randomly selected five-GCM subset in terms of both error in relation to

the full-ensemble mean and coverage of the full-ensemble spread.

Despite the numerous model subselection approaches available, the process remains somewhat burdensome to users and

often requires several rounds of iterative filtering before a subset of a user’s desired size is reached. And challenges can emerge

depending on the choice of the starting filter: if performance is used as the starting filter, there is a risk the user is left with a180

set of very similar models that, though high performing, are not independent and perhaps do not effectively sample ensemble

spread. If spread is used as the starting filter, there is no way for a user to ensure that the models they select projecting the

worst-case scenarios are realistic to begin with. If independence is used as a starting filter, which is not a common practice

but perhaps should be, the user can be assured that model agreement is equivalent to robustness, but may struggle to select the

highest performing or most unique projection from each model family.185

To address these difficulties, we present an alternative approach to subselection that allows a user to simultaneously balance

independence, performance, and spread interests and generate a subset of CMIP models of any size tailored to their spe-

cific application. The subselection method, Climate model Selection by Independence, Performance, and Spread (ClimSIPS;

Merrifield and Könz, 2023), leverages a three-term cost function that grants the user freedom to decide how important inde-

pendence, performance, and spread are (relative to one another) for the application. For those concerned with the contribution190

of recognized model biases to downstream uncertainty, cost function parameters can be set to prioritize model performance.

For those concerned with both performance and robust model agreement, the cost function can apportion 50% weight to its

performance term and 50% to its independence term. And for those most concerned with sampling worst-case climate change

outcomes, spread in mean state SAT and PR change space can be the primary consideration of the cost function, receiving

perhaps 70% of the total weight, while the remaining 30% is split between performance and independence.195

We demonstrate ClimSIPS for European climate applications in the second part of this study. First, the remaining method-

ological inputs are defined, including a performance score (also derived from ClimWIP) based on climatological biases that

6



affect projections of European climate and a multivariate SAT and PR change spread metric. We then discuss the mechanics of

subselection: the independence, performance, and spread cost function minimization and its visual representation, the subse-

lection triangle. Because the cost function balances three interests, different combinations of models are selected as priorities200

shift. The subselection triangle, a ternary contour plot, summarizes which combination of models is optimal for each set of

priorities.

ClimSIPS is demonstrated primarily within the CMIP6 ensemble for Central European summer climate applications, begin-

ning with a five-model toy example. Upon extending the method to the full CMIP6 ensemble, we generate three model subsets

and formulate recommendations to help users navigate the subselection triangle. We compare ClimSIPS outcomes based on205

how a model is represented, whether by its ensemble mean (where applicable) or by an individual, spread-maximizing mem-

ber. Finally, we generate five model subsets for both Central European summer climate and Northern European winter climate

applicationsin .
:::::::

CMIP6
::::
five

:::::
model

:::::::::::
subselection

::
is

:::::::::
highlighted

:::
in

:::
the

::::
main

:::::
text,

:::::
while CMIP5 /6.

:::
five

:::::
model

:::::::::::
subselection

::
is

:::::::
included

::
as

::::::::::::
supplementary

::::::::
material.

Part II of this study is a case study of ClimSIPS for European climate applications, detailed in Section 5. Subsection 5.1210

centers the definitions of performance and Subsection 5.2 the definitions of spread for European climate applications in the

ClimSIPS protocol. The protocol is described in detail in Subsection 5.3 and resulting three and five model subsets for each

combination of independence, performance, and spread prioritization are presented in Subsection 5.4. To close, concluding

remarks are made in Section 6.

2 CMIP models215

We begin our assessment with ensembles comprised of all models (and all initial condition/perturbed physics ensemble mem-

bers therein) with historical simulations and the highest emissions projection pathways: Shared Socioeconomic Pathway 585

(SSP5-8
::
5-8.5

:::::::
(SSP585) for CMIP6 model projections (Eyring et al., 2016; O’Neill et al., 2016) and Representative Concen-

tration Pathway 8.5 (RCP8.5) for CMIP5 model projections (Taylor et al., 2012). For inclusion in Part I, the models also must

provide (1) an estimate of ECS, calculated from a 4×CO2 run using the Gregory method (Gregory et al., 2004) and (2) the220

following
::::::::::::
monthly-mean output fields (with their abbreviation and model output variable name given in brackets): near-surface

2-meter air temperature [SAT; tas], precipitation [PR; pr], and sea level pressure [SLP; psl]. Further inclusion into Part II’s

European case studies require the additional
:::::::::::
monthly-mean

:
output fields of sea surface temperature [SST; tos], and all sky and

clear sky downwelling shortwave radiation at the surface [rsds and rsdscs, respectively]. All fields are conservatively remapped

onto a 2.5◦ × 2.5◦ latitude–longitude grid. At the time of writing, 218 CMIP6 and 75 CMIP5 simulations met the aforemen-225

tioned criteria for Part I and 197 CMIP6 and 68 CMIP5 simulations met the further criteria for Part II; additional CMIP6

simulations will be considered in subsequent publications as fields become available in the CMIP6 next generation archive, a

standardized repository used by researchers at ETH Zurich (Brunner et al., 2020a).

The inclusion requirements each serve a specific purpose in the study. Historical SAT, SLP, and PR fields are explored as

a means to set degrees of model dependence within the CMIP ensembles. The degrees of model dependence are then used to230
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constrain ECS values through subsetting. Remaining historical model output fields establish model performance and SSP5-

8.5/RCP8.5 projections establish mid-century climate change spread for Part II’s European case studies.

Tables 1 and 2 provide a summary of the CMIP6 and CMIP5 models included in the study, respectively. We assign each

uniquely named model (37 in CMIP6 and 29 in CMIP5) a numerical identifier (column 1) to be used throughout Part I.

Model name and member count are also noted, with members labeled as initial condition ensemble members (IC), perturbed235

physics ensemble members (PP), or differently initialized ensemble members (DI) for multi-member ensembles. We provide

additional information about members used in Supplementary Tables S1-S3, including full "ripf" identifiers for CMIP6 and

"rip" identifiers for CMIP5. The IC designation corresponds to the "r" or realization index, the DI to the "i" or initialization

index, and the PP to the "p" or physics index. The "f" or forcing index, unique to CMIP6, is shared by all members of each

model.240

Finally, to familiarize the reader with the concept of model families we will subsequently define, we also list the family group

status of each model. The designation, "INDV", indicates a model is considered to be an individual represented by a single

member. "SME" signifies that a model is
:
a
:::::
single

::::::
model

::::::::
ensemble

::
or

::
an

::::::::
individual

:
represented by multiple members (e.g., initial

condition ensembles, perturbed physics ensembles, combinations thereof)but is not determined .
::::
This

::::::
means

::
it

:::
was

::::
not

:::::
found

to be part of a broader multi-model family . The "FAM" designation indicates a model is a member of a broader, multi-model245

family
::
or

::::::
“FAM”

:::
by

:::
the

::::::
criteria

:::
we

:::::::::::
subsequently

:::::
define. In total, the 218 CMIP6 simulations from 37 uniquely named models

considered in Part I fall into 19 Groups (7 multi-model ensembles
::::::
families, 8 single model ensembles, and 4 individuals) and the

75 CMIP5 simulations from 29 uniquely named models fall into 20 Groups (8 multi-model ensembles
::::::
families, 5 single model

ensembles, and 7 individuals). In Part II, 197 CMIP6 simulations from 34 uniquely named models and 68 CMIP5 simulations

from 26 uniquely named models remain for the subselection exercise (Sup. Tabs. S1-S2).250

3 Revisiting Model Dependence

In prior studies, it has been shown that a climate model’s origins and evolution can be traced via statistical properties of its out-

puts (e.g. Masson and Knutti, 2011; Bishop and Abramowitz, 2013; Knutti et al., 2013). This indirect approach
:::::::::::
Output-based

:::::
model

:::::::::::
identification

:
can uncover hidden dependencies within the ensemble, e.g. models that are similar because they share

components or lineages, but not names. It
:::
The

:::::::
approach

:
also has the advantage that it does not presume model similarity based255

on name alone;
:::::
output

:::::
from models in active development can evolve substantially from version to version (e.g. Boucher et al., 2020; Danabasoglu et al., 2020)

while models from
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Kay et al., 2012; Boucher et al., 2020; Danabasoglu et al., 2020)

::::
while

::::::
output

:::::
from

:::
the

::::
same

:::::::
version

::
of

:
a
::::::
model

:::
run

::
at

:
different modeling centers can be quite similar . For these reasons, we employ this output field similarity

strategy, updated from the current version of the
::
is

::::
often

::::
quite

::::::
similar

::::::::::::::::::
(Maher et al., 2021b).

:::::
Risks

:::::
arise,

::::::
though,

::
if

:::::
model

::::::
output

::::
used

::
to

::::::::
determine

::::::::
similarity

:::::::::
converges

:::::
within

::
a
::::::::::
multi-model

::::::::
ensemble

:::::::
broadly,

::::
and

:::
thus

::::::::
becomes

:::::::::
ineffective

::
at

::::::::::::
differentiating260

:::::::
between

:::::::::
dependent

:::
and

::::::::::
independent

:::::::
models

::::::::::::::
(Brands, 2022b).

:::
To

::::::
reduce

:::
the

:::
risk

:::
of

::::::
similar

::::::
output

::::::::
conflating

:::::::::
dependent

::::
and

::::::::::
independent

:::::::
models,

::
we

::::::
update

:::
the

::::::
model

::::::::::
dependence

:::::::
strategy

::::
from

:::
the

:
ClimWIP independence weighting scheme (Brunner

et al., 2020b) , to revisit the concept of model families within CMIP.
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Table 1. Summary of the CMIP6 Multi-Model Ensemble. Starred models meet the inclusion criteria for Part I only at the time of writing.

ID Model Name Members Family ID Model Name Members Family

1) ACCESS-ESM1-5 10 (IC) SME 20) MPI-ESM1-2-HR 2 (IC) FAM

2) HadGEM3-GC31-MM 4 (IC) FAM 21) GFDL-CM4 1 FAM

3) KACE-1-0-G 3 (IC) FAM 22) GFDL-ESM4 1 FAM

4) ACCESS-CM2 3 (IC) FAM 23) EC-Earth3* 8 (IC) FAM

5) HadGEM3-GC31-LL 4 (IC) FAM 24) EC-Earth3-Veg* 4 (IC) FAM

6) UKESM1-0-LL 5 (IC) FAM 25) FGOALS-f3-L 1 INDV

7) TaiESM1 1 FAM 26) FGOALS-g3 4 (IC) SME

8) CMCC-ESM2 1 FAM 27) INM-CM4-8 1 FAM

9) CMCC-CM2-SR5 1 FAM 28) INM-CM5-0 1 FAM

10) NorESM2-MM 1 FAM 29) MIROC6 50 (IC) SME

11) CESM2-WACCM 3 (IC) FAM 30) MIROC-ES2L 10 (IC) SME

12) CESM2 5 (IC) FAM 31) MRI-ESM2-0 2 (DI) SME

13) CNRM-CM6-1-HR 1 FAM 32) E3SM-1-1 1 INDV

14) CNRM-ESM2-1 5 (IC) FAM 33) CanESM5 50 (IC,PP) SME

15) IPSL-CM6A-LR 6 (IC) FAM 34) CAS-ESM2-0 2 (IC) SME

16) CNRM-CM6-1 6 (IC) FAM 35) GISS-E2-1-G 6 (IC,PP) SME

17) AWI-CM-1-1-MR 1 FAM 36) MCM-UA-1-0* 1 INDV

18) NESM3 2 (IC) FAM 37) KIOST-ESM 1 INDV

19) MPI-ESM1-2-LR 10 (IC) FAM Totals (Members, Groups) 218 19

The ClimWIP independence weighting scheme
::::::::
ClimWIP

:
defines model dependence using an intermember distance metric

based on long-term, large-scale climatological averages (Merrifield et al., 2020). The rationale behind this underlying spatio-265

temporal aggregation is that it is able to identify an initial condition or perturbed physics ensemble as a single model (by

averaging over differences due to internal variability or parameter uncertainty) while simultaneously maintaining varying

degrees of differentiation between models in the ensemble overall. In practice, this balance between reducing intra-model or

"within-model" intermember spread while still preserving inter-model or "between-model" intermember spread is key to a

useful definition of dependence within CMIP. It was found that the absolute values of global-scale annual average SAT and270

SLP climatologies are able to achieve this balance (Merrifield et al., 2020), but to what extent has not yet been evaluated.

Here we explicitly investigate the within-model vs. between-model spread balance in ClimWIP’s independence predictors

to ensure they provide a suitable application-agnostic definition of model dependence for atmospheric studies. This is done

by testing the sensitivity of the final root-mean-square error (RMSE) intermember distance metric to each methodological

choice in ClimWIP, including temporal averaging period, spatial masking strategies, and predictor field choices. Intermember275

distance
::::
(Iij) is calculated through pairwise RMSE between ensemble members

:
i
::::
and

:
j
:
for each predictor field individually,
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Table 2. Summary of the CMIP5 Multi-Model Ensemble. Starred models meet the inclusion criteria for Part I only at the time of writing.

ID Model Name Members Family ID Model Name Members Family

1) ACCESS1-0 1 FAM 16) GFDL-ESM2M 1 FAM

2) ACCESS1-3 1 FAM 17) GFDL-CM3 1 INDV

3) HadGEM2-ES 4 (IC) FAM 18) MIROC5 3 (IC) SME

4) NorESM1-ME 1 FAM 19) MIROC-ESM 1 INDV

5) NorESM1-M 1 FAM 20) GISS-E2-H 5 (IC,PP) FAM

6) CCSM4 6 (IC) SME 21) GISS-E2-R 5 (IC,PP) FAM

7) CESM1-CAM5 3 (IC) SME 22) bcc-csm1-1 1 FAM

8) IPSL-CM5B-LR 1 INDV 23) bcc-csm1-1-m 1 INDV

9) IPSL-CM5A-MR 1 FAM 24) BNU-ESM* 1 FAM

10) IPSL-CM5A-LR 1 FAM 25) inmcm4 1 INDV

11) EC-EARTH* 5 (IC) FAM 26) CanESM2 5 (IC) SME

12) CNRM-CM5 5 (IC) FAM 27) MRI-CGCM3 1 INDV

13) MPI-ESM-MR 1 FAM 28) CSIRO-Mk3-6-0 10 (IC) SME

14) MPI-ESM-LR 3 (IC) FAM 29) FGOALS-g2* 1 INDV

15) GFDL-ESM2G 1 FAM Totals (Members, Groups) 75 20

then predictor RMSEs are normalized by their
::̂
y

::::::::::
individually.

