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Abstract.

Global climate models are important tools for understanding the climate system and how it is projected to evolve under

scenario-driven emissions pathways. Their output is widely used in climate impacts research for modeling the current and

future effects of climate change. However, climate model output remains coarse in relation to the high-resolution climate data

needed for climate impacts studies, and it also exhibits biases relative to observational data. Treatment of the distribution tails5

is a key challenge in existing downscaled climate datasets available at a global scale; many of these datasets used quantile

mapping techniques that were known to dampen or amplify trends in the tails. In this study, we apply the trend-preserving

Quantile Delta Mapping (QDM) bias-adjustment method (Cannon et al., 2015) and develop a new downscaling method called

the Quantile-Preserving Localized-Analog Downscaling (QPLAD) method that also preserves trends in the distribution tails.

Both methods are integrated into a transparent and reproducible software pipeline, which we apply to global, daily model output10

for surface variables (maximum and minimum temperature and total precipitation) from the Coupled Model Intercomparison

Project Phase 6 (CMIP6) experiments (O’Neill et al., 2016) for the historical experiment and four future emissions scenarios

ranging from aggressive mitigation to no mitigation: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Riahi et al., 2017). We use

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 (Hersbach et al., 2018) temperature and precipitation

reanalysis data as the reference dataset over the Sixth Intergovernmental Panel on Climate Change (IPCC) Assessment Report15

(AR6) reference period, 1995–2014. We produce bias-adjusted and downscaled data over the historical period (1950–2014)

and for four emissions pathways (2015–2100) for 25 models in total. The output dataset of this study is the Global Downscaled

Projections for Climate Impacts Research (GDPCIR), a global, daily, 0.25◦ horizontal-resolution product which is publicly

hosted on Microsoft AI for Earth’s Planetary Computer (https://planetarycomputer.microsoft.com/dataset/group/cil-gdpcir/).
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1 Introduction20

Global climate models (GCMs) are essential for studying the climate system and how it will evolve in the future. Simulations

from the Coupled Model Intercomparison Project (CMIP) experiments are widely used in climate impact studies, exploring

human health (e.g., Carleton et al., 2022), energy (e.g., Rode et al., 2021), labor productivity (e.g., Parsons et al., 2022), agri-

culture crop yields (e.g., Müller et al., 2021), and the impacts of climate change on GDP losses globally (e.g., Warren et al.,

2021). However, despite progress in climate modeling, GCM simulations often exhibit systematic error (bias) relative to ob-25

servations (François et al., 2020) due to coarse spatiotemporal resolution, simplified physics, thermodynamic schemes, and

incomplete and/or poorly understood representation of climate system processes (Sillmann et al., 2013). GCM simulations,

relative to historical observations, can have large errors in their means and variance, and even larger biases in extreme values

(Cannon et al., 2015). All of these biases are challenging to impacts studies examining the future evolution of local climate im-

pacts. This challenge is magnified when trying to understand how a particular climate extreme will affect a given outcome, for30

example, how extreme temperatures will affect mortality rates in a location expected to experience large temperature increases

throughout the twenty-first century. To explore these questions, it is necessary to have high-resolution climate projections for

multiple emissions pathways with a statistical distribution consistent with historical observations.

To fill this need, statistical bias adjustment (BA) and downscaling methods are used to adjust biases and add high-resolution

spatial information to the coarse resolution of GCM simulations. BA methods adjust the difference in statistical properties35

between model simulations and observations. In this context, downscaling is the process of moving from the coarse resolution

of the GCM to the high-resolution local information needed to use as inputs for impacts models. The majority of statistical BA

methods adjust the GCM simulation distribution by operating on the mean, variance, higher moments, or quantiles (François

et al., 2020). These methods, particularly traditional quantile mapping ones, are known to affect trends in extreme quantiles

differently than trends in the mean, thus degrading results at the distribution tails (Maurer and Pierce, 2014; Lehner et al., 2021;40

Holthuijzen et al., 2022). Standard quantile mapping (QM) methods were used to create the popular NASA Earth Exchange

(NEX) Global Daily Downscaled Projections (GDDP) global daily CMIP5 dataset (Thrasher et al., 2012), which uses the Bias

Correction and Spatial Disaggregation (BCSD) QM approach. However, the method differentially affects trends in extreme

quantiles, degrading the tails of the distribution. BCSD for example adjusts GCM simulations to have the same cumulative dis-

tribution function (CDF) as the reference dataset (for each day of the year) and then imposes a 9-year running monthly mean45

trend from the GCM on the adjusted-day value (Thrasher et al., 2012). This does not preserve trends in the tails of the distri-

bution because the GCM trend imposed is the mean-monthly trend. Maurer and Pierce (2014) found that QM modifications of

projected trends in seasonal mean model precipitation could be as large as the actual GCM-projected changes.

Downscaling faces similar challenges to bias-adjustment methods (Cannon et al., 2020). Downscaling in BCSD, for example,

dampens trends in the tails of the higher-resolution gridcells because the method involves bilinearly interpolating scaling factors50

computed as the difference (or ratio) of GCM to reanalysis climatologies on a per-pixel multi-decade basis. Because of these

challenges, many studies in the impacts literature stop short of downscaling (Maraun, 2016). Others, such as Lange (2019),

combine trend-preserving bias adjustment with statistical downscaling, but the final resolution of the downscaled data remains
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relatively coarse (0.5◦). This effect is undesirable for climate impacts modeling because it dampens or amplifies trends in the

tails, which are crucial to understanding how climate extremes and their associated impacts will evolve for various emissions55

pathways (Sanabria et al., 2022; Lanzante et al., 2020). Returning to the mortality impacts example, it is not sufficient to project

the future mean rise in temperature at a given location. Trends for the hottest days must be preserved to understand and project

mortality impacts.

Several CMIP6 downscaling datasets produced in the past several years have attempted to address these issues, but they have

either been limited in geographic scope (e.g., Supharatid et al., 2022), global but at a coarse spatial resolution (e.g., Xu et al.,60

2021), or global but preserving only mean trends (e.g., Thrasher et al., 2021). Moreover, Jupiter Intelligence (https://jupiterintel.

com/), a climate risk-focused company in the private sector, has made a CMIP6 dataset available for commercial applications.

Unfortunately, its methods are neither published nor transparent and the dataset is not publicly available (Hacker, 2021). The

Intersectoral Impact Model Intercomparison Project (ISIMIP) downscaled dataset (Lange, 2019) uses trend-preserving bias

adjustment and downscaling approaches on daily data at a global scale, but it is only available for a limited number of GCMs,65

at a 0.5◦ spatial resolution. In the past year, several downscaled datasets for CMIP6 at a higher spatial resolution have been

released. NASA updated the NASA-NEX dataset using CMIP6 projections and released the new dataset in early 2022 (Thrasher

et al., 2022) but still relies on the BCSD method. Additionally, the updated NASA-NEX GDDP dataset still relies on the Global

Meteorological Forcing Dataset (GMFD) (Sheffield et al., 2006), a reanalysis dataset that now dated and no longer widely used

in bias adjustment and downscaling (Hassler and Lauer, 2021). CarbonPlan, a not-for-profit organization focused on climate70

and carbon capture research, has also released a global downscaled CMIP6 dataset using four distinct statistical downscaling

methods (https://docs.carbonplan.org/cmip6-downscaling). While this is an important contribution to method transparency and

comparison, the monthly resolution of the dataset is prohibitively coarse for many impacts modeling applications and the

dataset is only available for a subset of six GCMs.

To ameliorate these challenges for impacts modelers, this study uses statistical bias adjustment and downscaling methods75

that explicitly preserve relative changes in GCM simulation quantiles (Cannon et al., 2015). We use the quantile delta mapping

(QDM) method (Cannon et al., 2015) for bias adjustment. For downscaling, we introduce the Quantile-Preserving Localized-

Analog Downscaling (QPLAD) method, a novel statistical downscaling algorithm that applies a local analog-mapping approach

to preserve quantile trends at the fine resolution. We have made the methods and code transparent and reproducible. The

dataset described herein, titled Global Downscaled Projections for Climate Impacts Research (GDPCIR), is, to our knowledge,80

the most comprehensive and high-resolution dataset that exists for CMIP6 that preserves quantile trends. The preservation of

quantile trends makes the dataset better suited for impacts modeling than other downscaled CMIP6 datasets since high and low

tail trends are not dampened or amplified by only accounting for mean projected changes.

