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Abstract.

Global climate models
:::::::
(GCMs)

:
are important tools for understanding the climate system and how it is projected to evolve

under scenario-driven emissions pathways. Their output is widely used in climate impacts research for modeling the current

and future effects of climate change. However, climate model output remains coarse in relation to the high-resolution climate

data needed for climate impacts studies, and it also exhibits biases relative to observational data. Treatment of the distribu-5

tion tails is a key challenge in existing
::::::::::
bias-adjusted

::::
and

:
downscaled climate datasets available at a global scale; many of

these datasets used quantile mapping techniques that were known to dampen or amplify trends in the tails. In this study, we

apply the trend-preserving Quantile Delta Mapping (QDM) bias-adjustment method (Cannon et al., 2015) and develop a new

::::::
method

::::::::::::::::::
(Cannon et al., 2015)

::
for

::::
bias

::::::::::
adjustment.

::::
After

::::
bias

::::::::::
adjustment,

::
we

:::::
apply

:
a
::::
new

::::::
spatial downscaling method called the

Quantile-Preserving Localized-Analog Downscaling (QPLAD)method that also preserves ,
::::::::
designed

::
to

:::::::
preserve

:
trends in the10

distribution tails. Both methods are integrated into a transparent and reproducible software pipeline, which we apply to global,

daily model output for surface variables
:::::
GCM

::::::
surface

:::::::
variable

::::::
outputs

:
(maximum and minimum temperature and total precip-

itation) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) experiments (O’Neill et al., 2016) for the historical

experiment and four future emissions scenarios ranging from aggressive mitigation to no mitigation: SSP1-2.6, SSP2-4.5,

SSP3-7.0, and SSP5-8.5 (Riahi et al., 2017). We use European Centre for Medium-Range Weather Forecasts (ECMWF) ERA515

(Hersbach et al., 2018)
:::::::::::::::::::
(Hersbach et al., 2020) temperature and precipitation reanalysis data as the reference dataset over the

Sixth Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) reference period, 1995–2014. We pro-

duce bias-adjusted and downscaled data over the historical period (1950–2014) and for four
:::
the

:::::
future

:
emissions pathways

(2015–2100) for 25 models
:::::
GCMs in total. The output dataset of this study is the Global Downscaled Projections for Climate

Impacts Research (GDPCIR), a global, daily, 0.25◦ horizontal-resolution product which is publicly
:::::::
available

:::
and

:
hosted on20

Microsoft AI for Earth’s Planetary Computer (https://planetarycomputer.microsoft.com/dataset/group/cil-gdpcir/).
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1 Introduction

Global climate models (GCMs) are essential for studying the climate system and how it will evolve in the future. Simulations

from the Coupled Model Intercomparison Project (CMIP) experiments are widely used in climate impact studies, exploring

human health (e.g., Carleton et al., 2022), energy (e.g., Rode et al., 2021), labor productivity (e.g., Parsons et al., 2022), agricul-25

ture crop yields (e.g., Müller et al., 2021), and the impacts of climate change on GDP losses globally (e.g., Warren et al., 2021).

However, despite progress in climate modeling, GCM simulations often exhibit systematic error (bias) relative to observations

(François et al., 2020a) due to coarse spatiotemporal resolution, simplified physics, thermodynamic schemes, and incomplete

and/or poorly understood representation of climate system processes (Sillmann et al., 2013). GCM simulations, relative to

historical observations, can have large errors in their means and variance, and even larger biases in extreme values (Cannon30

et al., 2015). All of these
:::::
These biases are challenging to impacts studies examining the future evolution of local climate

impacts. This challenge is magnified when trying to understand how a particular climate extreme
::::
signal

:
will affect a given out-

come, for example, how
::::::
changes

:::
in extreme temperatures will affect mortality rates in a locationexpected to experience large

temperature increases throughout the twenty-first century. To explore these questions, it is necessary to have high-resolution

climate projections for multiple emissions pathways with a statistical distribution consistent with historical observations.35

To fill this need
::
for

::::::
climate

::::::
impact

::::::::::
assessments, statistical bias adjustment (BA) and downscaling methods are used to adjust

::::
have

::::
been

:::::::
applied

::
to

::::::
reduce biases and add high-resolution spatial information to the coarse resolution of GCM simulations

:::::
GCM

:::::::::
simulations

:::::::::::::::::
(Pierce et al., 2015). BA methods adjust the difference in statistical properties between model simulations

and observations . In this context, downscaling is the process of moving from the coarse resolution of the GCM to the

high-resolution local information needed to use as inputs for impacts models. The majority of statistical BA methods adjust40

the GCM simulation distribution by operating
::
or

::::::::
reanalysis

:::::
data.

:::::::
Methods

::::
vary

::::::
widely

::
in

::::::::::
complexity,

::::
from

:::::::
simpler

:::::::::
parametric

:::::::
methods

:::
that

:::::::
operate

::::
only

:
on the mean , variance , higher moments, or quantiles (François et al., 2020a). These methods ,

particularly traditional quantile mapping ones, are known to affect trends in extreme quantiles differently than trends in the

mean, thus degrading results at the distribution tails (Maurer and Pierce, 2014; Lehner et al., 2021; Holthuijzen et al., 2022).

Standard
::
or

:::
the

:::::
mean

:::
and

:::::::
variance

::
to

::::::::::::::
trend-preserving

:::::::
methods

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Casanueva et al., 2020; Iturbide et al., 2022; François et al., 2020b)45

::
or

:::::::
methods

::::
that

:::
use

::::
deep

::::::::
learning

:::::
neural

::::::::
networks

::::::::::::::::::::::
(Baño-Medina et al., 2021)

:
.
:::::
Other

:::
BA

::::::::
methods

::::
have

::::
been

:::::::::
developed

::::
and

::::::
applied

::::::::::
extensively

::
as

::::
well,

:::::
such

::
as

:::
the

::::::::::
cumulative

::::::::::
distribution

:::::::
function

::::::::
transform

:::::::
(CDF-t)

:::::::::::::::::::::::::::
(e.g., Michelangeli et al., 2009)

:::
and

:::::::::
equidistant

:::::::
quantile

::::::::
mapping

:::::::::::::::::
(e.g., Li et al., 2010)

:
,
:::
and

:::::::::
compared

::::
with

::::
other

::::::::
methods

::::
over

::::::
Europe

:::
in

:::
the

:::::::
VALUE

:::::
study

::::::::::::::::::
(Gutiérrez et al., 2019)

:
.
::
A

:::
key

:::::
result

::::
from

:::
the

:::::::
VALUE

:::::
study

::::
was

:::
that

:::
the

::::
time

:::::::
window

::::
used

::
in

:::::::::
calibration

::::
was

:::
one

::
of

:::
the

:::::
most

::::::::
influential

:::::::
factors.

:::::::::
Generally,

:
quantile mapping (QM) methods were used to create the

:::
have

:::::
been

::::::
widely

:::::
used

::
in

:::::::
climate50

::::::
impacts

:::::::
studies,

::::
and

::::::::::
particularly

::
at
::::

the
:::::
global

:::::
scale

::::
due

::
to
:::::

their
:::::
lower

:::::::::::::
computational

:::::::
expense

:::::::
relative

::
to

:::::
other

::::::::
methods

::::::::::::::::
(Pierce et al., 2015).

::
A

:::::::
quantile

::::::::
mapping

::::::::
approach

:::
that

::::
only

:::::::
corrects

:::
for

:::
the

:::::
mean

:::
and

::::::::
variance,

:::
the

::::::
BCSD

:::::::
method,

::::
was

::::
used

::
for

::::::::
example

::
in

:::
the popular NASA Earth Exchange (NEX) Global Daily Downscaled Projections (GDDP) global daily CMIP5

dataset (Thrasher et al., 2012), which uses the Bias Correction and Spatial Disaggregation (BCSD) QM approach. However,

:::
QM

:::::::
methods

::::
that

::::::
operate

::::
only

:::
on

::
the

::::::
mean,

::::
such

::
as

::::::
BCSD,

::::
may

:::::
affect

:::::
trends

::
in

::::
high

::::
(and

::::
low)

::::::::
quantiles

:::::::::
differently

:::
than

::::::
trends55
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::
in

::
the

::::::
mean,

::::
often

::::::::
degrading

::::::
results

::
at

:::
the

:::::::::
distribution

::::
tails

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Maurer and Pierce, 2014; Lehner et al., 2021; Holthuijzen et al., 2022; Sanabria et al., 2022; Lanzante et al., 2020)

:
.

::
To

:::::::
mitigate

::::
this,

::::
QM

::::::::::
approaches

::::
that

:::
are

:::::::::::::
trend-preserving

:::
in

:::
the

::::::::
quantiles

::::
have

::::
been

:::::::::
developed

::::::::::::::::::::
(Casanueva et al., 2020)

:
.

:
A
::::

key
:::::::
example

:::
of

::::
these

::::::::
methods

:
-
::::
and

:::
the

::::
bias

:::::::::
adjustment

:::::::
method

:::
we

:::::
apply

::
in

::::
this

:::::
study

:
-
::
is
:::
the

::::::::
Quantile

:::::
Delta

::::::::
Mapping

::::::
(QDM)

:::::::
method

:::::::::::::::::
(Cannon et al., 2015)

:
.
::::::::
Although

::::::::
generally

::::::::::::::
trend-preserving

::::::::
methods

::::
have

::::
been

::::::
found

::
to

:::::
better

::::::::
preserve

:::
the60

::::::
climate

::::::
change

:::::
signal

:::
for

:::::::
climate

::::::
change

::::::
impacts

:::::::
indices,

::::
they

::::
also

:::
rely

:::::::
heavily

::
on

:::
the

:::::::::::
observations

::
or

::::::::
reanalysis

:::::::
dataset

::::
used

::
for

::::::::
reference

::::::::::::::::::::
(Casanueva et al., 2020)

:
,
:::
and

:::::
there

::
is

:::
not

:
a
:::::::::
consensus

::
in

:::
the

::::::::
literature

:::
that

::::::::::::::
trend-preserving

:::::::
methods

::::::::::
necessarily

::::::
perform

:::::
better

:::
for

::::::
climate

:::::::::::::::::::::::::
extremes(Iturbide et al., 2022).

::::::::
However,

:::
the

:::::::
majority

:::
of

:::::
studies

:::::
have

::::::::
supported

:::
the

::::
need

::
for

::::::::::::::
trend-preserving

:::::::
methods

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Casanueva et al., 2019; Qian and Chang, 2021)

::
to

:::::
better

::::::::
represent

:::
the

::::::::::
temperature

:::::::
extremes

::::
that

::::
have

:::
the

:::::
most

:::::
severe

:::::::
impacts.

:::::::::
Moreover,

:::::::::::::::::
Lehner et al. (2023)

:::::
found

:::
that

:::::
QDM

::::
was

:::
one

::
of

:
the method differentially affects trends in extreme65

quantiles , degrading
:::::::::::::
best-performing

:::
BA

::::::::
methods

:::
for

::::::::::
representing

:::::::
changes

::
in

::::::::
threshold

:::::::
metrics.

:::
An

:::::::::
additional

:::::::
question

::::
also

::::::
worthy

::
of

:::::::
mention

:::
and

::::::
subject

::
to

::::::::
extensive

:::::
debate

::
is

:::::::
whether

::
or

:::
not

:::
the

::::::
climate

:::::
signal

::::
from

:::
the

::::::
GCMs

::::::
should

::::
even

::
be

:::::::::
preserved,

::
as the tails of the distribution. BCSD for example adjusts GCM simulations to have the same cumulative distribution function

(CDF) as the reference dataset (for each day of the year) and then imposes a 9-year running monthly mean trend from the

GCM on the adjusted-day value (Thrasher et al., 2012). This does not preserve trends in the tails of the distribution because the70

GCM trend imposed is the mean-monthly trend. Maurer and Pierce (2014) found that QM modifications of projected trends in

seasonal mean model precipitation could be as large as the actual GCM-projected changes.
:::::
future

:::::
signal

::
is
::
of

::::::
course

:::
not

::::::
known

::::::::::::::::
(Pierce et al., 2015).

::::::::
However,

::::::::::::::::::::
Casanueva et al. (2020)

:::::
found

:::
that

:::::
QDM

::
in
:::::::::
particular

::::::::
performed

::::::
better

::
in

:::::::::
preserving

:::::
trends

:::
for

:::::::
moderate

::
to
:::::::
extreme

:::::::
climate

::::::
indices,

::::::
which

:::
was

::::
one

::
of

:::
our

:::
key

:::::
goals

::
in

:::::::::
designing

:::
this

:::::
study.

:

Downscaling
::::::::
Statistical

::::::::::
downscaling

:
faces similar challenges to bias-adjustment

:::
BA methods (Cannon et al., 2020). Downscaling75

in BCSD, for example, dampens trends in the tails of the higher-resolution gridcells because the method involves bilinearly

interpolating scaling factors computed as the difference (or ratio) of GCM to reanalysis climatologies on a per-pixel multi-decade

basis. Because of these challenges, many studies in the impacts literature stop short of downscaling (Maraun, 2016). Others,

such as Lange (2019), combine trend-preserving bias adjustment with statistical downscaling, but the final resolution of the

downscaled data remains relatively coarse (0.5◦). This effect is undesirable for climate impacts modeling because it dampens or80

amplifies trends in the tails, which are crucial to understanding how climate extremes and their associated impacts will evolve

for various emissions pathways (Sanabria et al., 2022; Lanzante et al., 2020). Returning to the mortality impacts example, it is

not sufficient to project the future mean rise in temperature at a given location. Trends for the hottest days must be preserved

to understand and project mortality impacts.

Several
:::::::::::::
Notwithstanding,

:::::::
several CMIP6 downscaling

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:
datasets produced in the past several85

:::
few

:
years have attempted to address these issues, but they have either been limited in geographic scope (e.g., Supharatid

et al., 2022), global but at a coarse spatial resolution (e.g., Xu et al., 2021), or global but preserving only mean trends (e.g.,

Thrasher et al., 2021). Moreover, Jupiter Intelligence (https://jupiterintel.com/), a climate risk-focused company in the pri-

vate sector, has made a
::::::::::
bias-adjusted

:
CMIP6 dataset available for commercial applications. Unfortunately, its methods are

neither published nor transparent ,
::::::::

however,
:::
its

:::::::
methods

:::::
have

:::
not

:::::
been

::::::::
published

:
and the dataset is not publicly available90
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(Hacker, 2021). The Intersectoral Impact Model Intercomparison Project (ISIMIP )
::::::
ISIMIP downscaled dataset (Lange, 2019)

uses
:::::::
quantile trend-preserving bias adjustment and downscaling approaches on daily data at a global scale , but it is only

available for a limited number of GCMs,
::
for

::
a
:::::
larger

:::
set

::
of

:::::::
variables

::::
than

::::::::
GDPCIR

:::
but

::
a

::::::
smaller

:::
set

::
of

::::::
GCMs at a 0.5◦ spatial

resolution
:::::::::::
(Lange, 2021). In the past year, several downscaled datasets for CMIP6 at a higher spatial resolution have been

released. NASA updated
::::::
NASA

:::::::
released

::
an

:::::::
updated

::::::
version

::
of

:
the NASA-NEX dataset using CMIP6 projections and released95

::::::::::::::::::
(Thrasher et al., 2022).

:::::::::
However, the new dataset in early 2022 (Thrasher et al., 2022) but still relies on the BCSD method .

Additionally, the updated NASA-NEX GDDP dataset still relies on the
:::
and

::::
uses

:::
the

:
Global Meteorological Forcing Dataset

(GMFD) (Sheffield et al., 2006)
::
as

:
a
::::::::
reference

::::::
dataset, a reanalysis dataset that now dated and

::
is

::
no

::::::
longer

:::::::::
maintained

::::
and

::
is

no longer widely used in bias adjustment and downscaling (Hassler and Lauer, 2021). CarbonPlan, a not-for-profit organiza-

tion focused on climate and carbon capture research, has also released a global downscaled CMIP6 dataset using four distinct100

statistical downscaling methods
::::
with

:::::::
publicly

:::::::
available

:::::
code (https://docs.carbonplan.org/cmip6-downscaling) . While this is

an important contribution to method transparency and comparison, the monthly resolution of the dataset is prohibitively coarse

for many impacts modeling applications and the dataset is only available for a subset of six GCMs .
:
at
::
a
:::::::
monthly

:::::::::
resolution

:::
and

:::
for

:
a
::::::
subset

::
of

:::
six

::::::
GCMs.

:::::
These

:::::::
datasets

:::
are

::::
key

:::::::::::
contributions

::
to

::::::
impacts

::::::::
research

:::
but

:
a
:::
gap

:::::::
remains

:::
for

::
a

:::::
global

:::::::
product

:::
that

::::::::
preserves

:::::
GCM

:::::::
quantile

:::::::
changes

:::
and

::
is

:::::::
available

::
at
::
a

::::
high

:::::::
temporal

::::
and

:::::
spatial

:::::::::
resolution

::
for

::
a
:::::
broad

::
set

:::
of

::::::
CMIP6

::::::
GCMs105

:::
and

::::::::
emissions

:::::::::
scenarios.

::::
This

:::::
study

::::
aims

::
to

:::
fill

:::
that

::::
gap.

:

To ameliorate these challenges for impacts modelers, this study uses statistical bias adjustment and downscaling methods

that explicitly preserve relative changes in GCM simulation quantiles (Cannon et al., 2015). We use the quantile delta mapping

(QDM )
:::::::::::
Consequently,

::
in

::::
this

::::
study

:::
we

::::
used

:::
the

:::::
QDM

:
method (Cannon et al., 2015) for bias adjustment . For downscaling , we

introduce
:::
and

:::
for

::::::::::
downscaling

:::
we

:::::::
designed

:
the Quantile-Preserving Localized-Analog Downscaling (QPLAD) method, a novel110

statistical downscaling algorithm that applies a local analog-mapping approach to preserve quantile trends at the fine resolution.

We
::::::
explain

:::
the

:::::::
method

:::
and

:::::::::::::
implementation

::::::
further

::::::
below.

:::
We

:
have made the

::::
QDM

::::
and

:::::::
QPLAD

:
methods and code transpar-

ent and reproducible
::
via

::::::
tagged

:::::
code

::::::
releases

:::
for

:::
the

::::
full

:::::::
pipeline,

::::::::
available

::
in

::::::
Github

:
(https://github.com/ClimateImpactLab/

downscaleCMIP6
:
)
::::
and

:::::::
archived

:::
via

:::::::
Zenodo

::
(https://doi.org/10.5281/zenodo.6403794). The dataset described herein, titled

Global Downscaled Projections for Climate Impacts Research (GDPCIR), is, to our knowledge, the most comprehensive115

and high-resolution dataset that exists for CMIP6 that preserves quantile trends. The preservation of quantile trends makes

the dataset better suited for impacts modeling than other downscaled CMIP6 datasets since high and low tail trends are not

dampened or amplified by only accounting for mean projected changes
::
We

:::::
hope

:::
that

::::
the

:::::::
publicly

::::::::
available

:::
and

::::::::::
transparent

::::
code

:::
and

:::::::
pipeline

::::::::::::
infrastructure

::::
will

::
be

::::::
helpful

:::
for

::::::::::
researchers

::::
who

:::::
wish

::
to

:::::::::
bias-adjust

::::
and

:::::::::
downscale

::::::::
additional

:::::::::
variables,

::::::
GCMs,

::
or

:::::::::::
experiments.

:::::::::::
Alternatively,

:
if
:::::::::
additional

::::::::::::
meteorological

::::::::
variables,

::::
such

:::
as

::::::::
longwave

:::
and

:::::::::
shortwave

::::::::
radiation,

::::::
surface120

:::::::
pressure

:::
and

:::::::
relative

:::
and

:::::::
specific

:::::::
humidity

:::
are

:::::::
needed

:::
for

:
a
:::::
given

:::::::
impacts

::::::::
modeling

::::::::::
application,

::
or

:::::::
subdaily

::::::::::
temperature

::::
and

::::::::::
precipitation

::::::::::
projections,

:
a
:::::::::::::
meteorological

::::::::::::
disaggregation

:::::::
method

:::
can

::
be

::::
used

::::::::::::::::::
(Bennett et al., 2020).

The remainder of the paper is structured as follows. In Section 2, we describe the climate simulations and reference dataset.

In Section 3, we describe the QDM-QPLAD bias adjustment and downscaling methods. Section 4 describes our downscaling

pipeline and efforts to make our pipeline
::
its implementation on commercial cloud computing platforms transparent and repro-125
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ducible. In Section 5, we explore trends and extremes
::::::
quantile

:::::::
changes in the dataset at the global, city, and “admin1” (country)

levels. In the final section, we detail applications for econometric research for climate risk and other impacts modeling areas.

2 Climate data

2.1 Simulation data

We used the CMIP6 GCM
::::::::
historical

:::
and

:::::::::::
ScenarioMIP experiments (Eyring et al., 2016; O’Neill et al., 2016) as simulation data.130

We obtained the data ,
::::::::
obtained from the Google Cloud CMIP6 collection (https://pangeo-data.github.io/pangeo-cmip6-cloud/).

This contains a subset of CMIP6 output migrated from the Earth System Grid Federation (ESGF) as part of a collaboration

between the Pangeo Consortium (https://pangeo.io/), Lamont-Doherty Earth Observatory (LDEO) and Google Cloud. The

migration to Google Cloud included
::::::::
converting

:
data from NetCDF format (https://www.unidata.ucar.edu/software/netcdf/) to

the cloud-optimized Zarr store format (https://zarr.readthedocs.io/en/stable/api/storage.html), and standardizing across dimen-135

sions, coordinates, and grids to ensure that model
::::
GCM

:
output would be analysis-ready and cloud-hosted for streamlined

use in scientific analysis Abernathey et al. (2021)
::::::::::::::::::::
(Abernathey et al., 2021). CMIP6 output

:::::
GCMs available through the ESGF

but not in the CMIP6 Google Cloud collection was excluded because it was
:::
were

::::::::
excluded

:::::::
because

::::
they

:::::
were not analysis-

ready and cloud-optimized, and as such, could not run through our cloud-based downscaling pipeline.
:::
We

::::
also

::::::::
excluded

:::::
GCMs

::::::::
included

::
in

:::
the

::::::
CMIP6

:::::::
Google

:::::
Cloud

:::::::::
collection

:::
for

:::::
which

:::::
daily

::::::
output

:::
was

:::
not

::::::::
available

::
or

:::::
other

:::::
issues

:::::
were

::::::
found.140

::::::::
Similarly,

::
if

::
an

::::
SSP

::
is
:::::::
missing

:::
for

::
a

:::::
given

:::::
GCM,

::::
that

::::::::
indicates

:::
that

::
it
::::
was

:::::
either

:::
not

::::::::
available

::
in

:::
the

:::::::
CMIP6

::::::
Google

::::::
Cloud

::::::::
collection

::
or

::::::
issues

::::
with

:::
the

::::::::
available

::::
data

:::::
were

::::::
found.

