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Abstract.

Global climate models (GCMs) are important tools for understanding the climate system and how it is projected to evolve

under scenario-driven emissions pathways. Their output is widely used in climate impacts research for modeling the current

and future effects of climate change. However, climate model output remains coarse in relation to the high-resolution climate

data needed for climate impacts studies, and it also exhibits biases relative to observational data. Treatment of the distribution5

tails is a key challenge in existing bias-adjusted and downscaled climate datasets available at a global scale; many of these

datasets used quantile mapping techniques that were known to dampen or amplify trends in the tails. In this study, we apply

the Quantile Delta Mapping (QDM) method (Cannon et al., 2015) for bias adjustment. After bias adjustment, we apply a new

spatial downscaling method called Quantile-Preserving Localized-Analog Downscaling (QPLAD), designed to preserve trends

in the distribution tails. Both methods are integrated into a transparent and reproducible software pipeline, which we apply to10

global, daily GCM surface variable outputs (maximum and minimum temperature and total precipitation) from the Coupled

Model Intercomparison Project Phase 6 (CMIP6) experiments (O’Neill et al., 2016) for the historical experiment and four

future emissions scenarios ranging from aggressive mitigation to no mitigation: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-

8.5 (Riahi et al., 2017). We use European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 (Hersbach et al.,

2020) temperature and precipitation reanalysis as the reference dataset over the Sixth Intergovernmental Panel on Climate15

Change (IPCC) Assessment Report (AR6) reference period, 1995–2014. We produce bias-adjusted and downscaled data over

the historical period (1950–2014) and the future emissions pathways (2015–2100) for 25 GCMs in total. The output dataset

is the Global Downscaled Projections for Climate Impacts Research (GDPCIR), a global, daily, 0.25◦ horizontal-resolution

product which is publicly available and hosted on Microsoft AI for Earth’s Planetary Computer (https://planetarycomputer.

microsoft.com/dataset/group/cil-gdpcir/).20
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1 Introduction

Global climate models (GCMs) are essential for studying the climate system and how it will evolve in the future. Simulations

from the Coupled Model Intercomparison Project (CMIP) are widely used in climate impact studies, exploring human health

(e.g., Carleton et al., 2022), energy (e.g., Rode et al., 2021), labor productivity (e.g., Parsons et al., 2022), agriculture crop

yields (e.g., Müller et al., 2021), and the impacts of climate change on GDP losses globally (e.g., Warren et al., 2021). However,25

despite progress in climate modeling, GCM simulations often exhibit systematic error (bias) relative to observations (François

et al., 2020) due to coarse spatiotemporal resolution, simplified physics, thermodynamic schemes, and incomplete and/or

poorly understood representation of climate system processes (Sillmann et al., 2013). GCM simulations, relative to historical

observations, can have large errors in their means and variance, and even larger biases in extreme values (Cannon et al., 2015).

These biases are challenging to impacts studies examining the future evolution of local climate impacts. This challenge is30

magnified when trying to understand how a particular climate signal will affect a given outcome, for example, how changes in

extreme temperatures will affect mortality rates in a location. To explore these questions, it is necessary to have high-resolution

climate projections for multiple emissions pathways with a statistical distribution consistent with historical observations.

To fill this need for climate impact assessments, statistical bias adjustment (BA) and downscaling methods have been applied

to reduce biases and add high-resolution spatial information to GCM simulations (Pierce et al., 2015). BA methods adjust the35

difference in statistical properties between model simulations and observations or reanalysis data. Methods vary widely in

complexity, from simpler parametric methods that operate only on the mean or the mean and variance to trend-preserving

methods (Casanueva et al., 2020; Iturbide et al., 2022; Maraun and Widmann, 2018; Räty et al., 2014). Other BA methods

have been developed and applied extensively as well, such as the cumulative distribution function transform (CDF-t) (e.g.,

Michelangeli et al., 2009) and equidistant quantile mapping (e.g., Li et al., 2010; Déqué, 2007), and compared with other40

methods over Europe in the VALUE experiment (Gutiérrez et al., 2019). A key result from the VALUE study was that the

time window used in calibration was one of the most influential factors. Generally, quantile mapping (QM) methods have

been widely used in climate impacts studies, and particularly at the global scale due to their lower computational expense

relative to other methods (Pierce et al., 2015). A parametric quantile mapping approach that only corrects for the mean and

variance, the BCSD method, was used for example in the popular NASA Earth Exchange (NEX) Global Daily Downscaled45

Projections (GDDP) global daily CMIP5 dataset (Thrasher et al., 2012). However, QM methods that operate only on the mean,

such as BCSD, may affect trends in high (and low) quantiles differently than trends in the mean, often degrading results at the

distribution tails (Maurer and Pierce, 2014; Lehner et al., 2021; Holthuijzen et al., 2022; Sanabria et al., 2022; Lanzante et al.,

2020).

To mitigate this, QM approaches that are trend-preserving in the quantiles have been developed (e.g., Casanueva et al.,50

2020) and references therein. A key example of these methods - and the bias adjustment method we apply in this study - is

the Quantile Delta Mapping (QDM) method (Cannon et al., 2015). Moreover, Lehner et al. (2023) found that QDM was one

of the best-performing BA methods for representing changes in threshold metrics. Other studies have also supported the need

for trend-preserving methods (e.g., Qian and Chang, 2021) to better represent the temperature extremes that have the most
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severe impacts. Although generally trend-preserving methods have been found to better preserve the climate change signal for55

climate change impacts indices, they also rely heavily on the observations or reanalysis dataset used for reference (Casanueva

et al., 2020), and there is not a consensus in the literature that trend-preserving methods necessarily perform better for climate

extremes such as threshold-based indices (Iturbide et al., 2022). An additional question also worthy of mention and subject to

extensive debate is whether or not the climate signal from the GCMs should even be preserved, as the future signal is of course

not known (Pierce et al., 2015). However, notwithstanding this uncertainty, one of our key goals in designing this study was to60

preserve trends for moderate to extreme climate indices, and Casanueva et al. (2020) found that QDM in particular performed

better in preserving trends for these indices.

Statistical downscaling faces similar challenges to BA methods (Cannon et al., 2020). Because of these challenges, many

studies in the impacts literature stop short of downscaling (Maraun, 2016). Notwithstanding, several CMIP6 bias-adjusted and

downscaled datasets produced in the past few years have attempted to address these issues, but they have either been limited65

in geographic scope (e.g., Supharatid et al., 2022), global but at a coarse spatial resolution (e.g., Xu et al., 2021), or global but

preserving only mean trends (e.g., Thrasher et al., 2021). Jupiter Intelligence (https://jupiterintel.com/), a climate risk-focused

company in the private sector, has made a bias-adjusted CMIP6 dataset available for commercial applications, however, its

methods have not been published and the dataset is not publicly available (Hacker, 2021). The ISIMIP CMIP6 downscaled

dataset (the latest version of ISIMIP3BASD) uses a multivariate quantile trend-preserving bias adjustment method (Cannon,70

2018) that is developed at the coarse resolution and then statistically downscaled to the final global 0.5◦ spatial resolution and

daily temporal resolution (Lange, 2019, 2021). Downscaled data is available for a larger set of variables than GDPCIR but a

smaller set of GCMs. In the past year, NASA released an updated version of the NASA-NEX dataset using CMIP6 projections

(Thrasher et al., 2022). However, the new dataset still relies on the BCSD method and uses the Global Meteorological Forcing

Dataset (GMFD) (Sheffield et al., 2006) as a reference dataset, a reanalysis dataset that is no longer maintained and is no longer75

widely used in bias adjustment and downscaling (Hassler and Lauer, 2021). CarbonPlan, a not-for-profit organization focused

on climate and carbon capture research, has also released a global downscaled CMIP6 dataset using four distinct statistical

downscaling methods with publicly available code (https://docs.carbonplan.org/cmip6-downscaling) at a monthly resolution

and for a subset of six GCMs. These datasets are key contributions to impacts research but a gap remains for a global product

that preserves GCM quantile changes and is available at a high temporal and spatial resolution for a broad set of CMIP6 GCMs80

and emissions scenarios. This study aims to fill that gap.

Consequently, in this study we used the QDM method (Cannon et al., 2015) for bias adjustment and for downscaling we

designed the Quantile-Preserving Localized-Analog Downscaling (QPLAD) method, a statistical downscaling algorithm that

applies a local analog-mapping approach to preserve quantile trends at the fine resolution. We explain the method and imple-

mentation further below. We have made the QDM and QPLAD methods and code transparent and reproducible via tagged85

code releases for the full pipeline, available in Github (https://github.com/ClimateImpactLab/downscaleCMIP6) and archived

via Zenodo (https://doi.org/10.5281/zenodo.6403794). The dataset described herein, titled Global Downscaled Projections for

Climate Impacts Research (GDPCIR), is, to our knowledge, the most comprehensive and high-resolution dataset that exists

for CMIP6 that preserves quantile trends. We hope that the publicly available and transparent code and pipeline infrastructure
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will be helpful for researchers who wish to bias-adjust and downscale additional variables, GCMs, or experiments. Alter-90

natively, if additional meteorological variables, such as longwave and shortwave radiation, surface pressure and relative and

specific humidity are needed for a given impacts modeling application, or subdaily temperature and precipitation projections,

a meteorological disaggregation method can be used (Bennett et al., 2020).

The remainder of the paper is structured as follows. In Section 2, we describe the climate simulations and reference dataset.

In Section 3, we describe the QDM-QPLAD bias adjustment and downscaling methods. Section 4 describes our downscaling95

pipeline and efforts to make its implementation on commercial cloud computing platforms transparent and reproducible. In

Section 5, we explore trends and quantile changes in the dataset at the global, city, and “admin1” (country) levels.