The remainder of the paper is structured as follows. In Section 2, we describe the climate simulations and reference dataset.

In Section 3, we describe the QDM-QPLAD bias adjustment and downscaling methods. Section 4 describes our downscaling85

pipeline and efforts to make our pipeline implementation on commercial cloud computing platforms transparent and repro-

ducible. In Section 5, we explore trends and extremes in the dataset at the global, city, and “admin1” (country) levels. In the

final section, we detail applications for econometric research for climate risk and other impacts modeling areas.
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2 Climate data

2.1 Simulation data90

We used the CMIP6 GCM experiments (Eyring et al., 2016; O’Neill et al., 2016) as simulation data. We obtained the data from

the Google Cloud CMIP6 collection (https://pangeo-data.github.io/pangeo-cmip6-cloud/). This contains a subset of CMIP6

output migrated from the Earth System Grid Federation (ESGF) as part of a collaboration between the Pangeo Consor-

tium (https://pangeo.io/), Lamont-Doherty Earth Observatory (LDEO) and Google Cloud. The migration to Google Cloud

included data from NetCDF format (https://www.unidata.ucar.edu/software/netcdf/) to the cloud-optimized Zarr store format95

(https://zarr.readthedocs.io/en/stable/api/storage.html), and standardizing across dimensions, coordinates, and grids to ensure

that model output would be analysis-ready and cloud-hosted for streamlined use in scientific analysis Abernathey et al. (2021).

CMIP6 output available through the ESGF but not in the CMIP6 Google Cloud collection was excluded because it was not

analysis-ready and cloud-optimized, and as such, could not run through our cloud-based downscaling pipeline.

100

In addition to the last 65 years of the historical CMIP experiment, we included four 21st century ScenarioMIP experiments so

as to span a range of possible future climate trajectories. These trajectories are defined by a combination of Shared Socioe-

conomic Pathways (SSPs) and Representative Concentration Pathways (RCPs): SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5

(Riahi et al., 2017). We did not include simulations that have output populated with NaNs for some years or did not have

complete spatiotemporal coverage. For example, the Hammoz-Consortium model is not included because its temperature out-105

put available through the Google Cloud CMIP6 collection did not extend past 2055. We also do not include the Community

Earth System Model from the National Center for Atmospheric Research (NCAR) because there was no historical daily sur-

face variable output available through NCAR for the historical experiment. We perform bias adjustment and downscaling on

a subset of the historical CMIP experiment (1950–2014) and ScenarioMIP scenarios (2015–2100) with a historical training

period from 1995 to 2014, consistent with the IPCC AR6 reference period. The full dataset includes 25 GCMs (Table 1), with110

downscaled output for all four SSPs available for the majority of those GCMs. If an SSP is missing for a given GCM, that

indicates that it was either not available in the CMIP6 Google Cloud collection or we found issues with the data available. If a

GCM from a modeling center that participated in the CMIP6 experiments is missing, that indicates that the GCM did not have

daily surface variable output available for maximum and minimum temperature and surface precipitation in the CMIP6 Google

Cloud collection as of 15 November 2021, or the output that was available contained data issues as discussed above.115

We standardize calendars across all GCMs included in the dataset by converting them to a 365-day (e.g., “no-leap”) calendar.

Leap days are removed for GCMs with 366-day calendars. For the two GCMs on 360-day calendars, we follow the method in

Pierce et al. (2014). Five days per year are chosen randomly to add to the calendar, each in a given fifth of the year. Feb. 29th

is always missing. For each of the days that are added, a day value is produced by averaging the adjacent days. For example,120

if Feb. 16th is the day added in the first fifth of the year for a given year, it will be the average of Feb. 15th and Feb. 17th.
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Choosing a random day in a fifth of the year versus the same five days every year mitigates overall undesired effects on the

statistics of particular days of the year or annual cycle statistics when converting from a 360-day to 365-day calendar.

GCM Institution SSPs

BCC-CSM2-MR Beijing Climate Center, Beijing, China SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

FGOALS-g3 Chinese Academy of Sciences, Beijing,

China

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

CanESM5 Canadian Centre for Climate Modelling

and Analysis, Victoria, BC

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui

Cambiamenti Climatici, Lecce, Italy

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui

Cambiamenti Climatici, Lecce, Italy

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

ACCESS-ESM1-5 Commonwealth Scientific and Industrial

Research Organisation, Aspendale, Victo-

ria, Australia

SSP1-2.6, SSP2-4.5, SSP3-

7.0

ACCESS-CM2 Commonwealth Scientific and Industrial

Research Organisation, Aspendale, Victo-

ria, Australia

SSP2-4.5, SSP3-7.0

MPI-ESM1-2-HR Deutscher Wetterdienst, Offenbach am

Main, Germany

SSP1-2.6, SSP5-8.5

MPI-ESM1-2-LR Max Planck Institute for Meteorology,

Hamburg, Germany

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

EC-Earth3 EC-Earth-Consortium SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

EC-Earth3-AerChem EC-Earth-Consortium SSP3-7.0

EC-Earth3-CC EC-Earth-Consortium SSP2-4.5, SSP5-8.5

EC-Earth3-Veg EC-Earth-Consortium SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

EC-Earth3-Veg-LR EC-Earth-Consortium SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

INM-CM4-8 Russian Academy of Science, Moscow,

Russia

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5
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INM-CM5-0 Russian Academy of Science, Moscow,

Russia

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

MIROC-ES2L Japan Agency for Marine-Earth Science

and Technology, Kanagawa, Japan

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

MIROC6 Japan Agency for Marine-Earth Science

and Technology, Kanagawa, Japan

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

HadGEM3-GC31-

LL

Met Office Hadley Centre, Exeter, Devon,

United Kingdom

SSP1-2.6, SSP2-4.5, SSP5-

8.5

UKESM1-0-LL Met Office Hadley Centre, Exeter, Devon,

United Kingdom

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

NorESM2-LM NorESM Climate Modeling Consortium,

Oslo, Norway

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

NorESM2-MM NorESM Climate Modeling Consortium,

Oslo, Norway

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

GFDL-CM4 NOAA Geophysical Fluid Dynamics Lab-

oratory, Princeton, NJ, USA

SSP2-4.5, SSP5-8.5

GFDL-ESM4 NOAA Geophysical Fluid Dynamics Lab-

oratory, Princeton, NJ, USA

SSP1-2.6, SSP2-4.5, SSP3-

7.0, SSP5-8.5

NESM3 Nanjing University of Information Science

and Technology, Nanjing, China

SSP1-2.6, SSP2-4.5, SSP5-

8.5

Table 1: Full list of Coupled Model Intercomparison Project (CMIP6) models included in the GDPCIR dataset along with their

corresponding institutions and the available SSPs for each model.

2.2 Reference data

We use the ECMWF Reanalysis v5 (ERA5) (Hersbach et al., 2018) as the historical reference dataset for bias adjustment and125

downscaling. ERA5 reanalysis data is produced and archived on a reduced Gaussian grid with a resolution of N320, meaning

that there are 320 quasi-regularly spaced latitude points from pole to equator, at a 31 km ( 0.28◦) resolution. We obtained

global, hourly temperature and precipitation estimates from 1979 through 2018 on a regular (latitude-longitude) Gaussian grid

at the same resolution to minimize the impact of interpolation from the Copernicus Data Service regridder, particularly on

precipitation. We derive daily maximum and minimum temperatures by taking the daily maximum and minimum of the hourly130

values and total daily precipitation by taking the sum of hourly values. ERA5 hourly precipitation values represent cumulative

precipitation during the preceding hour, thus cumulative daily precipitation for a given day is the sum of hourly values minus

the first hour and including the first hour of the following day. We then subset the ERA5 daily surface variables to 1995–2014
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to be consistent with the historical reference period used in Masson-Delmotte et al. (2021), finally, we remove leap days. We

use the resulting 20-year ERA5 dataset as the historical reference data for bias adjustment and downscaling.135

3 Methods

3.1 Statistical bias adjustment with the QDM method

In this study, our goal was to emphasize downscaling and bias-adjustment methods that better preserve the extreme tails of

distributions, but within the constraints of the level of method complexity that could be undertaken given the scale of this

project. Though some multivariate statistical methods might have better preserved joint correlations between variables, such140

as Multivariate Bias adjustment (Cannon, 2018), the computational intensity of even running a univariate method at this scale

precluded the choice of a multivariate method. Some studies have also found that multivariate methods may lead to degraded re-

sults for one or more variables (e.g., temperature) that are being jointly bias-adjusted and/or downscaled, and also may perform

poorly under projected climate change due to bias nonstationarity (Van de Velde et al., 2020; François et al., 2020). Choosing

a method that would not degrade temperature projections was necessary given the role of temperature as a key driver of future145

climate impacts. With these constraints in mind, and after evaluating a number of statistical methods and their effects on the

distribution tails, we chose the QDM method. The QDM statistical bias-adjustment method preserves changes in quantiles

by applying simulated changes in the quantiles on top of the historical reference distribution (Cannon et al., 2015). Absolute

changes or relative changes are preserved for additive or multiplicative variables, respectively. As a result, treatment of the

tails is better than in standard quantile mapping as well as in empirical quantile mapping (EQM), detrended quantile map-150

ping (DQM), and various parametric and non-parametric variants of each (Qian and Chang, 2021). This rationale, combined

with the QDM method being relatively computationally inexpensive compared to multivariate quantile mapping or machine

learning-based methods, makes it a favorable method choice for a project of this scope and aim.