:::::
Table

:::
B1

::::
lists

::
all

::::::
GCMs

:::::
with

:::::::::::
ScenarioMIP

:::
and

::::::
CMIP

::::::::::
experiment

:::::
output

:::::::::::
participating

::
in

:::::::
CMIP6

:::
and

::::::
details

::::
why

:::::::
certain

::::::
GCMs

::::
were

:::::::::
excluded.

:::
The

::::::
GCMs

::::::::
included

::
in

:::
the

::::::::
GDPCIR

:::::::
dataset

::::::
provide

:::::
broad

::::::::
coverage

:::::
across

:::
the

::::::
spread

::
of

:::::::
CMIP6

::::::
models,

::::::::
including

::::::
GCMs

::::
with

::::
high

::::::::::
equilibrium

:::::::
climate

::::::::
sensitivity

::::::
(ECS)

::::
such

::
as

:::::::::
CanESM5,

::::::::::::::::::
HadGEM3-GC31-LL,

::::
and

:::::::::::::
UKESM1-0-LL,

::::
and

::::
those

::::
with

::::
low

::::
ECS

::::
such

::
as

:::::::::::
INM-CM4-8

:::
and

:::::::::::
INM-CM5-0145

::::::::::::::::
(Meehl et al., 2020).

:

In addition to the last 65 years of the historical CMIP experiment, we included four 21st century ScenarioMIP experiments

so as to span a range of possible future climate trajectories. These trajectories are defined by a combination of Shared Socioe-

conomic Pathways (SSPs) and Representative Concentration Pathways (RCPs): SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5

(Riahi et al., 2017) .
::
and

:::::
make

:::
up

:::
the

:::::
“Tier

:::
1”,

:::
or

:::
top

:::::::
priority,

::::::::::
experiments

:::
in

:::::::
CMIP6.

:::
For

:::::
each

:::::
GCM,

:::
we

::::::
select

:
a
::::::
single150

::::::::
ensemble

:::::::
member.

::::::
When

:
it
::::

was
::::::::
available

::
in

:::
the

:::::::
Google

::::::
Cloud

::::::
CMIP6

:::::::::
collection,

:::
we

:::::
used

:::
the

:::::::
r1i1p1f1

:::::::
ensemble

::::::::
member

:::
(see

:::::
Table

:::
A1

:::
for

::::::::
ensemble

::::::::
members

:::
for

:::::
each

:::::
GCM

:::
and

:::::
Table

:::
B1

:::
for

::::::
further

::::::::::::
information). We did not include simulations

that have
:::
had output populated with NaNs for some years or did not have complete spatiotemporal coverage. For example, the

Hammoz-Consortium model
:::::
GCM

:
is not included because its temperature output available through the Google Cloud CMIP6

collection did not extend past 2055. We also do
:::
did not include the Community Earth System Model from the National Center155

for Atmospheric Research (NCAR) because there was no historical daily surface variable output available through NCAR for

the historical experiment.
:
A
::::
full

:::
list

::
of

::::::
reasons

::::
why

:::::
some

::::::
GCMs

::::
were

::::::::
excluded

:::
for

::::::
quality

::::::
control

::::
can

::
be

:::::
found

::
in
:::::
Table

::::
B1.

We perform bias adjustment and downscaling on a subset of the historical CMIP experiment (1950–2014) and ScenarioMIP
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scenarios (2015–2100) with a historical training period from 1995 to 2014, consistent with the IPCC AR6 reference period. The

full dataset includes 25 GCMs (Table 1), with downscaled output for all four SSPs available for the majority of those GCMs. If160

an SSP is missing for a given GCM, that indicates that it was either not available in the CMIP6 Google Cloud collection or we

found issues with the data available. If a GCM from a modeling center that participated in the CMIP6 experiments is missing,

that indicates that the GCM did not have daily surface variable output available for maximum and minimum temperature and

surface precipitation in the CMIP6 Google Cloud collection as of 15 November 2021, or the output that was available contained

data issues as discussed above.165

We standardize calendars across all GCMs included in the dataset by converting them to a 365-day (e.g., “no-leap”) calendar.

Leap days are removed for GCMs with 366-day calendars. For the two GCMs on 360-day calendars
:::
(the

:::::::
Hadley

::::::
Centre

::::::
models), we follow the method in Pierce et al. (2014)

:::
the

::::::::::
downscaled

::::::
CMIP5

::::::
LOCA

::::::
dataset

::::::::::::::::
Pierce et al. (2014)

::::::::
described

:::
on

::
the

::::::
LOCA

:::::::
website

::::::::::::
(Pierce, 2021). Five days per year are chosen randomly to add to the calendar, each in a given fifth of the

year. Feb. 29th is always missing. For each of the days that are added, a day value is produced by averaging the adjacent days.170

For example, if Feb. 16th is the day added in the first fifth of the year for a given year, it will be the average of Feb. 15th and

Feb. 17th. Choosing a random day in a fifth of the year versus the same five days every year mitigates overall undesired effects

on the statistics of particular days of the year or annual cycle statistics when converting from a 360-day to 365-day calendar.

GCM Institution
Ensemble

member

SSPs

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ACCESS-ESM1-5

Commonwealth Scientific and

Industrial Research Organisation,

Aspendale, Victoria, Australia

r1i1p1f1 ✓ ✓ ✓ X

ACCESS-CM2

Commonwealth Scientific and

Industrial Research Organisation,

Aspendale, Victoria, Australia

r1i1p1f1 X ✓ ✓ X

BCC-CSM2-MR
Beijing Climate Center,

Beijing, China
r1i1p1f1 ✓ ✓ ✓ ✓

CanESM5

Canadian Centre for Climate

Modelling and Analysis,

Victoria, BC

r1i1p1f1 ✓ ✓ ✓ ✓

CMCC-CM2-SR5

Fondazione Centro

Euro-Mediterraneo

sui Cambiamenti Climatici,

Lecce, Italy

r1i1p1f1 ✓ ✓ ✓ ✓
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Table 1 continued from previous page

GCM Institution
Ensemble

member

SSPs

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

CMCC-ESM2

Fondazione Centro

Euro-Mediterraneo

sui Cambiamenti Climatici,

Lecce, Italy

r1i1p1f1 ✓ ✓ ✓ ✓

EC-Earth3 EC-Earth-Consortium r1i1p1f1 ✓ ✓ ✓ ✓

EC-Earth3-AerChem EC-Earth-Consortium r1i1p1f1 X X ✓ X

EC-Earth3-CC EC-Earth-Consortium r1i1p1f1 X ✓ X ✓

EC-Earth3-Veg EC-Earth-Consortium r1i1p1f1 ✓ ✓ ✓ ✓

EC-Earth3-Veg-LR EC-Earth-Consortium r1i1p1f1 ✓ ✓ ✓ ✓

FGOALS-g3
Chinese Academy of Sciences,

Beijing, China
r1i1p1f1 ✓ ✓ ✓ ✓

GFDL-CM4

NOAA Geophysical Fluid

Dynamics Laboratory,

Princeton, NJ, USA

r1i1p1f1 X ✓ X ✓

GFDL-ESM4

NOAA Geophysical Fluid

Dynamics Laboratory,

Princeton, NJ, USA

r1i1p1f1 ✓ ✓ ✓ ✓

HadGEM3-GC31-LL

Met Office Hadley Centre,

Exeter, Devon,

United Kingdom

r1i1p1f3 ✓ ✓ X ✓

INM-CM4-8
Russian Academy of Science,

Moscow, Russia
r1i1p1f1 ✓ ✓ ✓ ✓

INM-CM5-0
Russian Academy of Science,

Moscow, Russia
r1i1p1f1 ✓ ✓ ✓ ✓

MPI-ESM1-2-HR
Deutscher Wetterdienst,

Offenbach am Main, Germany
r1i1p1f1 ✓ X X ✓

MPI-ESM1-2-LR

Max Planck Institute for

Meteorology,

Hamburg, Germany

r1i1p1f1 ✓ ✓ ✓ ✓
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Table 1 continued from previous page

GCM Institution
Ensemble

member

SSPs

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

MIROC-ES2L

Japan Agency for Marine-Earth

Science and Technology,

Kanagawa, Japan

r1i1p1f1 ✓ ✓ ✓ ✓

MIROC6

Japan Agency for Marine-Earth

Science and Technology,

Kanagawa, Japan

r1i1p1f1 ✓ ✓ ✓ ✓

NESM3

Nanjing University of

Information Science and

Technology, Nanjing, China

r1i1p1f1 ✓ ✓ X ✓

NorESM2-LM
NorESM Climate Modeling

Consortium, Oslo, Norway
r1i1p1f1 ✓ ✓ ✓ ✓

NorESM2-MM
NorESM Climate Modeling

Consortium, Oslo, Norway
r1i1p1f1 ✓ ✓ ✓ ✓

UKESM1-0-LL

Met Office Hadley Centre,

Exeter, Devon,

United Kingdom

r1i1p1f2 ✓ ✓ ✓ ✓

Table 1: Full list of Coupled Model Intercomparison Project (CMIP6) GCMs included in the GDPCIR dataset along with their

corresponding institutions and the available SSPs for each GCM.

2.2 Reference data

We use the ECMWF
:::::::
European

::::::
Center

:::
for

:::::::::::::
Medium-Range

:::::::
Weather

:::::::::
Forecasting

:::::::::
(ECMWF)

:
Reanalysis v5 (ERA5) (Hersbach et al., 2018)175

as the historical reference dataset for bias adjustment and downscaling .
:::::::::::::::::::::::
(Hersbach et al., 2018, 2020).

::::::
While

::::
there

:::
are

:::::::::::
shortcomings

::
for

::::
any

::::::::
reanalysis

::::::
dataset,

::::
our

:::
goal

::::
was

::
to

:::::
select

:
a
::::::::
reference

::::::
dataset

:::
that

:::::::::
performed

::::
well

::
in

::::::::::
comparison

:
to
:::::::::::
observations

:::
and

:::::
other

::::::::
reanalysis

:::::::
datasets

::::::::::
particularly

:::
for

:::::::
extreme

:::::::::::
temperatures

::::
and

::::::::::
precipitation

:::
in

:::::
highly

:::::::::
populated

:::::
areas.

:::::::::::::::::::
Sheridan et al. (2020)

::::::::
compared

::::::::
observed

:::::::
extreme

::::::::::
temperature

:::::
days

::
in

:::
the

::::::
United

::::::
States

:::
and

:::::::
Canada

::
to

:::::
three

::::::::
reanalysis

::::::::
products

::::
and

:::::
found

::::
that

ERA5
::::::
matched

::::::
station

::::
data

:::::
most

::::::
closely,

:::::
even

::
in

::::::::::
comparison

::
to

::
its

::::::::::::::
higher-resolution

:::::::::::
counterpart,

::::::::::
ERA5-Land.

::::::
Other

::::::
studies180

::::::::::::::::::::::::::::::::::::::::
(e.g., Mistry et al., 2022; McNicholl et al., 2022)

:::::::
compared

::::::
ERA5

:::::::::::
temperatures

:::::::
globally

::
to

:::::
station

:::::::::::
observations

:::
and

:::::
found

::::
that

:
it
:::::::::
performed

::::
well,

::::
with

:::::
some

::::::
reduced

:::::::::::
performance

::
in

::::::
tropical

:::::
areas.

:::::::
Similar

:::::
biases

:::
for

::::::::::
precipitation

::
in

:::
the

::::::
tropics

::::
have

::::
also

::::
been

:::::
noted;

::::::::::::::::::::::
Hassler and Lauer (2021)

::
and

::::::::::::::::
Tarek et al. (2020)

:::::
found

::::
that

:::::
ERA5

::::::::::::
overestimated

:::::::::::
precipitation

::::
rates

:::::
over

:::
the

:::::::
Atlantic

:::::
Ocean

:::
and

::::::
Indian

::::::
Ocean.

:::::::::::
Nevertheless,

:::
the

::::
bias

::
in

::::::
ERA5

:::
was

:::::
lower

::::
than

::
in

:::::
other

:::::::::
reanalyses

::::::::
products.
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::
In

:::::::
addition

::
to
::::

the
:::::::::::
performance

::
of

::::::
ERA5

::
in

:::::::
relation

:::
to

:::::
other

::::::::
reanalysis

::::::::
datasets,

::
it
::
is
::::

also
::::::::::::

operationally
:::::::::
maintained

:::
in185

:::::::::::
near-real-time

:::
by

::::::::
ECMWF

:::
and

::::::::::::::
cloud-optimized,

::::::::
available

::
as

:
a
::::
zarr

::::
store

:::::
from

::::::
Google

:::::
Cloud

::::
and

:::::
AWS.

:::::
ERA5

:
reanalysis data

is produced and archived on a reduced Gaussian grid with a resolution of N320, meaning that there are 320 quasi-regularly

spaced latitude points from pole to equator, at a 31 km ( 0.28◦) resolution. We obtained global, hourly temperature and precipi-

tation estimates from 1979 through 2018 on a regular (latitude-longitude) Gaussian grid at the same resolution to minimize the

impact of interpolation from the Copernicus Data Service regridder, particularly on precipitation. We derive
::::::
derived daily max-190

imum and minimum temperatures by taking the daily maximum and minimum of the hourly values and total daily precipitation

by taking the sum of hourly values. ERA5 hourly precipitation values represent cumulative precipitation during the preceding

hour, thus cumulative daily precipitation for a given day is the sum of hourly values minus the first hour and including the

first hour of the following day. We then subset
:::::::
subsetted

:
the ERA5 daily surface variables to 1995–2014 to be consistent with

the historical reference period used in Masson-Delmotte et al. (2021), finally, we remove
:::::::
removed leap days. We use

::::
used the195

resulting 20-year ERA5 dataset as the historical reference data for bias adjustment and downscaling.

3 Methods

3.1 Statistical bias adjustment with the QDM method

In this study, our goal was to emphasize downscaling and bias-adjustment
:::
bias

::::::::::
adjustment

:
methods that better preserve the

extreme
:::
high

:
tails of distributions, but within the constraints of the level of method complexity that could be undertaken given200

the scale of this project. Though some multivariate statistical methods might have better preserved joint correlations between

variables, such as Multivariate Bias adjustment (Cannon, 2018), the computational intensity of even running a univariate

method at this scale precluded the choice of a multivariate method. Some studies have also found that multivariate methods may

lead to degraded results for one or more variables (e.g., temperature) that are being jointly bias-adjusted and/or downscaled,

and also may perform poorly under projected climate change due to bias nonstationarity (Van de Velde et al., 2020; François205

et al., 2020a). Choosing a method that would not degrade temperature projections was necessary given the role of temperature

as a key driver of future climate impacts.

With these constraints in mind, and after evaluating a number of statistical methods and their effects on the distribution tails,

we chose the QDM method. The QDM statistical bias-adjustment method preserves changes
::::::
method

::::::::
preserves

::::::::::::::
model-projected

:::::
trends in quantiles by applying simulated changes in the quantiles on top of the historical reference distribution (Cannon et al.,210

2015). Absolute changes or relative changes are preserved for additive or multiplicative variables, respectively. As a result,

treatment of the tails is better than in standard quantile mapping as well as in
:::::::
improved

::::
over

:::::
other

:::::
forms

::
of

:::::::
quantile

::::::::
mapping

::::
such

::
as empirical quantile mapping (EQM), detrended quantile mapping (DQM), and various parametric and non-parametric

variants of each (Qian and Chang, 2021). This rationale, combined with the QDM methodbeing relatively computationally

inexpensive compared
:
A

:::::::::
limitation

::
of

:::
the

:::::::
method,

::::::::
however,

::
is
::::
that

::
it

::
is

::::::
highly

:::::::
sensitive

::
to
::::

the
:::::
choice

:::
of

::::::::
reference

:::::::
dataset,215

::::::::
especially

:::
for

:::::::::::
precipitation,

:::
and

:::::::
extreme

::::::::::
temperature

::::
and

::::::::::
precipitation

:::::::
indices

:::::::::::::::::::
(Casanueva et al., 2020)

:
.
:::
As

:
a
:::::
result,

:::
the

::::::
biases

::
in

::
the

::::::::
reference

::::
data

::::::::
presented

::
in
:::::::
Section

:::
2.2

:::
are

:::::::::
transferred

::
to

:::
the

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:::::::
dataset,

:::::
which

::
is

:
a
:::::::::
limitation

9



::
of

::
the

::::
final

:::::::
dataset.

::::::
Results

::::::::
presented

::::
here

::::::
should

::
be

:::::
taken

::
in

:::
that

:::::::
context.

::::::::::
Nonetheless,

:::
its

::::::::::
performance

::
at

:::
the

::::
tails

:::
and

::::::::
relatively

:::::::::
inexpensive

::::::::
compute

:::::::
footprint

:::
in

:::::::::
comparison

:
to multivariate quantile mapping or machine learning-based methods , makes it

a favorable method choice for a project of this scope and aim.220

The QDM method adjusts the bias in projected values for a historical or future time period by first shifting the distribution

to be consistent with the reference dataset and then imposing the relative GCM-projected
:::::::::::::
model-projected trend, resulting

in a bias-adjusted projection that has a distribution consistent with that of the reference dataset and also has a relative trend

consistent with the source GCM
:::::
model, for a given quantile. In detail, following the notation in Cannon et al. (2015), let Fm,p[·],

Fm,h[·] and Fo,h[·] denote, respectively, the CDF from model m in future period p, the CDF from model m in the historical225

period h and the CDF from the reference data o in the historical period h. Let xm,p be a modeled future value at time t (for

example, maximum temperature on 13 March 2025), and let x∗
m,p be the associated adjusted value for the same future date. In

addition, let τm,p denote the non-exceedance probability associated with xm,p, i.e τm,p = Fm,p[xm,p]. F−1[·] represents the

inverse CDF. The adjusted value is defined as follows for an additive variable:

x∗
m,p(t) = xm,p(t)+ (F−1

o,h [τm,p(t)]−F−1
m,h[τm,p(t)]) (1)230

Rearranging the right-hand side shows that Equation 1 is equivalent to introducing the GCM-projected
:::::::::::::
model-projected

change at a given quantile (τm,p) on top of the reference data value at that quantile:

x∗
m,p(t) = F−1

o,h [τm,p(t)]︸ ︷︷ ︸
reference value at model quantile

+(xm,p(t)−F−1
m,h[τm,p(t)])︸ ︷︷ ︸

model trend in quantile

(2)

For a multiplicative variable such as precipitation, the right-hand side in equations (1) and (2) becomes multiplicative rather

than additive, i.e., Equation 1 becomes x∗
m,p = xm,p ∗F−1

o,h [τm,p]/F
−1
m,h[τm,p]. This results in GCM

:::::
model

:
projections that235

preserve each GCM
:::::
model’s change in distribution shape (including extremes

::::
high

:::
and

::::
low

::::::::
quantiles) while simultaneously

making the training-period distribution consistent with the reference dataset.

3.2 Statistical trend-preserving downscaling with the QPLAD method

A key goal of downscaling for climate impacts is increasing spatial resolution in a way that both preserves climate trends

and introduces realistic local climatology and variability. In observations, the climate signal at a coarser scale will always240

– by definition – represent a smoothed version of local climate trends. Similarly, high-resolution climate projections need

to have a distribution that is consistent with locally observed climate. Downscaling may break consistency with the original

GCM dynamics, but this is necessary to produce the spatial heterogeneity required for modeling climate impacts (Maraun

and Widmann, 2018). Traditional downscaling
::::::::::
Downscaling

:
methods typically work by introducing the climatological fine

reference spatial pattern to the coarse resolution simulated data, as a difference or ratio between fine and coarse. This can245

have the effect of modifying trends and spatial patterns in the tails of the simulated distribution. To address this, we developed
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the QPLAD method. The QPLAD method uses the difference in empirical quantiles of the reference data –- each quantile is

a given day, or “analog” of the reference training period – at coarse and fine resolution to downscale the coarse resolution

GCM simulations. The outcome is a downscaled dataset that preserves the changes in coarse GCM quantiles in time while also

reflecting the within-coarse-grid cell spatial heterogeneity from the fine reference data. As a result, localized, extreme changes250

in the downscaled data are consistent with the GCM projections.

Formally, QPLAD involves computing and applying “adjustment factors” for each quantile in the reference data over the

training period. First, an empirical CDF, Fo,h,c[·], of the reference data o
:
is
:::::::::

calculated, over the training period h at the

relatively “coarse” resolution c at which bias adjustment was applied to GCMs
:::
(1◦

::
in

:::
this

::::::
study). The method described here

in the GDPCIR pipeline assumes that
:::::
QDM bias adjustment was performed at a coarser resolution than the target resolution255

for downscaling, but theoretically
:
,
:
one could apply QPLAD to unadjusted GCM simulations as well.

::::::
Further

:::::
detail

::
on

::::
our

:::::::::::::
implementation

:::
can

::
be

:::::
found

::
in

:::::::
Section

:::
4.3. The number of empirical quantiles q is equal to the number of time steps

::::::::
timesteps

in the training period n (e.g., a training period of 20 years with a 31-day rolling window has n= q = 20∗31 = 651, since each

empirical quantile corresponds to a day in the training period). Next, the reference data at “fine” resolution is sorted into the

same order as the coarse resolution empirical CDF, Bo,h,f [·], where the set B represents the fine reference time steps
::::::::
timesteps260

(days) sorted the same as the coarse CDF Fo,h,c[·] and f refers to the fine resolution. Adjustment factors are then calculated as

the difference or ratio (for an additive or multiplicative variable, respectively) between the fine and coarse resolution values for

each historical analog day in the sorted data (i.e., for each empirical quantile). For an additive variable, adjustment factors af

are as follows:

af(qc) =B−1
o,h,f (qc)−F−1

o,h,c(qc) (3)265

for all coarse empirical quantiles qc, where B−1[·] represents the fine reference values (rather than quantiles) in sorted order.