2 Climate data

2.1 Simulation data

We used the CMIP6 historical and ScenarioMIP experiments (Eyring et al., 2016; O’Neill et al., 2016) as simulation data,100

obtained from the Google Cloud CMIP6 collection (https://pangeo-data.github.io/pangeo-cmip6-cloud/). This contains a sub-

set of CMIP6 output migrated from the Earth System Grid Federation (ESGF) as part of a collaboration between the Pangeo

Consortium (https://pangeo.io/), Lamont-Doherty Earth Observatory (LDEO) and Google Cloud. The migration to Google

Cloud included converting data from NetCDF format (https://www.unidata.ucar.edu/software/netcdf/) to the cloud-optimized

Zarr store format (https://zarr.readthedocs.io/en/stable/api/storage.html), and standardizing across dimensions, coordinates, and105

grids to ensure that GCM output would be analysis-ready and cloud-hosted for streamlined use in scientific analysis (Aber-

nathey et al., 2021). CMIP6 GCMs available through the ESGF but not in the CMIP6 Google Cloud collection were excluded

because they were not analysis-ready and cloud-optimized, and as such, could not run through our cloud-based downscaling

pipeline. We also excluded GCMs included in the CMIP6 Google Cloud collection for which daily output was not available or

other issues were found. Similarly, if a ScenarioMIP experiment is missing for a given GCM, that indicates that it was either110

not available in the CMIP6 Google Cloud collection or issues with the available data were found. Table B1 lists all GCMs

with ScenarioMIP and CMIP experiment output participating in CMIP6 and details why certain GCMs were excluded. The

GCMs included in the GDPCIR dataset provide broad coverage across the spread of CMIP6 models, including GCMs with

high equilibrium climate sensitivity (ECS) such as CanESM5, HadGEM3-GC31-LL, and UKESM1-0-LL, and those with low

ECS such as INM-CM4-8 and INM-CM5-0 (Meehl et al., 2020).115

In addition to the last 65 years of the historical CMIP experiment, we included four 21st century ScenarioMIP experiments

so as to span a range of possible future climate trajectories. These trajectories are defined by a combination of Shared Socioe-

conomic Pathways (SSPs) and Representative Concentration Pathways (RCPs): SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5

(Riahi et al., 2017) and make up the “Tier 1”, or top priority, experiments in CMIP6. For each GCM, we select a single en-

semble member. When it was available in the Google Cloud (GC) CMIP6 collection, we used the r1i1p1f1 ensemble member120

(also called variant ID), where r refers to the realization (or ensemble member), i refers to the initialization method, p refers

to the physics scheme used in the simulation and f refers to forcing data configuration. Table 1 lists the ensemble members for
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each GCM that we included and Table B1 contains more detailed information as well). We did not include simulations that

had output populated with NaNs for some years or did not have complete spatiotemporal coverage. For example, the Hammoz-

Consortium GCM is not included because its temperature output available through the Google Cloud CMIP6 collection did125

not extend past 2055. We also did not include the Community Earth System Model from the National Center for Atmospheric

Research (NCAR) because there was no historical daily surface variable output available through NCAR for the historical ex-

periment. A full list of reasons why some GCMs were excluded for quality control can be found in Table B1. We perform bias

adjustment and downscaling on a subset of the historical CMIP experiment (1950–2014) and ScenarioMIP scenarios (2015–

2100) with a historical training period from 1995 to 2014, consistent with the IPCC AR6 reference period. The full dataset130

includes 25 GCMs (Table 1), with downscaled output for all four SSPs available for the majority of those GCMs.

We standardize calendars across all GCMs included in the dataset by converting them to a 365-day (e.g., “no-leap”) calendar.

Leap days are removed for GCMs with 366-day calendars. For the two GCMs on 360-day calendars (the Hadley Centre

models), we follow the method in the downscaled CMIP5 LOCA dataset Pierce et al. (2014) described on the LOCA website

(Pierce, 2021). Five days per year are chosen randomly to add to the calendar, each in a given fifth of the year. Feb. 29th is135

always missing. For each of the days that are added, a day value is produced by averaging the adjacent days. For example,

if Feb. 16th is the day added in the first fifth of the year for a given year, it will be the average of Feb. 15th and Feb. 17th.

Choosing a random day in a fifth of the year versus the same five days every year mitigates overall undesired effects on the

statistics of particular days of the year or annual cycle statistics when converting from a 360-day to 365-day calendar.

GCM Institution
Ensemble

member

SSPs

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ACCESS-ESM1-5

Commonwealth Scientific and

Industrial Research Organisation,

Aspendale, Victoria, Australia

r1i1p1f1 ✓ ✓ ✓ X

ACCESS-CM2

Commonwealth Scientific and

Industrial Research Organisation,

Aspendale, Victoria, Australia

r1i1p1f1 X ✓ ✓ X

BCC-CSM2-MR
Beijing Climate Center,

Beijing, China
r1i1p1f1 ✓ ✓ ✓ ✓

CanESM5

Canadian Centre for Climate

Modelling and Analysis,

Victoria, BC

r1i1p1f1 ✓ ✓ ✓ ✓

CMCC-CM2-SR5

Fondazione Centro

Euro-Mediterraneo

sui Cambiamenti Climatici,

Lecce, Italy

r1i1p1f1 ✓ ✓ ✓ ✓
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Table 1 continued from previous page

GCM Institution
Ensemble

member

SSPs

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

CMCC-ESM2

Fondazione Centro

Euro-Mediterraneo

sui Cambiamenti Climatici,

Lecce, Italy

r1i1p1f1 ✓ ✓ ✓ ✓

EC-Earth3 EC-Earth-Consortium r1i1p1f1 ✓ ✓ ✓ ✓

EC-Earth3-AerChem EC-Earth-Consortium r1i1p1f1 X X ✓ X

EC-Earth3-CC EC-Earth-Consortium r1i1p1f1 X ✓ X ✓

EC-Earth3-Veg EC-Earth-Consortium r1i1p1f1 ✓ ✓ ✓ ✓

EC-Earth3-Veg-LR EC-Earth-Consortium r1i1p1f1 ✓ ✓ ✓ ✓

FGOALS-g3
Chinese Academy of Sciences,

Beijing, China
r1i1p1f1 ✓ ✓ ✓ ✓

GFDL-CM4

NOAA Geophysical Fluid

Dynamics Laboratory,

Princeton, NJ, USA

r1i1p1f1 X ✓ X ✓

GFDL-ESM4

NOAA Geophysical Fluid

Dynamics Laboratory,

Princeton, NJ, USA

r1i1p1f1 ✓ ✓ ✓ ✓

HadGEM3-GC31-LL

Met Office Hadley Centre,

Exeter, Devon,

United Kingdom

r1i1p1f3 ✓ ✓ X ✓

INM-CM4-8
Russian Academy of Science,

Moscow, Russia
r1i1p1f1 ✓ ✓ ✓ ✓

INM-CM5-0
Russian Academy of Science,

Moscow, Russia
r1i1p1f1 ✓ ✓ ✓ ✓

MPI-ESM1-2-HR
Deutscher Wetterdienst,

Offenbach am Main, Germany
r1i1p1f1 ✓ X X ✓

MPI-ESM1-2-LR

Max Planck Institute for

Meteorology,

Hamburg, Germany

r1i1p1f1 ✓ ✓ ✓ ✓
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Table 1 continued from previous page

GCM Institution
Ensemble

member

SSPs

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

MIROC-ES2L

Japan Agency for Marine-Earth

Science and Technology,

Kanagawa, Japan

r1i1p1f1 ✓ ✓ ✓ ✓

MIROC6

Japan Agency for Marine-Earth

Science and Technology,

Kanagawa, Japan

r1i1p1f1 ✓ ✓ ✓ ✓

NESM3

Nanjing University of

Information Science and

Technology, Nanjing, China

r1i1p1f1 ✓ ✓ X ✓

NorESM2-LM
NorESM Climate Modeling

Consortium, Oslo, Norway
r1i1p1f1 ✓ ✓ ✓ ✓

NorESM2-MM
NorESM Climate Modeling

Consortium, Oslo, Norway
r1i1p1f1 ✓ ✓ ✓ ✓

UKESM1-0-LL

Met Office Hadley Centre,

Exeter, Devon,

United Kingdom

r1i1p1f2 ✓ ✓ ✓ ✓

Table 1: Full list of Coupled Model Intercomparison Project (CMIP6) GCMs included in the GDPCIR dataset along with their

corresponding institutions and the available SSPs for each GCM.

2.2 Reference data140

We use the European Center for Medium-Range Weather Forecasting (ECMWF) Reanalysis v5 (ERA5) as the historical

reference dataset for bias adjustment and downscaling (Hersbach et al., 2018, 2020). While there are shortcomings for any

reanalysis dataset, our goal was to select a reference dataset that performed well in comparison to observations and other

reanalysis datasets particularly for extreme temperatures and precipitation in highly populated areas. Sheridan et al. (2020)

compared observed extreme temperature days in the United States and Canada to three reanalysis products and found that145

ERA5 matched station data most closely, even in comparison to its higher-resolution counterpart, ERA5-Land. Other studies

(e.g., Mistry et al., 2022; McNicholl et al., 2022) compared ERA5 temperatures globally to station observations and found

that it performed well, with some reduced performance in tropical areas. Similar biases for precipitation in the tropics have

also been noted; Hassler and Lauer (2021) and Tarek et al. (2020) found that ERA5 overestimated precipitation rates over the

Atlantic Ocean and Indian Ocean. Nevertheless, the bias in ERA5 was lower than in other reanalyses products.150
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In addition to the performance of ERA5 in relation to other reanalysis datasets, it is also operationally maintained in near-

real-time by ECMWF and cloud-optimized, available as a zarr store from Google Cloud and AWS. ERA5 reanalysis data is

produced and archived on a reduced Gaussian grid with a resolution of N320, meaning that there are 320 quasi-regularly spaced

latitude points from pole to equator, at a 31 km ( 0.28◦) resolution. We obtained global, hourly temperature and precipitation

estimates from 1979 through 2018 on a regular (latitude-longitude) Gaussian grid at the same resolution to minimize the155

impact of interpolation from the Copernicus Data Service regridder, particularly on precipitation. We derived daily maximum

and minimum temperatures by taking the daily maximum and minimum of the hourly values and total daily precipitation by

taking the sum of hourly values. ERA5 hourly precipitation values represent cumulative precipitation during the preceding

hour, thus cumulative daily precipitation for a given day is the sum of hourly values minus the first hour and including the first

hour of the following day. We then subsetted the ERA5 daily surface variables to 1995–2014 to be consistent with the historical160

reference period used in Masson-Delmotte et al. (2021), finally, we removed leap days. We used the resulting 20-year ERA5

dataset as the historical reference data for bias adjustment and downscaling.

3 Methods

3.1 Statistical bias adjustment with the QDM method

In this study, our goal was to emphasize downscaling and bias adjustment methods that better preserve the high tails of distri-165

butions, but within the constraints of the level of method complexity that could be undertaken given the scale of this project.

Though some multivariate statistical methods might have better preserved joint correlations between variables, such as Multi-

variate Bias adjustment (Cannon, 2018), the computational intensity of even running a univariate method at this scale precluded

the choice of a multivariate method. Some studies have also found that multivariate methods may lead to degraded results for

one or more variables (e.g., temperature) that are being jointly bias-adjusted and/or downscaled, and also may perform poorly170

under projected climate change due to bias nonstationarity (Van de Velde et al., 2020; François et al., 2020). Choosing a method

that would not degrade temperature projections was necessary given the role of temperature as a key driver of future climate

impacts.