The QDM method adjusts the bias in projected values for a historical or future time period by first shifting the distribution155

to be consistent with the reference dataset and then imposing the relative GCM-projected trend, resulting in a bias-adjusted

projection that has a distribution consistent with that of the reference dataset and also has a relative trend consistent with the

source GCM, for a given quantile. In detail, following the notation in Cannon et al. (2015), let Fm,p[·], Fm,h[·] and Fo,h[·]
denote, respectively, the CDF from model m in future period p, the CDF from model m in the historical period h and the

CDF from the reference data o in the historical period h. Let xm,p be a modeled future value at time t (for example, maximum160

temperature on 13 March 2025), and let x∗m,p be the associated adjusted value for the same future date. In addition, let τm,p

denote the non-exceedance probability associated with xm,p, i.e τm,p = Fm,p[xm,p]. F−1[·] represents the inverse CDF. The

adjusted value is defined as follows for an additive variable:

x∗m,p(t) = xm,p(t) + (F−1
o,h [τm,p(t)]−F−1

m,h[τm,p(t)]) (1)
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Rearranging the right-hand side shows that Equation 1 is equivalent to introducing the GCM-projected change at a given165

quantile (τm,p) on top of the reference data value at that quantile:

x∗m,p(t) = F−1
o,h [τm,p(t)]︸ ︷︷ ︸

reference value at model quantile

+(xm,p(t)−F−1
m,h[τm,p(t)])︸ ︷︷ ︸

model trend in quantile

(2)

For a multiplicative variable such as precipitation, the right-hand side in equations (1) and (2) becomes multiplicative rather

than additive, i.e., Equation 1 becomes x∗m,p = xm,p ∗F−1
o,h [τm,p]/F−1

m,h[τm,p]. This results in GCM projections that preserve

each GCM’s change in distribution shape (including extremes) while simultaneously making the training-period distribution170

consistent with the reference dataset.

3.2 Statistical trend-preserving downscaling with the QPLAD method

A key goal of downscaling for climate impacts is increasing spatial resolution in a way that both preserves climate trends

and introduces realistic local climatology and variability. In observations, the climate signal at a coarser scale will always

– by definition – represent a smoothed version of local climate trends. Similarly, high-resolution climate projections need175

to have a distribution that is consistent with locally observed climate. Downscaling may break consistency with the original

GCM dynamics, but this is necessary to produce the spatial heterogeneity required for modeling climate impacts (Maraun

and Widmann, 2018). Traditional downscaling methods typically work by introducing the climatological fine reference spatial

pattern to the coarse resolution simulated data, as a difference or ratio between fine and coarse. This can have the effect of

modifying trends and spatial patterns in the tails of the simulated distribution. To address this, we developed the QPLAD180

method. The QPLAD method uses the difference in empirical quantiles of the reference data — each quantile is a given

day, or “analog” of the reference training period – at coarse and fine resolution to downscale the coarse resolution GCM

simulations. The outcome is a downscaled dataset that preserves the changes in coarse GCM quantiles in time while also

reflecting the within-coarse-grid cell spatial heterogeneity from the fine reference data. As a result, localized, extreme changes

in the downscaled data are consistent with the GCM projections.185

Formally, QPLAD involves computing and applying “adjustment factors” for each quantile in the reference data over the

training period. First, an empirical CDF, Fo,h,c[·], of the reference data o, over the training period h at the relatively “coarse”

resolution c at which bias adjustment was applied to GCMs. The method described here in the GDPCIR pipeline assumes that

bias adjustment was performed at a coarser resolution than the target resolution for downscaling, but theoretically one could

apply QPLAD to unadjusted GCM simulations as well. The number of empirical quantiles q is equal to the number of time190

steps in the training period n (e.g., a training period of 20 years with a 31-day rolling window has n = q = 20∗31 = 651, since

each empirical quantile corresponds to a day in the training period). Next, the reference data at “fine” resolution is sorted into

the same order as the coarse resolution empirical CDF, Bo,h,f [·], where the set B represents the fine reference time steps (days)

sorted the same as the coarse CDF Fo,h,c[·] and f refers to the fine resolution. Adjustment factors are then calculated as the

difference or ratio (for an additive or multiplicative variable, respectively) between the fine and coarse resolution values for195
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each historical analog day in the sorted data (i.e., for each empirical quantile). For an additive variable, adjustment factors af

are as follows:

af(qc) = B−1
o,h,f (qc)−F−1

o,h,c(qc) (3)

for all coarse empirical quantiles qc, where B−1[·] represents the fine reference values (rather than quantiles) in sorted order.

Similar to QDM detailed above, the adjustment factors are applied to coarse resolution simulations by first determining the200

quantile of a given time step’s value, Fm,p,c(xm,p,c) = τm,p where τm,p is the non-exceedance probability associated with the

value xm,p,c. For an additive variable, the downscaled value for a given time step t in the projection simulation is defined as:

x̃m,p,f (t) = xm,p,c(t) + afqc
(4)

This results in high-resolution, downscaled projections where the subgrid cell heterogeneity from the original coarse reso-

lution contains the more extreme days from the higher-resolution reference data. By definition, all of the target fine-resolution205

grid cells encompassed by the coarse-resolution grid cell will have downscaled values that average to the value for the coarse

grid cell. In this way, “quantile-preserving” refers to maintaining the quantile information from the coarse-resolution day, and

“localized” refers to the fine-resolution historical analogs located within a coarse-resolution grid cell. The method produces

downscaled projections that add high-resolution information from the reference data training period and ensure that the fine-

resolution spatial make-up of more extreme days from the coarse simulations are coherent and analogous to those found in the210

reference data. Thus, extreme days are also preserved in the downscaled projections in a relative sense (in a similar manner

to QDM). Note that the QDM and QPLAD methods, which explicitly preserve changes in the quantiles, do not necessarily

preserve model-projected changes in the mean due to using empirical CDFs, which is a non-parametric approach. Taking a

parametric approach and using an analytical CDF would preserve changes in the mean, but would also impose a distribution

to the CDFs. As Lehner et al. (2021) discuss, the question of whether to take a parametric or non-parametric approach in bias215

adjustment is an active area of research, but the non-parametric approach in the QDM and QPLAD methods is more common

and generally preferred.

3.3 Wet day frequency adjustment

The discrete and continuous nature of the daily precipitation data needs to be addressed when applying bias adjustment and

downscaling. Moreover, GCMs are known to have a “drizzle day” problem where the frequency of wet days with low precipi-220

tation in GCMs has a high positive bias relative to observations (Dai, 2006). To account for these issues, we apply a “pre” wet

day frequency (WDF) adjustment to both reference and daily GCM data after regridding both datasets to the 1◦ bias adjustment

grid and before bias adjusting. We apply a second “post"” WDF adjustment after QPLAD downscaling.