:::::::::
Individual

:::::::
predictor

:::::::
RMSEs

:::::
(ϕij)

:::
are

::::::
defined

:::
as:

ϕij =

√∑p
k=1wk|ŷi − ŷj |2∑p

k=1wk
::::::::::::::::::::::

(1)

:::::
which

::::::
reflects

:::
an

:::::
RMSE

::::::::
weighted

::::
over

:::
the

::
p

::::::::
gridpoints

::
in
::
a
::::::
latitude

:
/
::::::::
longitude

:::::::
domain,

::::
with

:::
wk:::::::::

indicating
:::
the

::::::::::::
corresponding

:::::
cosine

:::::::
latitude

:::::::
weights.

:::::
Each

::::
ϕij ::

is
:::::::::
normalized

:::
by

:::
its

:
respective ensemble mean values and

:::::
value

:::
(ϕ)

::::
and

::::
then

:
averaged280

together to obtain a single distance
:::
Iij for each member pair.

:::
As

::
in

::::::::::::::::::
Merrifield et al. (2020)

:
,
:::
Iij ::

is
::::::::
comprised

:::
of

:::
two

:::::::::
individual

:::::::
predictor

::::::
fields,

::::::::::
global-scale

::::::
annual

::::::
average

::::
SAT

::::
and

::::
SLP

:::::::::::
climatologies:

:

Iij =
1

2

2∑
l=1

(
ϕij

ϕ

)
l

::::::::::::::::

(2)

To first order, the intermember distance metric
::
Iij:is robust to methodological choices; the sensitivity testing did not reveal

major shifts in whether a model was considered relatively dependent or independent with respect to the other models in the285

ensemble
::::
(See

::::::
Figure

:
1
::::
and

::::::::::::
Supplementary

::::::
Figure

:::
S1). However, refining each methodological choice sharpens dependence

delineations along the spectrum of dependence and lends further credence to the concept of model families.

The first methodological choice we revisit is the length of the climatological period of the global SAT and SLP predictors

(Figure 1). To reduce internal variability on decadal timescales, we extend the predictor climatological period from 1980-

2014 (Brunner et al., 2020b) to 1905-2005, a common 101 years from the historical period of both CMIP5 and CMIP6.290

10



Illustrating the effect in the CMIP6 ensemble, we find reduced intermember distances between initial condition ensemble

members, highlighted in color, for the 1905-2005 averaging period (Fig.1a) compared to the 1980-2014 period (Fig.1b). This

grouping of known dependencies
:::
The

::::::::
grouping

:::::
effect

:::
of

:::
the

::::::
longer

:::::::
predictor

:::::::::
averaging

::::::
period

:
helps to further distinguish

initial condition / perturbed physics ensemble members from members of other models (Fig.1, light gray) . This
:
in

:::::
most

:::::
cases.

::::
This

::::::::::::
differentiation is particularly clear in the case of CESM2-WAACM, the

:::::::::::::::
CESM2-WACCM.

::::
The longer climatological295

averaging period allows
::::::::::
distinguishes

:
its three ensemble members to be distinguished from those of CESM2; with the shorter

period, the two CESM2 model variants overlap (Fig.1b). ,
:::::::
models

::
11

:::
and

::::
12).

::
In

::::::::
contrast,

::::::
though,

:::
the

::::::
longer

::::::::
averaging

::::::
period

:::
fails

:::
to

::::::
subdue

:::::::
internal

::::::::
variability

:::::::
enough

::
to

::::::::::
differentiate

:::::::::::::
EC-Earth3-Veg

:::::
from

::
its

::::
base

::::::
model,

::::::
Earth3

::::::
(Fig.1,

:::::::
models

::
23

::::
and

:::
24).

::::
The

:::::::::
remaining

::::::
internal

:::::::::
variability

::
in

::::::::::
EC-Earth’s

:::::
global

::::
SAT

::::
and

::::
SLP

:::::
fields

::
is

::::::::
traceable

::
to

:::::::::
oscillations

:::
in

:::
the

:::::::::
EC-Earth3

::::::::::
preindustrial

::::::
control

::::
run

::::
from

::::::
which

::::
both

::::::
model

:::::::
variants

:::
are

::::::::
branched

::::::::::::::::::
(Döscher et al., 2022)

:
.
:::::::::::
Functionally,

:::
this

::::::
means

::::
that300

::::::
despite

:::::::
differing

:::
by

:::::::
coupled

:::::::
dynamic

::::::
global

:::::::::
vegetation,

:::::::::
EC-Earth3

::::
and

:::::::::::::
EC-Earth3-Veg

:::::
would

:::
be

::::::::
identified

::
as

::::
one

:::::
model

:::
by

:::
our

:::::::::::
independence

::::::
metric.

:::::
This

::::::::
ambiguity

::::
was

::::
also

:::::
found

::
in

::
a

:::::
model

:::::::::::
identification

:::::::
scheme

:::
that

::::::::
employs

:::::::::::
convolutional

::::::
neural

:::::::
networks

::
to
:::::
daily

:::::
output

:::::::::::::::
(L. and S., 2023).

:

As the CMIP6 historical record spans 1850-2014 (Eyring et al., 2016) and the CMIP5 historical record spans 1870-2005

(Taylor et al., 2012), our choice of a 101-year averaging period could have been extended further back in time. However, we305

find that increasing the period back into the 19th century does not appreciably change intermember distances
::::
(not

::::::
shown).

Additionally, the 1905 start date allows for further assessment, should a future user be inclined, of how the independence

predictor fields compare to observed fields. Some observed products, such as the global Berkeley Earth Surface Temperature

product, have reduced spatial coverage in the 19th-century (Rohde et al., 2013)
::::
may

:::::
allow

:::
for

:::::::::::::::::::
backward-compatibility

:::
of

:::
the

:::::
metric

::::
with

:::::
future

::::::::::
generations

::
of

::::::
CMIP

::::::
should

:::::::::
organizers

:::::
decide

::
to
:::::
begin

:::
the

::::::::
historical

::::::
period

::
in

:::
the

::::
20th

:::::::
century

:::::
rather

::::
than310

::
the

:::::
19th

:::::::
century.

The second methodological choice of interest is whether the dependence definition benefits from a spatial mask applied to the

global SAT and SLP predictors. Spatial masking may not be a necessity; within-model spread can be reduced through temporal

averaging, as seen in Fig. 1 and some level of between-model spread is provided by the choice to use predictor absolute values

(Merrifield et al., 2020). Predictor absolute values provide between-model spread because it has not been a priority, historically,315

to calibrate or tune a model towards the absolute value of observed SAT or SLP . Absolute biases with respect to observations

(estimates themselves) tend to
::::::::::::::::::::::::::::::::::::
(Mauritsen et al., 2012; Hourdin et al., 2017).

::::
The

:::::::
absolute

:::::::::
magnitude

::
of

::
a
:::::::
climatic

::::
field

:::::
tends

::
to be seen as less important metrics of model performance than

::::::::
secondary

::
to

:::
its relative change with respect to a historical

base period (Mauritsen et al., 2012; Hourdin et al., 2017)
:::
for

::::
most

::::::::::
applications

:::::::::::::::::::::::
(Jones and Harpham, 2013). The absolute value

of global SAT in particular has been identified as an emergent property of climate models, reflecting differences underpinned320

by different model components and physical parameterizations (Schmidt, 2014). It is conceivable that in the future, however,

the reduction of absolute global biases
::::
with

::::::
respect

::
to

:::::::::::
observations will become more of a priority to modeling centers and

the between-model spread we use to determine model diversity will disappear. Several emergent properties defined in the

CMIP5-era have vanished in CMIP6, making this a credible concern (Simpson et al., 2021; Sanderson et al., 2021).
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Figure 1. Intermember distances in CMIP6 based on Global SAT and SLP climatological fields averaged over the period (a) 1905-2005

and (b) 1980-2014. For each model, distances between initial condition or perturbed physics ensemble members are marked in color and

distances to members of the remaining models are marked in light gray.

Spatial masking can help guard against independence predictor convergence because an atypically-masked model output325

field is unlikely to feature in traditional model evaluation
::
or

:::::
tuning

:
exercises. Further, fingerprints, created through spatial

masking,
:::::
spatial

::::::
masks

:
can be explicitly designed to achieve our

::::
leave

::::::
behind

::::::::::::
"fingerprints"

:::::::
tailored

::
to

:::::
meet dependence

objectives. We
::::
Here

:::
we design a spatial fingerprint, shown in Figure 2 for CMIP6 and Supplementary Figure S1

::
S2

:
for CMIP5,

that bolsters between-model spread and reduces within-model spread in the ClimWIP independence predictor fields. The SAT
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and SLP fingerprints, shown superimposed on their ensemble mean annual average climatologies (1905-2005) in Figure 2e,f330

for CMIP6 and Supplementary Figure S1e
:::
S2e,f for CMIP5, define model dependence for the remainder of the study.

The fingerprint design is conceptually simple; between-model spread is amplified by masking regions where it is low (Fig.2,

square hatching) and within-model spread is damped by masking regions where it is high (Fig.2, diamond hatching). Though

between-model spread is difficult to clearly define within CMIP’s multi-member, multi-model structure, it can be estimated via

standard deviation across an ensemble comprised of one ensemble member per model. The first member is selected from each335

multi-member ensemble: r1i1p1 in CMIP5 and r1i1p1f1 where available in CMIP6, with exceptions listed in Supplementary

Table S4. Upon computing the standard deviation across the one member per model ensembles, we mask out the region

where between-model spread is at or below its 15th percentile (Fig.2a,b, square hatching). This "low" between-model spread

is largely confined to subtropical oceanic regions
::::::
oceanic

:::::::
regions

::
in

:::
the

:::::::
tropics

:::
and

:::::::::
subtropics

:
for both the SAT and SLP

1905-2005 climatologies.340

In addition to regions of low between-model spread, we also select and mask regions of high (at or above the 85th percentile)

within-model spread (Fig.2c,d, diamond hatching). CMIP6 within-model spread is represented in Fig.2c,d by the median of

the standard deviations within the 12 CMIP6 initial condition ensembles with five or more members (ACCESS-ESM1-5,

CanESM5, CESM2, CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3, GISS-E2-1-G, IPSL-CM6A-LR, MIROC-ES2L, MIROC6,

MPI-ESM1-2-LR, and UKESM1-0-LL
:::
see

:::::::::::::
Supplementary

::::::
Section

::
2). CMIP5 within-model spread is similarly defined within345

five initial condition ensembles(CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0, and EC-EARTH). Because the five or

more member requirement necessitates that we use
::::
using

:
a set of models to define internal variability rather than the full

ensemble, we evaluate within-model spread within each individual model ensemble in Supplementary Figures S2 and S3
:::
and

::
S4

:
for SAT and SLP climatology, respectively. For SAT climatology, most models share regions of elevated internal variability

across the Arctic and in particular, in the vicinity of the annual climatological sea ice edge in the Irminger and Barents seas350

(Fig.2c; Davy and Outten, 2020). For SLP climatology (Fig.2d), internal variability remains in parts of the Arctic and Antarctic,

masking the Antarctic Polar high region where between-model variability is also at a maximum (Fig.2b). Because patterns

::::::
Patterns

:
of elevated internal variability are broadly similar among the models evaluated ,

:::::::::::::
(Supplementary

:::::::
Figures

::::::
S3-S4),

:::
so

we make the assumption that this within-model spread estimate is transferable to the other models in the ensemble that lack

additional initial condition ensemble members. Masking regions where high within-model spread and high between-model355

spread coincide eliminates the possibility that the between-model spread is actually internal variability in disguise, possibly

due to the presence of very similar but differently named models in the one-member-per-model ensemble.

It is important to note that results
::::::
Results

:
are not highly sensitive to precise percentile thresholds used to define

::::::
exclude

::::::
regions

::
of

:
low between-model spread and high within-model spread; intermember distances are largely consistent for thresh-

olds between the 5th and 20th percentile for between-model spread and the 80th and 95th percentile for within-model spread .360

::::
(Sup.

::::
Fig.

::::
S1). The 15th and 85th percentiles were chosen to limit the percentage of masked grid points to no more than 30%

of the domain total, similar in extent to a land mask. Masking the majority of the points in the domain increases the risk of

relying on small-scale biases to define dependence, which complicates the interpretation of models being dependent because
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they are spatially similar overall. Masking very few points does not refine intermember distances much beyond those based on

unmasked predictors (as used in Fig. 1) thus rendering the exercise unwarranted.365

The third and final methodological choice we investigate is that of the fields in ClimWIP’s independence predictor set.

Due to the complexity and breadth of model output, innumerable combinations of different climatic fields can be put forth to

define dependence. Because we aim for a dependence definition that is broadly applicable to studies of surface climate, we

also considered PR as an addition to the independence predictor base set. However, we found that the inclusion of PR did

not promote our primary goals: to group known dependencies and differentiate between models. The spatially masked annual-370

average PR climatology predictor, shown in Supplementary Figure S4
::
S5, tended to reduce between-model differentiation

within the ensemble as a whole, likely due to
:::::::
because the majority of its between-model spread being

:
is
:
co-located with

:::
and

:::
thus

:::::::
masked

::
by

:
high within-model spread in the tropical rain belts associated with the Intertropical Convergence Zone (ITCZ).

For this reason, we chose to move forward with a dependence definition based solely on SAT and SLP fingerprints.

4 Model families and their influence on CMIP uncertainty375

Refining ClimWIP’s dependence definition aids our effort to define model families within CMIP5/6. We pursue defining model

families because many downstream applications, including ClimSIPS, benefit from a discrete definition of dependence rather

than a continuous dependence spectrum. To achieve the discrete definition of dependence, each CMIP5/6 model is designated

as either a single model ensemble, part of a model family, or an individual (see Tables 1 and 2) based on intermember distances

within the ensemble. We then make an effort to verify the designations through published model descriptions and reported380

metadata.

