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Dear Dr Gromov,

Thank you for reading our revised manuscript and for your decision. Below, we provide a response
to your insightful comments (quoted in green italics).

Thank you for submitting the revised version of the manuscript. I sincerely apologise for an ex-
ceptionally long review process caused mainly by a great difficulty of finding the reviewers for your
study (I have never had more than two dozen declines while editing for GMD) and overcommitment
of the latter which added up to the delay.

I am generally satisfied with the review process and your replies to the reviewers’ comments. Should
only the latter have been addressed, I would be happy to continue with the publication “as is”.
However, I notice considerable changes in the methodology (i.e., the “agnostic MCDC”) introduced
which would normally trigger me to send the manuscript out for another round of reviews, which
I would like to spare us from by offering myself for a round of discussion (luckily we are allowed
to do that in GMD).

Thank you for overseeing the review process and for assessing our replies to the reviewers’ com-
ments. Thank you also for your comments on our revised methodology.

The reason here is that I see the same criticism as was earlier brought by both reviewers regarding
the “mixed” use of estimates of short-term drift samples. In the agnostic MCDC – by combining
linear, quadratic and cubic fits in one MC statistic – you may spuriously increase the final uncer-
tainty estimate, as obviously one or two of the fit models are inferior. Why not testing each of the
three models separately and selecting the one that yields the best fit (for a given ESM)? Combining
the three also has little physical sense – would not you expect the underlying process to be a mere
linear, quadratic or cubic function of time (through whatever, perhaps unidentified, reason in the
model build)?

I believe the point of combining the three fit models in one statistic has to be justified in the revised
manuscript. Alternatively, using the best-fitting model will not require such justification. At last,
why only the quadratic and cubic fits are considered as an alternative to the linear one? As the
underlying functional relation for drift temporal evolution is not known, you could use a general
“exponential” form (e.g., c+a*tˆp, with c, a and p being the fitting parameters) which will reduce
the estimates to the two general cases: classic linear (p=1) and non-linear (p<>1, c representing
whatever accumulating hidden unbalanced component of the system prior to the branch time). In
my view, this would be the most sensible way to study whatever non-linear option for the estimate,
whilst keeping the “traditional” (or read expected from the first-principle ∆H−∆E−∆Z relation)
option for comparison as well.

We developed our agnostic-method MCDC approach in response to the reviewers’ comments,
following further consideration of the published literature. In our original submission, we accounted
for possible non-linearity in the drift by randomly sampling segments of the control time series.
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When criticising this approach, the reviewers helpfully pointed out that the branch-time metadata
are likely reliable, enabling non-linear models of drift to be applied to the entire control time series.

We could test many different non-linear models, including the exponential form you suggest. As
you further suggest, we could then compare the statistical models and select the best-performing
model(s). This could be described as a “best-fit” approach. We agree that this best-fit approach
would be a sensible way to correct drift. Accordingly, we have now expanded our brief discussion
of the “best-fit” approach in Sect. 5.2 (fourth paragraph): “A possible further step would be to
fit and compare alternative statistical models of drift a posteriori, using measures such as the
Bayesian information criterion. We could then select the best statistical model(s) for a specific
time series. When applying this “best-fit” approach, we could also consider additional statistical
models of drift, including signal processing filters (e.g. Palmer et al., 2011). This best-fit approach
would be a sensible way to correct drift. Application of the best-fit approach should lead to a
reduction in drift uncertainty.”

However, this best-fit approach does not correspond to the way climate scientists generally correct
drift in global climate model simulations. In Sect. 3.1, we now write, “Among recent studies
focusing on the earth’s energy budget or sea-level change, a few consider the possibility that results
may be sensitive to alternative linear, quadratic, and/or cubic models of drift (e.g. Sen Gupta et al.,
2013; Hobbs et al., 2016; Jackson and Jevrejeva, 2016; Lyu et al., 2021; Hermans et al., 2021;
Irving et al., 2021). However, most studies use only a single statistical model of drift: either linear
(Jevrejeva et al., 2016; Palmer et al., 2018; Cuesta-Valero et al., 2021; Hamlington et al., 2021;
Lambert et al., 2021), quadratic (e.g. Gleckler et al., 2016; Lyu et al., 2020; Harrison et al., 2021;
Jevrejeva et al., 2021), or cubic (e.g. Irving et al., 2019). We observe that researchers generally
select a statistical model a priori, before analysing any data. They do not generally compare the
a posteriori performance of alternative statistical models.”