Our approach is modified from Cannon et al. (2015). For daily reanalysis and GCM precipitation before bias adjustment,

all values at the 1◦ grid that are less than a specified threshold are replaced by nonzero uniform random values less than the225
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threshold. Initially, we used the same threshold and nonzero uniform random values as Cannon et al. (2015). However, we

found that in grid cells where the seasonality and magnitude of daily precipitation values differed by a large amount between

model and reanalysis, using the Cannon et al. (2015) threshold (0.05 mm day−1) and adjustment could result in those grid cells

having bias-adjusted precipitation values that were not physically realistic for the season and geographic location. Thus we

raised the threshold to 1.0 mm day−1 (similar to Hempel et al., 2013) and the lower bound of the uniform random distribution230

from 0 to 0.5 mm day−1. After applying QPLAD downscaling, we then apply a “post” WDF adjustment where all downscaled

daily precipitation values below 1.0 mm day−1 are replaced by 0 mm day−1.

4 Implementing the downscaling pipeline

In this section, we describe the pipeline we created for ingesting CMIP6 global, daily surface variable output from the CMIP6

Google Cloud collection, and applying statistical bias-adjustment and downscaling methods to produce a global, daily gridded235

dataset at a 0.25◦ horizontal resolution for four emissions pathways, 25 GCMs and three surface variables. The steps to produce

the dataset are as follows and diagrammed in Figure 1: We first standardize the reference dataset and climate model output. We

then apply a modified version of the QDM bias-adjustment method at the 1◦ grid. Next, we apply the QPLAD downscaling

method to the bias-adjusted output in order to downscale the data to a 0.25◦ grid. For precipitation, we apply a wet day

frequency adjustment both before bias adjusting and after downscaling. We apply additional post-processing for all surface240

variables after downscaling.
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Figure 1. Diagram of CMIP6 bias adjustment and downscaling pipeline.

4.1 Standardizing simulation and reference data245

Although the modeling centers participating in the CMIP6 experiments follow Climate and Forecast (CF) conventions (https:

//cfconventions.org/), significant differences remain in how GCM output is archived. The native resolution of GCMs also

varies considerably. For example, four EC-Earth Consortium models have a relatively high resolution (spectral grids approx-

imately 0.7◦ x 0.7◦) and the CCCma CanESM5 GCM has a relatively low resolution (2.5◦ x 2.5◦). Consequently, we begin

by standardizing naming, dimensions, and coordinates for all models and removing leap days. Daily GCM outputs are regrid-250

ded from the models’ native resolution to a regular 1◦ x 1◦ global lat-lon grid using the xESMF Python regridding package

(https://xesmf.readthedocs.io/). We use the bilinear regridding method for maximum and minimum surface temperature and
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first-order conservative area remapping for precipitation to conserve total precipitation between the native GCM grid and the

1◦ x 1◦ regular lat-lon grid.

The same standardization is applied to daily ERA5 reanalysis at the regular Gaussian, F320 grid. We prepare three versions255

of ERA5 that are used in the QDM-QPLAD method. For bias adjustment, ERA5 is regridded from the F320 grid to the 1◦ x

1◦ regular lat-lon grid using the regridding method described above. For downscaling, ERA5 is regridded from the F320 grid

to the 0.25◦ x 0.25◦ regular lat-lon grid using the same regridding methods as in the GCM output (ERA5fine). Then, the 1◦ x

1◦ version of ERA5 used in bias adjustment is resampled (e.g., nearest-neighbor regridded) to the 0.25◦ x 0.25◦ regular lat-lon

grid (ERA5coarse).260

4.2 Implementation of QDM bias adjustment

We bias adjust GCM projections for each variable, GCM, experiment, pixel, year, and day at a 1◦ x 1◦ resolution using the

xclim Python package QDM implementation (Logan et al., 2021). To do this, we first train QDM models for each pixel and

day of the year using a rolling 31-day centered window (± 15 days) on ERA5 and GCM historical data. For ERA5 data, we

include the last 15 days from 1994 and the first 15 days from 2015 such that each day group contains 620 values (20 years x 31265

days) for ERA5 reference data. For CMIP6 historical data, since the simulation ends in 2014, we do not include the additional

15 days from 2015, nor from 1994 for consistency. Each trained QDM model (per pixel / day of year) has 100 equally spaced

quantiles in our implementation. We used an additive adjustment for maximum and minimum temperature and a multiplicative

adjustment for precipitation. Each variable was bias-adjusted separately.

One pitfall with this approach is that minimum temperatures may be larger than maximum temperatures on the same day270

in some parts of the world with very low diurnal temperature ranges, such as at high latitudes (Thrasher et al., 2012). As

a post-processing step, we swapped minimum and maximum temperatures for the small number of pixels and days when

the minimum temperature exceeded the maximum temperature after downscaling. This post-processing is described further

in Section 4.3.1. We initially tried to avoid this issue by adjusting the maximum temperature using an additive adjustment,

separately adjusting the diurnal temperature range (DTR) using a multiplicative adjustment and then deriving the minimum275

temperature by subtracting DTR from the maximum temperature (following Agbazo and Grenier (2020)). However, we found

that this led to unrealistically large DTR values in some parts of the globe, particularly at higher latitudes. Additionally, some

raw GCM data had a small number of minimum temperatures greater than the corresponding maximum temperatures, more

often in polar regions. Bias adjustment then inflated this undesirable behavior. Therefore, we bias-adjusted and downscaled

maximum and minimum temperatures separately rather than bias-adjusting DTR.280

We apply the trained QDM models to historical CMIP simulations and future GCM projections for each SSP on a per

variable/GCM/pixel/year/day basis. For each year in the GCM data, we group daily data using a 21-year rolling window and

a rolling 31-day window (as in the training step, with ± 15 days). For historical CMIP experiments, we concatenate the first

eleven years (2015–2025) of the SSP3-7.0 projection period simulation so that the full historical dataset encompasses the years

1950–2025. We use SSP3-7.0 to best simulate the current trajectory of emissions since 2015. If SSP3-7.0 output is not available285

for a given GCM, we then use SSP2-4.5. For the few models in which neither SSP3-7.0 nor SSP2-4.5 output is available, we
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use SSP1-2.6. For each SSP, we concatenate the last eleven years (2004–2014) of the CMIP model simulation so that the full

projection period dataset encompasses the years 2004–2100 for the rolling 21-year window. Historical GCM years 1950–1960

have fewer days in their rolling window, as do projection period years 2090–2100, with the exception of GCMs for which

model output was available past 2100 in the CMIP6 Google Cloud collection at run-time. For the beginning (ends) of the time290

period, an additional 15 days from the previous (following) year is included such that each day group contains 651 values (21

years x 31 days). We use 100 equally-spaced quantiles as in the training step; adjustment factors for quantiles within the range

[0.005, 0.995] are linearly interpolated from the neighboring quantiles and linear extrapolation is used to extend the range to 0

and 1 for accommodating the extreme tails.

4.3 Implementation of QPLAD downscaling295

After applying QDM bias adjustment, we downscale GCM projections for each variable, model, experiment, pixel, year,

and day at a 0.25◦ x 0.25◦ resolution, similar to our handling of QDM bias adjustment. To facilitate this, we implemented

the QPLAD method in a forked version of the xclim Python package (Logan et al., 2021) in order to leverage the existing

parallelization that we used for QDM, and we are in the process of adding the method to the package. Before downscaling, we

resample the bias-adjusted projections from the 1◦ x 1◦ bias adjustment grid resolution to the 0.25◦ x 0.25◦ target resolution.300

For all variables, the method is consistent to ensure that each of the 16 0.25◦ gridcells contained within each 1◦ gridcell has

the same value. Reanalysis data preparation for QPLAD is described in Section 3.1.Although the QPLAD implementation

assumes that bias adjustment was performed at a coarser resolution than the target resolution for downscaling, one could apply

QPLAD to unadjusted GCM simulations as well.