In Figure 3, we show how intermember distances based on the sum of normalized RMSEs calculated from SAT and SLP fin-

gerprints help to uncover model relationships within CMIP. Intermember distances are presented for each model in one dimen-

sion (Fig.3a,c) and, as recommended by Abramowitz et al. (2019), for the ensemble as a whole in a low dimensional projected

space (Fig.3b,d). The
:::::
second

:::::::
display

::::::
strategy

::
is
::::::::::
appropriate

:::::::
because

:::
we

:::
find

::::
our

:::::
matrix

:::
of

::
Iij::::::

meets
:::
the

:::::
formal

::::::::::::
mathematical385

::::::::
definition

::
of

:
a
::::::

metric
::::::
space.

:::
To

::
be

:::::::::::::
mathematically

::
a

::::::
metric,

:::
the

:::::::
distance

:::::
from

:
a
::::::
model

::
to

:::::
itself

::::
must

:::
be

::::
zero,

::::
and

::::::::
distances

:::::::
between

::::::
models

::::
must

:::
be

:::::::
positive,

:::::::::
symmetric,

::::
and

:::::::
adherent

::
to

:::
the

::::::
triangle

:::::::::
inequality,

:::::
which

:::::
states

::::
that

:::
the

:::::::
distance

::::
from

::
A

::
to

::
B

:
is
::::
less

::::
than

::
or

::::
equal

::
to
:::
the

:::::::
distance

:::::::
through

::
an

:::::::::::
intermediary

::::
point

::
C
:::::::::::::::::::::
(Abramowitz et al., 2019)

:
.
:::
The

:
low-dimensional projection

is obtained through a standard metric multidimensional scaling (MDS) approach. The MDS method embeds the N-dimensional

CMIP distance matrices into two-dimensional space while attempting to preserve relative positioning between models (Borg390

and Groenen, 2005). To assist the MDS method with model positioning, we ensure that ensemble members from each model

are initially placed together and can thus settle into their final positions as a group. Without this initialization, there is a risk

that an ensemble member may get stranded away from its group as the method contends with how best to map N-dimensions

to two dimensions.

In both one and two-dimensional visual representations, it is clear that the ensemble of opportunity has grown from CMIP5395

(Fig.3, bottom panels) to CMIP6 (Fig.3, top panels); there are more uniquely named models in CMIP6 than in CMIP5 and
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Figure 2. Determining the spatial "fingerprint" within the fields used to identify CMIP6 climate model dependence: annual mean SAT (◦C)

and SLP (hPa) climatology averaged over the period 1905-2005. (a,b) a measure of between-model spread of the dependence predictors com-

puted as the standard deviation (σ) across a CMIP6 ensemble with only one member per model (see Sup. Table S4). Square hatching indicates

where between-model spread is low, at or below its 15th percentile (calculated based on the spatial field). (c,d) Median internal variability

of the dependence predictors computed as the median of the standard deviations within the 12 CMIP6 initial condition ensembles with five

or more members (ACCESS-ESM1-5, CanESM5, CESM2, CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3, GISS-E2-1-G, IPSL-CM6A-LR,

MIROC-ES2L, MIROC6, MPI-ESM1-2-LR, and UKESM1-0-LL). Diamond hatching indicates where median internal variability is high, at

or above its 85th percentile. (e,f) Fingerprint used to determine dependence, shown as the ensemble mean climatology of the whole CMIP6

ensemble with the regions of low between-model spread and high internal variability masked and hatched with square and diamond hatching

respectively.

on average, more ensemble members per model. In projected space (Fig.3b,d), models with multiple ensemble members are

highlighted using a "radius of similarity " (shaded circles), a construct also conceived by Abramowitz et al. (2019). Here we

employ this construct as largely a visual aid and set the radius to 2.5 times the maximum deviation of an individual ensemble
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member from its ensemble mean. Models are labelled by number in the projections with numbers listed in Tables 1 and 2 and400

on the y-axis of Fig.3a,c.

In CMIP6, an ensemble "core" comprised of all but two models has emerged; the intermember distance metric identifies

MIROC6 and MIROC-ES2L as considerably more independent from the rest of the ensemble (Fig.3b). We use a broken axis

in CMIP6’s low dimensional space projection to accommodate the two MIROC outliers and emphasize the structure of the

CMIP6 core. In contrast, CMIP5 does not have the same level of core and outlier structure, and intermember distances create405

a more distributed dependence spectrum (Fig.3d) similar to the one described in Sanderson et al. (2015).

In the one-dimensional representation, distances between a model’s ensemble members are shown in color, distances to

family members are shown in dark gray, and distances to the rest of the ensemble are shown in light gray (Fig.3a,c). Beginning

with the most dependent entities in CMIP, the SAT and SLP fingerprint metric clusters initial condition ensemble members

at distances of around 0.05 in all but one case. The exception, EC-Earth3 and EC-Earth3-Veg (Fig.3a, dark green, 23 and410

24), exhibit overlapping intermember distances from 0.08 to 0.20
:
,
::
as

:::::
stated

::::::::::
previously, due to remaining decadal variability

in the predictors traceable to oscillations in the EC-Earth3 piControl run from which ensemble members of both models are

branched (Döscher et al., 2022). At the next level of dependence, the intermember distance metric introduces a measure of

disambiguation between initial condition and perturbed physics ensemble members, as illustrated by two models in CMIP6,

CanESM5 (Fig.3a, bright blue, 33) and GISS-E2-1-G (Fig.3a, bright purple, 35). Strikingly, in Fig. 3b, CanESM5’s two 25-415

member initial condition ensembles can be seen clearly as two distinct clusters in two-dimensional space. CanESM5 initial

condition ensembles are reported to differ by wind stress remapping; conservative remapping is used for "p1" members, and

bilinear regridding is used for “p2” members (Swart et al., 2019).

Continuing along the spectrum of dependence from most dependent to most independent, intermember distances reveal

model similarities that would require high-level knowledge of CMIP model origins to determine a priori (Fig.3a,c dark gray).420

In this regime, where models are separated by distances of around 0.1 to 0.6, subjective decisions must be made regarding

whether or not a model is part of a family. We chose two criteria to determine if a family should be formed: (1) a model family

must be a self-contained group, i.e. all family members must be closer to each other than to other models, and (2) models within

the family must have a median intermember distance to the rest of the family that is less than 0.56. This median intermember

distance threshold was based specifically on the composition of CMIP6 to ensure that we did not simply define one large family425

within the ensemble’s core (Fig.3b). However, because it is ultimately a subjective threshold, we pursued further justification

of model families in the literature.

To ensure that similar models form self-contained groups, we match intermember distances between pairs of models in one-

dimensional space. For example, CMIP6’s INM-CM4-8 and INM-CM5-0 are separated by a distance of 0.32 from each other

as indicated by a dark gray line in their respective rows in Fig. 3a. To assist with model pair matching, we ordered and used430

mutual colors for models that we anticipated would be similar enough to be grouped into families. In general, we predicted

that models contributed by the same modeling center might be family members, then set about to determine if the assumption

was substantiated by intermember distances. We also anticipated three "extended" families based on an analysis of model

metadata, summarized in Sup. Tabs. S1 and S2
:
,
:::
and

:::
the

::::
work

:::
of

:::::::::::::
Brands (2022b),

:::::
which

:::::::
grouped

:::::::
models

::
in

::::::
CMIP5

:::
and

:::::::
CMIP6
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Figure 3. Intermember distances used to identify degrees of dependence within (a) CMIP6 and (c) CMIP5. For each model, within-model

distances (i.e., initial condition ensemble members or perturbed physics ensemble members) are marked in color, distances to members of

other similar models are marked in dark gray and distances to members of the remaining models are marked in light gray. Models grouped

into families are highlighted on the y-axis. To better visualize levels of similarity within the multi-model ensembles, CMIP6 (b) and CMIP5

(d) intermember distances are projected from high dimensional space into two dimensions using multidimensional scaling. Models are

colored and labelled numerically as indicated in panels a and c. Initial condition and perturbed physics ensembles are given a radius of

similarity (shaded circles) equivalent to 2.5 times the maximum deviation from their ensemble mean. Note that in panel b, a broken axis is

used to emphasize the structure of the primary CMIP6 model cluster
:::
core

:
with respect to two

::
the

:
independent constituents, MIROC6 and

MIROC-ESL.
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::
via

::::::
shared

:::::::::::
atmospheric

:::::::::
circulation

::::
error

:::::::
patterns. The first, shown in dark red (models 1-6) in Fig.3, is comprised of models435

with UK Met Office Hadley Centre atmospheric components. In CMIP6, intermember distances show five of the six models

highlighted in red on the y-axis of Fig.3a, satisfy both the self-contained group and median intermember distance threshold

criteria to form a family. This grouping makes sense as all five models (HadGEM3-GC31-MM, KACE-1-0-G, ACCESS-CM2,

HadGEM3-GC31-LL, and UKESM1-0-LL) use the same MetUM-HadGEM3-GA7.1 atmospheric component (Sup. Table S1).

The sixth model, ACCESS-ESM1-5,
::::
does

:::
not

::::::
satisfy

:::
the

::::::::::::
self-contained

::::::
criteria

::::
and is closer to other models in CMIP6 than440

it is to its anticipated family members, likely because it reports to use
:
.
::::
This

:::::
likely

::::::
occurs

:::::::
because

::::::::::::::::
ACCESS-ESM1-5

::::
uses

a CMIP5-era HadGAM2-based
:::::::::
HadGAM2 atmospheric component rather than a

:::
the CMIP6-era MetUM-HadGEM3-GA7.1

atmospheric component
:
,
::::::::::
highlighting

::::
the

:::::::
potential

:::
for

:::::::
models

::
in

:::
the

:::::
same

:::::::::::
development

::::::
stream

:::
to

::::::::::
differentiate

::::::::::
themselves

::::
from

::::
their

:::::::::
successors. In CMIP5, a similar family of models with UK Met Office Hadley Centre atmospheric components is

present (Fig.3c, dark red, models 1-3), where it is comprised of three uniquely named models, ACCESS1-0, ACCESS1-3, and445

HadGEM2-ES. ACCESS1-0 and HadGEM2-ES also share HadGAM2 atmospheres, while ACCESS1-3 features a modified

version of the UK Met Office Global Atmosphere 1.0 AGCM (UM7.3/GA1; Bi et al., 2012; Brands, 2022a). Despite the

differing atmospheric component, ACCESS1-3 is closer to ACCESS1-0 and HadGEM2-ES than to other CMIP5 models and

thus joins the family group
::::::
despite

:::
the

::::::::
differing

::::::::::
atmospheric

::::::::::
component,

:::::::::::::
demonstrating

:::
that

::
a
::::::
family

::::::::::
designation

::
is

:::::
more

:::::::
complex

::::
than

:::
just

::
a

:::::
single

::::::
shared

:::::
model

:::::::::
component.450

The second anticipated extended family, shown in gold (models 7-12), features models with atmospheres that share common-

alities with the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). In CMIP6, there

is a gap in pairwise intermember distance between models with a CAM5.3 atmosphere (CMCC-ESM2, CMCC-CM2-SR5) and

models with a CAM6 atmosphere (CESM2 and CESM2-WAACM). Two additional models, TaiESM1 and NorESM2-MM, are

similar enough to also be included in the family (Fig.3a, gold highlight) likely because their atmospheres are based on CAM5.3455

and CAM6, respectively, with several alternative parameterizations incorporated (Lee et al., 2020; Seland et al., 2020). Though

NorESM2-MM is closer to the CAM6-based models than the CAM5.3-based models in terms of intermember distance, it does

end up placed towards the CAM5.3-based cluster in low dimensional space due to how the MDS method chooses to optimize

relative positioning (Fig.3b). In CMIP5, there is less similarity seen between members of the CAM-based anticipated extended

family (Fig.3c, gold, models 4-7), particularly between CESM1-CAM5 and the models based on CAM4, its predecessor atmo-460

spheric component (see Sup. Table S3). The four models (NorESM1-ME, NorESM1-M, CCSM4, and CESM1-CAM5) reside

in the same region of low dimensional space, but do not form a discernible cluster (Fig.3d) and do not satisfy either criteria

to be considered one extended family. Instead, NorESM1-ME and NorESM1-M form a family (Fig.3c gold highlight) while

CCSM4 and CESM1-CAM5 remain as single model ensembles.

The third anticipated extended family, shown in orange (models 7-12), is made of models that utilize ECHAM6 atmospheric465

components developed at the Max Planck Institute for Meteorology. In CMIP6, a gap is present between within- (Fig.3a color)

and between-model distances (Fig.3a dark gray) in the grouping, which may be traceable to differences in horizontal resolution

(Sup. Table S1). This anticipated family has also grown from CMIP5, which featured two ECHAM6.1-based model variants

that differ by vertical atmospheric resolution and horizontal ocean resolution (Giorgetta et al., 2013), to CMIP6, which features
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four ECHAM6.3-based models contributed by different modeling centers. The family is positioned in a cluster towards the470

center of both CMIP ensembles in low dimensional space (Fig.3b,d).

In addition to the three anticipated families, several other families emerge upon assessing intermember distances. In CMIP5,

the EC-EARTH and CNRM-CM5 initial condition ensembles share a level of similarity on par with the other families, as do

bcc-csm1-1 and BNU-ESM (Fig.3c). In CMIP6, we find the three CNRM models to be similar enough to IPSL-CM6A-LR

to satisfy the family-criteria (Fig.3a light blue and medium blue). Similarity in these cases cannot be traced to a particular475

atmospheric component model, but for CNRM and IPSL, similarity could have arisen through an effort to foster collaboration

between the two French modeling groups after CMIP5 (Mignot and Bony, 2013)
::
or

:::
due

::
to
:::::::

similar
:::::
ocean

:::::::::
component

:::::::
models

::::::::::::::::
(Brands et al., 2023). The remainder of model families in both CMIP5 and CMIP6 feature models originating from the same

modeling center. However, not all same center models are similar enough, in terms of intermember distance, to be considered

potential relatives. For example, GFDL-CM3 is more similar to other CMIP5 models than it is to Earth system models from the480

same modeling group, GFDL-ESM2M and GFDL-ESM2G (Fig.3d). In this case, a different atmospheric component model

version accompanies the dissimilarity in historical model output; GFDL-CM3 uses a later generation atmospheric component

than GFDL-ESM2M and GFDL-ESM2G (See Sup. Table 3). Meanwhile, GFDL-ESM2M and GFDL-ESM2G differ from each

other only by ocean component (Dunne et al., 2012) and do satisfy the criteria to form a family. CMIP6’s FGOALS-f3-L and

FGOALS-g3 are also found to be relatively distinct from each other in terms of intermember distance; the two models differ485

in atmospheric component, notably by atmospheric finite differencing method (Zheng et al., 2020). The only models to share

an atmospheric component and not form a family are CMIP6’s MIROC6 and MIROC-ES2L. Though the two MIROC variants

form a self-contained group, they are more distinct from each other in terms of intermember distance than most models pairs

considered to be independent within the CMIP6 core and are thus considered independent single model ensembles instead of a

family.490

One of the primary reasons we define model families is to enhance our understanding of how dependence influences CMIP

uncertainty estimates. Model families establish a stricter definition of independence within CMIP than the "one model, one

vote" standard typically employed in multi-model assessments if weights (fractional votes) are not desired or possible (Knutti,

2010). The one model, one vote standard treats all uniquely named models in the ensemble as independent and allows them

each to be represented by one simulation. By this standard, CMIP6 is represented by 37 independent entities and CMIP5495

is represented by 29 independent entities. We compare this traditional approach against a "one family one vote" standard,

where each model family, single model ensemble, and individual is represented by one simulation. This reduces CMIP6’s

representation to 19 and CMIP5’s to 20 independent entities.