Similar to QDM detailed above, the adjustment factors are applied to coarse resolution simulations by first determining the

quantile of a given time step’s value, Fm,p,c(xm,p,c) = τm,p where τm,p is the non-exceedance probability associated with the

value xm,p,c. For an additive variable, the downscaled value for a given time step t in the projection simulation is defined as:

x̃m,p,f (t) = xm,p,c(t)+ afqc (4)270

This results in high-resolution, downscaled projections where the subgrid cell heterogeneity from the original coarse reso-

lution contains the more extreme days from the higher-resolution reference data. By definition, all of the target fine-resolution

grid cells encompassed by the coarse-resolution grid cell will have downscaled values that average to the value for the coarse

grid cell.
::
No

::::::
spatial

::::::::::
smoothing

::
is

::::::
applied

:::
in

::::
order

:::
to

:::::::
maintain

::::
the

:::::::
original

:::::
GCM

:::::::
quantile

::::::::
changes. In this way, “quantile-

preserving” refers to maintaining the quantile information from the coarse-resolution day, and “localized” refers to the fine-275

resolution historical analogs located within a coarse-resolution grid cell. The method produces downscaled projections that

add high-resolution information from the reference data training period and ensure that the fine-resolution spatial make-up of

11



more extreme days from the coarse simulations are coherent and analogous to those found in the reference data. Thus, ex-

treme days are also preserved in the downscaled projections in a relative sense (in a similar manner to QDM). Note that the

QDM and QPLAD methods, which explicitly preserve changes in the quantiles, do not necessarily preserve model-projected280

changes in the mean due to using empirical CDFs, which is a non-parametric approach. Taking a parametric approach and

using an analytical CDF would preserve changes in the mean, but would also impose a distribution to the CDFs. As Lehner

et al. (2021) discuss, the question of whether to take a parametric or non-parametric approach in bias adjustment is an active

area of research, but the non-parametric approach in the QDM and QPLAD methods is more common and generally preferred.

3.3 Wet day frequency adjustment285

The discrete and continuous nature of the
::
In

::::::::::::
bias-adjusting

:::
and

:::::::::::
downscaling

:
daily precipitation dataneeds to be addressed

when applying bias adjustment and downscaling. Moreover,
:
,
:::
the

::::::::
skewness

::
of

::::::::::
precipitation

:::::::::::
distributions

::::
must

::
be

:::::::::
accounted

:::
for

:::::::::::::
(Maraun, 2013).

:
GCMs are known to have a “drizzle day” problem where the frequency of wet days with low precipitation in

GCMs has a high positive bias relative to observations (Dai, 2006). To account for these issues
::::::
address

:::
this

:::::
issue, we apply a

“pre” wet day frequency (WDF) adjustment to both reference and daily
::::
daily

::::::::
reference

:::
and

:
GCM data after regridding both290

datasets to the 1◦ bias adjustment grid and before bias adjusting. We apply a second “post"” WDF adjustment after QPLAD

downscaling
::::
where

:::
all

::::::::::
downscaled

::::
daily

:::::::::::
precipitation

::::::
values

:::::
below

:::
1.0

:::
mm

::::::
day−1

:::
are

:::::::
replaced

:::
by

:
0
::::
mm

:::::
day−1.

Our approach
::::
The

:::::::
approach

::::
here

:
is modified from Cannon et al. (2015). For daily reanalysis and GCM precipitation before

bias adjustment, all values at the 1◦ grid that are less than a specified threshold are replaced by nonzero uniform random values

less than the threshold. Initially, we used the same threshold and nonzero uniform random values as Cannon et al. (2015).295

However, we found that in grid cells where the seasonality and magnitude of daily precipitation values differed by a large

amount between model and reanalysis, using the Cannon et al. (2015) threshold (0.05 mm day−1) and adjustment could result

in those grid cells having bias-adjusted precipitation values that were not physically realistic for the season and geographic

location. Thus we raised the threshold to 1.0 mm day−1 (similar to Hempel et al., 2013) and the lower bound of the uniform

random distribution from 0 to 0.5 mm day−1. After applying QPLAD downscaling, we then apply a “post” WDF adjustment300

where all downscaled daily precipitation values below 1.0 mm day−1 are replaced by 0 mm day−1.

4 Implementing the
:::
Bias

::::::::::
adjustment

::::
and

:
downscaling pipeline

:::::::::::::
implementation

In this section, we describe the pipeline we created for ingesting CMIP6 global, daily surface variable output from the CMIP6

Google Cloud collection, and applying statistical bias-adjustment
:::
bias

:::::::::
adjustment

:
and downscaling methods to produce a

global, daily gridded dataset at a 0.25◦ horizontal resolution for four emissions pathways, 25 GCMs and three surface variables.305

The steps to produce the dataset are as followsand diagrammed in Figure 1: We first standardize the reference dataset and

climate model
:::::
GCM output. We then apply a modified version of the QDM bias-adjustment

:::
bias

::::::::::
adjustment method at the 1◦

grid
::::::::
resolution. Next, we apply the QPLAD downscaling method to the bias-adjusted output in order to downscale the data

to a 0.25◦ grid
::::::::
resolution. For precipitation, we apply a wet day frequency adjustment both before bias adjusting and after
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downscaling. We apply additional post-processing for all surface variables after downscaling.
:::::
These

::::
steps

:::
are

:::::::::::
diagrammed

::
in310

:::::
Figure

::
1

:::
and

:::::::
detailed

::
in

:::
the

:::::::::
remainder

::
of

::::::
Section

::
4.

:

Figure 1. Diagram of CMIP6 bias adjustment and downscaling pipeline.

4.1 Standardizing simulation and reference data315

Although the modeling centers participating in the CMIP6 experiments follow Climate and Forecast (CF) conventions (https:

//cfconventions.org/), significant differences remain in how GCM output is archived. The native resolution of GCMs also

varies considerably. For example, four EC-Earth Consortium models have a relatively high resolution (spectral grids approx-

imately 0.7◦ x 0.7◦) and the CCCma CanESM5 GCM has a relatively low resolution (2.5◦ x 2.5◦). Consequently, we begin

by standardizing naming, dimensions, and coordinates for all models
:::::
GCMs

:
and removing leap days. Daily GCM outputs are320

regridded from the models’ native resolution to a regular 1◦ x 1◦ global lat-lon grid using the xESMF Python regridding pack-
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age (https://xesmf.readthedocs.io/). We use the bilinear regridding method for maximum and minimum surface temperature

and first-order conservative area remapping for precipitation to conserve total precipitation between the native GCM grid and

the 1◦ x 1◦ regular lat-lon grid.
::::::
Bilinear

:::::::::
regridding

:::
was

::::::
chosen

:::
for

::::::::::
temperature

::::::::
variables

:::::
since

::::
they

:::
are

:::::::::
continuous

:::::::::
quantities,

:::::::
whereas

::::::::
first-order

:::::::::::::::
conservative-area

::::::::
regridding

::::
was

::::::
chosen

:::
for

:::::::::::
precipitation

:::
for

::
its

::::::
ability

::
to

:::::::
conserve

:::::::::
quantities,

:::::::
thereby

:::
not325

:::::::::
introducing

:::
or

:::::::::
destroying

:::::
water.

::::::::
However,

::
it
::::::
should

:::
be

:::::
noted

::::
that

::::::::
generally,

::::
any

:::::::::
regridding

::::::
method

:::::::
applied

::
to

:::::::::::
precipitation

::::
alters

:::
its

::::::::
statistical

::::::::
properties

::::
and

:::
can

::::
have

:::::
some

:::::::::
undesirable

::::::
impact

:::
on

::::
high

::::::::
quantiles

:::::::::::::::::::
(Rajulapati et al., 2021)

:
,
:
a
:::::
caveat

::::
that

::
is

::::::::::
unavoidable

:::::
when

::::::::::::
standardization

::::::
across

::::::
GCMs

:
is
::::::::
required.

:

The same standardization is applied to daily ERA5 reanalysis at the regular Gaussian, F320 grid. We prepare three versions

of ERA5 that are used in the QDM-QPLAD method. For
:::::
QDM bias adjustment, ERA5 is regridded from the F320 grid to the330

1◦ x 1◦ regular lat-lon grid using the regridding method described above
:::::::
methods

::::::::
described

:::::
above

::::::::
(bilinear

:::
for

::::::::::
temperature

:::::::
variables

::::
and

::::::::::::::
conservative-area

:::::::::
remapping

:::
for

::::::::::::
precipitation). For downscaling ,

:::
with

::::::::
QPLAD,

:::
the

:::::
same

:::::::
methods

:::
are

:::::::
applied

::
to

:::::
regrid ERA5 is regridded from the F320 grid to the 0.25◦ x 0.25◦ regular lat-lon grid using the same regridding methods as

in the GCM output (ERA5fine)
:
,
:::::
which

::
is
:::
the

::::
final

::::
grid

::
of

:::
the

::::::::
GDPCIR

::::::
dataset. Then, the

::
for

:::
use

::
in

:::::::::
computing

:::
the

::::::::
QPLAD

:::::::::
adjustment

::::::
factors,

:::
the

:
1◦ x 1◦ version of ERA5 used in bias adjustment is resampled (e.g., nearest-neighbor regridded) to the335

0.25◦ x 0.25◦ regular lat-lon grid (ERA5coarse).

4.2 Implementation of QDM bias adjustment

We bias adjust GCM projections for each variable, GCM, experiment, pixel, year, and day at a 1◦ x 1◦ resolution
:::
are

::::
bias

:::::::
adjusted using the xclim Python package QDM implementation (Logan et al., 2021). To do this, we first train QDM models

for each pixel and day of the year using
::
are

::::::
trained

:::
on

:
a rolling 31-day centered window (± 15 days) on

::
of

:::::
daily ERA5 and340

GCM historical data .
::::
from

::::
1995

::
to

:::::
2014. For ERA5

:::::::
reference

:
data, we include the last 15 days from 1994 and the first 15 days

from 2015 such that each day group contains 620 values (20 years x 31 days)for ERA5 reference data. For CMIP6 historical

data, since the simulation ends in 2014, we do not include the additional 15 days from 2015, nor from
:
or

:
1994 for consistency.

Each trained QDM model (per pixel /
:::
and

:
day of year) has 100 equally spaced quantiles in our implementation. We used an

additive adjustment for maximum and minimum temperature and a multiplicative adjustment for precipitation. Each variable345

was bias-adjusted separately.

One pitfall with this approach is that minimum temperatures may be larger than maximum temperatures on the same day

in some parts of the world with very low diurnal temperature ranges, such as at high latitudes (Thrasher et al., 2012). As a

post-processing step, we swapped minimum and maximum temperatures for the small number of pixels and days when the

minimum temperature exceeded the maximum temperature after downscaling. This post-processing is described further in350

Section 4.3.1. We initially tried to avoid this issue by adjusting the maximum temperature using an additive adjustment ,

separately adjusting the diurnal temperature range (DTR) using a multiplicative adjustment and then deriving the minimum

temperature by subtracting DTR from the maximum temperature (following Agbazo and Grenier (2020)). However, we found

that this led to unrealistically large DTR values in some parts of the globe, particularly at higher latitudes. Additionally, some

raw GCM data had a small number of minimum temperatures greater than the corresponding maximum temperatures, more355
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often in polar regions. Bias adjustment then inflated this undesirable behavior. Therefore, we bias-adjusted and downscaled

maximum and minimum temperatures separately rather than bias-adjusting DTR.

We apply the
::
We

:::::
apply

:::
the

:::::::::
adjustment

::::::
factors

::::
from

:::
the

:
trained QDM models to historical CMIP

:::::
GCM simulations and future

GCM projections for each SSP on a per variable/GCM/pixel/year/day basis. For each year in the GCM data, we group daily

data
::::
daily

::::
data

:::
are

:::::::
grouped

:
using a 21-year rolling window and a rolling 31-day window (as in the training step, with ± 15360

days). For
:::::
When

::::::::
adjusting

:::
the historical CMIP experiments, we concatenate the first eleven years (2015–2025) of the SSP3-7.0

projection period simulation
:::::::::
simulation

:::
are

:::::::::::
concatenated so that the full historical

:::::
period

:::::
input dataset encompasses the years

1950–2025 .
:
to

::::::::::::
accommodate

:::
the

::::::
rolling

:::::::
window

::
in

:::
the

::::
year

:::::
2014. We use SSP3-7.0 to best simulate the current trajectory of

emissions since 2015. If SSP3-7.0 output is not available
:::::::::
unavailable

:
for a given GCM, we then use SSP2-4.5. For the few

models
::::::
GCMs in which neither SSP3-7.0 nor SSP2-4.5 output is available, we use SSP1-2.6. For

::::
When

::::::::
adjusting

:
each SSP,365

we concatenate the
:::
the

::::::::
historical

::::::::::
simulation’s

:
last eleven years (2004–2014) of the CMIP model simulation

::
is

:::::::::::
concatenated

so that the full projection period
::::
input

:
dataset encompasses the years 2004–2100 for the rolling 21-year window. Historical

GCM
::
to

:::::::::::
accommodate

::::
the

:::::
rolling

::::::::
window.

:::
At

:::
the

::::::::
beginning

::::
and

:::
end

::
of
::::

the
::::::::
historical

:
+
:::::::::

projection
::::
time

:::::::
periods,

:::::
fewer

:::::
days

:::
can

::
be

::::::::
included

::
in

:::
the

:::::::::
adjustment

::::
step

:::::::
resulting

::
in

::::::::
historical years 1950–1960 have

:::::
having

:
fewer days in their rolling window,

as do projection period
:::::::
windows

::::
and

:::::::::
projection years 2090–2100, with the exception of GCMs for which model output was370

available past 2100 in the CMIP6 Google Cloud collection at run-time. For the beginning (ends) of the time period
:::
each

::::::
year’s

::::::
21-year

::::::::::
adjustment

:::::::
window, an additional 15 days from the previous (following) year is included such that each day group

contains 651 values (21 years x 31 days). We use 100 equally-spaced quantiles as in the training step; adjustment factors for

quantiles within the range [0.005, 0.995] are linearly interpolated from the neighboring quantiles and linear
:::::
nearest

:::::::::
computed

:::::::::
adjustment

:::::
factor

:::
and

::::::::
constant extrapolation is used to extend the range to 0 and 1 for accommodating the extreme tails.

::::
This375

::::::
method

::
is

:::::
based

:::
on

:::
the

:::::::
"QMv1"

:::::::
method

::::::::
evaluated

::
by

:::::::::::::::::::
Themeßl et al. (2012)

:::
and

:::::
means

::::
that

::::
new

:::::::
extreme

:::::
values

::::
can

:::::
occur

::
in

::
the

::::::
future

:::::
period

::
or

::
in

:::
the

::::::::
historical

::::::
period

::::::
outside

::
of

:::
the

:::::::::
calibration

::::::
period.

:::::::
Because

:::
this

:::::::
method

:::
can

:::::
rarely

:::::
result

::
in

:::::::::
physically

::::::::
unrealistic

:::::::::
extremes,

::
we

:::::
apply

:::
an

::::::::
additional

:::::::::::::
post-processing

::::
step

::::::::
described

::
in

:::::::
Section

:::::
4.3.1.

4.3 Implementation of QPLAD downscaling

:::
One

::::::
pitfall

::
of

:::::::
applying

:::::
QDM

:::::::::
separately

::
to

:::::::::
maximum

:::
and

::::::::
minimum

:::::::::::
temperatures

::
is

:::
that

:::::::::
minimum

::::::::::
temperatures

::::
may

:::
be

:::::
larger380

:::
than

:::::::::
maximum

:::::::::::
temperatures

:::
on

:::
the

:::::
same

:::
day

::
in

:::::
some

:::::
parts

::
of

:::
the

:::::
world

:::::
with

::::
very

:::
low

:::::::
diurnal

::::::::::
temperature

::::::
ranges,

::::
such

:::
as

:
at
:::::
high

:::::::
latitudes

::::::::::::::::::
(Thrasher et al., 2012)

:
.
::
As

::
a
:::::::::::::
post-processing

::::
step,

:::
we

::::::::
swapped

::::::::
minimum

:::
and

:::::::::
maximum

:::::::::::
temperatures

:::
for

:::
the

::::
small

:::::::
number

::
of

::::::
pixels

:::
and

:::::
days

:::::
when

:::
the

::::::::
minimum

::::::::::
temperature

::::::::
exceeded

:::
the

:::::::::
maximum

::::::::::
temperature

::::
after

::::
bias

::::::::::
adjustment

:::
and

:::::::::::
downscaling.

::::
This

:::::::::::::
post-processing

::
is

::::::::
described

::::::
further

::
in
:::::::

Section
:::::
4.3.1.

:::
We

:::::::
initially

::::
tried

::
to

:::::
avoid

::::
this

::::
issue

:::
by

::::::::
adjusting

::
the

:::::::::
maximum

:::::::::::
temperature

:::::
using

::
an

:::::::
additive

::::::::::
adjustment,

:::::::::
separately

::::::::
adjusting

:::
the

:::::::
diurnal

::::::::::
temperature

:::::
range

::::::
(DTR)

:::::
using

::
a385

:::::::::::
multiplicative

:::::::::
adjustment

::::
and

::::
then

:::::::
deriving

:::
the

:::::::::
minimum

::::::::::
temperature

:::
by

:::::::::
subtracting

:::::
DTR

::::
from

:::
the

:::::::::
maximum

:::::::::::
temperature,

::::::::
following

::::::::::::::::::::::
Agbazo and Grenier (2020)

:
.
::::::::
However,

:::
we

:::::
found

:::
that

::::
this

::
led

::
to
::::::::::::
unrealistically

:::::
large

::::
DTR

::::::
values

::
in

::::
some

:::::
parts

::
of

:::
the

:::::
globe,

::::::::::
particularly

::
at

:::::
higher

::::::::
latitudes.

:::::::::::
Additionally,

::::
some

::::
raw

:::::
GCM

::::
data

:::
had

:
a
:::::
small

:::::::
number

::
of

::::::::
minimum

:::::::::::
temperatures

::::::
greater

:::
than

::::
the

::::::::::::
corresponding

:::::::::
maximum

:::::::::::
temperatures,

:::::
most

:::::
often

::
in

:::::
polar

:::::::
regions.

::::
Bias

::::::::::
adjustment

::
of

:::::
DTR

::::
then

::::::
further

:::::::
inflated
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:::
this

::::::::::
undesirable

:::::::
behavior.

:::::::::
Therefore,

:::
we

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:::::::::
maximum

:::
and

::::::::
minimum

:::::::::::
temperatures

:::::::::
separately

:::::
rather390

:::
than

::::::::::::
bias-adjusting

:::::
DTR.

:

4.3
:::::::::::::

Implementation
::
of

::::::::
QPLAD

After applying QDM bias adjustment, we downscale GCM projections for each variable, model
:::::
GCM, experiment, pixel, year,

and day at
:
to
:

a 0.25◦ x 0.25◦ resolution, similar to our handling of
:::::
using

:
a
::::::
similar

::::::::
approach

::
to

:::
the

:
QDM bias adjustment. To

facilitate this, we implemented the QPLAD method in a forked version of the xclim
::::::
xclim Python package (Logan et al.,395

2021) in order to leverage the existing parallelization that we used for QDM, and we are in the process of adding the method

to the package. Before downscaling, we resample the bias-adjusted projections
:::
are

::::::::
resampled

:
from the 1◦ x 1◦ bias adjustment

grid resolution
::::
grid to the 0.25◦ x 0.25◦ target resolution. For all variables, the

:::
The method is consistent to ensure that

:::::
across

:::::::
variables

::
as

:
each of the 16 0.25◦ gridcells

:::
grid

:::::
cells contained within each 1◦ gridcell has

:::
grid

:::
cell

:::::
must

::::
have the same value.

Reanalysis data preparation for QPLAD is described in Section 3.1. Although the QPLAD implementation assumes that bias400

adjustment was performed at a coarser resolution than the target resolution for downscaling, one could apply QPLAD to

unadjusted GCM simulations as well.

As in bias adjustment, we use a rolling 31-day window (± 15 days) for each day of the year over the training period for

each pixel. We include the
:::
The

:
last 15 days from 1994 and the first 15 days from 2015

:::
are

:::::::
included

:
such that each day

group contains 620 values (20 years x 31 days). We then downscale historical and future model
:::::
GCM simulation data using405

the QPLAD adjustment factors
:::::::::
(described

::
in

:::::::
Section

::::
3.2) for each variable, model

::::
GCM, and experiment on a per pixel /

:::
per day basis. Since we use 100 empirical quantiles

:::
are

::::
used

:
in QDM bias adjustment and 620 quantiles in QPLAD (each

corresponding to an analog day), there is not a
::
no 1:1 match between the

:::::
QDM

::::
and

:::::::
QPLAD

:
quantiles. Consequently, for a

given day, the closest quantile in QPLAD to the quantile
:::::::
quantile assigned during bias adjustment is selected

::::
used

::
to

:::::
select

:::
the

::::::
nearest

:::::::
QPLAD

:::::::
quantile

:
from the 620 possible adjustment factors for that day of year and pixel. Figure 2 demonstrates the410

temporal and spatial dimensions of the QPLAD method for maximum temperatures around Miami, Florida.
:::
Due

::
to

:::
its

::::::
coastal

:::::::
location,

:::
the

:::::::
QPLAD

:::::::::
adjustment

::::::
factors

:::
for

::::
these

::::::
pixels

:::
will

:::::
show

:::::
strong

:::::::
land-sea

::::::
spatial

::::::::
variation,

:::::::
making

:
it
::
an

:::::
ideal

:::::::
location

::
to

::::::::::
demonstrate

:::
the

:::::::
method.

:
Panel 2a shows the sixteen spatial analogs (e.g.

:
, adjustment factors) for 15 August from the fine

reference data (within one 1◦ gridcell
:::
grid

::::
cell) corresponding to τm = 0.33 and the location of Miami, Florida.

::
It

:
is
:::::::::
important

::
to

:::
note

::::
that

:::
the

::::::
“spatial

::::::::
analogs"

:::
are

::::
only

:::::
spatial

::::::
within

:
a
:::::
single

:::
1◦

:::
grid

::::
cell.

:
By design, the downscaled values for these sixteen415

gridcells will average to the bias-adjusted value at the 1◦ resolution xm with that quantile for that day of year. Panel 2b zooms

in on
:::
the

:::::
0.25◦

:::
grid

::::
cell

:::::::::
containing Miami, Florida

:
, and shows all possible spatial analogs for the same quantile but for all days

of the year
:::::::::
adjustment

::::::
factors

:::
for

::
all

::::::::
quantiles

::::
and

::
all

::::
days. For most days of the year, the adjustment factor for that day of year

is moderating the bias-adjusted value, which is expected given the coastal location of Miamiand the relatively low quantile.

Panel 2c shows
:
is

:
a
:::::
slice

::
of

:::::
Panel

::
2b

:::::::
showing

:
all possible analog days for 15 August, e.g.all possible ,

:::
all 620 analogs. Finally

:
,420

Panel 2d shows the bias-adjusted and downscaled time series of maximum temperatures for 2080 with the 15 August values

highlighted. The analog day for that quantile
::::::::::
(τm = 0.33) is -1.5◦ and was applied additively to the bias-adjusted maximum
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temperature value for that day, thus that
:::::
value is the difference between the bias-adjusted and downscaled temperatures for 15

August 2080 shown in Fig.
:::::
panel 2d.