As in bias adjustment, we use a rolling 31-day window (± 15 days) for each day of the year over the training period for each305

pixel. We include the last 15 days from 1994 and the first 15 days from 2015 such that each day group contains 620 values (20

years x 31 days). We then downscale historical and future model simulation data using the QPLAD adjustment factors for each

variable, model, and experiment on a per pixel / day basis. Since we use 100 empirical quantiles in QDM bias adjustment and

620 quantiles in QPLAD (each corresponding to an analog day), there is not a 1:1 match between the quantiles. Consequently,

for a given day, the closest quantile in QPLAD to the quantile assigned during bias adjustment is selected from the 620 possible310

adjustment factors for that day of year and pixel. Figure 2 demonstrates the temporal and spatial dimensions of the QPLAD

method for maximum temperatures around Miami, Florida. Panel 2a shows the sixteen spatial analogs (e.g. adjustment factors)

for 15 August from the fine reference data (within one 1◦ gridcell) corresponding to τm = 0.33 and the location of Miami,

Florida. By design, the downscaled values for these sixteen gridcells will average to the bias-adjusted value at the 1◦ resolution

xm with that quantile for that day of year. Panel 2b zooms in on Miami, Florida and shows all possible spatial analogs for the315

same quantile but for all days of the year. For most days of the year, the adjustment factor for that day of year is moderating

the bias-adjusted value, which is expected given the coastal location of Miami and the relatively low quantile. Panel 2c shows

all possible analog days for 15 August, e.g. all possible 620 analogs. Finally Panel 2d shows the bias-adjusted and downscaled

time series of maximum temperatures for 2080 with the 15 August values highlighted. The analog day for that quantile is -1.5◦
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and was applied additively to the bias-adjusted maximum temperature value for that day, thus that is the difference between320

the bias-adjusted and downscaled temperatures for 15 August 2080 shown in Fig. 2d.

Figure 2. Diagram of QPLAD downscaling method. 15 August is used as an example day grouping with τ = 0.33 correspond-

ing to the actual quantile for 15 August 2080 in the bias-adjusted output for SSP2-4.5. (a) shows spatial analogs for τ = 0.33

for 15 August, (b) shows analogs (adjustment factors) for each day of the year for Miami, Florida, (c) shows all possible ad-325

justment factors for 15 August, and (d) shows the bias-adjusted and downscaled data for 2080 and the difference between the

bias-adjusted and downscaled values for 15 August before and after the analog-based adjustment factor for τ = 0.33 has been

applied. The example bias-adjusted and downscaled model data comes from the HadGEM3-GC31-LL GCM, produced by the

United Kingdom Meteorological Office Hadley Centre.

330

4.3.1 Additional post-processing

After QPLAD downscaling, we apply an additional post-processing step that is variable-dependent. When DTR is very low in

the source GCM, we found that minimum temperature may be greater than maximum temperature after downscaling. For the

small number of time steps and gridcells that have this behavior, we swap maximum and minimum temperatures. We found

that these conditions occurred infrequently in high-population areas, being concentrated in the polar oceans, and that this swap335

did not have a significant effect on seasonal or annual cycle statistics.

Precipitation requires a more complex additional bias adjustment for a limited number of grid cells and time steps globally.

Adjustment factors at higher quantiles (e.g., above the 95th quantile) could become physically unrealistic when seasonal cycle

behavior and precipitation magnitudes differed significantly between reanalysis reference data and the GCMs. If the GCM

was biased low relative to reanalysis, this bias increased the adjustment factors further. Moreover, adjustment factors would340

dramatically increase if the GCM had a strong increase in precipitation signal or if values were very close to zero. However,

an increasing signal did not need to be present to incur such a dramatic increase; we also found that this in the historical period

outside of the training period if a given historical period either a) had a trend that was different from the training period trend or

b) contained out-of-sample values that were not present in the training period. The confluence of these biases was insidious for

GCMs that were downward biased relative to reference data and had seasonal precipitation cycles different than those in refer-345

ence data in the same areas. This was noticeable in the intertropical convergence zone (ITCZ). To correct for these issues in a

robust way, we applied a per-pixel post-downscaling adjustment factor at the target resolution that was based on the maximum
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values of precipitation in the reference data and the fractional (SSP-dependent) increase in maximum precipitation between the

historical and projected GCM simulations. Specifically, the maximum precipitation constraint for each pixel is defined as:

350

Pmax(model,SSP,t) = max(Preference,t1)×max

(
1,

max(Pmodel,SSP,t2)
max(Pmodel,historical,t1)

)
(5)

where t refers to a given day, t1 is defined as the training period (1995–2014), model refers to a given GCM, SSP represents

one of the SSP trajectories, t2 corresponds to the maximum precipitation in a 21-year rolling window centered on the year that

t is in, and Pmax(model,SSP,t) refers to the maximum allowed precipitation at time t for a given model and SSP. Scaling by

the ratio of maximum precipitation in a future 21-year rolling window to historical precipitation allows for the scaling factor to355

increase during the projection period if the model has an increase in the rolling 21-year maximum daily precipitation for that

pixel. However, if the corresponding maximum daily precipitation decreases in the future (e.g., a scaling factor less than 1),

the maximum precipitation value in the reference period for that pixel forms the constraint. After this daily constraint term is

estimated for each pixel, year, experiment, and model, the final result is set equal to the minimum of the original bias-adjusted

and downscaled value and this constraint.360

4.4 Transparency and reproducibility with commercial cloud computing

Our bias-adjusting and downscaling pipeline is novel because it was developed and run entirely with commercial cloud comput-

ing infrastructure. Prototypes of the pipeline were built and run on Microsoft Azure, while later production runs used Google

Cloud Platform. As such, we wanted the pipeline to be reasonably replicable, open, and not bound to the proprietary hardware

or software of a single cloud-computing vendor.365

We ran steps of the pipeline in containerized software applications. These containers are a common way to hold software

applications with their dependencies so that the application can run reliably on different machines. We orchestrate the contain-

ers with Argo Workflows (https://argoproj.github.io/argo-workflows/) on Kubernetes (https://kubernetes.io/), an open-source

platform for managing containerized applications on a robust computer cluster that can quickly scale up or down depending

on the computing resources needed. Kubernetes is ubiquitous across cloud vendors, helping us to avoid vendor lock-in. The370

source code for the containers and manifests orchestrating the workflow steps are both available online under an open-source

license in public GitHub repositories.

Infrastructure is an additional challenge as it can be practically impossible to make cloud infrastructure truly replicable

because commercial cloud vendors iterate their products and platforms very quickly. Despite this, we wanted to be transparent

about the cloud infrastructure used for the most intense stages of this pipeline. We provisioned and configured the cloud375

infrastructure and the Kubernetes clusters from the project’s public GitHub repository. This means that pipeline infrastructure

and configuration were stored as code and automatically provisioned directly from the repository. We provisioned Google

Cloud and Azure resources, including storage and a Kubernetes cluster, using Terraform (https://www.terraform.io/). Terraform

is a common open-source tool for provisioning computer infrastructure. Once provisioned, the software on the Kubernetes
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clusters was managed with ArgoCD (https://argo-cd.readthedocs.io), another open-source tool to deploy Kubernetes resources380

from the repository in near real-time.

5 Results

In this section, we assess the robustness and performance of the QDM and QPLAD methods. First, we examine behavior in

high seasonal quantiles outside of the time windows at which, by design, absolute or relative (for an additive or multiplicative

variable, respectively) changes are preserved. Next, we look at the method’s performance over highly populated cities and385

regions that are particularly important for impacts research. We explore how bias-adjustment and downscaling change the

historical distribution relative to the reference distribution, and how trends are preserved for select cities across the globe.

We then turn to understanding the performance of the method, specifically around trend modification, for moderate and more

extreme climate indices as well as seasonal and annual aggregated metrics commonly used in impacts analysis, including

seasonal mean maximum and minimum temperature and seasonal and annual total precipitation. We examine the performance390

of the QDM-QPLAD methods for these metrics first for a coastal city (Miami, Florida) and then at the state and country level,

which we then weight by population.

5.1 Preserving quantile trends globally

One of the key advantages of the QDM method is its ability to preserve changes in daily model-projected extremes due to

how the method imposes the model-projected change for each quantile, rather than purely the mean (e.g., standard quantile395

mapping). The QPLAD method provides an additional fine-scale analog-based adjustment factor approach to layering on

analog day extremes present in the fine-scale reference data. Notwithstanding, it is expected that the methods will not perfectly

preserve GCM-projected changes at a temporal aggregation different from that which the methods were applied. In other

words, since our empirical CDFs are computed for each day of year with a 31-day window, the GCM data distributions are

adjusted with the same grouping. Similarly, model-projected changes, computed as the difference or ratio between a rolling 21-400

year average and the historical period, will be preserved as applied. Consequently, examining temporal aggregations outside of

these windows will show behavior that may dampen or inflate model-projected changes in the low and high quantiles to a minor

degree. However, with a 21-year grouping of any 31-day window, corresponding to the QDM and QPLAD method-specified

temporal grouping, model-projected trends would be preserved exactly. In this section, we examine trend preservation in higher

quantiles at a seasonal frequency. Figure 3 shows for a selected model (NorESM2-LM) the change in the 95th percentile405

Northern Hemisphere summer (JJA) maximum temperature days between 2080–2100 and the historical period (1995–2014)

in the source model data (a) and in panel (b) the difference in this change between the bias-adjusted model data and the source

model data for the same time period and percentile.
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Figure 3. Change in 95th percentile JJA maximum temperature trends globally between 2080–2100 and the training period410

(1995–2014) in the model (a) and the difference in this trend between the bias-adjusted data and the model (b). Results are

shown for the model NorESM2-LM and the scenario SSP3-7.0.