We assess the impact of the one family, one vote independence constraint on distributions of ECS, a key climate metric

reflecting the magnitude of warming a model projects in response to CO2 doubling from preindustrial levels (Charney et al.,500

1979). We source ECS values primarily from the IPCC (Smith et al., 2021), and when not available, from studies reporting to

compute it via the Gregory et al. (2004) method. Further information on the sourcing of ECS is provided in the supplement; the

ECS values used are shown in Supplementary Figure S5
::
S6. Raw distributions of ECS in CMIP5/6 are represented in Figure 4

by both violin (gray shading) and box and whisker elements. The violin representation gives a sense of how the shape of the
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Figure 4. Comparison between the full distribution and the "one per family" subset distribution of effective equilibrium climate sensitivity

(ECS) in CMIP6 and CMIP5. Full distributions are shown as a violin plot (gray) superimposed with the median (green) and the 5th (purple),

25th (red), 75th (orange), and 95th (blue) percentiles. One-per-family subset distributions of each percentile (violins) reflect 10,000 subsets

from a bootstrap random selection of one model from each model family (see Figure 3). The means of each percentile distribution are used

to create the one-per-family box and whisker. The number of members in each distribution are given in parentheses.

ECS distribution has evolved from CMIP5 to CMIP6, with CMIP6 having a more bimodal structure, a lighter low-ECS tail, and505

a heavier high-ECS tail than CMIP5. This is consistent with the highly-publicized finding that a subset of CMIP6 models are

"running hotter" than their CMIP5 predecessors (e.g. Flynn and Mauritsen, 2020; Zelinka et al., 2020; Tokarska et al., 2020);

there are only five models with an ECS above 4◦C in the CMIP5 distribution compared to 17 in the CMIP6 distribution. Box

and whisker elements, superimposed on the violins, provide a way to investigate how different percentiles of the distribution

compare between CMIP generations and shift under the new one family, one vote independence constraint. We focus on the 5th510

(purple), 25th (red), median (green), 75th (orange), and 95th (blue) percentiles. All percentiles have increased between CMIP5

and CMIP6, ranging from the 5th, which increases by 0.19◦C (2.19 to 2.38◦C), to the 95th, which increases by 1.03◦C (4.41

to 5.45◦C). Also notable, no CMIP5 model has an ECS that exceeds CMIP6’s 75th percentile of 4.72◦C (see Sup. Fig. 5
::
S6).

To ascertain if model dependence can explain the shift in ECS between CMIP generations, we apply the one family, one vote

independence constraint to ECS in both ensembles via a bootstrap protocol. First, base ensembles are formed from the models515

(single model ensembles and individuals) already represented by one ECS value. Subsequently, one member of each
:::::
model
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family is randomly selected, and its ECS value joins the base ensemble to form a "one per family" ensemble. Percentiles are then

computed, and the procedure is repeated 10,000 times to generate distributions of percentiles (Fig.4 color-coordinated violin

elements). Percentile distributions reflect that model families span a range of ECS values and the one-per-family distribution

shifts depending on the combination of models selected. Finally, the overall one-per-family ensemble box and whisker element520

is constructed from the means of each percentile distribution.

In CMIP6, there are seven families, comprised of two to six models, to randomly select from (Fig.3a label highlights).

After 10,000 rounds of selection, the average CMIP6 one per family distribution (Fig.4 second element from left) has reduced

skewness towards high ECS compared to the raw CMIP6 distribution. The removal of dependent entities does not affect

CMIP6’s 95th percentile (Fig.4 blue; 5.4◦C) due to the certainty that at least two of the 19 models in the one per family525

distribution have an ECS above 5◦C (E3SM-1-1 and CanESM5; Sup. Fig. 5). In contrast, the interquartile range (Fig.4 red to

orange) of CMIP6’s one per family distribution is shifted toward lower values of ECS with respect to the raw distribution, to

2.85− 4.29◦C from 3.0− 4.72◦C. CMIP6 median ECS also shifts down by 0.43◦C to 3.44◦C when representation is limited

to one family, one vote. This suggests that the higher ECS mode of CMIP6’s bimodal distribution is due, in part, to there being

more "copies" of higher ECS models in the ensemble. Removing redundancies also constrains the lower tail of the distribution530

(Fig.4 purple), which is set in the raw ensemble by the two models with ECS below 2◦C, family members INM-CM4-8 and

INM-CM5-0.

In CMIP5, of eight families, seven are comprised of two models and one is comprised of three models (Fig.3c label high-

lights). Selecting from CMIP5’s smaller families (compared to CMIP6) results in a CMIP5 one per family distribution that is

nearly identical to the raw CMIP5 distribution (Fig.4 right). Limiting family representation does have a marginal impact on535

the CMIP5 95th percentile and median, shifting them each down by 0.11◦C, but does not skew the distribution nor narrow

its interquartile range as it does in CMIP6. This suggests the approach taken in IPCC AR5 where model dependence was not

explicitly considered was reasonable. While dependencies exist in CMIP5, they happen to be distributed in a way that the mean

and overall model spread is not strongly affected. We find that dependence alone cannot account for the full distributional shift

in ECS between CMIP5 and CMIP6, but does reconcile the two somewhat, reducing the difference for CMIP6 and CMIP5540

median ECS by over 60%.

Ultimately, constraining by independence emphasizes that though there are significantly more simulations in CMIP6 than in

CMIP5 (here 218 versus 75), there are not significantly more independent models in CMIP6 as of yet. Highly similar models

appear more frequently in CMIP6 under different names, and increased representation has just happened to occur more for

model families on the high end of the ECS distribution. It is important to note that limiting representation in this instance is not545

a comment on model quality in any way, it is only a comment on whether a model’s historical output is sufficiently independent

of other models in the ensemble. Because of the influence redundancies have on multi-model uncertainty distributions, model

families are crucial for users to be aware of, whether or not they chose to sub-sample CMIP6.
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5 ClimSIPS for European climate applications

For use
:
in

:
cases that require a subset of CMIP models, model dependence is one of three common ensemble design consid-550

erations. Equally important to subselection are model performance and spread between model outcomes in the chosen set.

Discussed in the following subsections, performance is defined
::
we

:::::
define

:::::::::::
performance

:
with respect to observations over dif-

ferent periods of the historical record. Spread is calculated from projected regional changes between present climate, averaged

from 1995-2014, and mid-century climate, averaged from 2041-2060 in CMIP6’s SSP5-8.5 or CMIP5’s RCP8.5 emissions

scenario. Performance and spread definitions were designed to select sets of models to underpin European regional climate555

modeling efforts and impact assessments.

5.1 Performance Metric

Performance centers on properties of a model that make it suited to simulating future European climatic states as defined by

a multivariate model-observation comparison metric. We aim to identify models with historical biases that would preclude

them from accurately projecting future European climate rather than attempting to elevate one model over another based on560

its success in simulating a limited set of historical European climate variables. We focus on historical biases because all CMIP

models have strengths and weaknesses in simulating aspects of the climate system and it is not always clear that model’s

historical strengths will translate into future skill (Weigel et al., 2010). Historical biases, in contrast, highlight cases where

models lack important dynamic or thermodynamic processes (Knutti et al., 2017) or are simply too hot, cold, wet, or dry to

transition into a realistic future temperature or precipitation regime (Eyring et al., 2019).565

Specifically, we compare all CMIP members with observations using ClimWIP’s performance weighting strategy (Brunner

et al., 2020b). We utilize predictor fields relevant to two European case studies: Central European (CEU) summer (June-

July-August; JJA) and Northern European (NEU) winter (December-January- February; DJF) SAT and PR change between

1995-2014 and 2041-2060 mean states. The two European regions assessed correspond to the
:::::::::
CMIP5-era

:
CEU and NEU

SREX regions used by the IPCC
:::::::::::::::
(Seneviratne, 2012)

:
,
::::
with

:::
the

:::::
CEU

:::::
region

::::
now

::::::
named

::::::::
"Western

::
&

::::::
Central

::::::::
Europe"

::
or

:::::
WCE570

::
in

:::
the

::::::::::
CMIP6-era

:::::
report

:
(Iturbide et al., 2020). Hereafter, we describe a mix of local, regional, and global climatological

predictors, including a base set of four annual-average predictors used in both cases and two additional seasonal predictors

specific to each case. The four predictor base set includes annual-average European SAT climatology over two base periods

(1950-1969, 1995-2014), annual-average North Atlantic sea surface temperature (SST) climatology (1995-2014), and annual-

average Southern Hemisphere midlatitude shortwave cloud radiative effect (SWCRE) climatology (2001-2018). We define575

SWCRE as the difference between all and clear sky downwelling shortwave radiation (rsds-rsdscs) at the surface (Cheruy

et al., 2014). For the Central European summer case, additional relevant predictors include the JJA average climatologies of

gridded Central Europe Station PR (1995-2014) and CEU SWCRE (2001-2018). For the Northern European winter case, DJF

average climatologies of gridded Northern Europe Station PR (1995-2014) and North Atlantic Sector SLP (1950-2014) are

used. Further details on predictor regions and masks are provided in Supplementary Section 4.580
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In both summer and winter, local predictors have the potential to reveal specific historical biases that erode confidence in

future SAT and PR projections. For example, summer radiation biases (due to biases in local cloud cover) may affect a model’s

ability to warm a realistic amount in the future. Potentially persistent summer precipitation biases may also affect warming

biases further through moisture availability and local land-atmosphere interaction issues (Fischer et al., 2007; Sippel et al.,

2017; Ukkola et al., 2018). In winter, local precipitation biases, which are common at the grid resolution scales of GCMs,585

may signify a model’s inability to represent processes relevant to precipitation change, such as ocean eddies and extratropical

cyclone activity (Moreno-Chamarro et al., 2021).

On regional scales, predictors serve to indicate potential process-based simulation issues that may affect both past and future

European climate. We employ two periods of annual-average European SAT climatologyto establish whether ,
::::::::::

1950-1969

:::
and

::::::::::
1995-2014,

::
to

::::::::
establish

:::
(1)

::
if
:::::::

notable
::::::::
European

:::::
SAT

::::::
biases

::::
exist

:::
in

:::
the

::::::
period

::::
prior

:::::::::
European

:::
air

::::::
quality

:::::::::
directives590

::::::::::::::::
(Haug et al., 2004)

::
and

::::
(2)

::
if a model’s historical SAT response to aerosol emission-control measures in Europe is in line

with observations (Haug et al., 2004). The use of
:::::::
"present

::::
day"

::::::::
European

::::
SAT

::
is
::::::::::
significantly

:::::::
warmer

::
or

::::::
cooler

::::
than

::::::::
observed.

:::::
Using

:
two climatological periods also helps to avoid penalizing models for differing from observations by chance over a

20-year period due to internal variability (Deser et al., 2012). Additionally, we include annual-average North Atlantic SST cli-

matology because SST biases in the region have been linked to biases in European SAT and PR variability through interactions595

with atmospheric circulation (e.g. Keeley et al., 2012; Simpson et al., 2019; Borchert et al., 2019; Athanasiadis et al., 2022).

As atmospheric circulation biases tend to be more pronounced in the winter than in the summer, we also explicitly incorporate

mean state SLP in the North Atlantic sector in the winter predictor set. Mean state SLP serves as a potential indicator of biases

in the storm track and the frequency of prevailing weather regimes, both primary drivers of winter SAT and PR variability (e.g.

Simpson et al., 2020; Harvey et al., 2020; Dorrington et al., 2021).600

Finally, with the advent of CMIP6 and models with high climate sensitivity, we incorporate a metric related to how much

a model warms globally into the base performance predictor set: annual-average SWCRE climatology in the Southern Hemi-

sphere midlatitudes, a region known for its reflective low clouds (Zelinka et al., 2020). Models that historically underestimate

Southern Hemisphere low cloud decks do not have them present to counteract future radiative warming increases associated

with the Hadley cell and its high cloud curtain moving poleward (Lipat et al., 2017; Tselioudis et al., 2016). Because European605

change is superimposed on global change, models with these documented cloud cover biases should be penalized as well.

Model performance is benchmarked against predictors from the following observational datasets (Figure 5):

– SAT: Berkeley Earth Surface Temperature (BEST) merged temperature (Fig.5a,b; Rohde et al., 2013)

– SST: NOAA Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5, Fig.5c; Huang et al., 2017)

– PR: European-wide station data based E-OBS dataset (Fig.5d,e; Cornes et al., 2018)610

– SWCRE: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled All- and Clear-Sky

shortwave surface flux products (Fig.5f,g; Loeb et al., 2018, 2020)

– SLP: NOAA-CIRES-DOE 20th Century Reanalysis V3 reanalysis (Fig.5h; Bloomfield et al., 2018)
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Here, we rely on a cosine-latitude-weighted RMSE distance metric computed between CMIP5/6 members and a
::
We

::::::
found

::::
using

::
a
:
single observational estimate for each predictor . Performance can also be based on more than one observational615

dataset per field (to represent observational uncertainty), and as such, additional datasets can be included in future assessments

to assess the sensitivity of the selection protocol to the choice of observational dataset(s) . The relationship between predictor

RMSE from observed and JJA CEU or DJF NEU SAT and PR change are shown in Supplementary Figures S6-S9. Distances

::
to

::
be

::::::::
sufficient

:::
for

::::::::::::
demonstrating

:::::::::
ClimSIPS;

:::
the

::::::::
method’s

::::::::
sensitivity

::
to
:::::::::::::
representations

::
of

:::::::::::
observational

::::::::::
uncertainty,

::::::::
different

:::::::
predictor

::::::::::::
combinations,

::::
and

:::::::::
alternative

:::::::::::
performance

:::::::::
definitions

:::
all

:::::::
warrant

::::::
further

::::::::::
exploration.