425

Figure 2. Diagram of QPLAD downscaling method
::::::
applied

::
to

::::::::
maximum

:::::::::::
temperature. 15 August is used as an example day

grouping with τ = 0.33 corresponding to the actual quantile for 15 August 2080 in the bias-adjusted output for SSP2-4.5. (a)

shows spatial analogs for τ = 0.33 for 15 August, (b) shows analogs (adjustment factors) for each day of the year for Miami,

Florida, (c) shows all possible adjustment factors for 15 August, and (d) shows the bias-adjusted and downscaled
::::::::
maximum

::::::::::
temperature data for 2080 and the difference between the bias-adjusted and downscaled values for 15 August before and af-430

ter the analog-based adjustment factor for τ = 0.33 has been applied. The example bias-adjusted and downscaled model data

comes from the HadGEM3-GC31-LL GCM, produced by the United Kingdom Meteorological Office Hadley Centre.

4.3.1 Additional post-processing

After QPLAD downscaling, we apply an additional post-processing step that is variable-dependent. When DTR is very low435

in the source GCM, we found that minimum temperature may be greater than
:::::
could

::::::
exceed maximum temperature after

:::
bias

:::::::::
adjustment

:::
and

:
downscaling. For the small number of time steps

::::::::
timesteps

:
and gridcells that have this behavior, we swap

maximum and minimum temperatures. We found that these conditions occurred infrequently
::::::::::
infrequently

::::::::
occurred in high-

population areas, being concentrated in the polar oceans, and that this swap did not have a significant effect on seasonal or

annual cycle statistics.
:::::
Figure

:::
A1

::::::
shows

:::
the

::::::
number

:::
of

::::
daily

::::::::
timesteps

:::::
with

::::::::
maximum

::::
and

::::::::
minimum

:::::::::::
temperatures

::::::::
swapped440

:::
over

::
a
:::::::
21-year

::::::
period

::::::
outside

:::
of

:::
the

:::::::::
calibration

::::::
period

:::::::::::
(1960–1980)

:::
for

:::
all

::::::
GCMs.

::::
The

::::::::::::
concentration

::
of

::::
this

::
in

:::
the

::::::
Arctic

:::
and

::::::::
Antarctic

:::
and

:::
the

::::::::::::
heterogeneity

::
of

::::::
spatial

::::::
patterns

::::::
across

::::::
GCMs

::
is

::::::::
apparent.

:::::
Figure

:::
A2

::::::
shows

:::
the

::::
same

::::::
metric

::::::
except

:::
for

::::::::
SSP3-7.0,

::::::::::
2080–2100.

:

Precipitation requires a more complex additional bias adjustment for a limited number of grid cells and time steps
::::::::
timesteps

globally. Adjustment factors
::::
from

:::::
QDM

::::
bias

::::::::::
adjustment

:
at higher quantiles (e.g., above the 95th quantile) could become445

physically unrealistic when seasonal cycle behavior and precipitation magnitudes differed significantly between reanalysis

reference data and the GCMs. If the GCM was biased low relative to reanalysis, this bias increased the adjustment factors

further. Moreover,
::::::
Figures

:::
A3

::::
and

:::
A4

:::::::
illustrate

::::
this

:::::::
behavior

:::
for

:::
two

::::::
cities,

:::::
Delhi,

:::::
India

:::
and

::::::
Cairo,

::::::
Egypt,

::
for

::
a
:::::
single

::::::
GCM,

::::::::
MIROC6,

::::
and

::
for

::
a
:::::
single

::::::::
scenario,

:::::::::
SSP2-4.5.

::::
Both

::::::
figures

:::::
show

::::
full

::::::::::
precipitation

:::::
time

:::::
series

:::
for

:::
the

::::::::
reference,

::::
raw

::::::
GCM,

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:::::
GCM,

::::
and

:::::::::::
bias-adjusted,

:::::::::::
downscaled,

:::
and

:::::::::::::
post-processed

:::::
GCM.

::::
The

:::::::::
magnitude,

:::
as

::::
well

::
as

:::
the450
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::::::::
infrequent

::::::::::
occurrence,

::
is
::::::::::
particularly

::::::::
apparent

::
in

::::::
Figure

:::
A3.

::::
We

:::::
found

::::
that adjustment factors would dramatically increase

if the GCM had a strong increase in precipitation signal or if values were very
:::
total

:::::
daily

:::::::::::
precipitation

:::::
values

:::::
were close to

zero. However, an increasing signal did not need to be present to incur such a dramatic increase; we also found that this
:::
this

:::::::
behavior in the historical period outside of the training period if a given historical period either a) had a trend that was different

from the training period trend or b) contained out-of-sample values that were not present in the training period. The conflu-455

ence of these biases was insidious for GCMs that were downward biased
::::::::::::::
downward-biased

:
relative to reference data and had

seasonal precipitation cycles different than those in reference data in the same areas. This was noticeable in the intertropical

convergence zone (ITCZ). To correct for these issues in a robust way, we applied a per-pixel post-downscaling adjustment

factor at the target resolution that was based on the maximum values of precipitation in the reference data and the fractional

(SSP-dependent) increase in maximum precipitation between the historical and projected GCM simulations. Specifically, the460

maximum precipitation constraint for each pixel is defined as:

Pmax(model,SSP,t) =max(Preference,t1)×max

(
1,

max(Pmodel,SSP,t2)

max(Pmodel,historical,t1)

)
(5)

where t refers to a given day, t1 is defined as the training period (1995–2014), model refers to a given GCM, SSP represents

one of the SSP trajectories, t2 corresponds to the maximum precipitation in a 21-year rolling window centered on the year465

that t is in, and Pmax(model,SSP,t) refers to the maximum allowed precipitation at time t for a given model
::::
GCM

:
and SSP.

Scaling by the ratio of maximum precipitation in a future 21-year rolling window to historical precipitation allows for the

scaling factor to increase during the projection period if the model
:::::
GCM has an increase in the rolling 21-year maximum daily

precipitation for that pixel. However, if the corresponding maximum daily precipitation decreases in the future (e.g., a scaling

factor less than 1), the maximum precipitation value in the reference period for that pixel forms the constraint. After this daily470

constraint term is estimated for each pixel, year, experiment, and model
:::::
GCM, the final result is set equal to the minimum of

the original bias-adjusted and downscaled value and this constraint.
:::::
Figure

:::
A5

:::::
shows

:::
the

:::::::
number

::
of

:::::
daily

::::::::
timesteps

:::
that

:::::
were

::::::
clipped

::
in

:
a
:::::::

21-year
::::::::
historical

::::::
period

:::::::::::
(1960–1980)

:::
for

:::::::::::
precipitation.

:::
The

:::::::
number

::::::
ranges

::::
from

::::::::::::
approximately

::::::
10-20

::::::::
timesteps

:::::
across

::::::
GCMs.

::::::
Figure

:::
A6

:::::
shows

:::
the

:::::
same

:::::
metric

:::
for

::::::::
SSP3-7.0

:::::::::::::
end-of-century,

::::::::::
2080–2100.

:::
The

:::::::
clipping

:::::::
pattern

::
in

:::
and

::::
near

:::
the

::::
ITCZ

::
is
:::::
much

:::::
more

::::::::::
pronounced

::
in

:::
this

::::::
figure,

::::
with

:::::::::
significant

:::::::
variation

::::::
across

::::::
GCMs

::
in

:::
the

::::::
number

::
of

:::::::
clipped

::::::::
timesteps.

:
475

4.4
:::::::

GDPCIR
:::::::
dataset

::::::::::::::
standardization

::::
and

::::::::
technical

:::::::::
guidelines

:::
for

:::::
users

:::
We

::::
save

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::::
output

:::
for

::::
each

:::::
GCM

:::
and

::::::::
scenario

::
as

:
a
:::::::
separate

::::
zarr

:::::
store,

:::::::
chunked

::
in

::::
time

::::
and

:::::
space

::
to

:::::::
facilitate

::::::::::::
analysis-ready

::::
use.

:::
In

::::::::
preparing

:::
the

::::
final

:::::::
output,

:::
we

:::::::
followed

::::::::
Climate

:::
and

::::::::
Forecast

::::
(CF)

:::::::::
convention

:::::::::
standards

:::::::::::::::::
(Hassell et al., 2017)

:::::
where

:::::::
possible

:::
but

:::
did

::::
not

::::::::
explicitly

::::::
enforce

:::::
them

::
in

:::
our

:::::::
variable

:::::::::
attributes.

::::::::
However,

:::
the

::::::::
metadata

:::
for

::::
each

:::
zarr

:::::
store

:::
and

:::::::
variable

:::::::
contains

::::::::
extensive

::::::::::
information

:::
on

::::::
source

:::::
GCM,

::::::
source

:::::
URL,

::::
and

::::
other

::::::::
attributes

::::
that

::::
may

::
be

:::
of480

::::::
interest

::
to

:::
the

::::
user.

::::::::
Metadata

:::
for

::::
each

::::
zarr

::::
store

:::::::
inherits

::
all

::::::::
metadata

::::
from

:::
its

::::::
source

:::::
GCM,

::::
such

:::
as

:::::::::
experiment

:::
id,

:::::
native

::::
grid

::::::::::
information,

::::::::
ensemble

:::::::
member

:::
id,

:::::
source

:::
id,

::::::::
institution

:::
id,

:::
etc,

::::
and

:::
then

:::
we

::::
add

::::::::
additional

::::::::
metadata

::::::::
pertaining

::
to
:::
the

::::::::
pipeline,
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::::::
denoted

:::
by

:::
the

::::::
prefix

:::::
“dc6”.

::::::::::
Additional

::::::::
metadata

:::::
fields

::::::
specific

:::
to

:::
the

:::::::
pipeline

:::::::
include

::::::
method

:::::::::::
information,

:::::::
creation

:::::
date,

:::::::
licensing

:::::::::::
information,

::::::::::
downscaling

:::::::
pipeline

::::
grid

::::::
details,

::::
and

::::::
pipeline

:::::::::
versioning

:::
for

:::::::::::::
reproducibility.

::
In

::::
total,

::::
the

::::::::
GDPCIR

::::::
dataset

::
is
:::

23
::::
TB.

::
It

::
is

:::::::
publicly

::::::::
available

:::
via

::::::::::
Microsoft’s

:::::::::
Planetary

:::::::::
Computer,

::::
and

:::::::::
notebooks

:::
for485

:::::::
example

:::::
usage

:::
are

::::::::
provided

:::
as

::::
well

::::
that

::::::
utilize

:::
the

:::::::::
Planetary

::::::::::
Computer’s

::::
API

::
(https://planetarycomputer.microsoft.com/

dataset/group/cil-gdpcir/
:
).

:::::::
Hosting

:::
the

::::::::
GDPCIR

::::::
dataset

:::
via

:::
the

::::::::
Planetary

::::::::
Computer

::::::
allows

::
it

::
to

::
be

::::
used

::
in

::::::::::
conjunction

::::
with

::
a

::::::
number

::
of

:::::
other

:::::::
publicly

::::::::
available

::::::::
geospatial

::::::::
datasets.

4.5 Transparency and reproducibility with commercial cloud computing

Our bias-adjusting and downscaling pipeline is novel because it was developed and run entirely with commercial cloud comput-490

ing infrastructure. Prototypes of the pipeline were built and run on Microsoft Azure, while later production runs used Google

Cloud Platform. As such, we wanted the pipeline to be reasonably replicable, open, and not bound to the proprietary hardware

or software of a single cloud-computing vendor.

We ran steps of the pipeline in containerized software applications. These containers are a common way to hold software

applications with their dependencies so that the application can run reliably on different machines. We orchestrate the contain-495

ers with Argo Workflows (https://argoproj.github.io/argo-workflows/) on Kubernetes (https://kubernetes.io/), an open-source

platform for managing containerized applications on a robust computer cluster that can quickly scale up or down depending

on the computing resources needed. Kubernetes is ubiquitous across cloud vendors, helping us to avoid vendor lock-in. The

source code for the containers and manifests orchestrating the workflow steps are both available online under an open-source

license in public GitHub repositories.500

Infrastructure is an additional challenge as it can be practically impossible to make cloud infrastructure truly replicable

because commercial cloud vendors iterate their products and platforms very quickly. Despite this, we wanted to be transparent

about the cloud infrastructure used for the most intense stages of this pipeline. We provisioned and configured the cloud

infrastructure and the Kubernetes clusters from the project’s public GitHub repository. This means that pipeline infrastructure

and configuration were stored as code and automatically provisioned directly from the repository. We provisioned Google505

Cloud and Azure resources, including storage and a Kubernetes cluster, using Terraform (https://www.terraform.io/). Terraform

is a common open-source tool for provisioning computer infrastructure. Once provisioned, the software on the Kubernetes

clusters was managed with ArgoCD (https://argo-cd.readthedocs.io), another open-source tool to deploy Kubernetes resources

from the repository in near real-time.
:::::::::
Additional

::::::::::
information

::
on

:::::::::
computing

::::::::
resources

::
is

::::::::
described

::
in

:::::::::
Appendix

::
C.

:

5 Results510

In this section, we
::::::
evaluate

:::
the

::::::::
GDPCIR

::::::
dataset

:::
and

:
assess the robustness and performance of the QDM and QPLAD methods.

First, we examine behavior in high seasonal quantiles outside of the time windows at which, by design, absolute or relative (for

an additive or multiplicative variable, respectively) changes are preserved. Next, we look at the method’s performance over

highly populated cities and regions that are particularly important for impacts research. We explore how bias-adjustment and
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downscaling change
:::
The

:::::
QDM

:::
and

:::::::
QPLAD

::::::::
methods,

::
as

:::::::
applied,

:::::::
preserve

:::::::
changes

::
in
:::::
GCM

::::::::
quantiles

:::
on

:::
any

:::::
given

:::::
future

::::
day,515

:::::
where

:::
that

:::::
day’s

:::::::
quantile

::
is

:::::::::
determined

:::
by

:::
the

::::
±15

:::
day

:::
and

::
±
:::
10

::::
year

::::
time

:::::::
window

::::
from

:::
the

:::
raw

::::::
GCM.

::::::::
However,

:::::::
because

:::
the

:::
bias

:::::::::
adjustment

::::
and

::::::::::
downscaling

:::
are

::::::
applied

:::
on

:
a
::::::
rolling,

:::::
daily

:::::
basis,

:
it
::::::
means

:::
that

:::
the

:::::::::
adjustment

::::::
factors

:::
are

:::::::
varying

::::
every

::::
day

:::
and

::::
year.

:::::
Thus,

:::::
when

:::::::::
evaluating

:::
the

::::
final

::::::::
resulting

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:::::
GCM

:::::
time

:::::
series,

:::::
there

:::
will

:::::
likely

:::
be

:::::
some

::::::::
aggregate

::::::::::
modification

::
to
:::
the

:::::::
quantile

::::::::
changes.

::
In

:::
this

:::::::
section,

:::
we

:::::::
evaluate

:::
the

:::::
extent

::
to

::::::
which

:::::::
quantile

:::::::
changes

::
are

:::::::::
preserved

:::
and

::::
how

::::
well the historical distributionrelative to the reference distribution, and how trends are preserved for select cities across520

the globe. We then turn to understanding the performance of the method, specifically around trend modification, for moderate

and more extreme climate indices as well as seasonal and annual aggregated metrics commonly used in impacts analysis,

including seasonal mean maximum and minimum temperature and seasonal and annual total precipitation. We examine the

performance of the QDM-QPLAD methods for these metrics first for a coastal city (Miami, Florida) and then at the state

and country level , which we then weight by population.
::
’s

:::::
biases

::::
are

::::::::
corrected

:::
by

:::::::::
examining

:::::::::
city-level,

:::::::::
state-level,

::::
and525

:::::::::::
country-level

::::::
metrics.

:

5.1 Preserving quantile trends globally

One of the key advantages of the QDM method is its ability to preserve changes in daily model-projected extremes due to

how the method imposes the model-projected change for each quantile, rather than purely the mean
::::
Here

:::
we

::::::::
examine

:::
the

::::::::::
preservation

::
of

:::::::
changes

::
in

::::::
higher

:::::::
quantiles

::
at
::
a

:::::::
seasonal

:::::::::
frequency.

:::
For

::::
each

::::::
GCM,

::::::
season,

:::
and

:::::
pixel,

:::
we

::::::::
compute

:::
the

::::::
change530

::
in

:::
the

::::
95th

:::::::::
percentile

::
of

:::::
daily

:::::::::
maximum

::::::::::
temperature

::
in

:::
the

::::
raw

::::::
GCM,

:::
the

:::::::::::
bias-adjusted

::::::
GCM,

::::
and

:::
the

:::::::::::
bias-adjusted

::::
and

:::::::::
downscaled

:::::
GCM

::::
over

:::
the

::::::
period

::::::::::
2080–2100

::::::
relative

::
to

::::::::::
1995–2014

::
for

:::::::::
SSP3-7.0.

::::::
Figure

:
3
::::::
shows

:::
the

::::::::::
comparison

::
of

:::::::
quantile

::::::
change

:::::
across

:::::
these

:::::
stages

::
of

::::::::::
processing

:::
and

::::::::
averaged

::::
over

::
all

::::::
GCMs

::
in

:::
the

::::::::
GDPCIR

::::::
dataset

:::
and

::::::::
indicates

:::
the

::::
level

::
at
::::::
which

::
the

::::::
source

:::::
GCM

:::::::
quantile

:::::::
changes

:::
are

:::::::::
maintained

::
or

::::::::
modified.

:::::
Note

:::
that

::
in

:::::::
addition

::
to

:::
the

::::::
rolling

:::::::::
adjustment

::::::
factors

:::::::::
mentioned

:::::
above,

::::
here

:::
the

:::::::
window

::::
over

::::::
which

:::
the

::::
95th

::::::::
percentile

::
is

:::::::::
computed (e.g. , standard quantile mapping) . The QPLAD method535

provides an additional fine-scale analog-based adjustment factor approach to layering on analog day extremes present in the

fine-scale reference data. Notwithstanding, it is expected that the methods will not perfectly preserve GCM-projected changes

at a temporal aggregation different from that which the methods were applied. In other words, since our empirical CDFs

are computed for each day of year with a 31-day window, the GCM data distributions are adjusted with the same grouping.

Similarly, model-projected changes, computed as the difference or ratio between a rolling 21-year average and the historical540

period, will be preserved as applied. Consequently, examining temporal aggregations outside of these windows will show

behavior that may dampen or inflate model-projected changes in the low and high quantiles to a minor degree. However,

with a 21-year grouping of any 31-day window, corresponding to the QDM and QPLAD method-specified temporal grouping,

model-projected trends would be preserved exactly. In this section, we examine trend preservation in higher quantiles at a

seasonal frequency. Figure 3 shows for a selected model (NorESM2-LM) the change in the
:::
for

::::
each

:::::::
season)

::
is

:::
also

::::::::
different545

:::
than

:::
the

:::::::::::::
QDM-QPLAD

:::::::
method

::::::::::
application,

:::::::
implying

:::::
some

:::::::
further,

:::::
albeit

:::::
minor,

::::::::::
differences.

:::
We

:::::
opted

::
to
:::::

look
::
at

:::
this

::::::
metric

::::::
because

::
it
:::::
better

:::::::::::
demonstrates

::::
how

:::
the

:::::::
methods

::::
have

::::::::
modified

:::
the

:::::::
original

:::
data

:::
in

::::
more

::::::::
aggregate

:::::
terms

::::::
which

:::
are

:::::::::
commonly

::::
used

::
in

::::::
impacts

::::::::
modeling

::::
and

::::::::
therefore

::::
may

::
be

:::::
more

:::::
useful

::
to

:::::::
potential

::::::
users.
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::::::
Figure

::
3.

:::::::
Changes

::
in

:::
the 95th percentile Northern Hemisphere summer (JJA) maximum temperature days between

:
of
::::::::
seasonal550

::::
daily

:::::::::
maximum

::::::::::
temperature

::
in 2080–2100 and the historical period (

:::::
relative

:::
to 1995–2014 ) in the source model data (a) and

in panel (b)
::
in the

:::
raw

::::::
GCMs

:::::::
(panels

::
a,

::
d,

::
g,

::
j),

::::
the difference in this

::
the

::::
95th

:::::::::
percentile change between the bias-adjusted

model data and the source model data for the same time period and percentile.

Figure 3. Change in
:::
and

:::
the

:::::
raw,

::::::
GCMs

::::::
(panels

:::
b,

::
e,

::
h,

:::
k),

::::
and

:::
the

:::::::::
difference

:::
in

:::
the

:
95th percentile JJA maximum

temperature trends globally between 2080–2100 and the training period (1995–2014) in the model (a)and the difference in555
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this trend between the
:::::
change

::::::::
between

:::
the

::::::::::
downscaled

:::
and

::::
the bias-adjusted data and the model (b

::::::
GCMs

::::::
(panels

::
c,
::
f,
::
i,

::
l)

::
for

:::::::
seasons

::::
DJF

:::::::
(panels

::::
a–c),

::::::
MAM

::::::
(panels

:::::
d–f),

:::
JJA

:::::::
(panels

::::
g–i),

::::
and

::::
SON

:::::::
(panels

::
j–l). Results are shown for the model

NorESM2-LM and the
:::::
shown

:::
are

:::
the

:::::
mean

:::::
across

:::
the

:::::
GCM

::::::::
ensemble

:::
for

:::
the scenario SSP3-7.0.

The
:::::::
Although

:::
the

:::::::::::::
post-processing

:::::::::
described

::
in

::::::
Section

:::::
4.3.1

::
is

::::
only

:::::::
applied

::
to

::::::::::
downscaled

:::::
output

::::::
within

:::
the

:::::::::::
downscaling560

:::::::
pipeline,

::
it

:
is
:::::::
applied

::::::::
separately

::
to

:
bias-adjusteddata shown in Fig. 2b was post-processed according to the approach described

in the methods section so that it is consistent with the bias-adjusted and downscaled data,
:::::::::::::
pre-downscaled

::::::
results

::::::
shown

::::
here

::::
(e.g.

:::::
Figure

:::
3,

::::::
second

:::::::
column)

:::::
such

:::
that

::::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::::
results

:::
are

:::::::
handled

::::::::::
consistently

:::
for

::::
the

:::::::
purposes

:::
of

:::
this

::::::::::
comparison. As noted above, it is expected that there will be slight modifications in the model-projected changes,

:::
raw

:::::::::::::
GCM-projected

:::::::
changes.