With these constraints in mind, and after evaluating a number of statistical methods and their effects on the distribution

tails, we chose the QDM method. The QDM method preserves model-projected trends in quantiles by applying simulated175

changes in the quantiles on top of the historical reference distribution (Cannon et al., 2015). Absolute changes or relative

changes are preserved for additive or multiplicative variables, respectively. As a result, treatment of the tails is improved

over other forms of quantile mapping such as empirical quantile mapping (EQM), detrended quantile mapping (DQM), and

various parametric and non-parametric variants of each (Qian and Chang, 2021). A limitation of the method, however, is that

it is highly sensitive to the choice of reference dataset, especially for precipitation, and extreme temperature and precipitation180

indices (Casanueva et al., 2020). As a result, the biases in the reference data presented in Section 2.2 are transferred to the

bias-adjusted and downscaled dataset, which is a limitation of the final dataset. Results presented here should be taken in that

8



context. Nonetheless, its performance at the tails and relatively inexpensive compute footprint in comparison to multivariate

quantile mapping or machine learning-based methods makes it a favorable method choice for a project of this scope and aim.

The QDM method adjusts the bias in projected values for a historical or future time period by first shifting the distribution185

to be consistent with the reference dataset and then imposing the relative model-projected trend, resulting in a bias-adjusted

projection that has a distribution consistent with that of the reference dataset and also has a relative trend consistent with the

source model, for a given quantile. In detail, following the notation in Cannon et al. (2015), let Fm,p[·], Fm,h[·] and Fo,h[·]
denote, respectively, the CDF from model m in future period p, the CDF from model m in the historical period h and the

CDF from the reference data o in the historical period h. Let xm,p be a modeled future value at time t (for example, maximum190

temperature on 13 March 2025), and let x∗
m,p be the associated adjusted value for the same future date. In addition, let τm,p

denote the non-exceedance probability associated with xm,p, i.e τm,p = Fm,p[xm,p]. F−1[·] represents the inverse CDF. The

adjusted value is defined as follows for an additive variable:

x∗
m,p(t) = xm,p(t)+ (F−1

o,h [τm,p(t)]−F−1
m,h[τm,p(t)]) (1)

Rearranging the right-hand side shows that Equation 1 is equivalent to introducing the model-projected change at a given195

quantile (τm,p) on top of the reference data value at that quantile:

x∗
m,p(t) = F−1

o,h [τm,p(t)]︸ ︷︷ ︸
reference value at model quantile

+(xm,p(t)−F−1
m,h[τm,p(t)])︸ ︷︷ ︸

model trend in quantile

(2)

For a multiplicative variable such as precipitation, the right-hand side in equations (1) and (2) becomes multiplicative rather

than additive, i.e., Equation 1 becomes x∗
m,p = xm,p ∗F−1

o,h [τm,p]/F
−1
m,h[τm,p]. This results in model projections that preserve

each model’s change in distribution shape (including high and low quantiles) while simultaneously making the training-period200

distribution consistent with the reference dataset.

3.2 Statistical trend-preserving downscaling with the QPLAD method

A key goal of downscaling for climate impacts is increasing spatial resolution in a way that both preserves climate trends

and introduces realistic local climatology and variability. In observations, the climate signal at a coarser scale will always

– by definition – represent a smoothed version of local climate trends. Similarly, high-resolution climate projections need205

to have a distribution that is consistent with locally observed climate. Downscaling may break consistency with the original

GCM dynamics, but this is necessary to produce the spatial heterogeneity required for modeling climate impacts (Maraun

and Widmann, 2018). Downscaling methods typically work by introducing the climatological fine reference spatial pattern to

the coarse resolution simulated data, as a difference or ratio between fine and coarse. This can have the effect of modifying

trends and spatial patterns in the tails of the simulated distribution. To address this, we developed the QPLAD method. The210

QPLAD method uses the difference in empirical quantiles of the reference data - each quantile is a given day, or “analog” of the
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reference training period – at coarse and fine resolution to downscale the coarse resolution GCM simulations. The outcome is a

downscaled dataset that preserves the changes in coarse GCM quantiles in time while also reflecting the within-coarse-grid cell

spatial heterogeneity from the fine reference data. As a result, localized, extreme changes in the downscaled data are consistent

with the GCM projections.215

Formally, QPLAD involves computing and applying “adjustment factors” for each quantile in the reference data over the

training period. First, an empirical CDF, Fo,h,c[·], of the reference data o is calculated, over the training period h at the

relatively “coarse” resolution c at which bias adjustment was applied to GCMs (1◦ in this study). The method described here

in the GDPCIR pipeline assumes that QDM bias adjustment was performed at a coarser resolution than the target resolution

for downscaling, but theoretically, one could apply QPLAD to unadjusted GCM simulations as well. Further detail on our220

implementation can be found in Section 4.3. The number of empirical quantiles q is equal to the number of timesteps in the

training period n (e.g., a training period of 20 years with a 31-day rolling window has n= q = 20 ∗ 31 = 651, since each

empirical quantile corresponds to a day in the training period). Next, the reference data at “fine” resolution is sorted into the

same order as the coarse resolution empirical CDF, Bo,h,f [·], where the set B represents the fine reference timesteps (days)

sorted the same as the coarse CDF Fo,h,c[·] and f refers to the fine resolution. Adjustment factors are then calculated as the225

difference or ratio (for an additive or multiplicative variable, respectively) between the fine and coarse resolution values for

each historical analog day in the sorted data (i.e., for each empirical quantile). For an additive variable, adjustment factors af

are as follows:

af(qc) =B−1
o,h,f (qc)−F−1

o,h,c(qc) (3)

for all coarse empirical quantiles qc, where B−1[·] represents the fine reference values (rather than quantiles) in sorted order.230

Similar to QDM detailed above, the adjustment factors are applied to coarse resolution simulations by first determining the

quantile of a given time step’s value, Fm,p,c(xm,p,c) = τm,p where τm,p is the non-exceedance probability associated with the

value xm,p,c. For an additive variable, the downscaled value for a given time step t in the projection simulation is defined as:

x̃m,p,f (t) = xm,p,c(t)+ afqc (4)

This results in high-resolution, downscaled projections where the subgrid cell heterogeneity from the original coarse reso-235

lution contains the more extreme days from the higher-resolution reference data. By definition, all of the target fine-resolution

grid cells encompassed by the coarse-resolution grid cell will have downscaled values that average to the value for the coarse

grid cell. No spatial smoothing is applied in order to maintain the original GCM quantile changes. In this way, “quantile-

preserving” refers to maintaining the quantile information from the coarse-resolution day, and “localized” refers to the fine-

resolution historical analogs located within a coarse-resolution grid cell. The method produces downscaled projections that240

add high-resolution information from the reference data training period and ensure that the fine-resolution spatial make-up of

more extreme days from the coarse simulations are coherent and analogous to those found in the reference data. Thus, ex-

treme days are also preserved in the downscaled projections in a relative sense (in a similar manner to QDM). Note that the
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QDM and QPLAD methods, which explicitly preserve changes in the quantiles, do not necessarily preserve model-projected

changes in the mean due to using empirical CDFs, which is a non-parametric approach. Taking a parametric approach and245

using an analytical CDF would preserve changes in the mean, but would also impose a distribution to the CDFs. As Lehner

et al. (2021) discuss, the question of whether to take a parametric or non-parametric approach in bias adjustment is an active

area of research, but the non-parametric approach in the QDM and QPLAD methods is more common and generally preferred.

3.3 Wet day frequency adjustment

In bias-adjusting and downscaling daily precipitation data, the skewness of precipitation distributions must be accounted for250

(Maraun, 2013). GCMs are known to have a “drizzle day” problem where the frequency of wet days with low precipitation in

GCMs has a high positive bias relative to observations (Dai, 2006). To address this issue, we apply a “pre” wet day frequency

(WDF) adjustment to both daily reference and GCM data after regridding both datasets to the 1◦ grid and before bias adjusting.

We apply a second “post"” WDF adjustment after QPLAD downscaling where all downscaled daily precipitation values below

1.0 mm day−1 are replaced by 0 mm day−1.255

The approach here is modified from Cannon et al. (2015). For daily reanalysis and GCM precipitation before bias adjustment,

all values at the 1◦ grid that are less than a specified threshold are replaced by nonzero uniform random values less than the

threshold. Initially, we used the same threshold and nonzero uniform random values as Cannon et al. (2015). However, we

found that in grid cells where the seasonality and magnitude of daily precipitation values differed by a large amount between

model and reanalysis, using the Cannon et al. (2015) threshold (0.05 mm day−1) and adjustment could result in those grid cells260

having bias-adjusted precipitation values that were not physically realistic for the season and geographic location. Thus we

raised the threshold to 1.0 mm day−1 (similar to Hempel et al., 2013) and the lower bound of the uniform random distribution

from 0 to 0.5 mm day−1. After downscaling as mentioned, we replace all values below the 1.0 mm day−1 threshold with 0 mm

day−1.

4 Bias adjustment and downscaling pipeline implementation265

In this section, we describe the pipeline for ingesting CMIP6 global, daily surface variable output from the CMIP6 Google

Cloud collection, and applying statistical bias adjustment and downscaling methods to produce a global, daily gridded dataset

at a 0.25◦ horizontal resolution for four emissions pathways, 25 GCMs and three surface variables. The steps to produce the

dataset are as follows: We first standardize the reference dataset and GCM output. We then apply a modified version of the QDM

bias adjustment method at the 1◦ grid resolution. Next, we apply the QPLAD method to the bias-adjusted output to downscale270

the data to a 0.25◦ grid resolution. For precipitation, we apply a wet day frequency adjustment before bias adjusting and after

downscaling. We apply additional post-processing for all surface variables after downscaling. These steps are diagrammed in

Figure 1 and detailed in the remainder of Section 4.
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Figure 1. Diagram of CMIP6 bias adjustment and downscaling pipeline.275
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4.1 Standardizing simulation and reference data

Although the modeling centers participating in the CMIP6 experiments follow Climate and Forecast (CF) conventions (https:

//cfconventions.org/), significant differences remain in how GCM output is archived. The native resolution of GCMs also

varies considerably. For example, four EC-Earth Consortium models have a relatively high resolution (spectral grids approx-280

imately 0.7◦ x 0.7◦) and the CCCma CanESM5 GCM has a relatively low resolution (2.5◦ x 2.5◦). Consequently, we begin

by standardizing naming, dimensions, and coordinates for all GCMs and removing leap days. Daily GCM outputs are regrid-

ded from the models’ native resolution to a regular 1◦ x 1◦ global lat-lon grid using the xESMF Python regridding package

(https://xesmf.readthedocs.io/). We use the bilinear regridding method for maximum and minimum surface temperature and

first-order conservative area remapping for precipitation to conserve total precipitation between the native GCM grid and the285

1◦ x 1◦ regular lat-lon grid. Bilinear regridding was chosen for temperature variables since they are continuous quantities,

whereas first-order conservative-area regridding was chosen for precipitation for its ability to conserve quantities, thereby not

introducing or destroying water. However, it should be noted that generally, any regridding method applied to precipitation

alters its statistical properties and can have some undesirable impact on high quantiles (Rajulapati et al., 2021), a caveat that is

unavoidable when standardization across GCMs is required.290

The same standardization is applied to daily ERA5 reanalysis at the regular Gaussian, F320 grid. We prepare three versions

of ERA5 that are used in the QDM-QPLAD method. For QDM bias adjustment, ERA5 is regridded from the F320 grid to the

1◦ x 1◦ regular lat-lon grid using the regridding methods described above (bilinear for temperature variables and conservative-

area remapping for precipitation). For downscaling with QPLAD, the same methods are applied to regrid ERA5 from the

F320 grid to the 0.25◦ x 0.25◦ regular lat-lon grid (ERA5fine), which is the final grid of the GDPCIR dataset. Then, for295

use in computing the QPLAD adjustment factors, the 1◦ x 1◦ version of ERA5 used in bias adjustment is resampled (e.g.,

nearest-neighbor regridded) to the 0.25◦ x 0.25◦ regular lat-lon grid (ERA5coarse).