:::::
Here,

:::::::
though,

:::
we

::::::
define

::
a620

::::::::::
performance

::::::
metric

:::
for

::::
each

:::::
model

::
i
::::
with

::::::::::::::::::::
cosine-latitude-weighted

:::::::
RMSEs

:::
(ϕi):::::::::

computed
:::
for

::::
each

::::::::::
performance

:::::::::
predictor.

::
In

::::::
contrast

::
to
:::
the

:::::::::::::
model-pairwise

:::
ϕij::

in
::::::::
Equation

::
1,

::
ϕi:::

are
:::::::
defined

:::::::
between

::::::
CMIP5

::::
and

::::::
CMIP6

::::::::
members

:̂
y
::::
and

:::
the

:::::::::::
observational

:::::::
estimate

:
y
:
for each predictor are

:::
as:

ϕi =

√∑p
k=1wk|ŷi − y|2∑p

k=1wk
:::::::::::::::::::::

(3)

::::
Each

::
ϕi::

is subsequently normalized by dividing by their
::
its

:
combined CMIP5 /6

:::
and

::::::
CMIP6

::::::::
ensemble

:
mean value, µ(predictorCMIP5/6),625

and
:::::::
ϕCMIP5/6,

::::
and

:::
six

::::::::
predictors

:::
are

:
averaged together to define the "Aggregated Distance from Observed" performance metric

for each model i (Pi):

Pi =
1

6

6∑
j=1

predictorj
µ(predictorCMIP5/6)

:
:630

Pi =
1

6

6∑
l=1

(
ϕi

ϕCMIP5/6

)
l

:::::::::::::::::::

(4)

Lower values of the metric
:
Pi, reflecting lower levels of model bias amongst the predictors, indicate higher performance. As a

:::
The

::::::::
combined

:::::::
CMIP5

:::
and

:::::::
CMIP6

::::::::
ensemble

:::::
mean

:::::::::::
normalization

::::::
allows

:::
for

:
a
:::::
direct

::::::::::
comparison

::
of

::::::
model

::::::::::
performance

::::::
within

::
the

::::
two

:::::::::
ensembles.

:::::::::::::
Supplementary

:::::::
Figures

::::::
S7-S10

::::
give

:
a
:::::

sense
:::
of

::::
how

:::
the

::::::::
individual

:::
ϕi :::

and
:::::::::
aggregated

:::
Pi::::::

metrics
::::::::
compare

::
in

::::::
CMIP5

:::
and

:::::::
CMIP6

::
in

:::::
terms

::
of

:::::
their

::::::::::
relationship

::::
with

:::
JJA

:::::
CEU

::
or

::::
DJF

:::::
NEU

::::
SAT

:::
and

:::
PR

:::::::
change.

:::
As

:
a
::::::
further

:
reference,635

performance order in CMIP5 and CMIP6 for the two cases is presented in Supplementary Figure S10
:::
S11.

5.2 Spread in projected European temperature and precipitation change

Spread, the third and final dimension of ClimSIPS, differs from independence and performance because it is explicitly based

on targeted future model outcomes rather than on historical model properties. While it is important for users to recognize

that without independence, model agreement is meaningless, and without performance, uncertainty in future projections can640

24



Figure 5. Observed predictor fields used to determine model performance for European climate applications in ClimSIPS; a base set used

in both cases includes a) annual average Berkeley Earth Surface Temperature (BEST) European SAT climatology (1950-1969), b) annual

average BEST European SAT climatology (1995-2014), c) annual average NOAA Extended Reconstructed Sea Surface Temperature version

5 (ERSSTv5) North Atlantic sea surface temperature (SST) climatology (1995-2014), and f) annual average Clouds and the Earth’s Radiant

Energy System (CERES) Southern Hemisphere midlatitude shortwave cloud radiative effect (SWCRE) climatology (2001-2018). For June-

July-August (JJA) Central European (CEU) applications, d) JJA average E-OBS gridded Central Europe Station PR climatology (1995-2014)

and g) JJA CERES CEU SWCRE climatology (2001-2018), are added to the base set. For December-January-February (DJF) Northern

European (NEU) applications, e) DJF average E-OBS gridded Northern Europe Station PR climatology (1995-2014) and h) DJF NOAA-

CIRES-DOE 20th Century Reanalysis V3 (NOAA-20C) North Atlantic sector sea level pressure (SLP) climatology (1950-2014), are added

to the base set.

be excessive, it is also important that users
:::
they

:
have the opportunity to sample novel climate outcomes if their application

so requires. To allow users to maximize climate change signal diversity, we define spread as the distance between models in

normalized JJA CEU and DJF NEU averaged SAT and PR change space, with change, as previously stated, referring to the

difference between 2041-2060 and 1995-2014 mean state values in SSP5-8.5/RCP8.5. Normalization (subtracting the ensemble

mean and dividing by the ensemble standard deviation) is carried out within CMIP5 and CMIP6 separately and ensures that645

SAT and PR distances contribute equally to the spread metric Sij . With normalized SAT and PR change for each model

abbreviated as SAT∆ and PR∆, respectively, spread distance between models i and j is:

Sij =
√

(SAT∆i −SAT∆j)2 +(PR∆i −PR∆j)2 (5)
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The only remaining complexity to computing spread is deciding on model representation in an ensemble where some models

contribute multiple members. Two strategies are explored. In the first, models with multiple ensemble members are represented650

by their ensemble mean SAT and PR changes, alongside their individually represented counterparts. In the second, all models

are represented by an individual ensemble member chosen such that overall spread within the ensemble is at a maximum (i.e., is

farthest from all other members already placed in SAT-PR change space). We select spread-maximizing members from models

in a manner similar to the KKZ algorithm (Katsavounidis et al., 1994). First, all individually represented models are placed in

SAT-PR change space. Next, the model ensembles are assessed one by one and the member farthest from all already placed655

models is chosen. Because member selection is done iteratively, there are multiple possible spread-maximizing solutions; here

we focus on one solution obtained by selecting from model ensembles in alphabetical order. Further details of individual

member selection are provided in Supplementary Section 5. We apply these two representation strategies to the performance

and independence metrics as well and enter into ClimSIPS with a set of 34 CMIP6 models (Table 1) and 26 CMIP5 models

(Table 2), each with a scalar performance score (Pi) and vectors of intermember (from Part I; Iij) and spread (Sij) distances660

to all other models in the ensemble.

5.3 Cost Function and Subselection Triangle

With independence, performance, and spread metrics computed for each model, ClimSIPS can be carried out via a cost-function

minimization scheme. The first step of ClimSIPS is for the user to decide how many
::
the

:::::::
number

::
n

::
of selections (si) they would

like to make from the total number of models in the selection pool (
:
a
::::::::
selection

::::
pool

::
of

:
N

:::::::
available

::::::
models

::::::::
(s1, ..sN ). In this665

study, we demonstrate the method by selecting subsets of varying sizes (n )
::::
from

:::::::
selection

:::::
pools

::
of

:::::::
varying

::::
sizes

:::
N ,

:::::::::
henceforth

::::::
referred

::
to
:::
as

:
a
:::
"N

::::::
choose

::
n

:::::::::::
subselection". To illustrate the method, we select two models

:::::
model

::::::::::
simulations,

::
s1::::

and
::
s2:from

a purposefully reduced five model selection pool(N = 5, n= 2 or a "
:
,
::::::
s1, ..s5,

::
in
::
a 5 choose 2 " subselection)

::::::::::
subselection. We

then explore method sensitivities and recommendation strategies with a 34 choose 3 subselection for CMIP6 Central European

Summer case. Lastly, to suit a broader range of applications, we report and recommend five model subsets for the Central670

European Summer and Northern European Winter cases from both CMIP5 (N = 26) and CMIP6 (N = 34).
::::::
CMIP5

:::
26

::::::
choose

:
5
::::::::::
subselection

::
is
::::
also

::::::::
provided

::
in

::::::::::::
Supplementary

:::::::
Section

::
6.

Once a subset size is decided upon by the user, ClimSIPS proceeds to compute the value of a cost function for each possible

combination of n selections. Comprised of a performance term, P (s1, ..sn):::::::::
P(s1, ..sn), an independence term, I(s1, ..sn):::::::::

I(s1, ..sn),
and a spread term, S(s1, ..sn)::::::::

S(s1, ..sn), the cost function is:675

Cα,β(s1, ..sn) = (1−α−β) ·PP
:
(s1, ..sn)−α · II

:
(s1, ..sn)−β ·SS

:
(s1, ..sn) (6)

The importance to the user of P (s1, ..sn), I(s1, ..sn), and S(s1, ..sn) :::::::::
P(s1, ..sn),::::::::::

I(s1, ..sn), :::
and

:::::::::
S(s1, ..sn) are determined by

two parameters, α and β. Both parameters range from 0 to 1; α sets the importance of independence and β sets the importance

of spread. The importance of performance, 1−α−β is a trade-off based on the importance of the other two terms that cannot

be negative, thus requiring that α+β ≤ 1. For each pair of α and β values, there is a combination of models that minimizes the680

cost function based on their combined values of P (s1, ..sn), I(s1, ..sn), and S(s1, ..sn):::::::::
P(s1, ..sn),::::::::::

I(s1, ..sn),:::
and

:::::::::
S(s1, ..sn).
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Because each model has a scalar performance score Pi, P (s1, ..sn) :::::::::
P(s1, ..sn) is defined as the sum of the normalized Pi

values in each subset:

PP
:
(s1, ..sn) =

n∑
k=1

Psk −µ(PN )

σ(PN )

Psk −P s1,..sN

σ(Ps1,..sN )
::::::::::::

(7)

Pi values are normalized by subtracting the selection pool mean value µ(PN )
:::::::
P s1,..sN :

and dividing by the selection pool685

standard deviation σ(PN )
:::::::::
σ(Ps1,..sN ). The term is positive in the cost function because lower values of Pi indicate smaller

biases and thus higher performance. If a user prefers to select based on model performance only (α= 0, β = 0), the set of n

highest performing models will minimize the cost function.

Model independence and spread metrics, I(s1, ..sn) and S(s1, ..sn):::::::::
I(s1, ..sn):::

and
:::::::::
S(s1, ..sn), are based on the Iij and Sij

distance matrices of the selected model subsets. The distances are normalized by the mean and standard deviation of their690

entire selection pool distance matrices (INN and SNN :::::::::::
Is1,..sN ,s1,..sN::::

and
::::::::::::
Ss1,..sN ,s1,..sN , respectively) and then summed over

half of the matrix to avoid double counting:

II
:
(s1, ..sn) =

n∑
k<l

Isk,sl −µ(INN )

σ(INN )

Isk,sl − Is1,..sN ,s1,..sN

σ(Is1,..sN ,s1,..sN )
::::::::::::::::::

(8)

SS
:
(s1, ..sn) =

n∑
k<l

Ssk,sl −µ(SNN )

σ(SNN )

Ssk,sl −Ss1,..sN ,s1,..sN

σ(Ss1,..sN ,s1,..sN )
:::::::::::::::::::

(9)

In the cost function, I(s1, ..sn) and S(s1, ..sn) ::::::::
I(s1, ..sn)::::

and
:::::::::
S(s1, ..sn) are negative terms because larger distances between695

models correspond to higher levels of independence and spread, which, along with higher performance, are the subset prop-

erties we prioritize. As independence and/or spread increases within a subset, the larger negative I(s1, ..sn) and S(s1, ..sn)

:::::::::
I(s1, ..sn) :::

and
:::::::::
S(s1, ..sn):terms eclipse the P (s1, ..sn) :::::::::

P(s1, ..sn) term, leading to a more and more negative minimum value

of the cost function.

As previously discussed, different sets of models minimize the cost function for different values of α and β. To summarize700

how different subsets map to different priorities, we utilize a "subselection triangle" ternary contour plot (Harper et al., 2015).

Ternary plots represent three-component systems that require the component contributions together to sum to a constant,

typically 100%. The requirement, which reduces the degrees of freedom in the system from three to two, allows component

value combinations to be plotted on an equilateral triangle with angled axes along each side. As the cost function balances

the relative importance of independence (α), performance (1-α-β), and spread (β), it is an ideal candidate for such a visual705

representation.

We introduce the subselection triangle in a toy example of subselection: choosing two out of five CMIP6 models for JJA

CEU applications (Figure 6). Of the five models in the selection pool, AWI-CM-1-1-MR is represented by its single member,

while HadGEM3-GC31-MM, UKESM1-0-LL, MIROC-ES2L, and FGOALS-g3 are represented by their ensemble means. The

models were chosen because they span a range of independence (Fig.6a), performance (Fig.6b), and spread (Fig.6c) within710

CMIP6 and therefore can help illustrate how the cost function selects subsets based on the different priorities. Intermember

distances between the models in the selection pool (Fig.6a) highlight the low level of independence between family members
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Figure 6. Five models from CMIP6 are used to illustrate ClimSIPS for JJA CEU applications. Independence, defined by intermember

distances (Figure 3), for the five models are shown in panel a. Performance, defined as the average of model-observed RMSE for the six

JJA CEU predictors (Figure 5), is shown in panel b. Lower values indicate a model is close to observed thus higher performing for the

task. Performance of individual ensemble members are shown as horizontal lines and ensemble mean performance is starred. In panel c,

the five selected models are highlighted among CMIP6 ensemble means (gray dots; single members where appropriate) in normalized JJA

CEU SAT and PR change (SAT∆ and PR∆, respectively; 2041/2060 - 1995/2014 in SSP5-8.5) space. The target values are normalized by

subtracting the CMIP6 mean and dividing by the CMIP6 standard deviation. Panel d shows the "subselection triangle" ternary contour plot.