The bias-adjusted data shown in Fig. 2b was post-processed according to the approach described in the methods section

so that it is consistent with the bias-adjusted and downscaled data. As noted above, it is expected that there will be slight415

modifications in the model-projected changes, Moreover, here we show the analytical 95th percentile of Northern Hemisphere

(NH) summer days, rather than an empirical CDF that corresponds to the actual bias-adjustment applied. Additionally, the bias-

adjusted data is at a 1◦ resolution, whereas the downscaled data is at a 0.25◦ resolution, so the bias-adjusted data is coarser

and, by construction, less extreme than the downscaled data. Indeed, parts of eastern Canada and Siberia exhibit amplifications

in maximum temperature trends at the 95th percentile, as well as Antarctica. Much of these high-latitude areas that show420

amplification are also areas where the GCM-projected change in temperature is already high relative to other parts of the

globe, consistent with the Arctic amplification that is already underway due to climate change (Previdi et al., 2021). We can

infer that adjusting the GCM distribution to be consistent with the reference dataset is also contributing to this amplification

of NH summer maximum temperatures. Supplemental figure 2 shows the difference in change between the bias-adjusted data

and bias-adjusted and downscaled data, and in comparing that to Fig. 3b we can infer that the amplification in model-projected425

changes is happening at the bias-adjustment step rather than the downscaling step, which figure A2 further confirms. However,

amplification is generally very small in comparison to the actual magnitude of change projected by the model (3a) in those

areas.

Precipitation has a similar but more nuanced and complex story. A longstanding challenge with bias adjustment of pre-

cipitation at a global scale is dealing with the disagreement in the seasonal migration and magnitude of precipitation in the430

intertropical convergence zone (ITCZ) between reanalysis and GCMs. The ITCZ is a tropical “belt” where deep convection and

heavy precipitation occur due to convergence of the trade winds, and the belt of heavy precipitation migrates between 9◦N and

2◦N as a result of annual warming of sea surface temperatures (van Hengstum et al., 2016). GCMs still exhibit bias in simulat-

ing tropical precipitation and this bias differs widely between CMIP6 models (Hagos et al., 2021; Tian and Dong, 2020).Figure

4 shows 95th percentile NH summer daily precipitation for the same model and scenario (SSP3-7.0). Panels A and B show435

95th percentile seasonal Northern Hemisphere summer precipitation for the reference and the source model data respectively,
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over the historical period. Panel C shows the model-projected change in 95th percentile NH summer precipitation between

2080–2100 and the historical period in the source model. Finally, panels D and E show the ratio of the bias-adjusted data to

the source model data trends the ratio of the bias-adjusted and downscaled data to the bias-adjusted data, respectively. The NH

summer ITCZ is pronounced and markedly different in panels A and B; for this particular GCM and percentile, differences440

are notable in both the shape (e.g., the ITCZ is shifted southwards in the GCM off the Brazilian coast, relative to reanalysis)

and the strength of the ITCZ (e.g., the GCM overestimates the intensity of the summer monsoon over southeastern Asia and

in particular over India). These biases result in slight modifications in preserving GCM-projected relative changes in the quan-

tiles. For example, panel 4D shows that inland and just off the coastlines of India, the bias adjustment amplifies the projected

change from the source GCM. Mechanically, because we choose to consider relative changes, the areas exhibiting the largest445

relative trends (panel C) or trend alterations (panel D) are also the driest areas (e.g. Brazil, Namibia, the Arabic peninsula in

panel D). Finally, it appears, as expected, that statistical downscaling is not significantly altering the model-projected relative

change signals (panel E) in comparison to the bias adjustment step, as we noted for temperature as well.

Figure 4. 95th percentile JJA precipitation over the historical (1995–2015) period in the reference data (A) and in the model450

data (B), along with the relative change, of the percentile in the 2080–2100 period to the same percentile in the historical

period in the model data (C), ratio of the relative change in the bias-adjusted data to the relative change in the model data (D),

ratio of the relative change in the bias-adjusted and downscaled data to the relative change in the bias-adjusted data (E). White

areas in panel (E) are due to values equal to zero in the bias-adjusted and downscaled data in the historical period after the

post-processing described in the methods section is applied. Results are shown for the model NorESM2-LM and the scenario455

SSP3-7.0.

5.2 Historical and future method performance for selected cities and regions

We further quantify the bias adjustment and trend preservation, here for selected aggregations and areas. Following the analysis

in Bürger et al. (2012) and Cannon et al. (2015), we assess the performance of the QDM method by comparing the distributions460

of various CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) metrics (Karl et al., 1999)

metrics as well as other aggregated metrics widely used in impacts research (Table 2) over the historical period in the bias-

adjusted and downscaled model data against their distribution in the reanalysis dataset, for a single city. The selected indices

encompass maximum and minimum temperatures and total precipitation, ensuring that all variables included in the GDPCIR

dataset are tested. We examine the performance of these metrics across all models, given the heterogeneity of temperature and465
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precipitation signals among models. Then, we focus on a single model, a selection of 17 metropolises globally along with their

corresponding lower resolution regions and assess both bias adjustment and trend preservation.

5.2.1 Historical extremes indices

To check the historical distributions of the downscaled models, we examine “moderate” and “extreme” extremes detailed in

Table 2 by computing the selected indices on an annual basis over the training period and over a separate validation period470

for the raw GCM, downscaled GCM and reanalysis for a single city, Miami, Florida. The chosen metrics are checks on the

distributions of all variables included in the dataset. Some of the metrics, such as summer days, tropical nights, and annual wet

days represent more moderate extremes less affected by threshold behavior. Others, such as consecutive dry days, days over

35◦C, and days over 32.2◦C, are more affected by threshold behavior. Others, such as seasonal temperature means and total

precipitation, while not classified as ETCCDI indices, are widely used as input data to sector-specific impacts modeling and475

thus are included here to guide users of the dataset.

We calculated distributions of the indices on the raw GCM output and on the bias-adjusted and downscaled GCM and each

are compared against the reanalysis distribution of the same index using a two-sample Kolmogorov-Smirnov (K-S) test at a

0.05 significance level. The null hypothesis is that the two samples (e.g. raw GCM and reanalysis or downscaled GCM and

reanalysis) are drawn from the same distribution. A model is considered to pass the K-S test, either for the raw GCM or the480

downscaled GCM, if the null hypothesis is not rejected, in other words, if the p-value < 0.05. This is a slight modification of

the usage of K-S tests in Cannon et al. (2015) and Bürger et al. (2012), where the authors use the D statistic rather than the

p-value as a diagnostic. The p-value is used here for significance due to the effects of disagreement in seasonality between

reanalysis and the GCM on the D statistic versus the p-value. We compute the K-S tests over two time periods: a calibration

period (1995–2014) and a validation period (1979-1994). The validation period used is shorter because aggregated reanalysis485

data was only available from 1979 to near-real-time and had not yet been extended back to 1950 by ECMWF and made avail-

able when hourly data was first downloaded and aggregated to daily for use in the bias adjustment and downscaling pipeline.

For metrics that use precipitation data, the validation period is 1984–1994, because quality control showed that precipitation

data for 1983 contained errors.