4.2 Implementation of QDM bias adjustment

GCM projections for each variable, GCM, experiment, pixel, year, and day at a 1◦ x 1◦ resolution are bias adjusted using the

xclim Python package QDM implementation (Logan et al., 2021). To do this, QDM models for each pixel and day of the year300

are trained on a rolling 31-day centered window (± 15 days) of daily ERA5 and GCM historical data from 1995 to 2014. For

ERA5 reference data, we include the last 15 days from 1994 and the first 15 days from 2015 such that each day group contains

620 values (20 years x 31 days). For CMIP6 historical data, since the simulation ends in 2014, we do not include the additional

15 days from 2015, or 1994 for consistency. Each trained QDM model (per pixel and day of year) has 100 equally spaced

quantiles in our implementation. We used an additive adjustment for maximum and minimum temperature and a multiplicative305

adjustment for precipitation. Each variable was bias-adjusted separately.

We apply the adjustment factors from the trained QDM models to historical GCM simulations and future GCM projections

for each SSP on a per variable/GCM/pixel/year/day basis. For each year in the GCM data, daily data are grouped using a

21-year rolling window and a rolling 31-day window (as in the training step, with ± 15 days). When adjusting the historical
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CMIP experiments, the first eleven years (2015–2025) of the SSP3-7.0 simulation are concatenated so that the full historical310

period input dataset encompasses the years 1950–2025 to accommodate the rolling window in the year 2014. We use SSP3-7.0

to best simulate the current trajectory of emissions since 2015. If SSP3-7.0 output is unavailable for a given GCM, we use

SSP2-4.5. For the few GCMs in which neither SSP3-7.0 nor SSP2-4.5 output is available, we use SSP1-2.6. When adjusting

each SSP, the historical simulation’s last eleven years (2004–2014) is concatenated so that the full projection period input

dataset encompasses the years 2004–2100 to accommodate the rolling window. At the beginning and end of the historical +315

projection time periods, fewer days can be included in the adjustment step resulting in historical years 1950–1960 having fewer

days in their rolling windows and projection years 2090–2100, with the exception of GCMs for which output was available past

2100 in the CMIP6 Google Cloud collection at run-time. For the beginning (ends) of each year’s 21-year adjustment window,

an additional 15 days from the previous (following) year is included such that each day group contains 651 values (21 years x

31 days). We use 100 equally-spaced quantiles as in the training step; adjustment factors for quantiles within the range [0.005,320

0.995] are linearly interpolated from the nearest computed adjustment factor and constant extrapolation is used to extend the

range to 0 and 1 for accommodating the extreme tails. This method is based on the "QMv1" method evaluated by Themeßl et al.

(2012) and means that new extreme values can occur in the future period or in the historical period outside of the calibration

period. Because this method can rarely result in physically unrealistic extremes, we apply an additional post-processing step

described in Section 4.3.1.325

One pitfall of applying QDM separately to maximum and minimum temperatures is that minimum temperatures may be

larger than maximum temperatures on the same day in some parts of the world with very low diurnal temperature ranges, such

as at high latitudes (Thrasher et al., 2012). As a post-processing step, we swapped minimum and maximum temperatures for

the small number of pixels and days when the minimum temperature exceeded the maximum temperature after bias adjustment

and downscaling. This post-processing is described further in Section 4.3.1. We initially tried to avoid this issue by adjusting330

the maximum temperature using an additive adjustment, separately adjusting the diurnal temperature range (DTR) using a

multiplicative adjustment and then deriving the minimum temperature by subtracting DTR from the maximum temperature,

following Agbazo and Grenier (2020). However, we found that this led to unrealistically large DTR values in some parts of the

globe, particularly at higher latitudes. Additionally, some raw GCM data had a small number of minimum temperatures greater

than the corresponding maximum temperatures, most often in polar regions. Bias adjustment of DTR then further inflated335

this undesirable behavior. Therefore, we bias-adjusted and downscaled maximum and minimum temperatures separately rather

than bias-adjusting DTR.

4.3 Implementation of QPLAD

After applying QDM bias adjustment, we downscale projections for each variable, GCM, experiment, pixel, year, and day to a

0.25◦ x 0.25◦ resolution, using a similar approach to the QDM bias adjustment. To facilitate this, we implemented the QPLAD340

method in a forked version of the xclim Python package (Logan et al., 2021) to leverage the existing parallelization that we

used for QDM. Before downscaling, the bias-adjusted projections are resampled from the 1◦ x 1◦ grid to the 0.25◦ x 0.25◦
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target resolution. The method is consistent across variables as each of the 16 0.25◦ grid cells contained within each 1◦ grid cell

must have the same value. Reanalysis data preparation for QPLAD is described in Section 3.1.

As in bias adjustment, we use a rolling 31-day window (± 15 days) for each day of the year over the training period for each345

pixel. The last 15 days from 1994 and the first 15 days from 2015 are included such that each day group contains 620 values

(20 years x 31 days). We then downscale historical and future GCM simulation data using the QPLAD adjustment factors

(described in Section 3.2) for each variable, GCM, and experiment on a per pixel per day basis. Since 100 empirical quantiles

are used in QDM bias adjustment and 620 in QPLAD (each corresponding to an analog day), there is no 1:1 match between

the QDM and QPLAD quantiles. Consequently, for a given day, the quantile assigned during bias adjustment is used to select350

the nearest QPLAD quantile from the 620 possible adjustment factors for that day of year and pixel. Figure 2 demonstrates

the temporal and spatial dimensions of the QPLAD method for maximum temperatures around Miami, Florida. Due to its

coastal location, the QPLAD adjustment factors for these pixels will show strong land-sea spatial variation, making it an ideal

location to demonstrate the method. Panel 2a shows the sixteen spatial analogs (e.g., adjustment factors) for 15 August from

the fine reference data (within one 1◦ grid cell) corresponding to τm = 0.33 and the location of Miami, Florida. It is important355

to note that the “spatial analogs" are only spatial within a single 1◦ grid cell. By design, the downscaled values for these

sixteen gridcells will average to the bias-adjusted value at the 1◦ resolution xm with that quantile for that day of year. Panel

2b zooms in on the 0.25◦ grid cell containing Miami, Florida, and shows all possible adjustment factors for all quantiles and

all days. For most days of the year, the adjustment factor is moderating the bias-adjusted value, which is expected given the

coastal location of Miami. Panel 2c is a slice of Panel 2b showing all possible adjustment factors for 15 August, e.g., all 620360

analogs. Finally, Panel 2d shows the bias-adjusted and downscaled time series of maximum temperatures for 2080 with the

15 August values highlighted. The spatial adjustment factor for that quantile (τm = 0.33) is -1.5◦ and was applied additively

to the bias-adjusted maximum temperature value for that day, thus that value is the difference between the bias-adjusted and

downscaled temperatures for 15 August 2080 shown in panel 2d.

365

Figure 2. Diagram of QPLAD downscaling method applied to maximum temperature. 15 August is used as an example day

grouping with τ = 0.33 corresponding to the actual quantile for 15 August 2080 in the bias-adjusted output for SSP2-4.5. (a)

shows spatial adjustment factors for τ = 0.33 for 15 August, (b) shows adjustment factors for each day of the year for Miami,

Florida, (c) shows all possible adjustment factors (corresponding to all quantiles) for 15 August, and (d) shows the bias-adjusted

and downscaled maximum temperature data for 2080 and the difference between the bias-adjusted and downscaled values for370

15 August before and after the analog-based adjustment factor for τ = 0.33 has been applied. The example bias-adjusted and
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downscaled data comes from the HadGEM3-GC31-LL GCM, produced by the United Kingdom Meteorological Office Hadley

Centre.

4.3.1 Additional post-processing375

After QPLAD downscaling, we apply an additional post-processing step that is variable-dependent. When DTR is very low in

the source GCM, we found that minimum temperature could exceed maximum temperature after bias adjustment and downscal-

ing. For the small number of timesteps and gridcells that have this behavior, we swap maximum and minimum temperatures.

We found that these conditions infrequently occurred in high-population areas, being concentrated in the polar oceans, and that

this swap did not have a significant effect on seasonal or annual cycle statistics. Figure A1 shows the number of daily timesteps380

with maximum and minimum temperatures swapped over a 21-year period outside of the calibration period (1960–1980) for all

GCMs. The concentration of this in the Arctic and Antarctic and the heterogeneity of spatial patterns across GCMs is apparent.

Figure A2 shows the same metric except for SSP3-7.0, 2080–2100.

Precipitation requires a more complex additional bias adjustment for a limited number of grid cells and timesteps globally.