Selected subsets (colored regions) minimize a performance-independence-spread cost function as varying degrees of importance are placed

on performance (1-α-β), independence (α), and spread (β). Subsets are listed by performance rank (out of five) and model name on the

colorbar to the right of the triangle.

HadGEM3-GC31-MM and UKESM1-0-LL and the high level of independence of MIROC-ES2L with respect to all other

models, as discussed in Part I. Performance scores, shown for each ensemble member (Fig.6b, horizontal lines) and ensemble

means (Fig.6b, stars), lend themselves to an ordered rank of the models from #1 (AWI-CM-1-1-MR) to #5 (FGOALS-g3).715
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Placing each model in normalized SAT-PR change space (Fig.6c) demonstrates the spread in future climate outcomes possible

within the selection pool (labelled
:::::
labeled

:
stars) and with CMIP6 overall (gray dots). Notably, AWI-CM-1-1-MR and MIROC-

ES2L, two relatively independent models, project near-identical changes in SAT and PR mean states by mid-century, while

family members HadGEM3-GC31-MM and UKESM1-0-LL do not.

In Fig.6d, selected subsets are represented by colored regions of the subselection triangle. Boundaries between selected720

subsets are determined by the distributions of performance, independence,
::::::::::::
independence,

:::::::::::
performance, and spread within the

selection pool and by the step resolution on which α and β vary. Throughout the study, we vary α and β from 0 to 1 (in concert)

in steps of 0.01. In the five model example, 6 two model combinations (out of a possible 10 combinations) minimize the cost

function as α and β vary in this way.

The subselection triangle is best investigated first along its boundaries. At each vertex, one property is given 100% priority,725

and along each edge, only two priorities are balanced. At the top vertex, 100% priority is given to performance (α= 0, β = 0),

as indicated by the axis that runs down the left edge of the triangle. Along the left edge from top to bottom, the importance

of performance diminishes while the importance of spread increases to reach 100% priority at the left vertex (α= 0, β = 1).

Along the bottom edge (the spread axis), the trade-off shifts to be between spread and independence, with independence being

given 100% priority at the right vertex (α= 1, β = 0). Finally, from bottom to top along the independence axis (the right edge730

of the triangle), the importance of independence diminishes while the importance of performance increases.

Regions that intersect with vertices or edges can then be characterized according to priority. In Fig.6d, the magenta region

that intersects with the triangle’s top vertex is the subset of the highest performing models (Fig.6b), AWI-CM-1-1-MR and

HadGEM3-GC31-MM, as indicated by the colorbar labeled with performance ranks out of five. From the point where per-

formance and spread are each given 50% priority, AWI-CM-1-1-MR and UKESM1-0-LL minimize the cost function (purple735

region). The blue region, intersecting with the left vertex, is comprised of the models furthest apart in normalized SAT-PR

change space, UKESM1-0-LL and FGOALS-g3 (Fig.6c). In the green region, independence rather than performance takes pri-

ority alongside spread, resulting in a subset of the #3 and #4 ranked models, UKESM1-0-LL and MIROC-ES2L. Overall, if

independence is prioritized, the cost function is likely to select subsets containing the independent MIROC-ES2L as seen in the

red and yellow regions of the subselection triangle. For the yellow region, the balance between performance and independence740

happens to yield a subset of models with little spread (AWI-CM-1-1-MR and MIROC-ES2L). Assigning no priority to a certain

property does not necessarily mean the subset will be lacking in it; the other two subsets that fall along the independence axis

(Fig.6 magenta and red regions) do have reasonable levels of model spread. However, without some level of priority given to a

property, there is no guarantee it will be sufficiently represented.

5.4 Recommended Subsets for European Applications745

Selecting more models from a larger selection pool leads to an increase in subsets composed of different models minimizing

the cost function as α and β vary. Subselection triangles become more complex and subdivided when three and five model

subsets are selected from the full CMIP5 and CMIP6
:::
full

::::::
CMIP ensembles; the six selected subsets from the 5 choose 2

CMIP6 JJA CEU example shown in Fig.6 become 37 selected subsets in the CMIP6 JJA CEU 34 choose 3 subselection by
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Figure 7. Independence, performance, and spread criteria that underpin model subset recommendations used throughout the remainder of the

study. For independence, we recommend all models in a subset come from different model families (listed in the legend below panel b). For

performance, we recommend all models in a subset rank in the upper N∗ of the ensemble with N∗ left up to user discretion. Performance in

the full CMIP6 ensemble for JJA CEU applications is shown in panel a in terms of aggregated distance from observed, a metric based on the

average of model-observed RMSE for the six JJA CEU predictors shown in Figure 5. Higher performers have a lower aggregated distance

from observed and performance order is based on ensemble mean performance (stars) where applicable, i.e. when a model is represented by

more than one ensemble member. Horizontal lines represent the performance of individual ensemble members. For spread, we recommend

models within the subset fall into the different quadrants of JJA CEU SAT and PR change space. JJA CEU SAT and PR change (2041/2060 -

1995/2014 for SSP5-8.5) values for each ensemble member of CMIP6 (light gray dots) and for ensemble means (colored markers) are shown

in panel b. Dashed gray lines indicate the median JJA CEU SAT and PR change value within the ensemble of ensemble means and separate

the ensemble into four quadrants.

ensemble mean and 45 selected subsets in the 34 choose 5 subselection by individual member.
:::
The

::::
size,

::::::
shape,

:::
and

:::::::
number750

::
of

::::::
regions

::::::
within

:::
the

::::::::::
subselection

:::::::
triangle

:::
are

:::::::::
determined

:::
by

::::::::::::
independence,

:::::::::::
performance,

::::
and

:::::
spread

::::::::::::
distributions;

:::
the

:::::
larger
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::
the

::::::::
selection

:::::
pool,

:::
the

::::
more

:::::::
difficult

::
it
:::::::
becomes

:::
to

::::::
predict

:::
the

::::::::::
combination

:::
of

::::::
models

:::
that

::::
will

::::::::
minimize

:::
the

::::
cost

::::::::
function.

::
A

:::::
subset

:::
can

::::::::
minimize

:::
the

::::
cost

:::::::
function

:::
for

::
a

::::
small

::::::
region

::
in

::::
α-β

:::::
space

::
or

::::
even

::
a
:::::
single

:::::
value

::
of

::
α

:::
and

:::
β.

:::::
Small

:::::
subset

:::::::
regions

::
are

:::
as

::::
valid

::
as

::::::
larger

::::
ones;

::::
they

::::::
simply

::::::
reflect

::::
that

::::::::::::
independence,

:::::::::::
performance,

:::
and

::::::
spread

:::
are

:::::::::
distributed

:::::
such

:::
that

:::::
there

:::
are

::::::
several

:::::
model

:::::::::::
combinations

::
in
:::::::::
contention

::
to
::::::::
minimize

:::
the

::::
cost

:::::::
function

::
in

::::
that

:::::
region

::
of

:::
the

:::::::::::
subselection

:::::::
triangle.

::::::::::
Conversely,755

::::
when

::
a
::::::
subset

:::::::::
minimizes

:::
the

:::
cost

::::::::
function

:::
for

:
a
:::::
large

::::::
region

::
of

:::
the

:::::::::::
subselection

:::::::
triangle,

::
it

:::::::
suggests

::::
that

:
it
::

is
:::::::::

comprised
:::

of

::::::
outliers

:::::
given

::::::
priority

::
in
:::
the

::::
cost

:::::::
function

::
to

::::
such

:::
an

:::::
extent

::::
that

::::
other

::::::
model

:::::::::::
combinations

::::::
cannot

:::::
reach

:::
the

::::::::
minimum.

:

To help users decide which subset is best suited to their needs, we provide recommendations based on independence, per-

formance, and spread criteria that go further than contribution percentages. Recommendation criteria are listed in Figure 7 in

conjunction with CMIP6 JJA CEU performance and (non-normalized) SAT-PR change distributions for models represented760

by ensemble means. The objective of these recommendation criteria is to further screen out selected sets that do not meet the

following specific (user-defined) desirable properties. The criteria are:

1. All models in the subset come from different model families.

2. All models in the subset rank in the upper N∗ of the ensemble in terms of performance.

3. Models in the subset fall into the different quadrants (defined by ensemble medians) in SAT and PR change space. For765

subsets of four or more models, all quadrants must be represented.

For the independence criteria, model families defined in Part I are used as an independence guideline. For the performance

criteria, the threshold N∗ is left up to user discretion; we choose different thresholds for the different regional/seasonal cases to

accommodate the different performance distributionswithin CMIP5/6.
:
. For the spread criteria, we adapt the strategy of Ruane

and McDermid (2017) and separate SAT-PR change space into quadrants with respect to ensemble medians. By recommending770

subsets of models that occupy the (relatively) cool/wet, cool/dry, warm/wet, and warm/dry margins of the ensemble, we ensure

not only spread but a set of diverse future climate outcomes.

In Fig.7a, for models with multiple members, performance metrics are ordered by ensemble mean value (star markers), which

are superimposed on the performance metrics of individual members (horizontal lines). The JJA CEU performance distribution

in CMIP6 reflects that most of the models in the ensemble are not significantly biased with respect to observations, though775

several models are biased enough to form a perceptible tail. This implies that most CMIP6 models meet the basic standards

to be considered suitable for downstream climate applications and allows us to set the N∗ threshold to be more inclusive

than exclusive. Overall, individual member performance is tightly clustered around its ensemble mean for each model; this is

true for all cases we explore in this study (see Sup. Fig. S10
:::
S11). The tight clustering confirms that performance is a model

property rather than a member property. When defined by climatological predictors, performance is not just a matter of chance780

that observations match some members but not others due to internal variability. Tight clustering also means that representing

models by ensemble mean versus an individual member will not fundamentally change performance order, aside from a few

minor shifts up or down for models in the heart of the distribution.

In Fig. 7b, ensemble means (colored markers) and all CMIP6 ensemble members (gray dots) are placed within raw JJA

CEU SAT-PR change space. Without normalization, it is clear that there is a wide range of JJA CEU SSP5-8.5 mid-century785
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Figure 8. Ternary subselection triangles of the three model subselection from the full CMIP6 ensemble for JJA CEU applications. Each

model is represented by its ensemble mean (or individual member when applicable). 37 three model subsets minimize the independence-

performance-spread cost function for different value of α and β (panel a). Models within each subset are listed with their performance rank

(out of 34). Of the 37 possible subsets, we recommend 15 (panel b; labelled in bold) based on the following criteria: (1) all models in the

subset come from different model families, (2) all models in the subset have a performance rank at or above 23 out of 34, and (3) all models

in the subset come from different quadrants in JJA CEU SAT and PR change space. Remaining subsets that fail the performance criteria are

listed in gray; those that fail the independence criteria are listed in gray with model family members underlined. Subsets that fail the spread

criteria are indicated in italics.

warming in CMIP6 models from 1.37◦C to 5.59◦C. However, models on both ends of the warming spectrum tend to be lower

than average in terms of performance, suggesting these best- and worst-case warming projections may not be as realistic as

the projections within the approximately 2-4◦C warming range populated by the bulk of the CMIP6 ensemble. In terms of

precipitation change, only CanESM5 (Fig. 7b, sky blue x marker) has an ensemble mean projecting wetter conditions in the

region by mid-century; all other models project little change or an overall Central European summer drying. The joint SAT-PR790
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change distribution is separated into a less warming/less drying quadrant containing ten models, a less warming/more drying

quadrant containing seven models (including MPI-ESM1-2-HR which has a value slightly below the PR change ensemble

median), a more warming/more drying quadrant containing 11 models, and a more warming/less drying quadrant containing

six models. Model labels, listed below Fig.7b, are grouped in terms of their designations determined in Part 1: as model

families, single model ensembles, or individuals. In two of the six model families, all family members reside in the same795

quadrant; models with a MetUM-HadGEM3-GA7.1 atmosphere (Fig.7b dark red) all warm and dry more than the ensemble

median, while the two GFDL model variants both warm and dry less than the ensemble median (Fig.7b dark purple). The

remaining model families each span two to three quadrants, demonstrating that model dependence is not necessarily clearly

correlated with spread in projected outcome because internal variability/parameter perturbations influence the latter.

With independence, performance, and spread metrics defined, CMIP6 JJA CEU 34 choose 3 subselection, with models repre-800

sented by ensemble mean, is presented in Figure 8. While stepping through α and β, 37 three-model combinations minimize the

cost function; from the three highest performers (Fig.8a black region; AWI-CM-1-1-MR/HadGEM3-GC31-MM/MPI-ESM1-

2-HR) to the three most independent models (Fig.8a dark red region; MIROC-ES2L/FGOALS-g3/KIOST-ESM) to the three

models furthest from each other in SAT-PR change space (Fig.8a dark magenta region; UKESM1-0-LL/E3SM-1-1/FGOALS-

g3). The subsets that minimize the cost function between those 100% priority cases are labelled by model performance rank (out805

of 34) triplet and model names (Fig.8, colorbar). Note that model performance rank is used here specifically as a shorthand for

comparing constituents across subsets, not as a commentary on how much better performing one model is than another model.

Most models in the ensemble have a similar level of performance (Fig.7a), allowing us to set the recommendation performance

threshold N∗ to include models in the top two-thirds of the ensemble, ranked up to and including #23 out of 34.

Applying all three recommendation criteria results in 15 recommended subsets (Fig.8b), which are listed as colorbar labels810

in black. For reference, all subsets recommended throughout the study are cataloged in Supplementary Tables S5 and S6. Of

the remaining subsets, those listed in gray do not satisfy one or more of the recommendation criteria. Same model family

representation within a subset is indicated with family members underlined. Subsets that include one or more model with

a performance rank between #24 and #34 are listed in plain text gray, while subsets that have more than one model in

the same SAT-PR change quadrant are listed in italics. There is a higher likelihood of selecting two models from the same815

model family in subsets comprised of high-performing models. Mirroring the finding of Sanderson et al. (2017) that high-

performing CMIP5 models tended to be less independent and have more near replicates in the archive, the relationship between

performance and independence we find in CMIP6 suggests that the global-scale SAT and SLP climatological differences that

bestow independence also manifest as local and regional-scale model biases that diminish performance.

In the CMIP6 JJA CEU 34 choose 3 subselection by ensemble means, recommended subsets (Fig.8b) are comprised either820

solely of members of model families or a combination of model family members with the independent MIROC-ES2L and/or

unique in SAT-PR change space CanESM5.
:
In

:::::
total,

::::::::::::
recommended

::::::
subsets

:::::
cover

:::::
15%

::::::
percent

:::
of

:::
the

::::::::::
subselection

::::::::
triangle.