490

In Figure 5, the results of the K-S tests for the twelve selected indices for a single city, Miami, Florida, are shown for the

downscaled and raw GCMs for the calibration and validation periods. The selected index that never passes K-S tests is frost

days (the number of annual days below the freezing point) because there are so few years in the historical period in both

the raw GCMs and the reanalysis that contain days below freezing. Prior to bias adjustment and downscaling, around half of

the GCMs pass K-S tests in the calibration period, and afterward, all GCMs pass the K-S tests except for frost days. During495

the validation period, a considerably smaller number of K-S tests pass in the raw GCMs, while all pass after bias adjustment

and downscaling, showing that the distributions of the selected moderate and extreme metrics have been effectively adjusted

by the bias adjustment and downscaling algorithms. A few models are notable in the lack of passing K-S tests before bias

adjustment and downscaling, including the BCC-CSM2-MR, GFDL-ESM4, and CCMC-ESM2 models. By contrast, INM-
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CM4-8 is notably high before downscaling in the calibration period, indicating that its distributions of moderate and more500

extreme extrema were already closer to reanalysis for this location prior to bias adjustment. It is worth noting that because the

location shown here is a coastal city, the additional benefit of downscaling versus solely bias adjustment is more profound, and

thus the adjusted distributions shown here benefit both from QDM and QPLAD adjustments. Had an inland city been shown,

the additional effect of downscaling in adjusting the distributions to the higher-resolution reanalysis distribution would have

likely been less significant (unless it were in an area with complex topography).505

20

https://doi.org/10.5194/egusphere-2022-1513
Preprint. Discussion started: 16 January 2023
c© Author(s) 2023. CC BY 4.0 License.



0
2
4
6
8

10
12
14

Nu
m
be

r o
f T
es
ts
 P
as
se
d (a)

Calibration Period
bias-adjusted and downscaled GCMs raw GCMs

BC
C-
CS

M
2-
M
R

FG
OA

LS
-g
3

AC
CE

SS
-E
SM

1-
5

AC
CE

SS
-C
M
2

IN
M
-C
M
4-
8

IN
M
-C
M
5-
0

M
IR
OC

-E
S2

L
M
IR
OC

6
No

rE
SM

2-
LM

No
rE
SM

2-
M
M

GF
DL

-E
SM

4
GF

DL
-C
M
4

NE
SM

3
M
PI
-E
SM

1-
2-
HR

Ha
dG

EM
3-
GC

31
-L
L

UK
ES

M
1-
0-
LL

M
PI
-E
SM

1-
2-
LR

CM
CC

-C
M
2-
SR

5
CM

CC
-E
SM

2
Ca

nE
SM

5
EC

-E
ar
th
3

EC
-E
ar
th
3-
Ae

rC
he

m
EC

-E
ar
th
3-
CC

EC
-E
ar
th
3-
Ve
g

EC
-E
ar
th
3-
Ve
g-
LR

0
2
4
6
8

10
12
14

Nu
m
be

r o
f T
es
ts
 P
as
se
d (b)

Validation Period

Figure 5. Bar plot showing the number of K-S tests passed for the twelve selected indices for the downscaled model and raw

model (overlain) for each of the GCMs included in the GDPCIR dataset for a single coastal city, Miami, Florida (USA). The

calibration period is shown in (a) and the validation period in (b). The dashed line shows the maximum possible number of

K-S tests.
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Index Description Surface Variable

tx_days_above Annual count of days when daily maximum temperature > 25◦C maximum tempera-

ture

tn_days_above Annual count of days when daily minimum temperature > 20◦C minimum tempera-

ture

wet_days Annual count of wet days (daily total precipitation > 1.0mm) total precipitation

wet_days_prop Annual count of moderate precipitation days (daily total precipitation >

10.0mm)

total precipitation

seasonal minimum tempera-

ture

Mean seasonal minimum temperature for each year minimum tempera-

ture

seasonal maximum tempera-

ture

Mean seasonal maximum temperature for each year maximum tempera-

ture

seasonal precipitation Total precipitation summed over seasons each year total precipitation

annual precipitation Annual precipitation total precipitation

days over 32.2◦C Annual number of days over 90◦F maximum tempera-

ture

days over 35◦C Annual number of days over 95◦F maximum tempera-

ture

frost days Annual number of days under 0◦C minimum tempera-

ture

consecutive dry days Annual maximum number of consecutive dry days (daily total precipi-

tation < 1.0mm)

total precipitation

Table 2. Selected moderate and extreme metrics for analyzing bias adjustment and downscaling algorithm performance over cities and

admin1 (state/province) regions.

5.2.2 Bias adjustment and relative trend preservation

To further examine the performance of the bias adjustment and downscaling algorithms, we examine seasonal aggregated

metrics (mean maximum and minimum temperature and total precipitation) across selected highly populated cities globally for

a single model, BCC-CSM2-MR, by computing the median absolute error in bias adjustment compared to the mean seasonal

error in trend preservation between the raw and downscaled GCMs. Following the method used by Lange (2019), we define510

absolute error in bias adjustment as:

e = |ysim
hist−xobs

hist| (6)
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where ysim
hist represents bias adjusted historical simulations and xobs

hist represents historical reference data. We then define

absolute error in trend preservation as:

e = |(ysim
fut − ysim

hist)− (xsim
fut −xsim

hist)| (7)515

where ysim
fut represents bias adjusted projections, ysim

hist represents bias adjusted historical simulations, xsim
fut represents future

projections (unadjusted) and xsim
hist represents historical simulations (unadjusted).

However, we depart from the Lange (2019) method by computing the absolute error over seasonal means or sums (for

temperature and precipitation, respectively) and for cities globally rather than at multiple spatial resolutions. Because we are

computing the error on an annual basis rather than over a 21-year rolling window, the difference in trend between the raw GCM520

and downscaled GCM is non-zero (our QDM implementation perfectly preserves relative seasonal trends between a given

future 21-year rolling window and the historical training period). Figure 6 shows these results over selected cities globally.

Overall, bias-adjustment and trend-preservation errors are lower for minimum temperature than for maximum temperature but

are generally low for both surface variables. Bias adjustment error for precipitation is low for the majority of cities with the

notable exception of São Paulo, which has a median error of over 14. This comparatively larger error in bias adjustment can525

be explained by both a) a difference in seasonal precipitation magnitudes for that location in reanalysis vis-a-vis the GCM, and

b) significantly larger interannual variability for São Paulo versus other cities shown. A shortcoming of only showing bias-

adjusted and downscaled error in Figure 6 versus also showing the same analysis for bias-adjusted data for the same model

and cities means that we cannot attribute the bias adjustment error in São Paolo to (a) or (b), but it is likely that both play a

large role, given the issues with precipitation in the tropics discussed earlier. In Lange (2019), the author conducted similar530

error analysis for surface variables over different CMIP5 GCMs (MIROC5, IPSL-CM5A-LR, and GFDL-ESM2M) at a coarser

resolution (2◦) and found similar magnitudes of error in trend preservation, with slightly smaller errors in bias adjustment. The

larger values in bias adjustment shown here are likely due to the fact that the errors are being calculated at a higher resolution

for cities (with raw GCM, reanalysis, and downscaled data drawn from the nearest 0.25◦ gridcell) and thus there are larger

errors between the coarse-resolution GCM and the higher-resolution reanalysis, and the preservation of climate change signal535

in quantiles is implemented on a 21-year rolling window in our study.
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Figure 6. Efficacy of bias adjustment and relative trend preservation for seasonal maximum and minimum temperature and

seasonal total precipitation computed annually for a single GCM (BCC-CSM1-2) for selected highly populated cities globally.

The historical period used is 1995-2014, while the projection period is SSP3-7.0 2080-2100. More precisely, for temperature

variables, the values on the x-axis are the median over the seasonal absolute (additive) bias adjustment errors, and the values

on the y-axis are the median over the seasonal absolute (additive) error in (additive) trend preservation. For precipitation,

errors are multiplicative and instead of taking the mean over seasons, we take the sum over seasons.

5.2.3 Relative trend preservation in selected regions

One of the key considerations in developing a method and dataset for use in the study of the human impacts of climate change

is the performance of the given method when the data is reconfigured, transformed, or re-weighted by the users of the data. Im-

pacts research frequently uses weighted, aggregated extreme value measures, such as crop-output-weighted frost-day counts for540

a given agricultural zone, or population-weighted counts of hot nights for a given census region. To understand the performance

of our data under such circumstances, we use the same set of diagnostic cities examined above to understand preservation of

moderate and extreme trends for several of the moderate and extreme ETCCDI indicators at varying levels of aggregation.

Following the regional aggregation method described in Rode et al. (2021), these comparisons use a 30-arcsecond population

raster dataset (CIESIN, 2018) to determine the weight of each grid cell in the climate dataset within each region’s total, based545

on whether the population grid cell is contained within each region’s shapefile. Data is aggregated to either admin0 or admin1

regions after computing the ETCCDI metrics on gridded data. An admin1 region is a generic term that refers to the largest

subnational administrative unit of a country; for example, a state in the US or a prefecture in Japan. An admin0 region refers

to national boundaries, e.g. the US or Japan. Shapefiles that define these region boundaries are taken from the Natural Earth

dataset (Earth, 2022), and are further subset to include the admin0 or admin1 region which includes each of the diagnostic550

cities listed above.