:
Moreover, here we show the analytical 95th percentile of Northern Hemisphere (NH) summer days565

::::
days

:::::
within

:::::
each

:::::
season

::::
and

::::::::
averaged

::::
over

:::::
GCMs, rather than

::::
using

:
an empirical CDF that corresponds

::::::::::::
corresponding to the

actual bias-adjustment applied. Additionally, the bias-adjusted
::
day

::::::
closest

:::
to

:::
the

::::
95th

:::::::::
percentile.

:::
The

::::
raw,

:::::::
cleaned

:::::
GCM

::::
data

:
is
::

at
::::

the
::::::
original

:::::::::
resolution

:::
of

:::
the

:::::
GCM

::::::
output

:::
and

::::::::::::
bias-adjusted

:::::
GCM data is at a 1◦ resolution, whereas the downscaled

data is at a 0.25◦ resolution, so the bias-adjusted data is coarser and, by construction, less extreme than the downscaled data.

Indeed, parts of eastern Canada and Siberia exhibit amplifications in maximum temperature trends at the
:::::
Some

:::::
broad

:::::::
features570

::::::
emerge

::
in

::::::
Figure

::
3:

:::
the

::::
first

:::::::
column

:::::
shows

::::
that

::::::::
generally

::
in

:::
the

::::
raw,

:::::::
cleaned

:::::::
GCMs,

:::
the 95th

:::::::
percentile

:::
of

:::::
every

::::::
season

::
is

::::::::
increasing

:::::::::::
everywhere,

:::
and

:::::
more

::
so

:::
on

::::
land

::::
and

::::
over

:::
the

:::::
Arctic

:::::::
(except

:::
for

::
in

::::::
MAM

:::::
when

:::
sea

:::
ice

:::::
extent

::
is
::
at
::

a
:::::::::
maximum

:::
and

::::::
surface

:::::::::::
temperatures

::::::
remain

::::
near

::::
the

:::::::
freezing

::::
point

:::::
over

::::
ice).

:::
The

::::
bias

::::::::::
adjustment

:::::
tends

::
to

:::::::
increase

:::
the

::::
95th

:
percentile

, as well as Antarctica. Much of these high-latitude areas that show amplification are also areas where the GCM-projected

change in temperature is already high relative to other parts of the globe, consistent with the Arctic amplification that is already575

underway due to climate change (Previdi et al., 2021). We can infer that adjusting the GCM distribution to be consistent with

the reference dataset is also contributing to this amplification of NH summer maximum temperatures. Supplemental figure 2

shows the difference in change between
:::::::
changes

::
by

::
a
::::::
modest

:::::::
amount

::
on

:::::::
average.

::::::::
Although

:::
the

:::::::::
magnitude

::::
and

:::::
extent

::::
vary

:::
by

::::::
season,

:::
the

::::
vast

:::::::
majority

::
of

:::::::::::
bias-adjusted

:::::::::
percentile

::::::
changes

:::
are

::::::
within

::::::::::::
approximately

::::
1◦C

::
of

:::
the

::::
raw,

:::::::
cleaned

:::::
GCM

:::::::
changes

::::::
(Figure

::
3,

::::::
second

::::::::
column).

::::
The

:::::::::::
downscaling

:::
step

:::::
adds

:::
fine

:::::::::
resolution

::::::::::
information

::::
that

::::::
slightly

::::::::
modifies

:::
the

::::::
change

:::
in

::::
95th580

::::::::
percentile

::
in

:
the bias-adjusted dataand ,

::::::::
however

::
in

::::::
general

:::::::
changes

::::::::
between

:::
the bias-adjusted and downscaled data, and in

comparing that to Fig. 3b we can infer that the amplification in model-projected changes is happening at the bias-adjustment

step rather than the downscaling step, which figure A2 further confirms. However, amplification is generally very small in

comparison to the actual magnitude of change projected by the model (3a)in those areas
::::
data

:::::
before

::::
and

::::
after

:::::::::::
downscaling

::
is

::::::
applied

:::
are

:::
on

:::
the

:::::
order

::
of

::
a

::::
tenth

:::
of

:
a
::::::
degree

:::::::
Celsius.

::::
The

::::::
largest

::::::::::
differences

::::::
appear

::::
over

::::::
regions

::::
with

:::::
large

::::
and

:::::::
variable585

::::
(over

:::
the

::::::
GCM

:::::::::
ensemble)

::::::::::
temperature

::::::::
gradients,

:::::
such

::
as

::::
near

::::
the

:::::
edges

::
of

:::
sea

::::
ice

::::::::
coverage.

::
A

::::::::::
comparable

:::::
figure

::::
for

:::
the

::::
99th

::::::::
percentile

::
is

:::::::
included

:::
in

::::::::
Appendix

::
A

:::::::
(Figure

:::
A7)

::::
and

:::::
shows

::
a
::::::
similar

:::::
story

::::
with

:::::
slight

::::::::
increased

::::::::::
magnitudes

::::
(e.g.

::::
bias

:::::::::
adjustment

::::::::
increases

:::
the

::::
99th

::::::::
percentile

::
by

::
a
::
bit

:::::
more

::::
than

:::
the

::::
95th

:::::::::
percentile).

Precipitation has a similar but more nuanced and complex story. A longstanding challenge with bias adjustment of pre-

cipitation at a global scale is dealing with the disagreement in the seasonal migration and magnitude of precipitation in the590

22



intertropical convergence zone (ITCZ )
:::::
ITCZ between reanalysis and GCMs. The ITCZ is a tropical “belt” where deep con-

vection and heavy precipitation occur due to convergence of the trade winds, and the belt of heavy precipitation
:
it
:
migrates

between 9◦N and 2◦N as a result of
:::
due

::
to annual warming of sea surface temperatures (van Hengstum et al., 2016). GCMs

still exhibit bias in simulating tropical precipitation and this bias differs widely between CMIP6 models (Hagos et al., 2021;

Tian and Dong, 2020). Figure
::::::
Similar

::
to

::::::
Figure

::
3,

:::::
Figure

:
4 shows

::
the

:
95th percentile NH summer

::
of daily precipitation for the595

same model and scenario (
::::
each

::::::
season

:::::::
averaged

::::::
across

:::
the

::::::::
GDPCIR

::::::::
ensemble

::
for

:
SSP3-7.0

:
.
:::::
Days

::::
with

::::
total

::::::::::
precipitation

::::
less

:::
than

::
1
::::
mm

:::::
day−1

:::
are

:::
not

::::::::
included

::
so

::
as

::
to

::::
only

:::::::
include

:::
wet

::::
days

::
in

:::
the

::::::::
analysis.

:::
We

:::
also

:::::::
include

:::
the

::::
same

::::::
figure

:::::::
showing

:::
the

::::
99th

::::::::
percentile

::
of

::::
daily

:::::::::::
precipitation

:::
for

::::
each

::::::
season

::
in

::::::::
Appendix

::
A

::::::
(Figure

:::
A8). Panels A and B show 95th percentile seasonal

Northern Hemisphere summer precipitation for the reference and the source model data respectively, over the historical period.

Panel C shows the model-projected change in 95th percentile NH summer precipitation between 2080–2100 and the historical600

period in the source model. Finally, panels D and E show the ratio of the bias-adjusted data to the source model data trends the

ratio of the bias-adjusted and downscaled data to the bias-adjusted data, respectively. The NH summer ITCZ is pronounced and

markedly different in panels A and B; for this particular GCM and percentile, differences
::
In

:::::::::
comparing

:::::::
seasonal

:::::::::::
precipitation

::
in

:::::::
reference

::::
data

::::::
versus

:::
the

::::::::
ensemble

::::
mean

::::::
before

:::
bias

::::::::::
adjustment

:::
and

::::::::::
downscaling

:::::::
(panels

::
b,

:
g,
::
l,
:::
q),

::::
there

::
is

:::::
broad

:::::::::::
disagreement

::
on

:::
the

:::::
ITCZ

:::::::
present

:::::::::
year-round

:::
but

::::::::::
particularly

::::::
strong

::
in

::::::::
Northern

::::::::::
hemisphere

:::::::
summer

:::
and

::::
fall.

::::::::::
Differences

:
are notable in605

both the shape (e.g., the ITCZ is shifted southwards in the GCM off the Brazilian coast, relative to reanalysis) and the strength

of the ITCZ(e. g., the GCM overestimates the intensity of the summer monsoon over southeastern Asia and in particular over

India). These
:
.
::::
The

::::::
climate

:::::::
change

:::::
signal

:::::::
(panels

::
c,

::
h,

:::
m,

::
r)

:::::
show

::::
95th

:::::::::
percentile

:::::::
changes

::::::::
generally

:::::::::
increasing

::::
over

:::::
most

:::
land

:::::
areas

::
in

:::
the

::::
raw

:::::
GCM

::::::::
ensemble

:::::
mean

:::
and

::::
over

:::
the

::::::
ITCZ,

::::
with

:::::
broad

::::::::
decreases

:::
in

::::::::::
precipitation

::::
over

::::::::::
subtropical

::::::
oceans

:::
that

::::
vary

:::
by

::::::
season.

::::::
These

:::::
ITCZ

:
biases result in slight modifications in preserving GCM-projected relative changes in the610

quantiles. For example, panel 4D shows that inland and just off the coastlines of India,
::::::::
Although

:::
the

::::::
biggest

::::::::::::
modifications

::
of

:::
the

::::::
change

:::
in

:::
the

::::
95th

:::::::
quantile

:::::::::
primarily

:::::
occur

::::
over

:::
the

::::::
oceans

:::::
(due

::::::::
primarily

::
to

:::
the

::::::
ITCZ

:::::
bias),

:::::
there

:::
are

::::
also

:::::
some

:::::::::::
modifications

::
in

::::
drier

:::::
areas,

::::
such

:::
as

::::::::::
Sub-Saharan

::::::
Africa

:::
and

:::::
parts

::
of

:::
the

::::::
Middle

:::::
East.

::
In

::::
these

:::::
areas

::::
bias

:::::::::
adjustment

::::::
results

::
in

:
a
::::
mild

:::::::::::
amplification

::
of

:::
the

:::::::::::::::
already-increasing

::::::
signal

::::
from

:::
the

::::::
GCMs,

:::::
again

:::::
driven

:::
by

:::::::::
differences

::
in

:::::::::
seasonality

::::
and

:::::::::
magnitude

:::::::
between

::::::::
reanalysis

::::
and

:::
the

::::::
GCMs.

::::
For

::::::::
example, the bias adjustment amplifies the projected change from the source GCM.615

Mechanically, because we choose to consider relative changes, the areas exhibiting the largest relative trends (panel C) or trend

alterations (panel D) are also the driest areas (
:::::::
gridcells

::
in

:::::::::::
Sub-Saharan

:::::
Africa

:::
in

::::::::
reference

::::
data

:::::
shown

::
in
::::::

white
:
(e.g. Brazil,

Namibia, the Arabic peninsula in panel D). Finally, it appears, as expected, that statistical downscaling is not significantly

altering the model-projected relative change signals (panel E) in comparison to the bias adjustment step, as we noted for

temperature as well
:::
zero

::::::::::::
precipitation)

::::
have

::::
low

:::
but

::::::::
non-zero

::::::::::
precipitation

:::
in

:::
the

::::::
GCMs,

:::
an

:::::::::
illustration

::
of

:::
the

:::::::
"drizzle

:::::
day"620

:::::
GCM

:::::::
problem

:::::::::
(Dai, 2006)

:
.
:::
We

:::::
apply

:::
the

:::::
WDF

::::::::
correction

:::::::::
discussed

::
in

::::::
Section

:::
3.3

::
to

:::::::
mitigate

:::
the

::::::
effects

::
of

::::
this

:::::::::::
disagreement

:::
but

:
it
:::::

does
:::
not

::::::::::
completely

:::::
solve

:::
the

::::
issue

:::
in

:::
the

::::::
results.

:::
In

:::::::::
comparing

:::::::
changes

::
in
::::

the
:::::::::::
bias-adjusted

::::
data

::
to

:::::::
changes

:::
in

:::
the

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::
data

:::::::
(panels

::
e,

:
j,
::
o,
:::

t),
:::::::
changes

:::
are

:::::
most

::::::::
noticeable

:::
in

::::::::::
Sub-Saharan

::::::
Africa

:::
as

::::
well,

::::::
where

:::
the

:::::
“post”

:::::
WDF

::
is

::::::
applied

::
to

:::::::::::
bias-adjusted

::::
and

::::::::::
downscaled

:::
data

:::
in

:::
our

:::::::
pipeline

:::
but

:::
not

::
to

:::
the

:::::::::::
bias-adjusted,

:::::::::::::
pre-downscaled

:::::
data.

::::
Thus

:::
the

:::::
right

:::::::
column,

::
in

:::::::
essence,

:::::::::
illustrates

:::
the

::::::
effects

::
of

:::
the

:::::
WDF.

:::
To

::::::
further

::::::::::
understand

:::
the

::::::
effects

::
of

:::
the

:::::
WDF

:::
as

::::
well625
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::
as

::::::::::
modification

:::
of

:::::::
seasonal

:::::::
changes

::
in

:::::
more

::::
arid

:::::::
regions,

::
we

:::::
show

:::
the

:::::
same

:::::::
analysis

::
as

::
in
::::::

Figure
::
4
:::
and

::::::
Figure

:::
A8

:::
for

:::::
daily

::::::::::
precipitation

::
<

::
10

::::
mm

::::::
day−1,

::::::
shown

::
for

:::
the

::::
95th

:::::::::
percentile

::::::
(Figure

::::
A9)

:::
and

:::
the

::::
99th

:::::::::
percentile

::::::
(Figure

:::::
A10).

Figure 4.
:::
The 95th percentile JJA precipitation over the historical (1995–2015) period in the reference data (A) and in the model

data (B), along with the relative change, of the percentile in the
::
of

:::::::
seasonal

::::
daily

::::
total

:::::::::::
precipitation

:::
for

:::
the

::::::::
reference

::::::
(panels

::
a,630

:
f,
::
k,

::
p)
::::

and
::::
raw,

:::::::
cleaned

:::::
GCM

::
(b,

::
g,
::

l,
::
q)

::::
over

:::
the

:::::::
training

::::::
period,

::::::::::
1995–2014.

::::
The

::::::
change

:::
in

:::
the

::::
95th

::::::::
percentile

::
of

::::::::
seasonal

::::
daily

::::
total

:::::::::::
precipitation

::
in

:
2080–2100 period to the same percentile in the historical period in the model data (C),

::::::
relative

::
to

::::::::::
1995–2014,

::
as

:
a
:::::
ratio,

::
in

:::
the

::::
raw,

:::::::
cleaned

:::::
GCMs

:::::::
(panels

::
c,

::
h,

::
m,

:::
r),

:::
the ratio of the relative change in

:::
95th

:::::::::
percentile

::::::
change

:::::::
between the bias-adjusted data to the relative change in the model data (D),

:::
and

:::
the

::::
raw,

::::::
cleaned

::::::
GCMs

::::::
(panels

::
d,

::
i,
::
n,

::
s),

::::
and

::
the

:
ratio of the relative change in the

::::
95th

::::::::
percentile

::::::
change

:::::::
between

:::
the

::::::::::
downscaled

:::
and

:::
the bias-adjusted and downscaled data635

to the relative change in the bias-adjusted data (E) . White areas in panel (E)are due to values equal to zero in the bias-adjusted

and downscaled data in the historical period after the post-processing described in the methods section is applied. Results are

shown for
:::::
GCMs

::::::
(panels

::
e,
::
j,

::
o,

::
t)

:::
for

::::::
seasons

::::
DJF

::::::
(panels

:::::
a–e),

:::::
MAM

:::::::
(panels

::::
f–j),

:::
JJA

::::::
(panels

:::::
k–o),

::::
and

::::
SON

::::::
(panels

:::::
p–t).

::::::
Results

::::::
shown

::
are

:::
the

:::::::
average

:::
for

:::
wet

::::
days

::::::
across

::
the

:::::
GCM

::::::::
ensemble

:::
for

:
the model NorESM2-LM and the scenario SSP3-7.0.

640
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5.2 Historical and future method performance for selected cities and regions

We further quantify the bias adjustment and trend preservation , here for selected aggregations and areas
::::
error

:::
for

::::::
highly

::::::::
populated

:::::
cities

::::
and

:::::::
selected

:::::::::
aggregated

:::::::
regions

:::::::::
containing

:::
the

:::::
cities. Following the analysis in Bürger et al. (2012) and

Cannon et al. (2015), we assess the performance of the QDM method
:::
and

:::::::
QPLAD

::::::::
methods by comparing the distributions of

various CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) metrics (Karl et al., 1999)645

metrics as well as other aggregated metrics
:::::
values widely used in impacts research(Table 2)

:
,
:::::
listed

::
in

:::::
Table

::
2.

:::
We

::::::::
compute

::::
these

:
over the historical period in the bias-adjusted and downscaled model data against their distribution

::::
data

:::
and

::::::::
compare

::::::
against

::::
their

:::::::::::
distributions in the reanalysis dataset, for a single city. The selected indices encompass

::::::::
reference

::::::
dataset.

::::
For

::
the

::::::
initial

::::
city

:::::::
analysis,

:::
we

::::
use

:
a
:::
set

:::
of

::
17

::::::
highly

:::::::::
populated

:::::
cities:

:::::
Paris,

:::::::
France;

:::::::::
Shanghai,

::::::
China;

::::::
Lagos,

:::::::
Nigeria;

::::::
Delhi,

:::::
India;

::::::
Dhaka,

::::::::::
Bangladesh;

:::::::
Mexico

::::
City,

:::::::
Mexico;

:::::
Cairo,

::::::
Egypt;

::::::::
Moscow,

::::::
Russia;

::::
São

:::::
Paulo,

::::::
Brazil;

::::::
Miami,

:::::::
Florida;

::::
New

:::::
York650

::::
City,

::::
New

:::::
York;

:::::::
Manila,

::::::::::
Philippines;

:::::::
Istanbul,

::::::::
Turkiye;

:::::::
Mumbai,

:::::
India;

:::::::
Buenos

:::::
Aires,

:::::::::
Argentina;

::::::
Tokyo,

::::::
Japan;

:::
and

::::::::
London,

:::::
United

:::::::::
Kingdom.

::::
The

:::
first

:::::
eight

:::::
cities

:::
are

:::::
inland

:::::
cities

:::
and

:::
the

:::::
latter

::::
nine

::::::
coastal

::::::
cities.

::::
Later

::
in
::::
this

:::::::
section,

::
we

::::::::
examine

:::
the

::::
same

::::::
indices

:::
for

::::::::::
aggregated

::::::
regions

::
in
::::::

which
::::
each

:::
of

:::
the

:::::
cities

::
is

::::::
located.

::::
The

:::::::
selected

::::::::
ETCCDI

::::::
indices

::::
and

:::
the

:::::::::
additional

::::::
metrics

::::::
include

:
maximum and minimum temperatures and

:::::::::::::::
temperature-based

::::::
values

::
as

::::
well

::
as

::::::
values

::::
that

:::
are

::::::
derived

:::::
from

total precipitation, ensuring that all variables included in the GDPCIR dataset are tested. We examine the performance of these655

metrics across all models
:::::
GCMs

::::::::
included

::
in

:::
the

::::::::
GDPCIR

::::::
dataset, given the heterogeneity of temperature and precipitation

signalsamong models. Then, we focus on a single model, a selection of 17 metropolises globally along with their corresponding

lower resolution regions and assess both bias adjustment and trend preservation. .
:

Name Description

:::::::
summer

::::
days ::::::

Annual
:::::
count

::
of

::::
days

:::::
when

::::
daily

:

::::::::
maximum

::::::::::
temperature

::::::
>25°C

::::::
tropical

::::::
nights ::::::

Annual
:::::
count

::
of

::::
days

:::::
when

::::
daily

:

::::::::
minimum

::::::::::
temperature

::::::
>20°C

::::
frost

::::
days

: ::::::
Annual

:::::::
number

::
of

::::
days

:::::
under

::::
0°C

::::
days

::::
over

::
90

: ::::::
Annual

:::::::
number

::
of

::::
days

::::
over

::::
90°F

:

::::
days

::::
over

::
95

: ::::::
Annual

:::::::
number

::
of

::::
days

::::
over

::::
95°F

:

:::::::
seasonal

::::::::
maximum

:

::::::::::
temperature :::::

Mean
:::::::
seasonal

:::::::::
maximum

::::::::::
temperature

:::
for

::::
each

::::
year

:::::::
seasonal

::::::::
minimum

:

::::::::::
temperature :::::

Mean
:::::::
seasonal

::::::::
minimum

::::::::::
temperature

:::
for

::::
each

::::
year

:

:::
wet

::::
days

: ::::::
Annual

:::::
count

::
of

::::
wet

::::
days

:::::
(daily

::::
total

:::::::::::
precipitation

::::::
>1mm)

:::
wet

::::
days

::::
with

:
a
:

:::::::
specified

::::::::
threshold

::::::
Annual

:::::
count

::
of

::::::::
moderate

:::::::::::
precipitation

::::
days

:::::
(daily

::::
total

::::::::::
precipitation

::::::::
>10mm)
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::::
Table

:
2
:::::::::
continued

:::::
from

:::::::
previous

:::::
page

Name Description

::::::::::
consecutive

:::
dry

::::
days ::::::

Annual
::::::::
maximum

:::::::
number

::
of

::::::::::
consecutive

:::
dry

::::
days

:

:::::
(daily

::::
total

::::::::::
precipitation

:::::::
<1mm)

::::::
annual

:::::
precip

: ::::::
Annual

:::::::::::
precipitation

:::::::
seasonal

::::::
precip

::::
Total

:::::::::::
precipitation

:::::::
summed

::::
over

:::::::
seasons

::::
each

::::
year

Table 2:
:::::::
Selected

::::::::
moderate

:::
and

:::::::
extreme

:::::::
metrics

:::
for

::::::::
analyzing

::::
bias

:::::::::
adjustment

::::
and

:::::::::::
downscaling

::::::::
algorithm

:::::::::::
performance

::::
over

::::
cities

::::
and

::::::
admin1

:::::::::::::
(state/province)

:::::::
regions.

5.2.1 Historical extremes indices

To check the historical distributions of the downscaled models, we examine “moderate” and “extreme” extremes detailed in660

Table 2 by computing
:::::::::::
bias-adjusted

::::
and

::::::::::
downscaled

::::::
GCMs,

:::
we

:::::::
compute

:
the selected indices

:::::
listed

::
in

:::::
Table

::
2 on an annual

basis over the training period and over a separate validation period
:::::::
historical

::::::
period

:
for the raw GCM,

::::::::::
bias-adjusted

::::
and

downscaled GCM and reanalysis for a single city, Miami, Florida. The chosen metricsare checks on the distributions of all

variables included in the dataset. Some of the metrics
:::
the

::
17

::::::::
selected

:::::::::::
metropolises.