Our agnostic-method corresponds to this common practice. In Sect. 3.2 (penultimate paragraph),
we now write, “In addition to sampling the uncertainty associated with the parameters of a given
statistical model, agnostic-method MCDC also samples the uncertainty associated with the choice
between alternative statistical models: we assume that linear, quadratic, and cubic models of drift
are equally valid. This corresponds to the common practice of selecting one of these alternative
statistical models a priori (Sect. 3.1).”

Your comment has helped us to clarify the reasoning behind agnostic-method MCDC. Thank you.

In addition to this one general comments, I have outlined a few specific ones below.

L115 Consider revising the sentence (wordiness)

We have now shortened this sentence: “To derive a single best estimate of drift, we should use the
entire control time series” (Sect. 3.1, first paragraph).

LL200-201 Looking at Fig.3, I note that the agnostic-method drift uncertainty is approximately
twice as large as the ensemble median” for more than one model

We have now revised this sentence: “The ensemble maximum drift uncertainty is 0.17 YJ, approx-
imately twice as large as the ensemble median (Table 1; Fig. 3h)” (Sect. 4.2, fourth paragraph).

L405 Are there no uncertainty estimates available for η at all?

By changing the time period to 1971–2018 (instead of 2010–2018), we can now reference two
alternative estimates: “For the period 1971–2018, η is estimated to be approximately 0.89–0.91
(von Schuckmann et al., 2020; Forster et al., 2021)” (Appendix A). Neither of these published
estimates includes a standard error.

For consistency, we have also changed the time period used for the estimate of E′: “E′ is estimated
to be 0.47 ± 0.1 W m−2 for the period 1971–2018 and is increasing (von Schuckmann et al., 2020)”
(Appendix A).

L438 I understand that XX will be replaced by a given no. in the future?

2



Yes, we have now replaced XX with a number: “This work comprises EOS contribution number
547” (Acknowledgements).

Fig.2, left and centre columns: What is the essence of presenting the fit at times prior to the branch
time? I am not sure that this anyhow quantifies anything sensibly

The entire control time series – including times prior to the branch time – is used when fitting the
statistical model of drift. Therefore, we choose to show the entire control time series in Fig. 2,
which illustrates the application of MCDC.

Fig.2, caption: Please use “plotted alongside the uncorrected control time series” only once, in the
sentence preceding explication of panels (a), (b) and (c)

We have now revised these sentences in the Fig. 2 caption: “The first row (a–c) shows integrated-
bias-method MCDC results: (a) drift samples derived using the integrated-bias method, (b)
integrated-bias-method drift-corrected control time series, and (c) integrated-bias-method drift-
corrected historical time series, plotted alongside the uncorrected time series.”
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and Zhou, B., Cambridge University Press, 2021.

Gleckler, P. J., Durack, P. J., Stouffer, R. J., Johnson, G. C., and Forest, C. E.: Industrial-
Era Global Ocean Heat Uptake Doubles in Recent Decades, Nat. Clim. Change, 6, 394–398,
https://doi.org/10.1038/nclimate2915, 2016.

Hamlington, B. D., Frederikse, T., Thompson, P. R., Willis, J. K., Nerem, R. S., and Fasullo,
J. T.: Past, Present, and Future Pacific Sea-Level Change, Earths Future, 9, https://doi.org/
10.1029/2020EF001839, 2021.