For the analysis in this section, we use the same temporal aggregation as in the method implementation such that any modifica-

tion of trend is not due to the effects described earlier but instead due to aggregation or weighting effects. Because the method

exactly preserves quantile trends within a 31-day window during bias adjustment, and preserves trends in minimum tempera-555
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ture, maximum temperature, and log(precipitation) for a given quantile on an average basis across 0.25◦ gridcells within each

coarse 1◦ cell, discrepancies between trends in seasonal and annual mean minimum temperature and maximum temperature

are due solely to differences between area and population weights, and due to the effects of Gaussian interpolation from the

native GCM grid to the regular 1◦ grid used for bias adjustment. This behavior can be seen in the very high degree of agreement

between source GCM and bias adjusted and downscaled trends at both the admin0 and admin1 level for maximum temperature560

in Figure 7. Here, we calculate trend using the difference between the 1995-2014 period average and the 2079-2099 period

average; the year 2100 is not included because it is not available in all GCMs. Panels a-e in Figure 7 show the change in

period average annual and seasonal maximum temperature for admin0 regions (e.g. countries) and for admin1 regions (e.g.

states/provinces) in panels f-j. The admin0 and admin1 regions shown correspond to the regions where each of the cities is

located, and results are shown for all GCMs and all scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Both admin0 and565

admin1 regions have an r2 value of at least 0.9 for both annual temperature and all seasons, showing extremely minimal trend

modification.

Figure 7. Change in period average annual and seasonal maximum daily Tmax from 1995-2014 to 2079-2099, for countries

(top row; panels a-e) and states/provinces (bottom row; panels f-j) containing the 17 diagnostic cities. All GCMs and scenarios

are shown; with SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and SSP5-8.5 (red).

However, because precipitation adjustments are multiplicative, 21-year seasonal and annual totals are not preserved exactly

when aggregated. Fidelity to the source model trend in the downscaled data is closer when comparing trends in log(21-year

annual average precipitation) or log(21-year seasonal average precipitation), which can be seen in comparing the first and570

second rows in Figure 8. Figure 8 shows annual and seasonal precipitation for the countries containing the 17 selected global

cities for all GCMs and scenarios, with the change in period average precipitation shown in panels a-e and log(period average

25

https://doi.org/10.5194/egusphere-2022-1513
Preprint. Discussion started: 16 January 2023
c© Author(s) 2023. CC BY 4.0 License.



annual and seasonal precipitation) in panels f-j. As expected the higher emissions scenarios SSP3-7.0 and SSP5-8.5 appear far

more often as outliers, which is expected given their relatively larger change signals in precipitation.

Figure 8. Change in period average annual and seasonal precipitation from 1994-2014 to 2079-2099, (top row; panels a-e)

and the change in log(period average annual and seasonal precipitation) (bottom row; panels f-j) for the countries containing

the 17 diagnostic cities. All GCMs and scenarios are shown; with SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and

SSP5-8.5 (red).

To understand trend preservation among extreme metrics, we computed the count of days above or below various thresholds,575

shown in Figure 9. The method does not explicitly preserve the GCM signal in such metrics, as anomalies in temperatures,

even at extreme quantiles, will cross a threshold with different frequencies after a linear or multiplicative adjustment. This

behavior is consistent with the fact that, while trends in extreme values measured as quantiles will be preserved within any

31-day window from the GCM to the final result, trends in any absolute measure, such as counts of days above or below a

threshold, will be affected by the bias adjustment and may be significantly different in the result depending on the metric.580
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Figure 9. Change in period average threshold counts from 1994-2014 to 2079-2099, for countries (top row; panels a-g)

and state/provinces (bottom row; panels h-n) containing the 17 diagnostic cities. All GCMs and scenarios are shown; with

SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and SSP5-8.5 (red).

6 Conclusions

We hope that the GDPCIR dataset will be a useful contribution for climate impacts research in its scope, resolution and in

the methods applied that were specifically tailored to understanding the tail risks associated with future emissions pathways.

The QDM-QPLAD bias adjustment and downscaling algorithms preserve quantile trends and therefore allow users to better

understand and model the effects of different emissions pathways on sector-specific and aggregate climate impacts. The 0.25◦585

resolution of the GDPCIR dataset allows for its use in econometric models that require high-resolution surface climate data for

estimating response functions. Errors in bias adjustment and trend preservation are low, with some exceptions for precipitation

due to issues already discussed. Figure A1 goes into further detail on this. We expect that the dataset will have broad use

in a variety of climate impacts modeling, from estimating econometric dose-response functions to hydrology and ecology to

modeling ecosystem services and natural capital.590

Code availability. The R/CIL GDPCIR dataset codebase containing notebooks, pipeline architecture, and infrastructure is publicly available

at https://github.com/ClimateImpactLab/downscaleCMIP6 and archived at https://doi.org/10.5281/zenodo.6403794. The software container

and all code used for individual downscaling pipeline tasks is publicly available at https://github.com/ClimateImpactLab/dodola and archived

at https://doi.org/10.5281/zenodo.6383442, and our production pipeline was run with release v0.19.0.595
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Data availability. The GDPCIR dataset is publicly hosted on the Microsoft Planetary Computer (https://planetarycomputer.microsoft.com/

dataset/group/cil-gdpcir/).

Appendix A: Supplementary figures

A1 Global temperature and precipitation changes

In this section we explore trends in global temperature and precipitation across models. We report these trends for both the600

source data and the bias-adjusted and downscaled data in order to shed light on how these global trends are affected by QDM

and QPLAD. To obtain global values, the data is averaged using land-weighting. Results are shown in Fig A1. We find that

when comparing the source data with the bias-adjusted and downscaled data, global trends in temperature are preserved: all

the differences across models and scenarios are within ± 0.1◦C. In contrast, changes in global precipitation have some amount

of inflation across all models and scenarios. Going further, in the SSP2-4.5 and SSP3-7.0(respectively) source data, change605

in average annual mean maximum temperature across models ranges from 1.71◦C (2.56◦C) to 4.55◦C (6.53◦C) and in the

bias-adjusted downscaled data this range is almost identical, from 1.71◦C (2.84◦C) to 4.55◦C (6.54◦C). In contrast, change in

average annual total precipitation ranges from -0.11% (-2.47%) to 8.99% (9.61%) in the source data and is shifted upwards in

the bias-adjusted and downscaled data, from 2.57% (-0.79%) to 12.6% (15.22%). For precipitation, the largest change is in the

scenario SSP3-7.0, CanESM5 model, with a source trend of around 7.5% and a trend in our results of 15%. This model also has610

one of the highest precipitation trends in the source data, but there is no systematic relationship between the magnitude of the

source trend and the magnitude of trend modification. For example, NorESM2-MM SSP2-4.5 has a trend close to zero in the

source data and in the results the trend is around 4%, whereas BCC-CSM2-MR has a trend of around 2.5% in both scenarios

and the alteration is very low at less than 0.2 percentage points in both scenarios.
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Figure A1. Changes in temperature and precipitation signals in CMIP6 source models and CMIP6 bias-adjusted and

downscaled models. For each model, scenario and pixel, the annual average (x-axis) and the annual total (y-axis) is computed

for each year of both the historical (1995-2015) and future (2080-2100) period. Then, the data is averaged over space with

a land-weighting scheme (e.g. ocean pixels are assigned zero weights). Finally, the data is averaged over years for both the

historical and future period separately and the difference between the future and historical global values (x-axis) or the percent

change between the future and the historical global values (y-axis) is plotted. Data point symbols with transparent borders

represent the source model data while those with black color borders represent the bias-adjusted and downscaled data. The list

of models is restricted to those that have bias-adjusted and downscaled data for both SSP2-4.5 and SSP3-7.0.
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615

Figure A2. Difference in the change in 95th percentile JJA maximum temperature trends globally between 2080-2100 and the

training period (1995-2014) between the bias-adjusted and downscaled data and the bias-adjusted data. Results are shown for

the model NorESM2-LM and the scenario SSP3-7.0.
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