Adjustment factors from QDM bias adjustment at higher quantiles (e.g., above the 95th quantile) could become physically385

unrealistic when seasonal cycle behavior and precipitation magnitudes differed significantly between reanalysis reference data

and the GCMs. If the GCM was biased low relative to reanalysis, this bias increased the adjustment factors further. Figures

A3 and A4 illustrate this behavior for two cities, Delhi, India and Cairo, Egypt, for a single GCM, MIROC6, and for a single

scenario, SSP2-4.5. Both figures show full precipitation time series for the reference, raw GCM, bias-adjusted and down-

scaled GCM, and bias-adjusted, downscaled, and post-processed GCM. The magnitude, as well as the infrequent occurrence,390

is particularly apparent in Figure A3. We found that adjustment factors would dramatically increase if the GCM had a strong

increase in precipitation signal or if total daily precipitation values were close to zero. However, an increasing signal did not

need to be present to incur such a dramatic increase; we also found this behavior in the historical period outside of the train-

ing period if a given historical period either a) had a trend that was different from the training period trend or b) contained

out-of-sample values that were not present in the training period. The confluence of these biases was insidious for GCMs that395

were downward-biased relative to reference data and had seasonal precipitation cycles different than those in reference data

in the same areas. This was noticeable in the intertropical convergence zone (ITCZ). To correct for these issues in a robust

way, we applied a per-pixel post-downscaling adjustment at the target resolution that was based on the maximum values of

precipitation in the reference data and the fractional (SSP-dependent) increase in maximum precipitation between the historical

and projected GCM simulations. Specifically, the maximum precipitation constraint for each pixel is defined as:400

Pmax(model,SSP,t) =max(Preference,t1)×max

(
1,

max(Pmodel,SSP,t2)

max(Pmodel,historical,t1)

)
(5)
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where t refers to a given day, t1 is defined as the training period (1995–2014), model refers to a given GCM, SSP represents

one of the SSP trajectories, t2 corresponds to the maximum precipitation in a 21-year rolling window centered on the year that

t is in, and Pmax(model,SSP,t) refers to the maximum allowed precipitation at time t for a given GCM and SSP. Scaling by405

the ratio of maximum precipitation in a future 21-year rolling window to historical precipitation allows for the scaling factor

to increase during the projection period if the GCM has an increase in the rolling 21-year maximum daily precipitation for that

pixel. However, if the corresponding maximum daily precipitation decreases in the future (e.g., a scaling factor less than 1),

the maximum precipitation value in the reference period for that pixel forms the constraint. After this daily constraint term is

estimated for each pixel, year, experiment, and GCM, the final result is set equal to the minimum of the original bias-adjusted410

and downscaled value and this constraint. Figure A5 shows the number of daily timesteps that were clipped in a 21-year

historical period (1960–1980) for precipitation. The number ranges from approximately 10-20 timesteps across GCMs. Figure

A6 shows the same metric for SSP3-7.0 end-of-century, 2080–2100. The clipping pattern in and near the ITCZ is much more

pronounced in this figure, with significant variation across GCMs in the number of clipped timesteps.

4.4 GDPCIR dataset standardization and technical guidelines for users415

We save bias-adjusted and downscaled output for each GCM and scenario as a separate zarr store, chunked in time and space

to facilitate analysis-ready use. In preparing the final output, we followed Climate and Forecast (CF) convention standards

(Hassell et al., 2017) where possible but did not explicitly enforce them in our variable attributes. However, the metadata for

each zarr store and variable contains extensive information on source GCM, source URL, and other attributes that may be of

interest to the user. Metadata for each zarr store inherits all metadata from its source GCM, such as experiment id, native grid420

information, ensemble member id, source id, institution id, etc, and then we add additional metadata pertaining to the pipeline,

denoted by the prefix “dc6”. Additional metadata fields specific to the pipeline include method information, creation date,

licensing information, downscaling pipeline grid details, and pipeline versioning for reproducibility.

In total, the GDPCIR dataset is 23 TB. It is publicly available via Microsoft’s Planetary Computer, and notebooks for ex-

ample usage are provided as well that utilize the Planetary Computer’s API (https://planetarycomputer.microsoft.com/dataset/425

group/cil-gdpcir/). Hosting the GDPCIR dataset via the Planetary Computer allows it to be used in conjunction with a number

of other publicly available geospatial datasets.

4.5 Transparency and reproducibility with commercial cloud computing

Our bias-adjusting and downscaling pipeline is novel because it was developed and run entirely with commercial cloud comput-

ing infrastructure. Prototypes of the pipeline were built and run on Microsoft Azure, while later production runs used Google430

Cloud Platform. As such, we wanted the pipeline to be reasonably replicable, open, and not bound to the proprietary hardware

or software of a single cloud-computing vendor.

We ran steps of the pipeline in containerized software applications. These containers are a common way to hold software

applications with their dependencies so that the application can run reliably on different machines. We orchestrate the contain-

ers with Argo Workflows (https://argoproj.github.io/argo-workflows/) on Kubernetes (https://kubernetes.io/), an open-source435
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platform for managing containerized applications on a robust computer cluster that can quickly scale up or down depending

on the computing resources needed. Kubernetes is ubiquitous across cloud vendors, helping us to avoid vendor lock-in. The

source code for the containers and manifests orchestrating the workflow steps are both available online under an open-source

license in public GitHub repositories.

Infrastructure is an additional challenge as it can be practically impossible to make cloud infrastructure truly replicable440

because commercial cloud vendors iterate their products and platforms very quickly. Despite this, we wanted to be transparent

about the cloud infrastructure used for the most intense stages of this pipeline. We provisioned and configured the cloud

infrastructure and the Kubernetes clusters from the project’s public GitHub repository. This means that pipeline infrastructure

and configuration were stored as code and automatically provisioned directly from the repository. We provisioned Google

Cloud and Azure resources, including storage and a Kubernetes cluster, using Terraform (https://www.terraform.io/). Terraform445

is a common open-source tool for provisioning computer infrastructure. Once provisioned, the software on the Kubernetes

clusters was managed with ArgoCD (https://argo-cd.readthedocs.io), another open-source tool to deploy Kubernetes resources

from the repository in near real-time. Additional information on computing resources is described in Appendix C.

5 Results

In this section, we evaluate the GDPCIR dataset and assess the robustness and performance of the QDM and QPLAD methods.450

The QDM and QPLAD methods, as applied, preserve changes in GCM quantiles on any given future day, where that day’s

quantile is determined by the ±15 day and ± 10 year time window from the raw GCM. However, because the bias adjustment

and downscaling are applied on a rolling, daily basis, it means that the adjustment factors are varying every day and year.

Thus, when evaluating the final resulting bias-adjusted and downscaled GCM time series, there will likely be some aggregate

modification to the quantile changes. In this section, we evaluate the extent to which quantile changes are preserved and how455

well the historical distribution’s biases are corrected by examining city-level, state-level, and country-level metrics.

5.1 Preserving quantile trends globally

Here we examine the preservation of changes in higher quantiles at a seasonal frequency. For each GCM, season, and pixel,

we compute the change in the 95th percentile of daily maximum temperature in the raw GCM, the bias-adjusted GCM, and

the bias-adjusted and downscaled GCM over the period 2080–2100 relative to 1995–2014 for SSP3-7.0. Figure 3 shows the460

comparison of quantile change across these stages of processing and averaged over all GCMs in the GDPCIR dataset and

indicates the level at which the source GCM quantile changes are maintained or modified. Note that in addition to the rolling

adjustment factors mentioned above, here the window over which the 95th percentile is computed (e.g. for each season) is also

different than the QDM-QPLAD method application, implying some further, albeit minor, differences. We opted to look at

this metric because it better demonstrates how the methods have modified the original data in more aggregate terms which are465

commonly used in impacts modeling and therefore may be more useful to potential users.
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Figure 3. Changes in the 95th percentile of seasonal daily maximum temperature in 2080–2100 relative to 1995–2014 in the

raw GCMs (panels a, d, g, j), the difference in the 95th percentile change between the bias-adjusted and the raw, GCMs (panels

b, e, h, k), and the difference in the 95th percentile change between the downscaled and the bias-adjusted GCMs (panels c, f, i,470

l) for seasons DJF (panels a–c), MAM (panels d–f), JJA (panels g–i), and SON (panels j–l). Results shown are the mean across

the GCM ensemble for the scenario SSP3-7.0.
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Although the post-processing described in Section 4.3.1 is only applied to downscaled output within the downscaling

pipeline, it is applied separately to bias-adjusted, pre-downscaled results shown here (e.g. Figure 3, second column) such475

that bias-adjusted and downscaled results are handled consistently for the purposes of this comparison. As noted above, it is

expected that there will be slight modifications in the raw GCM-projected changes. Moreover, here we show the analytical 95th

percentile of days within each season and averaged over GCMs, rather than using an empirical CDF corresponding to the actual

bias-adjusted day closest to the 95th percentile. The raw, cleaned GCM data is at the original resolution of the GCM output

and bias-adjusted GCM data is at a 1◦ resolution, whereas the downscaled data is at a 0.25◦ resolution, so the bias-adjusted480

data is coarser and, by construction, less extreme than the downscaled data. Some broad features emerge in Figure 3: the first

column shows that generally in the raw, cleaned GCMs, the 95th percentile of every season is increasing everywhere, and more

so on land and over the Arctic (except for in MAM when sea ice extent is at a maximum and surface temperatures remain

near the freezing point over ice). The bias adjustment tends to increase the 95th percentile changes by a modest amount on

average. Although the magnitude and extent vary by season, the vast majority of bias-adjusted percentile changes are within485

approximately 1◦C of the raw, cleaned GCM changes (Figure 3, second column). The downscaling step adds fine resolution

information that slightly modifies the change in 95th percentile in the bias-adjusted data, however in general changes between

the bias-adjusted data before and after downscaling is applied are on the order of a tenth of a degree Celsius. The largest differ-

ences appear over regions with large and variable (over the GCM ensemble) temperature gradients, such as near the edges of

sea ice coverage. A comparable figure for the 99th percentile is included in Appendix A (Figure A7) and shows a similar story490

with slight increased magnitudes (e.g. bias adjustment increases the 99th percentile by a bit more than the 95th percentile).

Precipitation has a similar but more nuanced and complex story. A longstanding challenge with bias adjustment of precipi-

tation at a global scale is dealing with the disagreement in the seasonal migration and magnitude of precipitation in the ITCZ

between reanalysis and GCMs. The ITCZ is a tropical “belt” where deep convection and heavy precipitation occur due to

convergence of the trade winds, and it migrates between 9◦N and 2◦N due to annual warming of sea surface temperatures (van495

Hengstum et al., 2016). GCMs exhibit bias in simulating tropical precipitation and this bias differs widely between CMIP6

models (Hagos et al., 2021; Tian and Dong, 2020). Similar to Figure 3, Figure 4 shows the 95th percentile of daily precipitation

for each season averaged across the GDPCIR ensemble for SSP3-7.0. Days with total precipitation less than 1 mm day−1 are

not included so as to only include wet days in the analysis. We also include the same figure showing the 99th percentile of

daily precipitation for each season in Appendix A (Figure A8). In comparing seasonal precipitation in reference data versus500

the ensemble mean before bias adjustment and downscaling (panels b, g, l, q), there is broad disagreement on the ITCZ present

year-round but particularly strong in Northern hemisphere summer and fall. Differences are notable in both the shape and the

strength of the ITCZ. The climate change signal (panels c, h, m, r) show 95th percentile changes generally increasing over most

land areas in the raw GCM ensemble mean and over the ITCZ, with broad decreases in precipitation over subtropical oceans

that vary by season. These ITCZ biases result in slight modifications in preserving GCM-projected relative changes in the505

quantiles. Although the biggest modifications of the change in the 95th quantile primarily occur over the oceans (due primarily

to the ITCZ bias), there are also some modifications in drier areas, such as Sub-Saharan Africa and parts of the Middle East.