::::
The

::::::::
ETCCDI

::::::
metrics, such as summer

days, tropical nights, and annual wet daysrepresent more moderate extremes less
:
,
:::
and

::::::::::
consecutive

:::
dry

::::
days

::::::::
represent

::::::::
extremes665

affected by threshold behavior. Others
::::
Other

:::::
more

:::::::
extreme

::::::::::
temperature

:::::::
metrics

:::
not

:::::::::
classified

::
as

::::::::
ETCCDI

::::::
indices, such as

consecutive dry days , days
::::
days over 35◦C , and days over 32.2◦C, are

::::
even more affected by threshold behavior. Others, such

as seasonal temperature means and total precipitation , while
:::::
While

:::::
those

:::::
more

:::::::
extreme

::::::::::
temperature

::::::
metrics

:::
and

:::
the

::::::::
seasonal

:::
and

::::::
annual

::::::::::
temperature

:::
and

:::::::::::
precipitation

:::::::
metrics

:::
are not classified as ETCCDI indices,

:::
they

:
are widely used as input data to

sector-specific impacts modeling and thus are included here to guide users of the dataset.670

We calculated distributions
:::::::::::
Distributions of the indices on

:::
are

:::::::::
computed

:::::
using

:
the raw GCM output and on the bias-

adjusted and downscaled GCM and each are compared against the reanalysis distribution of the same index using a two-sample

Kolmogorov-Smirnov
::::::::::::::::::
Kolmogorov–Smirnov

:
(K-S) test at a 0.05 significance level. The null hypothesis is that the two samples

(e.g.,
:
raw GCM and reanalysis or

::::::::::
bias-adjusted

::::
and downscaled GCM and reanalysis) are drawn from the same distribution.

A model
::::
GCM

:
is considered to pass the K-S test, either for the raw GCM or the

:::::::::::
bias-adjusted

:::
and

:
downscaled GCM, if the675

null hypothesis is not rejected, in other words, if the p-value <
:
>
:
0.05. This is a slight modification of the usage of K-S tests

in Cannon et al. (2015) and Bürger et al. (2012), where the authors use the D statistic rather than the p-value as a diagnostic.

The p-value is used here for significance due to the effects of disagreement in seasonality between reanalysis and the GCM

on the D statistic versus the p-value. We compute the K-S tests over two time periods: a calibration period (1995–2014) and

a validation period (1979-1994). The validation period used is shorter because aggregated reanalysis data was only available680

:
a
::::::::::::
climatological

::::::::
historical

::::::
period from 1979 to near-real-time and had not yet been extended back to 1950 by ECMWF and

made available when hourly data was first downloaded and aggregated to daily for use in the bias adjustment and downscaling

pipeline. For metrics that use precipitation data, the validation periodis
:
–

::::
2014

:::
for

::::::::::
temperature

::::::::
variables

:::
and

:::
for

:::::::::::
precipitation
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::
we

::::
use

:
a
:::::::
slightly

::::::
shorter

::::::::
historical

::::::
period,

:
1984–1994, because quality control showed that precipitation data for 1983 con-

tained errors.685

In Figure 5, the results of the K-S tests for the twelve selected indices for a single city, Miami, Florida,
:::::
subset

::
of

:::::
inland

:::::
cities

::::::
around

:::
the

:::::
globe are shown for the downscaled

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::::
GCMs

:
and raw GCMsfor the calibration and

validation periods. The selected index that never passes K-S tests is frost days (the number of annual days below the freezing

point) because there are so few years in the historical period in both the raw GCMs and the reanalysis that contain days below

freezing. Prior to .
::::
The

::::
same

:::::::
analysis

:::
for

::::::
coastal

:::::
cities

::::::
around

::
the

:::::
globe

:::
can

:::
be

:::::
found

::
in

:::::
Figure

:::::
A11).

::::
For

:::::
nearly

::
all

::
of

:::
the

::::::
inland690

:::::
cities, bias adjustment and downscaling , around half of the GCMs pass K-S tests in the calibration period, and afterward,

all GCMs pass the K-S tests except for frost days. During the validation period, a considerably smaller
:::::
shows

::
a
:::::::::
significant

:::::::::::
improvement

::
in

:::
the number of K-S tests pass in the raw GCMs, while all pass after bias adjustment and downscaling, showing

that the distributions of the selected moderate and extreme metrics have been effectively adjusted by the bias adjustment and

downscaling algorithms. A few models are notable in the lack of passing K-S tests before
::::::
passing

::::
over

:::
the

::::::
source

::::::
GCM695

::::::::::
distributions.

::::
The

:::::::
notable

:::
two

:::::::::
exceptions

::
to
::::
this

:::
are

::::::
Mexico

:::::
City

:::
and

::::::::
Moscow.

:::
For

:::::::
Mexico

::::
City,

::::
this

:::
can

::
be

:::::::::
explained

::
by

:::
its

::::
high

:::::::
elevation

::::::
relative

::
to
:::
the

:::::
other

:::::
cities;

:
it
::
is
::
at

::
an

::::::::
elevation

::
of

::::
2240

::
m

:::::
above

:::
sea

:::::
level

:::
and

::::::
located

::
in

:
a
::::::
valley.

::::::::
Moscow’s

:::::::
relative

:::
lack

::
of

:::::::::::
improvement

:::::
from bias adjustment and downscaling , including the BCC-CSM2-MR, GFDL-ESM4, and CCMC-ESM2

models
:::
can

::
be

::::::::
explained

:::
by

::
its

:::::
colder

:::::::
climate

::::::
relative

::
to

:::::
other

:::::
inland

:::::
cities

:::
and,

:::::::::
therefore,

:::
lack

:::
of

::::::::::
occurrences

::
for

:::
the

:::::::::
maximum

::::::::::
temperature

:::::::
metrics,

::
as

::::
well

::
as

::
a

:::::
strong

:::::
urban

::::
heat

::::::
island

:::::
effect

::::::::::::::::::
(Lokoshchenko, 2014). By contrast, INM-CM4-8 is notably700

high before downscaling in the calibration period, indicating that its distributions of moderate and more extreme extrema were

already closer to reanalysis for this location prior to bias adjustment. It is worth noting that because the location shown here

is a coastal city, the additional benefit of downscaling versus solely bias adjustment is more profound, and thus the adjusted

distributions shown here benefit both from QDM and QPLAD adjustments. Had an inland city been shown, the additional

effect of downscaling in adjusting the distributions to the higher-resolution reanalysis distribution would have likely been less705

significant (unless it were in an area with complex topography)
::::::
coastal

:::::
cities

:::::::
(Figure

::::
A11)

:::::
show

::
a
::::::::
markedly

::::::::
different

::::
side

::
of

:::
the

::::::::
narrative,

:::::::::
illustrating

:::
the

:::::::::
limitations

:::
of

::::
bias

:::::::::
adjustment

:::
and

:::::::::::
downscaling

:::
for

::::::
coastal

:::::
areas

::
in

:::::
some

:::::
parts

::
of

:::
the

::::::
world.

::::::
Miami,

:::::::
Manila,

:::
and

::::::::
Mumbai,

::
in

::::::::
particular,

:::::
show

::::
little

:::::::::::
improvement

:::::::
between

:::
the

::::
raw

:::::
GCM

:::
and

:::::::::::
bias-adjusted

::::
and

::::::::::
downscaled

:::::
GCM,

:::::
which

::::::
points

::
to

:::
the

:::::::
inherent

:::::::::
challenges

::
of

:::::
GCM

::::::::::::
representations

:::
of

::::::::
coastlines

::
as

::::
well

::
as

:::::::::
limitations

::::
with

::::::
coastal

:::::
areas

::
in

::::::::
reanalysis

::::
data.710
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Figure 5. Bar plot
::::
plots showing the number of K-S

::::::::::::::::::
Kolmogorov-Smirnov tests passed for the twelve selected indices for

the downscaled model and raw model
::::::::::
bias-adjusted

::::
and

::::::::::
downscaled

:::::
GCM

::::
and

:::
raw

:::::
GCM

:
(overlain) for each of the GCMs

included in the GDPCIR dataset for a single coastal city, Miami, Florida (USA). The calibration period is shown in (a) and the

validation period in (b)
::::
eight

::::::
inland

::::
cities

:::::::
around

::
the

:::::
globe. The dashed line shows the maximum possible number of K-S tests.
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Index Description Surface Variable 0.5extx_days_above Annual count of days when daily maximum temperature > 25◦C

maximum temperature 0.5extn_days_above Annual count of days when daily minimum temperature > 20◦C minimum temperature

0.5exwet_days Annual count of wet days (daily total precipitation > 1.0mm) total precipitation 0.5exwet_days_prop Annual

count of moderate precipitation days (daily total precipitation > 10.0mm) total precipitation 0.5exseasonal minimum temperature

Mean seasonal minimum temperature for each year minimum temperature 0.5exseasonal maximum temperature Mean seasonal715

maximum temperature for each year maximum temperature 0.5exseasonal precipitation Total precipitation summed over

seasons each year total precipitation 0.5exannual precipitation Annual precipitation total precipitation 0.5exdays over 32.2◦C

Annual number of days over 90◦F maximum temperature 0.5exdays over 35◦C Annual number of days over 95◦F maximum

temperature 0.5exfrost days Annual number of days under 0◦C minimum temperature 0.5exconsecutive dry days Annual

maximum number of consecutive dry days (daily total precipitation < 1.0mm) total precipitation 0.5ex0.5exSelected moderate720

and extreme metrics for analyzing bias adjustment and downscaling algorithm performance over cities and admin1 (state/province)

regions.

5.2.2 Bias adjustment and relative trend preservation

To further examine the performance of the bias adjustment and downscaling algorithms, we examine seasonal aggregated

metrics (mean maximum and minimum temperature and total precipitation) across selected
:::::::
compute

::::::
median

::::::::
absolute

:::::
errors

::
in725

:::
bias

::::::::::
adjustment

:::
and

:::::::::::
downscaling

:::
and

:::::
trend

::::::::::
preservation

::::::
across

:::
the

:::::
same highly populated cities globally for a single model,

BCC-CSM2-MR, by computing the median absolute error in bias adjustment compared to the mean seasonal error in
::
for

:::
all

:::::
GCMs

::::::::
included

::
in

::
the

::::::::
GDPCIR

::::::
dataset

:::
for

:::
the

:::::::
selected

::::::::
projection

::::::
period,

:::::::::
SSP3-7.0,

:::
and

:::
for

::
all

::::::::
variables.

:::
We

::::::::
compute

::
the

:::::
error

:::
over

:::::
daily

:::::::
21-year

:::::::::::
climatologies

::::
after

:::::::::
smoothing

:::
the

:::::
daily

::::
data

::::
with

:
a
::::::
31-day

::::::
rolling

:::::::
window

:::::
mean.

:::::::
Median

:::::::
absolute

:::::
error

::
in

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::
data

::
is
:::::::::
computed

::::
over

:::
the

::::::::
historical

::::::
period

:::::::::::
(1995–2014)

::::
and

::::::::
compared

::
to
:

trend preservation730

between the raw and downscaled GCMs. Following
:::::
GCMs

:::
and

:::::::::::
bias-adjusted

::::
and

:::::::::
downscaled

::::::
GCMs

:::
for

::::::::::
2080–2100.

:::::
Based

:::
on

the method used by Lange (2019), we define absolute error in bias adjustment as:

e= |ysimhist −xobs
hist| (6)

where ysimhist represents bias adjusted historical simulations
:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:::::::::
historical

::::
daily

:::::::::::::
climatological

:::::
GCM

::::
data

::::
from

::::::::::
1995–2014 and xobs

hist represents historical reference data.
::::
daily

::::::::::::
climatological

::::::::
reference

::::
data

::::
over

:::
the

:::::
same735

::::
time

::::::
period.

::::::
Median

::::
bias

:::::::::
adjustment

::::
and

:::::::::::
downscaling

:::::
errors

:::
are

::::::::
computed

::
as

:::
the

:::::::
median

::
of

:::
the

::::
error

:::
for

:::
all

::::
days

::
of

:::
the

:::::
year.

We then define
::::::
median

:
absolute error in trend preservation as:

e= |(ysimfut − ysimhist)− (xsim
fut −xsim

hist)| (7)

where ysimfut represents bias adjusted projections
::::::::::
bias-adjusted

::::
and

::::::::::
downscaled

:::::
daily

::::::::::::
climatological

:::::::::
projection

::::
data

:::::
from

:::::::::
2080–2100

:::
for

::::::::
SSP3-7.0, ysimhist represents bias adjusted

::::
daily

::::::::::::
climatological

::::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:
historical simula-740

tions, xsim
fut represents future projections (unadjusted)

::::
daily

::::::::::::
climatological

:::::
future

:::::::::
projection

::::
data

::::
from

:::
the

::::
raw

:::::
GCM

::::
over

:::
the
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::::
same

:::::
future

::::::
period

:
and xsim

hist represents historical simulations (unadjusted).
::::
daily

::::::::::::
climatological

::::::::
historical

::::
data

::::
from

:::
the

::::
raw

:::::
GCM

::
for

:::
the

:::::
same

::::::::
historical

::::::
period.

:::
As

::::
with

:::
bias

::::::::::
adjustment

:::
and

:::::::::::
downscaling

::::
error,

:::::
trend

::::::::::
preservation

:::::
error

::
is

:::
also

:::::::::
computed

::
as

:::
the

::::::
median

::
of

:::
the

::::
error

:::
for

:::
all

::::
days

::
of

:::
the

::::
year.

:

However, we depart from the Lange (2019) method by computing the absolute error over seasonal means or sums (for745

temperature and precipitation, respectively) and for cities globally
::::::
median

:::::::
absolute

::::
error

:::
for

::::::::::::::
highly-populated

:::::
cities

::::::
around

:::
the

::::
globe

:::::
(e.g.,

::
at

:::
the

::::
pixel

:::::
level)

:
rather than at multiple spatial resolutions. Because we are computing the error on an annual basis

rather than over a 21-year rolling window, the difference in trend between the raw GCM and downscaled GCM is non-zero

(our QDM implementation perfectly preserves relative seasonal trends between a given future 21-year rolling window and the

historical training period)
:::::
Some

:::::::
artifacts

::
of

:::::::::
regridding

:::::
affect

:::
the

:::::::
analysis;

:::::::::::
bias-adjusted

::::
and

:::::::::
downscaled

:::::
data,

:::
raw

:::::
GCM

:::::
data,750

:::
and

::::::::
reanalysis

::::
data

:::
are

:::::::::
necessarily

::
at
::::::::
different

::::::::::
resolutions:

:::::
0.25◦,

:::::
native

:::::
GCM

::::
grid,

:::::::
usually

::::::
around

::
1◦

:::::
(with

:::::
some

::::::::::
exceptions),

:::
and

:::
the

:::::
native

::::::
N320

:::::::
(regular

::::::::
Gaussian)

::::::
ERA5

::::
grid,

:::::::::::
respectively. Figure 6 shows these results over selected cities globally.

Overall, bias-adjustment and trend-preservation errors are lower for minimum temperature than for maximum temperature but

are generally low for both surface variables
:::::::
boxplots

:::
for

:::
the

:::::::
median

:::::::
absolute

:::::
error

:::::
across

:::
all

::::::::
GDPCIR

::::::
GCMs

:::
for

:::::::::
maximum

:::
and

::::::::
minimum

::::::::::
temperature

::::
and

:::::::::::
precipitation.

:::::
Trend

::::::::::
preservation

::::
error

:::::::::
represents

:::
the

::::
error

:::
for

::::::::::
2080–2100

::
for

::
a
:::::
single

::::::::
scenario,755

::::::::
SSP3-7.0. Bias adjustment error for precipitation is low for the majority of cities with the notable exception of São Paulo, which

has a median error of over 14. This comparatively larger error in bias adjustment can be explained by both a) a difference in

seasonal precipitation magnitudes for that location in reanalysis vis-a-vis the GCM, and b) significantly larger interannual

variability for São Paulo versus other cities shown. A shortcoming of only showing bias-adjusted and downscaled error in

Figure 6 versus also showing the same analysis for bias-adjusted data for the same model and cities means that we cannot760

attribute the bias adjustment error in São Paolo to (a) or (b), but it is likely that both play a large role, given the issues with

precipitation in the tropics discussed earlier
::::::::
represents

:::
the

:::::
error

::::
after

:::::
QDM

::::
bias

::::::::::
adjustment

:::
and

::::::::
QPLAD

::::::::::
downscaling

:::::
have

::::
been

:::::::::
performed.

::::::::
Overall,

:::
the

:::::
range

::
of

:::::
error

:::
for

::::
both

::::
bias

::::::::::
adjustment

:::
and

:::::::::::
downscaling

::::
and

:::::
trend

::::::::::
preservation

::
is
::::::

lower
:::
for

::::::::::
precipitation

::::
than

:::
for

:::::::::
minimum

::::::::::
temperature

::::::::
variables.

:::
A

:::::
small

:::::
subset

:::
of

::::::
coastal

:::::
cities

:::::
show

:
a
::::::

much
:::::
higher

::::::
range

::
in

:::::
trend

::::::::::
preservation

::::
error

::::::
across

::::::
GCMs,

::::::::::
particularly

::::::
Miami

:::
and

:::::
New

::::
York

::::
and

:::
São

:::::
Paulo

::
to

::
a
:::::
lesser

::::::
extent.

::::::
Mexico

::::
City

::::
also

::::::
shows765

:
a
::::::
higher

:::::
range,

:::::::
similar

::
to

:::
the

::::::::
previous

::::::
section

::::
due

::
to

:::
its

::::
high

::::::::
elevation

:::
and

::::
the

:::::::
complex

::::::::::
topography

::::::::::
surrounding

::::
the

::::
city.

:::::
Larger

:::::
trend

::::::::::
preservation

::::
error

:::
for

:::::
these

::::
cities

::
is
:::::::::::
unsurprising;

::
it

::
is

::::::::::
well-known

:::
that

::::::
GCMs

:::::::
struggle

::::
with

::::::::
capturing

:::
the

:::::::
land-sea

:::::::
interface.

:::::::::
However,

:::
the

::::::::::
modification

::
of

:::
the

::::::
change

::::::
signal

:::::::::
represented

:::
by

:::
the

:::::
trend

::::::::::
preservation

::::
error

::::::
should

:::
not

:::
be

:::::::::
interpreted

::
as

:::::::::
undesirable

::::::::
behavior;

::::::::::::::::::
Iturbide et al. (2022)

:::::
found

:::
that

::::
bias

:::::::::
adjustment

::::::::
amplified

:::
the

::::::
climate

:::::::
change

:::::
signal

:::
(up

::
to

:
a
::::::
factor

::
of

:::
two

::
in

:::::
some

::::::::
regions),

:::::
which

:::::::
resulted

::
in

:::
an

:::::::::::
improvement

::
in

::::::::
modeling

::::::
future

::::::::::
heat-related

::::::::
threshold

::::::
indices. In Lange (2019),770

the author conducted similar error analysis for surface variables over different CMIP5 GCMs (MIROC5, IPSL-CM5A-LR,

and GFDL-ESM2M) at a coarser resolution (2◦) and found similar magnitudes of error in trend preservation, with slightly

smaller errors in bias adjustment. The larger values in bias adjustment shown here are likely due to the fact that the errors

are being calculated at a higher resolution for cities (with raw GCM, reanalysis, and downscaled data drawn from the nearest

0.25◦ gridcell) and thus there are larger errors between the coarse-resolution GCM and the higher-resolution reanalysis, and775

the preservation of climate change signal in quantiles is implemented on a 21-year rolling window in our study.
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Figure 6. Efficacy of bias adjustment and relative trend preservation for seasonal maximum and minimum temperature and

seasonal total precipitation computed annually for a single GCM (BCC-CSM1-2) for selected highly populated cities globally.

The historical period used is 1995-2014, while the projection period is
:::::
Range

::
of

::::::
median

::::::::
absolute

::::
error

:::
for

:::::::::::
bias-adjusted

::::
and

:::::::::
downscaled

::::::::
historical

::::
data

:::::::::::
(1995–2014)

::::
and

:::
the

:::::
range

::
of

:::::::
median

:::::::
absolute

:::::
error

:::
for

::::
trend

:::::::::::
preservation

:
(SSP3-7.02080-2100.

More precisely, for temperature variables, the values on the x-axis are the median over the seasonal absolute (additive) bias

adjustment errors , and the values on the y-axis are the median over the seasonal absolute (additive) error in (additive) trend

preservation. For precipitation, errors are multiplicative and instead of taking the mean over seasons, we take the sum over

seasons
:
,
::::::::::
2080–2100)

:::
for

:::
the

:::
17

:::::::::::
metropolises

::::::::
globally.

::::::
Values

::::::
shown

::::::::
represent

:::
the

:::::
range

::
of
:::::::

median
::::::::
absolute

:::::
errors

:::
for

:::
all

:::::
GCMs

::::::::
included

::
in

:::
the

::::::::
GDPCIR

:::::::
dataset.

::::::::
Absolute

:::::
error

::
is

::::::::
computed

::::
over

:::::
daily

:::::::
21-year

:::::::::::
climatologies

:::::::::
(historical

:::
or

::::::
future)

::::
with

::
the

:::::::
median

:::::
taken

::::
over

::
all

::::
days

:::
of

::
the

::::
year.
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5.2.3 Relative trend preservation in selected regions

One of the key considerations in developing a method and dataset for use in the study of the human impacts of climate

change is the performance of the given method when the data is reconfigured, transformed, or re-weighted by the users of the

data. Impacts research frequently uses weighted, aggregated extreme value measures, such as crop-output-weighted frost-day780

counts for a given agricultural zone , or population-weighted counts of hot nights for a given census region. To understand the

performance of our data under such circumstances, we use the same set of diagnostic cities examined above to understand
:::
the

preservation of moderate and extreme trends for several of the moderate and extreme ETCCDI indicators at varying levels of

aggregation. Following the regional aggregation method described in Rode et al. (2021), these comparisons use a 30-arcsecond

population raster dataset (CIESIN, 2018) to determine the weight of each grid cell in the climate dataset within each region’s785

total, based on whether the population grid cell is contained within each region’s shapefile. Data is aggregated to either admin0

or admin1 regions after computing the ETCCDI metrics on gridded data. An admin1 region is a generic term that refers to the
:
a

:::::::
country’s

:
largest subnational administrative unitof a country; for example, a state in the US or a prefecture in Japan. An admin0

region refers to national boundaries, e.g. the US or Japan. Shapefiles that define
:::::::
Polygons

:::::::
defining

:
these region boundaries are

taken from the Natural Earth dataset (Natural Earth, 2022), and are further subset to include the admin0 or admin1 region
:
,790

which includes each of the diagnostic cities listed above.