Models with a CAM-based atmosphere (TaiESM1, CMCC-ESM2, and CESM2) are included in 10 of the 15 recommended

subsets, GFDL variants (GFDL-CM4 and GFDL-ESM4) are included in nine, and MIROC-ES2L is included seven. Together,

the three groupings form four of the 15 subsets. Models with a MetUM-HadGEM3-GA7.1 atmosphere (HadGEM3-GC31-825
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MM and UKESM1-0-LL) and the ECHAM6.3-based AWI-CM-1-1-MR are also well-represented within the recommended

subsets, appearing in six and five subsets, respectively. AWI-CM-1-1-MR and HadGEM3-GC31-MM tend to be chosen as

family representatives because they are ranked first and second in performance in the ensemble. UKESM1-0-LL, which fea-

tures the largest mid-century joint change in JJA CEU SAT and PR in the ensemble, takes over for HadGEM3-GC31-MM

as its family’s representative when the importance of performance drops below approximately 70%.
:::::
Small

::::::::::::
recommended830

:::::
subset

:::::::
regions

:::::
(< 10

:::::
pixels

:::
in

::::
α-β

:::::
space)

::::::
occur

::
at

::::::::::::
approximately

::::
70%

::::::::::::
performance,

::::
10%

::::::::::::
independence,

::::
and

::::
20%

:::::::
spread,

:::::
likely

::::::
because

:::::::::::
performance

:::::::
priority

:::
has

:::::::
reduced

::::::
enough

::
to
:::::
allow

::::::
spread

:::::::
outliers

:::
like

::::::::::::::
UKESM1-0-LL

:::
and

:::::::::
CanESM5

::
to

:::
be

::
in

::::::::
contention

:::::::::
alongside

::::::
various

:::::::
models

::::::
within

:::
the

::::
core

::
of

:::
the

:::::::::::
performance

::::::::::
distribution.

:::::::::
Similarly,

:::::
small

::::::::::::
recommended

::::::
subset

::::::
regions

::::
near

::::
50%

:::::::::::
performance

::::
and

::::
50%

::::::::::::
independence

:::::
result

::::
from

:::
the

::::::::
selection

:::
of

::::::
various

::::::
models

:::
in

:::
the

:::::::::::
performance

::::
core

::::
with

::
the

:::::::::::
independent

::::::::::::
MIROC-ES2L.

:
835

For use cases that require recommendations of specific simulations, we also run ClimSIPS with each model represented

by an individual member. For subselection by ensemble mean, some models are represented by a member while others are

represented by an average. This representational difference is less of an issue for the independence and performance metrics,

which both are intentionally designed such that ensemble members do not deviate far from their ensemble mean values. For the

spread metric, however, an individual climate change projection and an average across a set of climate change projections are840

unlikely to be equivalent due to internal variability. For example, a model’s range of projected climate outcomes may include

interesting outlier cases that are curtailed by ensemble averaging. Using the ensemble mean as representation then does not

capture the model’s full "spread potential" or ability to differentiate itself within the ensemble. For a model represented by only

one member, the projection provided as representation could fall anywhere within the model’s un-sampled SAT-PR change

distribution; there is no way to know if it sits near to and thus reflects the model’s hypothetical ensemble mean.845

Figure 9 summarizes how individual member representation affects CMIP6 JJA CEU 34 choose 3 subselection, predom-

inately by amplifying model spread. When given the choice among ensemble members, the method selects outlier cases to

represent models to provide users interested in novel climate outcomes with not just a model, but a specific projection that may

be of interest. Compared to ensemble mean representation (Fig.9a), individual member representation (Fig.9b) provides an

increase, in CMIP6 JJA CEU PR change spread in particular, including an additional projection of wetter future JJA CEU con-850

ditions (IPSL-CM6A-LR-r6i1p1f1) and fewer model overlaps in the core of the ensemble. There is not a substantial increase

in the range of JJA CEU SAT change in CMIP6, due to the fact that high and low change projections come from individually

represented models. To evaluate whether these differences were CMIP6 JJA CEU-specific, we also compare ensemble mean

representation to that of spread-maximizing members for the CMIP6 DJF NEU (Supplementary Figure S11
:::
S12), CMIP5 JJA

CEU (Supplementary Figure S12
:::
S13), and CMIP5 DJF NEU (Supplementary Figure S13

:::
S14) cases. Similar to the CMIP6855

JJA CEU case, CMIP5 JJA CEU PR change spread increases more than SAT change spread when models are represented by

an individual member versus an ensemble mean. In both CMIP6 and CMIP5 DJF NEU cases, however, the SAT change spread

increase is more striking than the PR change increase (Sup. Fig. S11
:::
S12).

The additional distance between models in SAT-PR change space afforded by individual member representation serves to

simplify the CMIP6 JJA CEU 34 choose 3 subselection triangle (Fig.9c). The number of cost function-minimizing model sub-860
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Figure 9. Three model subselection for CMIP6 JJA CEU applications with all models represented by an individual ensemble member. CMIP6

JJA CEU SAT-PR change (not normalized) for ensemble mean representation (as in Figure 7b) versus individual member representation are

shown in panels a and b, respectively. Colored markers, indicating model representation, are superimposed on all CMIP6 ensemble members

(light gray dots). Individual ensemble members are labelled in the key and were selected to maximize spread. In both panels, ensemble

median values for JJA CEU SAT and PR change (gray dashed lines) delineate the four quadrants used for spread recommendations. The full

and recommended (inset) subselection triangles for three model subselection by individual member are shown in panel c. As in Figure 8,

recommended subsets are labelled in black. Subsets labelled in gray contain one or more models that (1) that come from the same model

family (underlined), (2) fall below the performance threshold, or (3) that fall within the same quadrant of SAT-PR change space (italic).

Additionally, common subsets in ensemble mean-based subselection (Fig.8) and individual member-based subselection share common colors;

these subsets-in-common are also labelled with a starred performance rank triplet.
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sets decreases from 37 subsets with 15 recommended when models are represented by ensemble mean (Fig.8a) to 21 subsets

with eight recommended when models are represented by individual member (Fig.9c). The two strategies share 12 subsets in

common, which are indicated by regions of common color in Figs. 8a and 9c and by starred model rank triplets in the colorbar

labels of Fig. 9c. Though some model ranks have shifted up or down due to the change in representation, the same set of 23 out

of 34 models meet the performance threshold in both cases. Of the 12 shared subsets, two are recommended in both cases (Figs.865

8a,9c dark gray and teal), while three are recommended in ensemble mean subselection but not in individual member subselec-

tion (Figs. 8a,9c dark sky blue, dark blue, and dark brown). This recommendation difference is due to MIROC-ES2L shifting

from less warming/more drying quadrant to the more warming/less drying quadrant when represented by member r1i1p1f2

(Fig.9a,b salmon x marker). The remaining recommended individual member subsets feature many of the same models/model

families as in the ensemble mean case. A comparison of I(s1, ..sn), P (s1, ..sn), and S(s1, ..sn) :::::::::
I(s1, ..sn),::::::::::

P(s1, ..sn),::::
and870

:::::::::
S(s1, ..sn) component contributions to the minimized cost function, shown separately in Supplementary Figure S14

:::
S15, con-

firm the two representations have qualitatively similar gradients in component magnitude within the subselection triangle.

Because the two strategies yield similar results in our CMIP6 JJA CEU test case and because individual member representation

has the additional advantage of guiding users to specific simulations, we move forward to five model subselection by individual

member for each of the European case studies, shown as subselection triangles in Figures 10 and 11.
::::::::::::
Supplementary

::::::
Figure875

:::
16.

As in Figure 10, but for CMIP5 a) JJA CEU and b) DJF NEU applications. Of the CMIP5 JJA CEU case’s 33 possible

subsets, six are recommended based on a performance rank threshold of 17 out of 34 and a relaxed spread criteria (subset must

span at least three quadrants). For the CMIP5 DJF NEU case, seven recommendations are made out of 45 possible subsets

based on the same criteria as the CMIP5 JJA CEU case.880

Combinations of five models add further complexity to the CMIP6 JJA CEU subselection triangle (Figure 10a); 45 out of a

possible 278,256 subsets minimize the cost function at different points in α-β space. We recommend six subsets based on the

same recommendation criteria used in CMIP6 JJA CEU three model subselection with the additional condition that all four

SAT-PR change quadrants are represented by the five models. All recommendations include AWI-CM-1-1-MR-r1i1p1f1 from

the ECHAM6.3-based family (Fig.3a orange), one simulation with a MetUM-HadGEM3-GA7.1 atmosphere (HadGEM3-885

GC31-MM-r1i1p1f3 or UKESM1-0-LL-r1i1p1f2), and a representative from the CAM-based model family (Fig.3a gold;

TaiESM1-r1i1p1f1 or CMCC-ESM2-r1i1p1f1). GFDL variants (Fig.3a purple) also appear in five of the six recommended

subsets, suggesting that those four model families comprise a reasonable, independent subset spanning a range of climate out-

comes for CMIP6 JJA CEU applications. Depending on user needs, the highly independent MIROC-ES2L-r1i1p1f2, relatively

less-biased MRI-ESM2-0-r1i1p1f1, or CanESM5-r16i1p1f1, which is one of few that project wetter future JJA CEU conditions890

should also be considered.

Because region- and season-specific performance and spread metrics are used for each case, different CMIP6 subsets feature

in the subselection triangle for Northern European winter applications (Fig.10b) than for Central European summer applica-

tions. Individual members chosen to represent models also differ between the DJF NEU and JJA CEU cases due to spread

being case-specific. Of the 35 possible subsets that minimize the CMIP6 DJF NEU cost function, no subsets satisfy all three895
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Figure 10. Ternary diagrams of the five model subselection for CMIP6 a) JJA CEU and b) DJF NEU applications. Each model is represented

by an individual member, which are listed in the legend. Similarly to Figure 9, each case is shown alongside a subset recommendation

triangle. Of the CMIP6 JJA CEU case’s 45 possible subsets, six are recommended based on a performance rank threshold of 23 out of 34.

For the CMIP6 DJF NEU case, five of 35 possible subsets are recommended based on a performance rank threshold of 31 out of 34.

recommendation criteria as developed for JJA CEU applications. This is primarily due to models with performance ranks

of 28 to 34 either being highly independent (e.g., #30 MIROC-ES2L-r9i1p1f2, #31 MIROC6-r12i1p1f1) or unique in pro-

jected climate outcome (e.g., #28 E3SM-1-1-r1i1p1f1, #34 CAS-ESM2-0-r3i1p1f1, see Sup. Fig. S11b). In this instance, we

therefore chose to relax the performance threshold to consider models with a rank at or above 31 out of 34 to recommend

five subsets. For CMIP6 DJF NEU applications, three simulations, CNRM-CM6-1-r5i1p1f2, CESM2-WACCM-r2i1p1f1, and900

MIROC-ES2L-r9i1p1f2, are included in all recommendations. When performance is given more priority (Fig.10b blue re-
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gions), the three are joined by AWI-CM-1-1-MR-r1i1p1f1 and a simulation with a MetUM-HadGEM3-GA7.1 atmosphere,

either HadGEM3-GC31-MM-r2i1p1f3 or KACE-1-0-G-r3i1p1f1. This suggests again that a subset with the large model fami-

lies individually represented is a good starting point for downstream applications. When priority shifts towards independence

and spread (Fig.10b green regions), subsets tend to include the models with the greatest CMIP6 DJF NEU mid-century positive905

and negative precipitation changes (E3SM-1-1-r1i1p1f1 and MIROC6-r12i1p1f1, respectively). Though not included in a rec-

ommended subset primarily because of performance concerns, CAS-ESM2-0-r3i1p1f1 may also be of interest to some users

in search of a CMIP6 DJF NEU worst case scenario; the simulation warms by 7.82◦C between the 1995-2014 and 2041-2060

base periods (Sup. Fig. S11b).

As a comparison to the CMIP6 cases, we also evaluate which five model subsets are selected from CMIP5 based on the same910

independence, performance, and spread definitions. An advantage of applying ClimSIPS to CMIP5 is that we can determine

if it is able to select combinations of models recommended by EURO-CORDEX (CORDEX, 2018): NorESM1, MPI-ESM,

HadGEM2-ES, GFDL-ESM, and EC-EARTH. Unfortunately, we were unable to include EC-EARTH in ClimSIPS due to

missing performance predictor fields but were able to consider the selection of NorESM1-ME-r1i1p1, NorESM1-M-r1i1p1,

MPI-ESM-MR-r1i1p1, MPI-ESM-LR-r1i1p1, HadGEM2-ES-r4i1p1, GFDL-ESM2M-r1i1p1, and GFDL-ESM2G-r1i1p1 for915

subsets.

6
:::::::::
Summary,

::::::::::
Discussion,

::::
and

::::::::::
Conclusion

In CMIP5 JJA CEU 26 choose 5 subselection (Figure 11a), 35 out of a possible 65,780 subsets minimize the cost function

within the subselection triangle. Of the four EURO-CORDEX models, MPI-ESM variants (Fig.3b orange) do not appear

in any CMIP5 JJA CEU subsets selected by our cost function. The likely reason for this is that MPI-ESM-MR-r1i1p1 and920

MPI-ESM-LR-r1i1p1 are ranked #14 and #15 out of 26 in performance and tend to be relatively central in the ensemble

in terms of both independence (Fig.3d) and spread (Sup. Fig. 12b). Therefore, when in combination with other models, the

"mainstream" MPI-ESM variants do not have enough magnitude in their independence, performance, or spread metrics to help

create a cost function minimum. The other three EURO-CORDEX models, however, do feature in selected subsets, notably

in the combination of NorESM1-ME-r1i1p1, GFDL-ESM2M-r1i1p1, and HadGEM2-ES-r4i1p1. The combination appears in925

two of the five CMIP5 JJA CEU recommended subsets in the region of the subselection triangle where about 80% priority is

given to performance, 10% to independence, and 10% to spread.