In these areas bias adjustment results in a mild amplification of the already-increasing signal from the GCMs, again driven by
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differences in seasonality and magnitude between reanalysis and the GCMs. For example, the gridcells in Sub-Saharan Africa

in reference data shown in white (e.g. zero precipitation) have low but non-zero precipitation in the GCMs, an illustration of510

the "drizzle day" GCM problem (Dai, 2006). We apply the WDF correction discussed in Section 3.3 to mitigate the effects

of this disagreement but it does not completely solve the issue in the results. In comparing changes in the bias-adjusted data

to changes in the bias-adjusted and downscaled data (panels e, j, o, t), changes are most noticeable in Sub-Saharan Africa

as well, where the “post” WDF is applied to bias-adjusted and downscaled data in our pipeline but not to the bias-adjusted,

pre-downscaled data. Thus the right column, in essence, illustrates the effects of the WDF. To further understand the effects515

of the WDF as well as modification of seasonal changes in more arid regions, we show the same analysis as in Figure 4 and

Figure A8 for daily precipitation < 10 mm day−1, shown for the 95th percentile (Figure A9) and the 99th percentile (Figure

A10).

Figure 4. The 95th percentile of seasonal daily total precipitation for the reference (panels a, f, k, p) and raw, cleaned GCM520

(b, g, l, q) over the training period, 1995–2014. The change in the 95th percentile of seasonal daily total precipitation in 2080–

2100 relative to 1995–2014, as a ratio, in the raw, cleaned GCMs (panels c, h, m, r), the ratio of the 95th percentile change

between the bias-adjusted and the raw, cleaned GCMs (panels d, i, n, s), and the ratio of the 95th percentile change between

the downscaled and the bias-adjusted GCMs (panels e, j, o, t) for seasons DJF (panels a–e), MAM (panels f–j), JJA (panels

k–o), and SON (panels p–t). Results shown are the average for wet days across the GCM ensemble for the scenario SSP3-7.0.525
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5.2 Historical and future method performance for selected cities and regions

We further quantify the bias adjustment and trend preservation modification for highly populated cities and selected aggregated

regions containing the cities. Following the analysis in Bürger et al. (2012) and Cannon et al. (2015), we assess the performance

of the QDM and QPLAD methods by comparing the distributions of various CCI/CLIVAR/JCOMM Expert Team on Climate530

Change Detection and Indices (ETCCDI) metrics (Karl et al., 1999) as well as other aggregated values widely used in impacts

research, listed in Table 2. We compute these over the historical period in the bias-adjusted and downscaled data and compare

against their distributions in the reanalysis reference dataset. For the initial city analysis, we use a set of 17 highly populated

cities: Paris, France; Shanghai, China; Lagos, Nigeria; Delhi, India; Dhaka, Bangladesh; Mexico City, Mexico; Cairo, Egypt;

Moscow, Russia; São Paulo, Brazil; Miami, Florida; New York City, New York; Manila, Philippines; Istanbul, Turkiye; Mum-535

bai, India; Buenos Aires, Argentina; Tokyo, Japan; and London, United Kingdom. The first eight cities are inland cities and the

latter nine coastal cities. Later in this section, we examine the same indices for aggregated regions in which each of the cities

is located. The selected ETCCDI indices and the additional metrics include maximum and minimum temperature-based values

as well as values that are derived from total precipitation, ensuring that all variables included in the GDPCIR dataset are tested.

We examine the performance of these metrics across all GCMs included in the GDPCIR dataset, given the heterogeneity of540

temperature and precipitation signals.

Name Description

summer days
Annual count of days when daily

maximum temperature >25°C

tropical nights
Annual count of days when daily

minimum temperature >20°C

frost days Annual number of days under 0°C

days over 90 Annual number of days over 90°F

days over 95 Annual number of days over 95°F

seasonal maximum

temperature
Mean seasonal maximum temperature for each year

seasonal minimum

temperature
Mean seasonal minimum temperature for each year

wet days Annual count of wet days (daily total precipitation >1mm)

wet days with a

specified threshold

Annual count of moderate precipitation days

(daily total precipitation >10mm)

consecutive dry days
Annual maximum number of consecutive dry days

(daily total precipitation <1mm)

annual precip Annual precipitation
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Table 2 continued from previous page

Name Description

seasonal precip Total precipitation summed over seasons each year

Table 2: Selected moderate and extreme metrics for analyzing bias adjustment and downscaling algorithm performance over

cities and admin1 (state/province) regions.

5.2.1 Historical extremes indices

To check the historical distributions of the bias-adjusted and downscaled GCMs, we compute the selected indices listed in

Table 2 on an annual basis over the historical period for the raw GCM, bias-adjusted and downscaled GCM and reanalysis for

the 17 selected metropolises. The ETCCDI metrics, such as summer days, tropical nights, annual wet days, and consecutive545

dry days represent extremes affected by threshold behavior. Other more extreme temperature metrics not classified as ETCCDI

indices, such as days over 35◦C and days over 32.2◦C, are even more affected by threshold behavior. While those more extreme

temperature metrics and the seasonal and annual temperature and precipitation metrics are not classified as ETCCDI indices,

they are widely used as input data to sector-specific impacts modeling and thus are included here to guide users of the dataset.

Distributions of the indices are computed using the raw GCM output and on the bias-adjusted and downscaled GCM and550

each are compared against the reanalysis distribution of the same index using a two-sample Kolmogorov–Smirnov (K-S) test

at a 0.05 significance level. The null hypothesis is that the two samples (e.g., raw GCM and reanalysis or bias-adjusted and

downscaled GCM and reanalysis) are drawn from the same distribution. A GCM is considered to pass the K-S test, either for

the raw GCM or the bias-adjusted and downscaled GCM, if the null hypothesis is not rejected, in other words, if the p-value

> 0.05. This is a slight modification of the usage of K-S tests in Cannon et al. (2015) and Bürger et al. (2012), where the555

authors use the D statistic rather than the p-value as a diagnostic. The p-value is used here for significance due to the effects

of disagreement in seasonality between reanalysis and the GCM on the D statistic versus the p-value. We compute the K-S

tests over a climatological historical period from 1979 – 2014 for temperature variables and for precipitation we use a slightly

shorter historical period, 1984–1994, because quality control showed that precipitation data for 1983 contained errors.

In Figure 5, the results of the K-S tests for the twelve selected indices for a subset of inland cities around the globe are560

shown for the bias-adjusted and downscaled GCMs and raw GCMs. The same analysis for coastal cities around the globe can

be found in Figure A11). For nearly all of the inland cities, bias adjustment and downscaling shows a significant improvement

in the number of K-S tests passing over the source GCM distributions. The notable two exceptions to this are Mexico City and

Moscow. For Mexico City, this can be explained by its high elevation relative to the other cities; it is at an elevation of 2240 m

above sea level and located in a valley. Moscow’s relative lack of improvement from bias adjustment and downscaling can be565

explained by its colder climate relative to other inland cities and, therefore, lack of occurrences for the maximum temperature

metrics, as well as a strong urban heat island effect (Lokoshchenko, 2014). By contrast, the coastal cities (Figure A11) show

a markedly different side of the narrative, illustrating the limitations of bias adjustment and downscaling for coastal areas

in some parts of the world. Miami, Manila, and Mumbai, in particular, show little improvement between the raw GCM and
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bias-adjusted and downscaled GCM, which points to the inherent challenges of GCM representations of coastlines as well as570

limitations with coastal areas in reanalysis data.
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Figure 5. Bar plots showing the number of Kolmogorov-Smirnov tests passed for the twelve selected indices for the

bias-adjusted and downscaled GCM and raw GCM (overlain) for each of the GCMs included in the GDPCIR dataset for eight

inland cities around the globe. The dashed line shows the maximum possible number of K-S tests.
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5.2.2 Bias adjustment and relative trend preservation

To further examine the performance of the bias adjustment and downscaling algorithms, we compute median absolute errors

in bias adjustment and downscaling and trend preservation across the same highly populated cities for all GCMs included in

the GDPCIR dataset for the selected projection period, SSP3-7.0, and for all variables. The term "error" should be interpreted575

for Equation 6 as the difference in climatologies between reference data and the bias adjusted and downscaled data and for

Equation 7 as the effects of bias adjustment and downscaling on trend preservation of the original GCM signal. We compute the

error over daily 21-year climatologies after smoothing the daily data with a 31-day rolling window mean. Median absolute error

in bias-adjusted and downscaled data is computed over the historical period (1995–2014) and compared to trend preservation

between the raw GCMs and bias-adjusted and downscaled GCMs for 2080–2100. Based on the method used by Lange (2019),580

we define absolute error in bias adjustment as:

e= |ysimhist −xobs
hist| (6)

where ysimhist represents bias-adjusted and downscaled historical daily climatological GCM data from 1995–2014 and xobs
hist

represents historical daily climatological reference data over the same time period. Median bias adjustment and downscaling

errors are computed as the median of the error for all days of the year. We then define median absolute error in trend preservation585

as:

e= |(ysimfut − ysimhist)− (xsim
fut −xsim

hist)| (7)

where ysimfut represents bias-adjusted and downscaled daily climatological projection data from 2080–2100 for SSP3-7.0,

ysimhist represents daily climatological bias-adjusted and downscaled historical simulations, xsim
fut represents daily climatological

future projection data from the raw GCM over the same future period and xsim
hist represents daily climatological historical data590

from the raw GCM for the same historical period. As with bias adjustment and downscaling error, trend preservation error is

also computed as the median of the error for all days of the year.

However, we depart from the Lange (2019) method by computing the median absolute error for highly-populated cities

around the globe (e.g., at the pixel level) rather than at multiple spatial resolutions. Some artifacts of regridding affect the

analysis; bias-adjusted and downscaled data, raw GCM data, and reanalysis data are necessarily at different resolutions: 0.25◦,595

native GCM grid, usually around 1◦ (with some exceptions), and the native N320 (regular Gaussian) ERA5 grid, respectively.