For the analysis in this section, we use the same temporal aggregation as in the method implementation such that any

modification of trend is not due to the effects described earlier but instead due to aggregation or weighting effects. Because the

method exactly preserves quantile trends within a 31-day window during bias adjustment , and preserves trends in minimum

temperature, maximum temperature, and log(precipitation) for a given quantile on an average basis across 0.25◦ gridcells795

within each coarse 1◦ cell, discrepancies between trends in seasonal and annual mean minimum temperature and maximum

temperature are due solely to differences between area and population weights, and due to the effects of Gaussian interpolation

from the native GCM grid to the regular 1◦ grid used for bias adjustment. This behavior can be seen in the very high degree of

agreement between source GCM and bias adjusted
:::::::::::
bias-adjusted and downscaled trends at both the admin0 and admin1 level

for maximum temperature in Figure 7. Here, we calculate trend using the difference between the 1995-2014
:::::::::
1995–2014

:
period800

average and the 2079-2099
:::::::::
2079–2099 period average; the year 2100 is not included because it is not available

:::::::::
unavailable

in all GCMs. Panels a-e
:::
a–e

:
in Figure 7 show the change in period average annual and seasonal maximum temperature for

admin0 regions (e.g. countries) and for admin1 regions (e.g. states/provinces) in panels f-j. The admin0 and admin1 regions

shown correspond to the regions where each of the cities
:::
city

:
is located, and results are shown for all GCMs and all scenarios

(SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Both admin0 and admin1 regions have an r2 value of at least 0.9 for both805

annual temperature and all seasons, showing extremely minimal trend modification.
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Figure 7. Change in period average annual and seasonal maximum daily Tmax from 1995-2014 to 2079-2099
:::::::::
1995–2014

::
to

:::::::::
2079–2099, for countries (top row; panels a-e

:::
a–e) and states/provinces (bottom row; panels f-j

::
f–j) containing the 17 diagnostic

cities. All GCMs and scenarios are shown; with SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and SSP5-8.5 (red).

However, because precipitation adjustments are multiplicative, 21-year seasonal and annual totals are not preserved exactly

when aggregated. Fidelity to the source model
::::
GCM

:
trend in the downscaled data is closer when comparing trends in log(21-

year annual average precipitation) or log(21-year seasonal average precipitation), which can be seen in comparing the first and

second rows in Figure 8. Figure 8 shows annual and seasonal precipitation for the countries containing the 17 selected global810

cities for all GCMs and scenarios, with the change in period average precipitation shown in panels a-e
:::
a–e

:
and log(period

average annual and seasonal precipitation) in panels f-j
::
f–j. As expected,

:
the higher emissions scenarios SSP3-7.0 and SSP5-

8.5 appear far more often as outliers, which is expected given their relatively larger change signals in precipitation.
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Figure 8. Change in period average annual and seasonal precipitation from 1994-2014 to 2079-2099
:::::::::
1994–2014

::
to

:::::::::
2079–2099,

(top row; panels a-e
:::
a–e) and the change in log(period average annual and seasonal precipitation) (bottom row; panels f-j

::
f–j)

for the countries containing the 17 diagnostic cities. All GCMs and scenarios are shown; with SSP1-2.6 (blue), SSP2-4.5

(orange); SSP3-7.0 (green), and SSP5-8.5 (red).

To understand trend preservation among extreme metrics, we computed the count of days above or below various thresholds,

shown in Figure 9. The method does not explicitly preserve the GCM signal in such metrics, as anomalies in temperatures,815

even at extreme quantiles, will cross a threshold with different frequencies after a linear or multiplicative adjustment. This

behavior is consistent with the fact that, while trends in extreme values measured as quantiles will be preserved within any

31-day window from the GCM to the final result, trends in any absolute measure, such as counts of days above or below a

threshold, will be affected by the bias adjustment and may be significantly different in the result depending on the metric.
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Figure 9. Change in period average threshold counts from 1994-2014 to 2079-2099, for countries (top row; panels a-g
:::
a–g)

and state/provinces (bottom row; panels h-n
:::
h–n) containing the 17 diagnostic cities. All GCMs and scenarios are shown; with

SSP1-2.6 (blue), SSP2-4.5 (orange); SSP3-7.0 (green), and SSP5-8.5 (red).

6 Conclusions820

We hope that the GDPCIR dataset will be a useful contribution for climate impacts research in its scope, resolution and in

the methods applied that were specifically tailored to understanding the tail risks associated with future emissions pathways.

The QDM-QPLAD bias adjustment and downscaling algorithms preserve quantile trendsand therefore allow users to better

understand
:
,
:::::::
allowing

:::::
users

::
to

:::::::::
understand

::::::
better and model the effects of different emissions pathways on sector-specific and

aggregate climate impacts. The 0.25◦ resolution of the GDPCIR dataset allows for its use in econometric models that require825

high-resolution surface climate data for estimating response functions. Errors in bias adjustment and trend preservation are

low, with some exceptions for precipitation due to issues already discussed. Figure A1
::::::::
Appendix

::
D goes into further detail on

this,
:::::

with
:::::
Figure

::::
D1

:::::::
showing

::::::::::::
land-weighted

:::::::
changes

::
in

::::::::::
temperature

::::
and

:::::::::::
precipitation

::::::
signals

::
in

:::::::
CMIP6

:::
raw

::::::
GCMs

::::
and

:::
the

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::::::
GDPCIR

::::::
GCMs. We expect that the dataset will have broad use in a variety of climate impacts

modeling, from estimating econometric dose-response functions to hydrology and ecology to modeling ecosystem services and830

natural capital.

Code availability. The R/CIL GDPCIR dataset codebase containing notebooks, pipeline architecture, and infrastructure is publicly available

at https://github.com/ClimateImpactLab/downscaleCMIP6 and archived at https://doi.org/10.5281/zenodo.6403794. The software container

and all code used for individual downscaling pipeline tasks is publicly available at https://github.com/ClimateImpactLab/dodola and archived

at https://doi.org/10.5281/zenodo.6383442, and our production pipeline was run with release v0.19.0.835

35

https://github.com/ClimateImpactLab/downscaleCMIP6
https://doi.org/10.5281/zenodo.6403794
https://github.com/ClimateImpactLab/dodola
https://doi.org/10.5281/zenodo.6383442


Data availability. The GDPCIR dataset is publicly available and hosted on the Microsoft Planetary Computer (https://planetarycomputer.

microsoft.com/dataset/group/cil-gdpcir/).
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Appendix A: Supplementary figures

A1 Global temperature and precipitation changes

:::::
Figure

:::
A1.

:::::::
Number

::
of

::::
daily

::::::::
timesteps

::::::
where

::::::::
maximum

::::
and

::::::::
minimum

::::::::::
temperature

::::
were

::::::::
swapped

::
in

:::
the

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:::::
GCMs

::::
over

::
a
:::::::
21-year

::::::::::::
climatological

::::::::
historical

:::::
period

:::::::::::
(1960–1980)

:::
for

:::
all

::::::
GCMs

:::::::
included

::
in

:::
the

::::::::
GDPCIR

:::::::
dataset.

:::
For

:::::
these

::::::::
timesteps,

::::::::
minimum

::::::::::
temperature

::::::::
exceeded

:::::::::
maximum

::::::::::
temperature.

:
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::::::
Figure

:::
A2.

::::::
Number

:::
of

:::::
daily

::::::::
timesteps

:::::
where

:::::::::
maximum

::::
and

::::::::
minimum

::::::::::
temperature

:::::
were

::::::::
swapped

::
in

:::
the

:::::::::::
bias-adjusted

::::
and

:::::::::
downscaled

::::::
GCMs

:::::
over

:
a
:::::::
21-year

::::::::::::
climatological

:::::
future

::::::
period

:::::::::::
(2080–2100)

:::
for

:::
all

::::::
GCMs

:::::::
included

::
in
::::

the
::::::::
GDPCIR

::::::
dataset

:::
(for

:::::::::
SSP3-7.0).

:::
For

:::::
these

:::::::::
timesteps,

::::::::
minimum

::::::::::
temperature

::::::::
exceeded

::::::::
maximum

:::::::::::
temperature.
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::::::
Figure

:::
A3.

::::
Time

:::::
series

:::
of

::::
total

:::::
daily

::::::::::
precipitation

:::
for

::::::
Delhi,

:::::
India

:::::::
showing

::::::::
reference

::::
data

::::
and

::::
raw,

::::::::
regridded

::::
and

:::::::
cleaned

:::::
GCM

:::
data

:::
for

:::
the

::::::::
historical

::::::
period

:::
and

::::::::
SSP2-4.5

::::::
(panel

::
a)

:::
and

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::
data

:::
for

:::
the

::::::::
historical

:::::
period

::::
and

::::::::
SSP2-4.5

:::::
before

::::
after

:::::::::::::
post-processing

::::::
(panel

::
b).

:
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::::::
Figure

:::
A4.

::::
Time

:::::
series

:::
of

::::
total

::::
daily

:::::::::::
precipitation

:::
for

::::::
Cairo,

:::::
Egypt

::::::::
showing

::::::::
reference

::::
data

:::
and

::::
raw,

::::::::
regridded

::::
and

:::::::
cleaned

:::::
GCM

:::
data

:::
for

:::
the

::::::::
historical

::::::
period

:::
and

::::::::
SSP2-4.5

::::::
(panel

::
a)

:::
and

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::
data

:::
for

:::
the

::::::::
historical

:::::
period

::::
and

::::::::
SSP2-4.5

:::::
before

::::
after

:::::::::::::
post-processing

::::::
(panel

::
b).

:
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::::::
Figure

:::
A5.

:::::::
Number

::
of

:::::
daily

:::::::::
timesteps

:::::
where

::::::::::::::
post-processing

:::::
(e.g.,

::::::::
clipping)

::::
was

:::::::
applied

::
to

:::::::::::
precipitation

::::::
values

::
in
::::

the

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::::
GCMs

::::
over

::
a
:::::::
21-year

::::::::::::
climatological

::::::::
historical

:::::
period

:::::::::::
(1960–1980)

:::
for

:::
all

::::::
GCMs

::::::::
included

::
in

::
the

::::::::
GDPCIR

:::::::
dataset.
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::::::
Figure

:::
A6.

:::::::
Number

::
of

:::::
daily

:::::::::
timesteps

:::::
where

::::::::::::::
post-processing

:::::
(e.g.,

::::::::
clipping)

::::
was

:::::::
applied

::
to

:::::::::::
precipitation

::::::
values

::
in
::::

the

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

::::::
GCMs

::::
over

::
a

::::::
21-year

::::::::::::
climatological

::::::
future

::::::
period

::::::::::
(2080–2100)

:::
for

:::
all

::::::
GCMs

:::::::
included

:::
in

:::
the

:::::::
GDPCIR

::::::
dataset

::::
(for

:::::::::
SSP3-7.0).

:
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::::::
Figure

:::
A7.

::::::
Changes

::
in
:::
the

::::
99th

:::::::::
percentile

::
of

:::::::
seasonal

:::::
daily

::::::::
maximum

::::::::::
temperature

::
in

::::::::::
2080–2100

::::::
relative

::
to

::::::::::
1995–2014

::
in

:::
the

:::
raw

::::::
GCMs

::::::
(panels

::
a,

::
d,

::
g,

::
j),

:::
the

::::::::
difference

::
in

:::
the

::::
99th

:::::::::
percentile

::::::
change

:::::::
between

:::
the

:::::::::::
bias-adjusted

:::
and

:::
the

::::
raw,

:::::
GCMs

:::::::
(panels

::
b,

::
e,

::
h,

::
k),

::::
and

:::
the

:::::::::
difference

::
in

:::
the

::::
99th

:::::::::
percentile

::::::
change

:::::::
between

:::
the

:::::::::::
downscaled

:::
and

:::
the

:::::::::::
bias-adjusted

::::::
GCMs

:::::::
(panels

::
c,

:
f,
::
i,

::
l)

::
for

:::::::
seasons

::::
DJF

::::::
(panels

:::::
a–c),

::::::
MAM

::::::
(panels

::::
d–f),

::::
JJA

::::::
(panels

::::
g–i),

::::
and

::::
SON

:::::::
(panels

::::
j–l).

::::::
Results

::::::
shown

:::
are

:::
the

:::::
mean

:::::
across

:::
the

:::::
GCM

::::::::
ensemble

:::
for

:::
the

:::::::
scenario

::::::::
SSP3-7.0.

:
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::::::
Figure

:::
A8.

:::
The

:::::
99th

::::::::
percentile

:::
of

:::::::
seasonal

:::::
daily

::::
total

:::::::::::
precipitation

:::
for

::::
the

::::::::
reference

::::::
(panels

::
a,
::

f,
:::

k,
::
p)

::::
and

::::
raw,

:::::::
cleaned

:::::
GCM

::
(b,

::
g,
::

l,
::
q)

::::
over

::::
the

::::::
training

:::::::
period,

::::::::::
1995–2014.

:::
The

:::::::
change

::
in

:::
the

::::
99th

:::::::::
percentile

::
of

:::::::
seasonal

:::::
daily

::::
total

:::::::::::
precipitation

::
in

:::::::::
2080–2100

:::::::
relative

::
to

::::::::::
1995–2014,

::
as

::
a

::::
ratio,

::
in
::::

the
:::
raw,

:::::::
cleaned

::::::
GCMs

::::::
(panels

::
c,
::
h,
:::

m,
:::
r),

:::
the

::::
ratio

::
of

:::
the

::::
99th

:::::::::
percentile

::::::
change

:::::::
between

:::
the

:::::::::::
bias-adjusted

::::
and

:::
the

::::
raw,

:::::::
cleaned

::::::
GCMs

::::::
(panels

::
d,

::
i,

::
n,

::
s),

::::
and

:::
the

::::
ratio

:::
of

:::
the

::::
99th

::::::::
percentile

:::::::
change

:::::::
between

:::
the

::::::::::
downscaled

:::
and

:::
the

:::::::::::
bias-adjusted

::::::
GCMs

:::::::
(panels

:
e,
::

j,
::
o,

::
t)

:::
for

:::::::
seasons

::::
DJF

::::::
(panels

::::
a–e),

::::::
MAM

::::::
(panels

::::
f–j),

::::
JJA

::::::
(panels

:::::
k–o),

:::
and

:::::
SON

::::::
(panels

::::
p–t).

:::::::
Results

::::::
shown

:::
are

:::
the

:::::::
average

:::
for

:::
wet

::::
days

::::::
across

:::
the

:::::
GCM

::::::::
ensemble

:::
for

:::
the

::::::::
scenario

::::::::
SSP3-7.0.

:
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::::::
Figure

:::
A9.

:::
The

:::::
95th

::::::::
percentile

:::
of

:::::::
seasonal

:::::
daily

::::
total

:::::::::::
precipitation

:::
for

::::
the

::::::::
reference

::::::
(panels

::
a,
::

f,
:::

k,
::
p)

::::
and

::::
raw,

:::::::
cleaned

:::::
GCM

::
(b,

::
g,
::

l,
::
q)

::::
over

::::
the

::::::
training

:::::::
period,

::::::::::
1995–2014.

:::
The

:::::::
change

::
in

:::
the

::::
95th

:::::::::
percentile

::
of

:::::::
seasonal

:::::
daily

::::
total

:::::::::::
precipitation

::
in

:::::::::
2080–2100

:::::::
relative

::
to

::::::::::
1995–2014,

::
as

::
a

::::
ratio,

::
in
::::

the
:::
raw,

:::::::
cleaned

::::::
GCMs

::::::
(panels

::
c,
::
h,
:::

m,
:::
r),

:::
the

::::
ratio

::
of

:::
the

::::
95th

:::::::::
percentile

::::::
change

:::::::
between

:::
the

:::::::::::
bias-adjusted

::::
and

:::
the

::::
raw,

:::::::
cleaned

::::::
GCMs

::::::
(panels

::
d,

::
i,

::
n,

::
s),

::::
and

:::
the

::::
ratio

:::
of

:::
the

::::
95th

::::::::
percentile

:::::::
change

:::::::
between

:::
the

::::::::::
downscaled

:::
and

:::
the

:::::::::::
bias-adjusted

::::::
GCMs

:::::::
(panels

:
e,
::

j,
::
o,

::
t)

:::
for

:::::::
seasons

::::
DJF

::::::
(panels

::::
a–e),

::::::
MAM

::::::
(panels

::::
f–j),

::::
JJA

::::::
(panels

:::::
k–o),

:::
and

:::::
SON

::::::
(panels

:::::
p–t).

::::::
Results

::::::
shown

:::
are

:::
the

:::::::
average

:::
for

::::
drier

:::::
days

::::
(e.g.,

:::::
days

::::
with

:::::::::::
precipitation

:::::
values

::
<
:::
10

:::
mm

::::::
day−1)

::::::
across

:::
the

:::::
GCM

::::::::
ensemble

:::
for

:::
the

:::::::
scenario

::::::::
SSP3-7.0.

:
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::::::
Figure

::::
A10.

:::
The

::::
99th

:::::::::
percentile

::
of

::::::::
seasonal

:::::
daily

::::
total

:::::::::::
precipitation

:::
for

:::
the

::::::::
reference

:::::::
(panels

::
a,

::
f,

::
k,

::
p)

::::
and

::::
raw,

:::::::
cleaned

:::::
GCM

::
(b,

::
g,
::

l,
::
q)

::::
over

::::
the

::::::
training

:::::::
period,

::::::::::
1995–2014.

:::
The

:::::::
change

::
in

:::
the

::::
99th

:::::::::
percentile

::
of

:::::::
seasonal

:::::
daily

::::
total

:::::::::::
precipitation

::
in

:::::::::
2080–2100

:::::::
relative

::
to

::::::::::
1995–2014,

::
as

::
a

::::
ratio,

::
in
::::

the
:::
raw,

:::::::
cleaned

::::::
GCMs

::::::
(panels

::
c,
::
h,
:::

m,
:::
r),

:::
the

::::
ratio

::
of

:::
the

::::
99th

:::::::::
percentile

::::::
change

:::::::
between

:::
the

:::::::::::
bias-adjusted

::::
and

:::
the

::::
raw,

:::::::
cleaned

::::::
GCMs

::::::
(panels

::
d,

::
i,

::
n,

::
s),

::::
and

:::
the

::::
ratio

:::
of

:::
the

::::
99th

::::::::
percentile

:::::::
change

:::::::
between

:::
the

::::::::::
downscaled

:::
and

:::
the

:::::::::::
bias-adjusted

::::::
GCMs

:::::::
(panels

:
e,
::

j,
::
o,

::
t)

:::
for

:::::::
seasons

::::
DJF

::::::
(panels

::::
a–e),

::::::
MAM

::::::
(panels

::::
f–j),

::::
JJA

::::::
(panels

:::::
k–o),

:::
and

:::::
SON

::::::
(panels

:::::
p–t).

::::::
Results

::::::
shown

:::
are

:::
the

:::::::
average

:::
for

::::
drier

:::::
days

::::
(e.g.,

:::::
days

::::
with

:::::::::::
precipitation

:::::
values

::
<
:::
10

:::
mm

::::::
day−1)

::::::
across

:::
the

:::::
GCM

::::::::
ensemble

:::
for

:::
the

:::::::
scenario

::::::::
SSP3-7.0.

:
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::::::
Figure

::::
A11.

:::
Bar

:::::
plots

:::::::
showing

::::
the

:::::::
number

::
of

:::::::::::::::::::
Kolmogorov-Smirnov

::::
tests

::::::
passed

:::
for

:::
the

:::::::
twelve

:::::::
selected

::::::
indices

:::
for

::::
the

:::::::::::
bias-adjusted

:::
and

::::::::::
downscaled

:::::
GCM

:::
and

::::
raw

:::::
GCM

::::::::
(overlain)

:::
for

::::
each

:::
of

:::
the

:::::
GCMs

::::::::
included

::
in

:::
the

::::::::
GDPCIR

::::::
dataset

:::
for

::::
nine

::::::
coastal

::::
cities

::::::
around

:::
the

::::::
globe.