Similar to the CMIP6 DJF NEU case, both CMIP5 JJA CEU and DJF NEU recommendations needed either a very lenient

performance threshold or a modified spread requirement for subsets to qualify. We chose to require models in CMIP5 subsets

to span at least three of the four SAT-PR change quadrants and to all have a performance rank at or above 17 out of 26. For930

CMIP5 DJF NEU applications (Fig.11b), the relaxed spread requirement recommends seven of 45 possible subsets. While no

recommended subset includes a combination of the four EURO-CORDEX models, all include ACCESS1-0-r1i1p1, a close

relative of HadGEM2-ES, and CESM1-CAM5-r3i1p1, a successor of NorESM1. MPI-ESM and GFDL variants also appear

in several of the recommended subsets, suggesting that the independence, performance, and spread metrics we use are in line
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with those used in other studies (e.g. McSweeney et al., 2015; Sanderson et al., 2017) and are therefore likely suitable for use935

in CMIP6.

7 Discussion and Conclusion

In this
:::
this

:
study, we developed and demonstrated a method, ClimSIPS, to flexibly select subsets of CMIP models

::::
from

::::::::::
multi-model

:::::::::
ensembles based on the degree to which a user prioritizes model independence, model performance, and spread

in projected climate outcomes. The method is an extension of ClimWIP, a performance and independence weighting strategy940

pioneered in Knutti et al. (2017). During the development of the ClimSIPS, we tested sensitivities and made several refine-

ments to the definition of model dependence in ClimWIP,
:
a

::::::::::
performance

::::
and

:::::::::::
independence

:::::::::
weighting

:::::::
strategy

:::::::::
pioneered

::
in

:::::::::::::::
Knutti et al. (2017)

:
, which identifies model similarities via the absolute values of historical period, global-scale climatological

SAT and SLP predictor fields. Described in Part I, refinements included lengthening predictor climatological averaging periods

from 1980-2014 to 1905-2005 and designing predictor spatial fingerprints to explicitly reduce predictor spread within models945

(e.g. amongst initial condition ensemble members) while preserving predictor spread between models. Computed separately

for SAT and SLP in CMIP5 and CMIP6, the fingerprints spatially masked the 15% of gridpoints where ensemble-wide internal

variability (defined as the median of the standard deviations within 12 CMIP6 and five CMIP5 initial condition ensembles)

was at a maximum, and the 15% of gridpoints where the traditional representation of between-model spread (defined as the

standard deviation across an ensemble comprised of one ensemble member per model) was at a minimum. An advantage950

of using climatological SAT and SLP fingerprints rather than unmasked global fields to define model dependence was that

masking helps to future-proof against between-model convergence should model developers decide to tune, in particular, the

absolute value of global mean surface temperature in models (Mauritsen et al., 2012; Hourdin et al., 2017).
:::
The

::::::::
potential

::
for

:::::::::::::
between-model

:::::::::::
convergence

::
is

:::::
cited

::
as

::::
one

::
of

:::
the

:::::::
primary

::::::::::
drawbacks

::
of

:::::
using

::::::
model

::::::
output

::
to

:::::::::
determine

::::::::::
dependence

:::::::::::::::::::::::::::::::::::::
(Annan and Hargreaves, 2017; Brands, 2022b)

:
. Additionally, climatological SAT and SLP fingerprints allayed a concern that955

computing RMSE distance between models does not require the overall collection of intermember distances to meet the formal

mathematical definition of metric space (Abramowitz et al., 2019). We found that intermember distances within both CMIP

ensembles did satisfy metric criteria, including
:::
with

:::
all

::::
sets

::
of

:::::
three

::::::
models

:::::::::
upholding

:
the triangle inequality (

::
of dist(A,B)

<= dist(A,C) + dist(C,B)), and
:
.
:::::::::::
Intermember

::::::::
distances could therefore be both understood as distances and visualized in

low-dimensional space.960

Updates made to CMIP intermember distances assisted in our effort to make discrete delineations along the spectrum of

dependence provided by ClimWIP. Three categoriesarose
::
for

:::::
three

:::::::::
categories: single model ensembles, model families, and

individuals. First and most dependent were single model ensembles comprised of multiple initial condition ensemble members,

followed by those comprised of both perturbed physics and initial condition ensemble members. Next were model families,

which we defined as self-contained groups in which all models were within a median intermember distance threshold and were965

closer to each other than to the rest of the ensemble. We were able to support all family designations with model descriptions

and metadata ; in
:::
and

:::::
found

:::
our

:::::::::::
designations

::
to

::
be

:::::::
broadly

::::::::
consistent

::::
with

:::::
other

:::::
model

::::::
output

:::
and

:::::::::::::
metadata-based

::::::::::
dependence
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::::::::
definitions

::::::::::::::
(Brands, 2022b).

:::
In CMIP6, model families emerged when models shared atmospheric components (e.g., MetUM-

HadGEM3-GA7.1 or ECHAM6.3), developed from a shared atmospheric component (e.g., NCAR’s CAM), or were variants

from the same (e.g., GFDL, EC-EARTH, or INM) or closely collaborating (e.g., CNRM and IPSL) modeling centers. In970

CMIP5, similar model families were present, but with fewer models per family and fewer members per model than in CMIP6.

Beyond model families, the last and most independent entities in CMIP were individuals or uniquely named models represented

by a single simulation. The three categories formed a new "representative democracy" within CMIP, allowing us to explore

how a stricter independence definition than the traditional "one model, one vote" requirement constrained distributions of ECS

in CMIP5/6. By applying the new "one family, one vote" independence constraint, we saw CMIP6’s bimodal ECS distribution975

shift and skew towards lower values of ECS, with the median and the 75th percentile each shifted by down by 0.43◦C to

3.44◦C and 4.29◦C, respectively. CMIP5 ECS, in contrast, maintained its raw distributional form under the one family, one

vote independence constraint. Increased representation of certain model families from CMIP5 to CMIP6 explained part of

the distributional difference in ECS between the two ensembles; restricting family over-representation reduced the median

difference in CMIP5 and CMIP6 ECS by over 60%. We thus concluded that the increased ECS uncertainty range documented980

in CMIP6 is, in part, due to the fact that near-identical but differently named models appeared more frequently in CMIP6 and

those models tended to have ECS values above 4.5◦C. Crucially, this conclusion could be drawn without any commentary on

the quality of CMIP6 models, it simply rested on levels of model representation within the ensemble.

Leveraging the model dependence definition developed in Part I, we demonstrated ClimSIPS for summer and winter Eu-

ropean case studies in Part II of this study. Performance was defined in terms of historical biases of concern rather than by985

historical strengths of unclear merit; we required models to effectively simulate annual climatologies of European SAT, North

Atlantic SST, and Southern Hemisphere midlatitude SWCRE, in addition to local summer PR and SWCRE climatologies for

Central European summer applications, and local winter PR and regional-scale winter SLP climatologies for Northern Euro-

pean winter applications. We found that most models are similarly (and not significantly) biased with respect to observations

for the chosen climatological fields. However, in each case, a minority of models had aggregated distances from observed that990

were large enough relative to their peers to cast doubt on the projected future European climate states they simulated. These

projected future climate states served as the basis of spread, which we defined using each model’s JJA CEU or DJF NEU

SAT and PR change between present (1995-2014) and midcentury (2041-2060) mean states. Because spread within CMIP5/6

depended
:::::
CMIP

:::::::::
dependeds

:
on how a model with multiple ensemble members was represented, we explored subselection by

ensemble mean and by an ensemble member selected to maximize CMIP5/6
::::::::
ensemble spread overall. Depending on user needs,995

both spread representation strategies may be of interest, the former for studies requiring general model recommendations, and

the latter for studies in need of specific simulations that project unique climate outcomes.

Subsets were then selected via a cost function, which optimized for sets of models that were more independent, higher

performing, and more diverse in midcentury SAT and PR change. Computationally, the cost function was minimized with

respect to all possible model combinations for each value α and β, parameters that determine the relative importance of1000

independence, performance, and spread. Results were summarized in subselection triangles, ternary contour diagrams that

showed which subset minimized the cost function for each value of α and β. On average, subselection of three to five models
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Table 3. Recommended CMIP6 five model subset by case and primary user priority

CMIP6 JJA CEU applications

Performance AWI-CM-1-1-MR-r1i1p1f1, HadGEM3-GC31-MM-r1i1p1f3, MRI-ESM2-0-r1i1p1f1, TaiESM1-r1i1p1f1, GFDL-ESM4-r1i1p1f1

Independence AWI-CM-1-1-MR-r1i1p1f1, HadGEM3-GC31-MM-r1i1p1f3, MRI-ESM2-0-r1i1p1f1, TaiESM1-r1i1p1f1, MIROC-ES2L-r1i1p1f2

Spread AWI-CM-1-1-MR-r1i1p1f1, GFDL-ESM4-r1i1p1f1, CMCC-ESM2-r1i1p1f1, CanESM5-r16i1p1f1, UKESM1-0-LL-r1i1p1f2

CMIP6 DJF NEU applications

Performance AWI-CM-1-1-MR-r1i1p1f1, HadGEM3-GC31-MM-r2i1p1f3, CNRM-CM6-1-r5i1p1f2, CESM2-WACCM-r2i1p1f1, MIROC-ES2L-r9i1p1f2

Independence CNRM-CM6-1-r5i1p1f2, CESM2-WACCM-r2i1p1f1, E3SM-1-1-r1i1p1f1, MIROC-ES2L-r9i1p1f2, MIROC6-r12i1p1f1

Spread AWI-CM-1-1-MR-r1i1p1f1, KACE-1-0-G-r3i1p1f1, CNRM-CM6-1-r5i1p1f2, CESM2-WACCM-r2i1p1f1, MIROC-ES2L-r9i1p1f2

from CMIP6 yield around 20-45 possible subsets for a user to consider; as a guide, we offered recommendations of the model

subsets that met additional qualitative independence, performance, and spread criteria. Recommended subsets were comprised

of models that did not come from the same model family, all exceeded a performance threshold, and populated different1005

quadrants of SAT-PR change space. Among the recommendations, the CMIP6 subsets of five individual spread-maximizing

members that best prioritized independence, performance, or spread in our European case studies are listed below in Table 3.

We also subselected from CMIP5 to compare ClimSIPS subsets with the set of models recommended by EURO-CORDEX.

We found that for the Central European summer case, our method selected three EURO-CORDEX recommended models

(NorESM1-ME, GFDL-ESM2M, HadGEM2-ES) when 80% priority was given to performance, 10% to independence, and1010

10% to spread. Of the remaining two models, EC-EARTH was not considered due to missing performance predictors, while

MPI-ESM variants did not appear in any subset, likely due to performance, independence, and spread values that were relatively

average within CMIP5 for the region and season. In the CMIP5 Northern European winter case, MPI-ESM variants did appear

in subsets, but alongside CAM5-based CESM1-CAM5 rather than CAM4-based NorESM1 and ACCESS1-0 rather than its

family member HadGEM2-ES. The appearance of EURO-CORDEX recommendations within the CMIP5 cases confirmed1015

that our performance, independence, and spread definitions were in line with those used in other CMIP5 subselection studies

and were therefore a suitable place to begin the conversation of CMIP6 subselection.

This study is meant to serve as a starting point for CMIP6 subselection, introducing a flexible subselection framework users

can employ to decide for themselves which set of models best suits their specific needs. Subsets we recommended here are not

the definitive answer for every climate application, but the method allows us to be transparent about our choices and to explore1020

the sensitivity of the result to those choices. By design, independence, performance, and spread metrics determine which

models are selected by the cost function, and our defined metrics may be too general for some applications (e.g. hydrological

modeling at the catchment scale). However, a strength of ClimSIPS is that it can incorporate any quantitative definition of

independence, performance, and spread. The only requirements for use in the ClimSIPS cost function are that each model’s

performance metric is represented by a scalar and that independence and spread metrics are defined between model pairs.1025

A potential limitation of ClimSIPS for some applications is high computational demand. Computing the cost function for

all possible model combinations at each α and β step (required to avoid incurring massive storage costs) may begin to become
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computationally burdensome when larger subsets are sought from larger selection pools. In our CMIP6 case studies, 34 choose

3 subselection computed the cost function 299,200,000 times (5,984 possible combinations × 50,000 α and β steps), which

took approximately 68 minutes to run on a single core. 34 choose 5 subselection iterated over
::::
more

::::
than 16 ,231,600,000

::::::
billion1030

cost function values, which, run in parallel, took approximately two hours to run on 24 cores. Not evaluated here, 34 choose

10 subselection, with the cost function computed 6.556407
::
6.6×1012 times, would take considerably longer, an estimated three

weeks to run, even in parallel on 48 cores. We contend that computational expense could limit some open use of the method,

but users have several options that can alleviate the combinatorial explosion problem. First, the size of the selection pool can

be reduced by pre-filtering models that are highly dependent, low performing, or have convergent projected outcomes before1035

computing the cost function. We intentionally did not pre-filter by independence, performance, or spread here though, because

filtering is highly subjective and would be a disservice to users interested in subselecting from the whole ensemble. Second,

users can compute the cost function for fewer values of α and β. This simplifying step will reduce the complexity of the

subselection triangle, but potentially at the expense of some model combination minima.

In conclusion, ClimSIPS and its underpinning dependence definition provide users with a way to make systematic and1040

intentional
:::::::
informed

:
choices about the models they use. The method combines

::::::::::
consolidates

:
independence, performance, and

spread considerations into a single optimization step
::::::::::::
simultaneously

:
for the first time and provides as output a transparent

representation of the trade-offs between these three priorities. Such approaches are essential as CMIP archives grow and

manual model selection becomes increasingly unfeasible.

Code and data availability. The code to generate figures in the main text and supplementary material is available as a collection of Python1045

scripts at https://github.com/almerrifield/CMIP_subselection/releases/tag/v1.0 under the DOI: https://doi.org/10.5281/zenodo.7492727 (Mer-

rifield, 2022). Pre-processed input files for CMIP_subselection are available upon request. The ClimSIPS package is available at https:

//github.com/almerrifield/ClimSIPS/releases/tag/1.0.0) under the DOI: https://doi.org/10.5281/zenodo.7668256 and is a part of the ETH Re-

search Collection under the DOI: https://doi.org/10.3929/ethz-b-000599363 (Merrifield and Könz, 2023). Both CMIP_subselection and

ClimSIPS are made available under a GNU GPLv3 license. Pre-processed input files are provided for the ClimSIPS European case studies1050

in the manuscript through the ETH Research Collection (https://doi.org/10.3929/ethz-b-000599312; Merrifield, 2023).
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