Figure 6 shows boxplots for the median absolute error across all GDPCIR GCMs for maximum and minimum temperature

and precipitation. Trend preservation error represents the error for 2080–2100 for a single scenario, SSP3-7.0. Bias adjustment

error represents the error after QDM bias adjustment and QPLAD downscaling have been performed. Overall, the range of error

for both bias adjustment and downscaling and trend preservation is lower for precipitation than for maximum and minimum600

temperature. A small subset of coastal cities show a much higher range in trend preservation error across GCMs, particularly

Miami and New York and São Paulo to a lesser extent. Mexico City also shows a higher range, similar to the previous section
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due to its high elevation and the complex topography surrounding the city. Larger trend preservation error for these cities is

unsurprising; it is well-known that GCMs struggle with capturing the land-sea interface. However, the modification of the

change signal represented by the trend preservation error should not be interpreted as undesirable behavior; Iturbide et al.605

(2022) found that bias adjustment amplified the climate change signal (up to a factor of two in some regions), which resulted in

an improvement in modeling future heat-related threshold indices. In Lange (2019), the author conducted similar error analysis

for surface variables over different CMIP5 GCMs (MIROC5, IPSL-CM5A-LR, and GFDL-ESM2M) at a coarser resolution

(2◦) and found similar magnitudes of error in trend preservation, with slightly smaller errors in bias adjustment.

Figure 6. Range of median absolute error for bias-adjusted and downscaled historical data (1995–2014) and the range of

median absolute error for trend preservation (SSP3-7.0, 2080–2100) for the 17 metropolises globally. Values shown represent

the range of median absolute errors for all GCMs included in the GDPCIR dataset. Absolute error is computed over daily

21-year climatologies (historical or future) with the median taken over all days of the year.
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5.2.3 Relative trend preservation of ETCCDI indicators aggregated over selected regions610

One of the key considerations in developing a method and dataset for use in the study of the human impacts of climate

change is the performance of the given method when the data is reconfigured, transformed, or re-weighted by the users of the

data. Impacts research frequently uses weighted, aggregated extreme value measures, such as crop-output-weighted frost-day

counts for a given agricultural zone or population-weighted counts of hot nights for a given census region. To understand the

performance of our data under such circumstances, we use the same set of diagnostic cities examined above to understand the615

preservation of moderate and extreme trends for several of the moderate and extreme ETCCDI indicators at varying levels of

aggregation. Following the regional aggregation method described in Rode et al. (2021), these comparisons use a 30-arcsecond

population raster dataset (CIESIN, 2018) to determine the weight of each grid cell in the climate dataset within each region’s

total, based on whether the population grid cell is contained within each region. Data is aggregated to either admin0 or admin1

regions after computing the ETCCDI metrics on gridded data. An admin1 region is a generic term that refers to a country’s620

largest subnational administrative unit; for example, a state in the US or a prefecture in Japan. An admin0 region refers to

national boundaries, e.g. the US or Japan. Polygons defining these region boundaries are taken from the Natural Earth dataset

(Natural Earth, 2022), and are further subset to include the admin0 or admin1 region, which includes each of the diagnostic

cities listed above.

For the analysis in this section, we use the same temporal aggregation as in the method implementation such that any625

modification of trend is not due to the effects described earlier but instead due to aggregation or weighting effects. Because

the method exactly preserves quantile trends within a 31-day window during bias adjustment and preserves trends in minimum

temperature, maximum temperature, and log(precipitation) for a given quantile on an average basis across 0.25◦ gridcells

within each coarse 1◦ cell, discrepancies between trends in seasonal and annual mean minimum temperature and maximum

temperature are due solely to differences between area and population weights, and due to the effects of interpolation from630

the native GCM grid to the regular 1◦ grid used for bias adjustment. This behavior can be seen in the very high degree of

agreement between source GCM and bias-adjusted and downscaled trends at both the admin0 and admin1 level for maximum

temperature in Figure 7. Here, we calculate trend using the difference between the 1995–2014 period average and the 2079–

2099 period average; the year 2100 is not included because it is unavailable in all GCMs. Panels a–e in Figure 7 show the

climate change signal in annual and seasonal maximum temperature for admin0 regions (e.g. countries) and for admin1 regions635

(e.g. states/provinces) in panels f-j. The admin0 and admin1 regions shown correspond to the regions where each city is located,

and results are shown for all GCMs and all scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Both admin0 and admin1

regions have an r2 value of at least 0.9 for annual temperature and all seasons, showing extremely minimal trend modification.
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Figure 7. Climate change signal of annual and seasonal maximum daily Tmax from 1995–2014 to 2079–2099, for countries

(top row; panels a–e) and states/provinces (bottom row; panels f–j) containing the 17 diagnostic cities. All GCMs and

scenarios are shown; with SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and SSP5-8.5 (red).

However, because precipitation adjustments are multiplicative, 21-year seasonal and annual totals are not preserved exactly

when aggregated. Fidelity to the source GCM trend in the downscaled data is closer when comparing trends in log(21-year640

annual average precipitation) or log(21-year seasonal average precipitation), which can be seen in comparing the first and

second rows in Figure 8. Figure 8 shows annual and seasonal precipitation for the countries containing the 17 selected global

cities for all GCMs and scenarios, with the climate change signal of precipitation shown in panels a–e and log(period average

annual and seasonal precipitation) in panels f–j. As expected, the higher emissions scenarios SSP3-7.0 and SSP5-8.5 appear

far more often as outliers, which is expected given their relatively larger change signals in precipitation.645
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Figure 8. Climate change signal of annual and seasonal precipitation from 1994–2014 to 2079–2099, (top row; panels a–e)

and the change in log(period average annual and seasonal precipitation) (bottom row; panels f–j) for the countries containing

the 17 diagnostic cities. All GCMs and scenarios are shown; with SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and

SSP5-8.5 (red).

To understand trend preservation among extreme metrics, we computed the count of days above or below various thresholds,

shown in Figure 9. The method does not explicitly preserve the GCM signal in such metrics, as anomalies in temperatures,

even at extreme quantiles, will cross a threshold with different frequencies after a linear or multiplicative adjustment. This

behavior is in line with other studies (e.g., Casanueva et al., 2020; Dosio, 2016) and consistent with the fact that, while trends

in extreme values measured as quantiles will be preserved within any 31-day window from the GCM to the final result, trends650

in any absolute measure, such as counts of days above or below a threshold, will be affected by the bias adjustment and may

be significantly different in the result depending on the metric.
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Figure 9. Change in period average threshold counts from 1994-2014 to 2079-2099, for countries (top row; panels a–g)

and state/provinces (bottom row; panels h–n) containing the 17 diagnostic cities. All GCMs and scenarios are shown; with

SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and SSP5-8.5 (red).

6 Conclusions

We hope that the GDPCIR dataset will be a useful contribution for climate impacts research in its scope, resolution and in the

methods applied that were specifically tailored to understanding the tail risks associated with future emissions pathways. The655

QDM-QPLAD bias adjustment and downscaling algorithms preserve quantile trends, allowing users to understand better and

model the effects of different emissions pathways on sector-specific and aggregate climate impacts. The 0.25◦ resolution of

the GDPCIR dataset allows for its use in econometric models that require high-resolution surface climate data for estimating

response functions. Errors in bias adjustment and trend preservation are low, with some exceptions for precipitation due to

issues already discussed. Appendix D goes into further detail on this, with Figure D1 showing land-weighted changes in660

temperature and precipitation signals in CMIP6 raw GCMs and the bias-adjusted and downscaled GDPCIR GCMs. We expect

that the dataset will have broad use in climate impacts modeling, from estimating econometric dose-response functions to

hydrology and ecology to modeling ecosystem services and natural capital.

Code availability. The R/CIL GDPCIR dataset codebase containing notebooks, pipeline architecture, and infrastructure is publicly available

at https://github.com/ClimateImpactLab/downscaleCMIP6 and archived at https://doi.org/10.5281/zenodo.6403794. The software container665

and all code used for individual downscaling pipeline tasks is publicly available at https://github.com/ClimateImpactLab/dodola and archived

at https://doi.org/10.5281/zenodo.6383442, and our production pipeline was run with release v0.19.0.
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Data availability. The GDPCIR dataset is publicly available and hosted on the Microsoft Planetary Computer (https://planetarycomputer.

microsoft.com/dataset/group/cil-gdpcir/).
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Appendix A: Supplementary figures670

Figure

A1. Number of daily timesteps where maximum and minimum temperature were swapped in the bias-adjusted and downscaled

GCMs over a 21-year climatological historical period (1960–1980) for all GCMs included in the GDPCIR dataset. For these

timesteps, minimum temperature exceeded maximum temperature.
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Figure A2. Number of daily timesteps where maximum and minimum temperature were swapped in the bias-adjusted and

downscaled GCMs over a 21-year climatological future period (2080–2100) for all GCMs included in the GDPCIR dataset

(for SSP3-7.0). For these timesteps, minimum temperature exceeded maximum temperature.
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Figure A3. Time series of total daily precipitation for Delhi, India showing reference data and raw, regridded and cleaned

GCM data for the historical period and SSP2-4.5 (panel a) and bias-adjusted and downscaled data for the historical period and

SSP2-4.5 before after post-processing (panel b).
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Figure A4. Time series of total daily precipitation for Cairo, Egypt showing reference data and raw, regridded and cleaned

GCM data for the historical period and SSP2-4.5 (panel a) and bias-adjusted and downscaled data for the historical period and

SSP2-4.5 before after post-processing (panel b).
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Figure A5. Number of daily timesteps where post-processing (e.g., clipping) was applied to precipitation values in the

bias-adjusted and downscaled GCMs over a 21-year climatological historical period (1960–1980) for all GCMs included in

the GDPCIR dataset.
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Figure A6. Number of daily timesteps where post-processing (e.g., clipping) was applied to precipitation values in the

bias-adjusted and downscaled GCMs over a 21-year climatological future period (2080–2100) for all GCMs included in the

GDPCIR dataset (for SSP3-7.0).
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Figure A7. Changes in the 99th percentile of seasonal daily maximum temperature in 2080–2100 relative to 1995–2014 in the

raw GCMs (panels a, d, g, j), the difference in the 99th percentile change between the bias-adjusted and the raw, GCMs (panels

b, e, h, k), and the difference in the 99th percentile change between the downscaled and the bias-adjusted GCMs (panels c,

f, i, l) for seasons DJF (panels a–c), MAM (panels d–f), JJA (panels g–i), and SON (panels j–l). Results shown are the mean

across the GCM ensemble for the scenario SSP3-7.0.
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Figure A8. The 99th percentile of seasonal daily total precipitation for the reference (panels a, f, k, p) and raw, cleaned