Harrison, B. J., Daron, J. D., Palmer, M. D., and Weeks, J. H.: Future Sea-Level Rise Projections
for Tide Gauge Locations in South Asia, Environ. Res. Commun., 3, 115 003, https://doi.org/
10.1088/2515-7620/ac2e6e, 2021.

Hermans, T. H. J., Gregory, J. M., Palmer, M. D., Ringer, M. A., Katsman, C. A., and Slangen,
A. B. A.: Projecting Global Mean Sea-Level Change Using CMIP6 Models, Geophys. Res. Lett.,
48, https://doi.org/10.1029/2020GL092064, 2021.

Hobbs, W., Palmer, M. D., and Monselesan, D.: An Energy Conservation Analysis of Ocean Drift
in the CMIP5 Global Coupled Models, J. Clim., 29, 1639–1653, https://doi.org/10.1175/JCLI-
D-15-0477.1, 2016.

Irving, D., Hobbs, W., Church, J., and Zika, J.: A Mass and Energy Conservation Analysis of Drift
in the CMIP6 Ensemble, J. Clim., pp. 3157–3170, https://doi.org/10.1175/JCLI-D-20-0281.1,
2021.

Irving, D. B., Wijffels, S., and Church, J. A.: Anthropogenic Aerosols, Greenhouse Gases, and the
Uptake, Transport, and Storage of Excess Heat in the Climate System, Geophys. Res. Lett., 46,
4894–4903, https://doi.org/10.1029/2019GL082015, 2019.

Jackson, L. P. and Jevrejeva, S.: A Probabilistic Approach to 21st Century Regional Sea-
Level Projections Using RCP and High-end Scenarios, Glob. Planet. Change, 146, 179–189,
https://doi.org/10.1016/j.gloplacha.2016.10.006, 2016.

3



Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A., and Moore, J. C.: Coastal Sea Level
Rise with Warming above 2 °C, Proc. Natl. Acad. Sci., 113, 13 342–13 347, https://doi.org/
10.1073/pnas.1605312113, 2016.

Jevrejeva, S., Palanisamy, H., and Jackson, L. P.: Global Mean Thermosteric Sea Level Pro-
jections by 2100 in CMIP6 Climate Models, Environ. Res. Lett., 16, 014 028, https://doi.org/
10.1088/1748-9326/abceea, 2021.

Lambert, E., Le Bars, D., Goelzer, H., and van de Wal, R. S.: Correlations Between Sea-
Level Components Are Driven by Regional Climate Change, Earths Future, 9, https://doi.org/
10.1029/2020EF001825, 2021.

Lyu, K., Zhang, X., and Church, J. A.: Regional Dynamic Sea Level Simulated in the CMIP5 and
CMIP6 Models: Mean Biases, Future Projections, and Their Linkages, J. Clim., 33, 6377–6398,
https://doi.org/10.1175/JCLI-D-19-1029.1, 2020.

Lyu, K., Zhang, X., and Church, J. A.: Projected Ocean Warming Constrained by the Ocean
Observational Record, Nat. Clim. Change, 11, 834–839, https://doi.org/10.1038/s41558-021-
01151-1, 2021.

Palmer, M. D., McNeall, D. J., and Dunstone, N. J.: Importance of the Deep Ocean for Estimat-
ing Decadal Changes in Earth’s Radiation Balance, Geophys. Res. Lett., 38, https://doi.org/
10.1029/2011GL047835, 2011.

Palmer, M. D., Harris, G. R., and Gregory, J. M.: Extending CMIP5 Projections of Global Mean
Temperature Change and Sea Level Rise Due to Thermal Expansion Using a Physically-Based
Emulator, Environ. Res. Lett., 13, 084 003, https://doi.org/10.1088/1748-9326/aad2e4, 2018.

Sen Gupta, A., Jourdain, N. C., Brown, J. N., and Monselesan, D.: Climate Drift in the CMIP5
Models, J. Clim., 26, 8597–8615, https://doi.org/10.1175/JCLI-D-12-00521.1, 2013.

von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S.,
Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., Garćıa-Garćıa,
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