GCM (b, g, l, q) over the training period, 1995–2014. The change in the 99th percentile of seasonal daily total precipitation

in 2080–2100 relative to 1995–2014, as a ratio, in the raw, cleaned GCMs (panels c, h, m, r), the ratio of the 99th percentile

change between the bias-adjusted and the raw, cleaned GCMs (panels d, i, n, s), and the ratio of the 99th percentile change

between the downscaled and the bias-adjusted GCMs (panels e, j, o, t) for seasons DJF (panels a–e), MAM (panels f–j), JJA

(panels k–o), and SON (panels p–t). Results shown are the average for wet days across the GCM ensemble for the scenario

SSP3-7.0.
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Figure A9. The 95th percentile of seasonal daily total precipitation for the reference (panels a, f, k, p) and raw, cleaned

GCM (b, g, l, q) over the training period, 1995–2014. The change in the 95th percentile of seasonal daily total precipitation

in 2080–2100 relative to 1995–2014, as a ratio, in the raw, cleaned GCMs (panels c, h, m, r), the ratio of the 95th percentile

change between the bias-adjusted and the raw, cleaned GCMs (panels d, i, n, s), and the ratio of the 95th percentile change

between the downscaled and the bias-adjusted GCMs (panels e, j, o, t) for seasons DJF (panels a–e), MAM (panels f–j), JJA

(panels k–o), and SON (panels p–t). Results shown are the average for drier days (e.g., days with precipitation values < 10

mm day−1) across the GCM ensemble for the scenario SSP3-7.0.

41



Figure A10. The 99th percentile of seasonal daily total precipitation for the reference (panels a, f, k, p) and raw, cleaned

GCM (b, g, l, q) over the training period, 1995–2014. The change in the 99th percentile of seasonal daily total precipitation

in 2080–2100 relative to 1995–2014, as a ratio, in the raw, cleaned GCMs (panels c, h, m, r), the ratio of the 99th percentile

change between the bias-adjusted and the raw, cleaned GCMs (panels d, i, n, s), and the ratio of the 99th percentile change

between the downscaled and the bias-adjusted GCMs (panels e, j, o, t) for seasons DJF (panels a–e), MAM (panels f–j), JJA

(panels k–o), and SON (panels p–t). Results shown are the average for drier days (e.g., days with precipitation values < 10

mm day−1) across the GCM ensemble for the scenario SSP3-7.0.
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Figure A11. Bar plots showing the number of Kolmogorov-Smirnov tests passed for the twelve selected indices for the

bias-adjusted and downscaled GCM and raw GCM (overlain) for each of the GCMs included in the GDPCIR dataset for nine

coastal cities around the globe. The dashed line shows the maximum possible number of K-S tests.
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Appendix B: Supplementary tables

B1 CMIP6 GCM Inventory

Table B1

Models Institution
ensemble

member

included in

GDPCIR

dataset

reason for exclusion

from GDPCIR dataset

ACCESS–CM2 CSIRO-ARCCSS r1i1p1f1 YES

ACCESS–ESM1-5 CSIRO r1i1p1f1 YES

AWI-CM-1-1-MR AWI r1i1p1f1 NO not available in GC CMIP6 collection

AWI-CM-1-1-LR AWI r1i1p1f1 NO not available in GC CMIP6 collection

BCC-CSM2-MR BCC r1i1p1f1 YES

BCC-ESM1 BCC r1i1p1f1 NO not available in GC CMIP6 collection

CAMS-CSM1-0 CAMS r2i1p1f1 NO not available in GC CMIP6 collection

CAS-ESM2-0 CAS r1i1p1f1 NO not available in ESGF

CESM2 NCAR r4i1p1f1 NO historical daily output not available in ESGF

CESM2-FV2 NCAR r1i1p1f1 NO not available in GC CMIP6 collection

CESM2-WACCM NCAR r1i1p1f1 NO not available in GC CMIP6 collection

CESM2-WACCM-FV2 NCAR r1i1p1f1 NO not available in GC CMIP6 collection

CIESM THU r1i1p1f1 NO not available in ESGF

CMCC-ESM2 CMCC r1i1p1f1 YES

CMCC-CM2-SR5 CMCC r1i1p1f1 YES

CNRM-CM6-1 CNRM-CERFACS r1i1p1f2 NO licensing issues for commercial use

CNRM-CM6-1-HR CNRM-CERFACS r1i1p1f2 NO licensing issues for commercial use

CNRM-ESM2-1 CNRM-CERFACS r1i1p1f2 NO licensing issues for commercial use

CanESM5 CCCma r1i1p1f1 YES

EC-Earth3-Veg EC-Earth-Consortium r1i1p1f1 YES

EC-Earth3 EC-Earth-Consortium r1i1p1f1 YES

EC-Earth3-AerChem EC-Earth-Consortium r1i1p1f1 YES

EC-Earth3-Veg-LR EC-Earth-Consortium r1i1p1f1 YES

FGOALS-f3-L CAS r1i1p1f1 NO not available in GC CMIP6 collection

FGOALS-g3 CAS r1i1p1f1 YES

FIO-ESM-2-0 FIO-QLNM r1i1p1f1 NO not available in ESGF
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Table B1 continued from previous page

Models Institution
ensemble

member

included in

GDPCIR

dataset

reason for exclusion

from GDPCIR dataset

GFDL-CM4 NOAA-GFDL r1i1p1f1 YES

GFDL-ESM4 NOAA-GFDL r1i1p1f1 YES

GISS-E2-1-G NASA-GISS r1i1p1f1 NO not available in GC CMIP6 collection

HadGEM3-GC31-LL MOHC r1i1p1f3 YES

HadGEM3-GC31-MM MOHC r1i1p1f3 NO
Only SSP1-2.6/SSP5-8.5

available in GC CMIP6 collection

UKESM1-0-LL MOHC r1i1p1f2 YES

IITM-ESM CCCR-IITM r1i1p1f1 NO not available in GC CMIP6 collection

INM-CM4-8 INM r1i1p1f1 YES

INM-CM5-0 INM r1i1p1f1 YES

IPSL-CM6A-LR IPSL r1i1p1f1 NO licensing issues for commercial use

KACE-1-0-G NIMS-KMA r1i1p1f1 NO QA/QC pipeline found data issues

KIOST-ESM KIOST r1i1p1f1 NO QA/QC pipeline found data issues

MCM-UA-1-0 UA r1i1p1f1 NO not available in ESGF

MIROC6 MIROC r1i1p1f1 YES

MIROC-ES2L MIROC r1i1p1f1 YES

MPI-ESM1-2-HR MPI-M r1i1p1f1 YES

MPI-ESM-1-2-HAM HAMMOZ-Consortium r1i1p1f1 NO no data past 2055

MPI-ESM1-2-LR MPI-M r1i1p1f1 YES

MRI-ESM2-0 MRI r1i1p1f1 NO QA/QC pipeline found data issues

NESM3 NUIST r1i1p1f1 YES

NorCPM1 NCC r1i1p1f1 NO not available in ESGF

NorESM2-LM NCC r1i1p1f1 YES

NorESM2-MM NCC r1i1p1f1 YES

SAM0-UNICON SNU r1i1p1f1 NO not available in GC CMIP6 collection

TaiESM1 AS-RCEC r1i1p1f1 NO not available in GC CMIP6 collection

45



Appendix C: Pipeline computing resources

The downscaling pipeline was run on Kubernetes clusters with a flexible pool of preemptible (“spot”) general-purpose ma-

chines. Each machine had between 8 and 32 CPUs using Intel Skylake, Broadwell, Haswell, Sandy Bridge, and Ivy Bridge675

CPU platforms. All machines were “high-memory” with 8 GB per CPU.

A downscaling run on a single GCM projection experiment for a single variable. For example, minimum daily air temperature

in SSP2-4.5 from EC-Earth3-Veg-LR required approximately 500 CPU hours and 3,500 GiB hours. This completes with a wall

time of 2–3 hours. This work can easily run in parallel to other downscaling jobs if preemptible machines are available to the

cluster. The complete set of downscaling jobs could complete within 3 days.680

Appendix D: Global temperature and precipitation changes

In this section we explore trends in global temperature and precipitation across GCMs. We report these trends for both the

source data and the bias-adjusted and downscaled data in order to shed light on how these global trends are affected by QDM

and QPLAD. To obtain global values, the data is averaged using land-weighting. Results are shown in Fig D1. We find that

when comparing the source data with the bias-adjusted and downscaled data, global trends in temperature are preserved: all685

the differences across models and scenarios are within ± 0.1◦C. In contrast, changes in global precipitation have some amount

of inflation across all models and scenarios. Going further, in the SSP2-4.5 and SSP3-7.0(respectively) source data, change

in average annual mean maximum temperature across models ranges from 1.71◦C (2.56◦C) to 4.55◦C (6.53◦C) and in the

bias-adjusted downscaled data this range is almost identical, from 1.71◦C (2.84◦C) to 4.55◦C (6.54◦C). In contrast, change in

average annual total precipitation ranges from -0.11% (-2.47%) to 8.99% (9.61%) in the source data and is shifted upwards in690

the bias-adjusted and downscaled data, from 2.57% (-0.79%) to 12.6% (15.22%). For precipitation, the largest change is in the

scenario SSP3-7.0, CanESM5 model, with a source trend of around 7.5% and a trend in our results of 15%. This model also has

one of the highest precipitation trends in the source data, but there is no systematic relationship between the magnitude of the

source trend and the magnitude of trend modification. For example, NorESM2-MM SSP2-4.5 has a trend close to zero in the

source data and in the results the trend is around 4%, whereas BCC-CSM2-MR has a trend of around 2.5% in both scenarios695

and the alteration is very low at less than 0.2 percentage points in both scenarios.
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Figure D1. Changes in temperature and precipitation signals in CMIP6 source models and CMIP6 bias-adjusted and

downscaled models. For each model, scenario and pixel, the annual average (x-axis) and the annual total (y-axis) is computed

for each year of both the historical (1995-2015) and future (2080-2100) period. Then, the data is averaged over space with

a land-weighting scheme (e.g. ocean pixels are assigned zero weights). Finally, the data is averaged over years for both the

historical and future period separately and the difference between the future and historical global values (x-axis) or the percent

change between the future and the historical global values (y-axis) is plotted. Data point symbols with transparent borders

represent the source model data while those with black color borders represent the bias-adjusted and downscaled data. The list

of models is restricted to those that have bias-adjusted and downscaled data for both SSP2-4.5 and SSP3-7.0.
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