:::
The

::::::
dashed

::::
line

:::::
shows

:::
the

:::::::::
maximum

:::::::
possible

:::::::
number

::
of

:::
K-S

:::::
tests.
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Appendix B:
:::::::::::::
Supplementary

:::::
tables840

B1
:::::::
CMIP6

:::::
GCM

:::::::::
Inventory

Table B1

::::::
Models

: ::::::::
Institution

:

::::::::
ensemble

:::::::
member

:::::::
included

::
in

:::::::
GDPCIR

:

::::::
dataset

:::::
reason

:::
for

::::::::
exclusion

:

::::
from

::::::::
GDPCIR

::::::
dataset

:::::::::::::
ACCESS–CM2

::::::::::::::
CSIRO-ARCCSS

: :::::::
r1i1p1f1

: ::::
YES

::::::::::::::::
ACCESS–ESM1-5

::::::
CSIRO

: :::::::
r1i1p1f1

: ::::
YES

:::::::::::::::
AWI-CM-1-1-MR

::::
AWI

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

::::::::::::::
AWI-CM-1-1-LR

: ::::
AWI

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

::::::::::::::
BCC-CSM2-MR

::::
BCC

: :::::::
r1i1p1f1

: ::::
YES

::::::::::
BCC-ESM1

: ::::
BCC

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

::::::::::::::
CAMS-CSM1-0

::::::
CAMS

:::::::
r2i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

::::::::::::
CAS-ESM2-0

::::
CAS

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::::
ESGF

:::::::
CESM2

::::::
NCAR

:::::::
r4i1p1f1

: :::
NO

: ::::::::
historical

::::
daily

::::::
output

:::
not

:::::::
available

::
in
::::::
ESGF

:::::::::::
CESM2-FV2

::::::
NCAR

:::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

:::::::::::::::
CESM2-WACCM

::::::
NCAR

:::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

:::::::::::::::::::
CESM2-WACCM-FV2

: ::::::
NCAR

:::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

::::::
CIESM

: ::::
THU

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::::
ESGF

::::::::::::
CMCC-ESM2

::::::
CMCC

:::::::
r1i1p1f1

: ::::
YES

:::::::::::::::
CMCC-CM2-SR5

::::::
CMCC

:::::::
r1i1p1f1

: ::::
YES

:::::::::::::
CNRM-CM6-1

:::::::::::::::
CNRM-CERFACS

: :::::::
r1i1p1f2

: :::
NO

: :::::::
licensing

::::::
issues

:::
for

:::::::::
commercial

::::
use

::::::::::::::::
CNRM-CM6-1-HR

: :::::::::::::::
CNRM-CERFACS

: :::::::
r1i1p1f2

: :::
NO

: :::::::
licensing

::::::
issues

:::
for

:::::::::
commercial

::::
use

::::::::::::::
CNRM-ESM2-1

:::::::::::::::
CNRM-CERFACS

: :::::::
r1i1p1f2

: :::
NO

: :::::::
licensing

::::::
issues

:::
for

:::::::::
commercial

::::
use

:::::::::
CanESM5

:::::::
CCCma

:::::::
r1i1p1f1

: ::::
YES

:::::::::::::
EC-Earth3-Veg

::::::::::::::::::
EC-Earth-Consortium

:::::::
r1i1p1f1

: ::::
YES

:::::::::
EC-Earth3

::::::::::::::::::
EC-Earth-Consortium

:::::::
r1i1p1f1

: ::::
YES

:::::::::::::::::
EC-Earth3-AerChem

: ::::::::::::::::::
EC-Earth-Consortium

:::::::
r1i1p1f1

: ::::
YES

::::::::::::::::
EC-Earth3-Veg-LR

::::::::::::::::::
EC-Earth-Consortium

:::::::
r1i1p1f1

: ::::
YES

::::::::::::
FGOALS-f3-L

: ::::
CAS

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

:::::::::::
FGOALS-g3

::::
CAS

: :::::::
r1i1p1f1

: ::::
YES
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:::::
Table B1

:::::::::
continued

:::::
from

::::::::
previous

::::
page

::::::
Models

: ::::::::
Institution

:

::::::::
ensemble

:::::::
member

:::::::
included

::
in

:::::::
GDPCIR

:

::::::
dataset

:::::
reason

:::
for

::::::::
exclusion

:

::::
from

::::::::
GDPCIR

::::::
dataset

::::::::::::
FIO-ESM-2-0

::::::::::
FIO-QLNM

:::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::::
ESGF

::::::::::
GFDL-CM4

: ::::::::::::
NOAA-GFDL

:::::::
r1i1p1f1

: ::::
YES

:::::::::::
GFDL-ESM4

: ::::::::::::
NOAA-GFDL

:::::::
r1i1p1f1

: ::::
YES

:::::::::::
GISS-E2-1-G

: :::::::::::
NASA-GISS

:::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

::::::::::::::::::
HadGEM3-GC31-LL

::::::
MOHC

: :::::::
r1i1p1f3

: ::::
YES

:::::::::::::::::::
HadGEM3-GC31-MM

::::::
MOHC

: :::::::
r1i1p1f3

: :::
NO

:

::::
Only

::::::::::::::::
SSP1-2.6/SSP5-8.5

:

:::::::
available

::
in

:::
GC

:::::::
CMIP6

::::::::
collection

:::::::::::::
UKESM1-0-LL

: ::::::
MOHC

: :::::::
r1i1p1f2

: ::::
YES

:::::::::
IITM-ESM

: :::::::::::
CCCR-IITM

:::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

:::::::::::
INM-CM4-8

::::
INM

: :::::::
r1i1p1f1

: ::::
YES

:::::::::::
INM-CM5-0

::::
INM

: :::::::
r1i1p1f1

: ::::
YES

::::::::::::::
IPSL-CM6A-LR

::::
IPSL

: :::::::
r1i1p1f1

: :::
NO

: :::::::
licensing

::::::
issues

:::
for

:::::::::
commercial

::::
use

:::::::::::
KACE-1-0-G

: :::::::::::
NIMS-KMA

:::::::
r1i1p1f1

: :::
NO

: ::::::
QA/QC

:::::::
pipeline

::::::
found

:::
data

::::::
issues

:::::::::::
KIOST-ESM

::::::
KIOST

: :::::::
r1i1p1f1

: :::
NO

: ::::::
QA/QC

:::::::
pipeline

::::::
found

:::
data

::::::
issues

::::::::::::
MCM-UA-1-0

:::
UA

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::::
ESGF

::::::::
MIROC6

:::::::
MIROC

:::::::
r1i1p1f1

: ::::
YES

::::::::::::
MIROC-ES2L

:::::::
MIROC

:::::::
r1i1p1f1

: ::::
YES

:::::::::::::::
MPI-ESM1-2-HR

::::::
MPI-M

: :::::::
r1i1p1f1

: ::::
YES

:::::::::::::::::
MPI-ESM-1-2-HAM

: :::::::::::::::::::
HAMMOZ-Consortium

: :::::::
r1i1p1f1

: :::
NO

: ::
no

::::
data

::::
past

::::
2055

:

:::::::::::::::
MPI-ESM1-2-LR

::::::
MPI-M

: :::::::
r1i1p1f1

: ::::
YES

::::::::::::
MRI-ESM2-0

::::
MRI

:::::::
r1i1p1f1

: :::
NO

: ::::::
QA/QC

:::::::
pipeline

::::::
found

:::
data

::::::
issues

:::::::
NESM3

::::::
NUIST

: :::::::
r1i1p1f1

: ::::
YES

:::::::::
NorCPM1

::::
NCC

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::::
ESGF

::::::::::::
NorESM2-LM

: ::::
NCC

: :::::::
r1i1p1f1

: ::::
YES

:::::::::::::
NorESM2-MM

::::
NCC

: :::::::
r1i1p1f1

: ::::
YES

::::::::::::::
SAM0-UNICON

: ::::
SNU

: :::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

::::::::
TaiESM1

:::::::::
AS-RCEC

:::::::
r1i1p1f1

: :::
NO

: :::
not

:::::::
available

::
in
::::
GC

::::::
CMIP6

::::::::
collection

:

Appendix C:
:::::::
Pipeline

:::::::::
computing

:::::::::
resources
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:::
The

:::::::::::
downscaling

::::::
pipeline

::::
was

:::
run

::
on

::::::::::
Kubernetes

::::::
clusters

::::
with

:
a
:::::::
flexible

::::
pool

::
of

::::::::::
preemptible

:::::::
(“spot”)

:::::::::::::
general-purpose

::::::::
machines.

::::
Each

::::::::
machine

:::
had

::::::::
between

:
8
::::

and
:::
32

:::::
CPUs

:::::
using

::::
Intel

::::::::
Skylake,

::::::::::
Broadwell,

:::::::
Haswell,

::::::
Sandy

:::::::
Bridge,

::::
and

:::
Ivy

::::::
Bridge

:::::
CPU

::::::::
platforms.

:::
All

::::::::
machines

:::::
were

:::::::::::::
“high-memory”

::::
with

:
8
::::
GB

:::
per

:::::
CPU.845

:
A
:::::::::::
downscaling

:::
run

::
on

::
a

:::::
single

:::::
GCM

::::::::
projection

::::::::::
experiment

::
for

::
a

:::::
single

:::::::
variable.

:::
For

::::::::
example,

::::::::
minimum

::::
daily

:::
air

::::::::::
temperature

::
in

:::::::
SSP2-4.5

:::::
from

::::::::::::::::
EC-Earth3-Veg-LR

:::::::
required

::::::::::::
approximately

:::
500

:::::
CPU

:::::
hours

:::
and

:::::
3,500

::::
GiB

:::::
hours.

::::
This

:::::::::
completes

::::
with

:
a
::::
wall

::::
time

::
of

:::
2–3

::::::
hours.

::::
This

::::
work

::::
can

:::::
easily

:::
run

::
in

:::::::
parallel

::
to

:::::
other

::::::::::
downscaling

::::
jobs

::
if

::::::::::
preemptible

::::::::
machines

:::
are

::::::::
available

::
to

:::
the

::::::
cluster.

:::
The

::::::::
complete

:::
set

::
of

:::::::::::
downscaling

:::
jobs

:::::
could

::::::::
complete

::::::
within

:
3
:::::
days.

Appendix D:
::::::
Global

:::::::::::
temperature

::::
and

:::::::::::
precipitation

:::::::
changes850

In this section we explore trends in global temperature and precipitation across models
:::::
GCMs. We report these trends for both

the source data and the bias-adjusted and downscaled data in order to shed light on how these global trends are affected by

QDM and QPLAD. To obtain global values, the data is averaged using land-weighting. Results are shown in Fig A1
:::
D1. We find

that when comparing the source data with the bias-adjusted and downscaled data, global trends in temperature are preserved:

all the differences across models and scenarios are within ± 0.1◦C. In contrast, changes in global precipitation have some855

amount of inflation across all models and scenarios. Going further, in the SSP2-4.5 and SSP3-7.0(respectively) source data,

change in average annual mean maximum temperature across models ranges from 1.71◦C (2.56◦C) to 4.55◦C (6.53◦C) and in

the bias-adjusted downscaled data this range is almost identical, from 1.71◦C (2.84◦C) to 4.55◦C (6.54◦C). In contrast, change

in average annual total precipitation ranges from -0.11% (-2.47%) to 8.99% (9.61%) in the source data and is shifted upwards

in the bias-adjusted and downscaled data, from 2.57% (-0.79%) to 12.6% (15.22%). For precipitation, the largest change is in860

the scenario SSP3-7.0, CanESM5 model, with a source trend of around 7.5% and a trend in our results of 15%. This model also

has one of the highest precipitation trends in the source data, but there is no systematic relationship between the magnitude

of the source trend and the magnitude of trend modification. For example, NorESM2-MM SSP2-4.5 has a trend close to zero

in the source data and in the results the trend is around 4%, whereas BCC-CSM2-MR has a trend of around 2.5% in both

scenarios and the alteration is very low at less than 0.2 percentage points in both scenarios.865
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Figure A1
::
D1. Changes in temperature and precipitation signals in CMIP6 source models and CMIP6 bias-adjusted and

downscaled models. For each model, scenario and pixel, the annual average (x-axis) and the annual total (y-axis) is computed

for each year of both the historical (1995-2015) and future (2080-2100) period. Then, the data is averaged over space with

a land-weighting scheme (e.g. ocean pixels are assigned zero weights). Finally, the data is averaged over years for both the

historical and future period separately and the difference between the future and historical global values (x-axis) or the percent

change between the future and the historical global values (y-axis) is plotted. Data point symbols with transparent borders

represent the source model data while those with black color borders represent the bias-adjusted and downscaled data. The list

of models is restricted to those that have bias-adjusted and downscaled data for both SSP2-4.5 and SSP3-7.0.

Figure A2. Difference in the change in 95th percentile JJA maximum temperature trends globally between 2080-2100 and

the training period (1995-2014) between the bias-adjusted and downscaled data and the bias-adjusted data. Results are shown

for the model NorESM2-LM and the scenario SSP3-7.0.
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Keller, D. E., Fischer, A. M., Cardoso, R. M., Soares, P. M. M., Czernecki, B., and Pagé, C.: An intercomparison of a large ensemble of

statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment, International Jour-945

nal of Climatology, 39, 3750–3785, https://doi.org/10.1002/joc.5462, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/joc.5462,

2019.

Hacker, J.: The Essential Components of the Downscaling Toolbox, https://jupiterintel.com/wp-content/uploads/2021/04/

Jupiter-Downscaling-Science-Insights.pdf, jupiter Intelligence Science Insights, 2021.

Hagos, S. M., Leung, L.-Y., Garuba, O. A., Demott, C., Harrop, B. E., Lu, J., and Ahn, M.-S.: The Relationship between Precipita-950

tion and Precipitable Water in CMIP6 Simulations and Implications for Tropical Climatology and Change, Journal of Climate, 34,

https://doi.org/10.1175/jcli-d-20-0211.1, institution: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) Number:

PNNL-SA-152254 Publisher: American Meteorological Society, 2021.

Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., and Taylor, K. E.: A data model of the Climate and Forecast metadata conventions (CF-

1.6) with a software implementation (cf-python v2.1), Geoscientific Model Development, 10, 4619–4646, https://doi.org/10.5194/gmd-955

10-4619-2017, 2017.

Hassler, B. and Lauer, A.: Comparison of Reanalysis and Observational Precipitation Datasets Including ERA5 and WFDE5, Atmosphere,

12, 1462, https://doi.org/10.3390/atmos12111462, number: 11 Publisher: Multidisciplinary Digital Publishing Institute, 2021.

Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction &ndash; the ISI-MIP approach, Earth

System Dynamics, 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, publisher: Copernicus GmbH, 2013.960

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,

Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present,

https://doi.org/10.24381/cds.adbb2d47, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (Accessed 14 April 2021),

2018.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,965

A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee,

D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,

J.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803,

2020.970

55

https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/esd-11-537-2020
https://doi.org/10.5194/esd-11-537-2020
https://doi.org/10.1002/joc.5462
https://jupiterintel.com/wp-content/uploads/2021/04/Jupiter-Downscaling-Science-Insights.pdf
https://jupiterintel.com/wp-content/uploads/2021/04/Jupiter-Downscaling-Science-Insights.pdf
https://jupiterintel.com/wp-content/uploads/2021/04/Jupiter-Downscaling-Science-Insights.pdf
https://doi.org/10.1175/jcli-d-20-0211.1
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.3390/atmos12111462
https://doi.org/10.5194/esd-4-219-2013
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1002/qj.3803


Holthuijzen, M., Beckage, B., Clemins, P. J., Higdon, D., and Winter, J. M.: Robust bias-correction of precipitation extremes using a novel

hybrid empirical quantile-mapping method, Theoretical and Applied Climatology, 149, 863–882, https://doi.org/10.1007/s00704-022-

04035-2, 2022.

Iturbide, M., Casanueva, A., Bedia, J., Herrera, S., Milovac, J., and Gutiérrez, J. M.: On the need of bias adjustment for more plau-

sible climate change projections of extreme heat, Atmospheric Science Letters, 23, e1072, https://doi.org/10.1002/asl.1072, _eprint:975

https://onlinelibrary.wiley.com/doi/pdf/10.1002/asl.1072, 2022.

Karl, T. R., Nicholls, N., and Ghazi, A.: Clivar/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary,

Climatic Change, 42, 3–7, https://doi.org/10.1023/A:1005491526870, 1999.

Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geoscientific Model Development, 12,

3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, publisher: Copernicus GmbH, 2019.980

Lange, S.: ISIMIP3BASD, https://doi.org/10.5281/zenodo.4686991, 2021.

Lanzante, J. R., Adams-Smith, D., Dixon, K. W., Nath, M., and Whitlock, C. E.: Evaluation of some distributional downscaling meth-

ods as applied to daily maximum temperature with emphasis on extremes, International Journal of Climatology, 40, 1571–1585,

https://doi.org/10.1002/joc.6288, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/joc.6288, 2020.

Lehner, F., Nadeem, I., and Formayer, H.: Evaluating quantile-based bias adjustment methods for climate change scenarios, Hydrol. Earth985

Syst. Sci. Discuss., 2021, 1–26, https://doi.org/10.5194/hess-2021-498, publisher: Copernicus Publications, 2021.

Lehner, F., Nadeem, I., and Formayer, H.: Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios, Ad-

vances in Statistical Climatology, Meteorology and Oceanography, 9, 29–44, https://doi.org/10.5194/ascmo-9-29-2023, publisher: Coper-

nicus GmbH, 2023.

Li, H., Sheffield, J., and Wood, E. F.: Bias correction of monthly precipitation and temperature fields from Intergovernmental990

Panel on Climate Change AR4 models using equidistant quantile matching, Journal of Geophysical Research: Atmospheres, 115,

https://doi.org/10.1029/2009JD012882, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009JD012882, 2010.

Logan, T., Bourgault, P., Smith, T. J., Huard, D., Biner, S., Labonté, M.-P., Rondeau-Genesse, G., Fyke, J., Aoun, A., Roy, P., Ehbrecht,

C., Caron, D., Stephens, A., Whelan, C., Low, J.-F., and Lavoie, J.: Ouranosinc/xclim: v0.31.0, https://doi.org/10.5281/zenodo.5649661,

2021.995

Lokoshchenko, M. A.: Urban ‘heat island’ in Moscow, Urban Climate, 10, 550–562, https://doi.org/10.1016/j.uclim.2014.01.008, 2014.

Maraun, D.: Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue, Journal of Climate, 26, 2137–2143,

https://doi.org/10.1175/JCLI-D-12-00821.1, publisher: American Meteorological Society Section: Journal of Climate, 2013.

Maraun, D.: Bias Correcting Climate Change Simulations - a Critical Review, Current Climate Change Reports, 2, 211–220,

https://doi.org/10.1007/s40641-016-0050-x, 2016.1000

Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for Climate Research, Cambridge University Press, Cambridge,

https://doi.org/10.1017/9781107588783, 2018.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,

Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., eds.: Climate Change 2021:

The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate1005

Change, Cambridge University Press, 2021.

Maurer, E. P. and Pierce, D. W.: Bias correction can modify climate model simulated precipitation changes without adverse effect on the

ensemble mean, Hydrology and Earth System Sciences, 18, 915–925, https://doi.org/10.5194/hess-18-915-2014, 2014.

56

https://doi.org/10.1007/s00704-022-04035-2
https://doi.org/10.1007/s00704-022-04035-2
https://doi.org/10.1007/s00704-022-04035-2
https://doi.org/10.1002/asl.1072
https://doi.org/10.1023/A:1005491526870
https://doi.org/10.5194/gmd-12-3055-2019
https://doi.org/10.5281/zenodo.4686991
https://doi.org/10.1002/joc.6288
https://doi.org/10.5194/hess-2021-498
https://doi.org/10.5194/ascmo-9-29-2023
https://doi.org/10.1029/2009JD012882
https://doi.org/10.5281/zenodo.5649661
https://doi.org/10.1016/j.uclim.2014.01.008
https://doi.org/10.1175/JCLI-D-12-00821.1
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1017/9781107588783
https://doi.org/10.5194/hess-18-915-2014


McNicholl, B., Lee, Y. H., Campbell, A. G., and Dev, S.: Evaluating the Reliability of Air Temperature From ERA5 Reanalysis Data, IEEE

Geoscience and Remote Sensing Letters, 19, 1–5, https://doi.org/10.1109/LGRS.2021.3137643, conference Name: IEEE Geoscience and1010

Remote Sensing Letters, 2022.

Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting

equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Science Advances, 6, eaba1981,

https://doi.org/10.1126/sciadv.aba1981, publisher: American Association for the Advancement of Science, 2020.

Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling approaches: Application to wind cu-1015

mulative distribution functions, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL038401, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL038401, 2009.

Mistry, M. N., Schneider, R., Masselot, P., Royé, D., Armstrong, B., Kyselý, J., Orru, H., Sera, F., Tong, S., Lavigne, E., Urban, A., Madureira,

J., García-León, D., Ibarreta, D., Ciscar, J.-C., Feyen, L., de Schrijver, E., de Sousa Zanotti Stagliorio Coelho, M., Pascal, M., Tobias, A.,

Guo, Y., Vicedo-Cabrera, A. M., and Gasparrini, A.: Comparison of weather station and climate reanalysis data for modelling temperature-1020

related mortality, Scientific Reports, 12, 5178, https://doi.org/10.1038/s41598-022-09049-4, 2022.

Müller, C., Franke, J., Jägermeyr, J., Ruane, A. C., Elliott, J., Moyer, E., Heinke, J., Falloon, P. D., Folberth, C., Francois, L., Hank, T.,

Izaurralde, R. C., Jacquemin, I., Liu, W., Olin, S., Pugh, T. A. M., Williams, K., and Zabel, F.: Exploring uncertainties in global crop yield

projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios, Environmental Research Letters, 16, 034 040,

https://doi.org/10.1088/1748-9326/abd8fc, 2021.1025

Natural Earth: 1:10m Cultural Vectors, Version 5.0.1, https://naturalearthdata.com, 2022.

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe,

J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6,

Geoscientific Model Development, 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, publisher: Copernicus GmbH, 2016.

Parsons, L. A., Masuda, Y. J., Kroeger, T., Shindell, D., Wolff, N. H., and Spector, J. T.: Global labor loss due to humid heat exposure1030

underestimated for outdoor workers, Environmental Research Letters, 17, 014 050, https://doi.org/10.1088/1748-9326/ac3dae, publisher:

IOP Publishing, 2022.

Pierce, D. W.: LOCA Statistical Downscaling (Localized Constructed Analogs), https://loca.ucsd.edu/loca-calendar/, 2021.

Pierce, D. W., Cayan, D. R., and Thrasher, B. L.: Statistical Downscaling Using Localized Constructed Analogs (LOCA), Journal of Hydrom-

eteorology, 15, 2558–2585, https://doi.org/10.1175/JHM-D-14-0082.1, publisher: American Meteorological Society Section: Journal of1035

Hydrometeorology, 2014.

Pierce, D. W., Cayan, D. R., Maurer, E. P., Abatzoglou, J. T., and Hegewisch, K. C.: Improved Bias Correction Techniques for Hydrological

Simulations of Climate Change, Journal of Hydrometeorology, 16, 2421 – 2442, https://doi.org/https://doi.org/10.1175/JHM-D-14-0236.1,

2015.

Previdi, M., Smith, K. L., and Polvani, L. M.: Arctic amplification of climate change: a review of underlying mechanisms, Environmental1040

Research Letters, 16, 093 003, https://doi.org/10.1088/1748-9326/ac1c29, publisher: IOP Publishing, 2021.

Qian, W. and Chang, H. H.: Projecting Health Impacts of Future Temperature: A Comparison of Quantile-Mapping Bias-Correction Methods,

International Journal of Environmental Research and Public Health, 18, 1992, https://doi.org/10.3390/ijerph18041992, 2021.

Rajulapati, C. R., Papalexiou, S. M., Clark, M. P., and Pomeroy, J. W.: The Perils of Regridding: Examples Using a Global Precipitation

Dataset, Journal of Applied Meteorology and Climatology, 60, 1561 – 1573, https://doi.org/https://doi.org/10.1175/JAMC-D-20-0259.1,1045

place: Boston MA, USA Publisher: American Meteorological Society, 2021.

57

https://doi.org/10.1109/LGRS.2021.3137643
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/10.1029/2009GL038401
https://doi.org/10.1038/s41598-022-09049-4
https://doi.org/10.1088/1748-9326/abd8fc
https://naturalearthdata.com
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1088/1748-9326/ac3dae
https://loca.ucsd.edu/loca-calendar/
https://doi.org/10.1175/JHM-D-14-0082.1
https://doi.org/https://doi.org/10.1175/JHM-D-14-0236.1
https://doi.org/10.1088/1748-9326/ac1c29
https://doi.org/10.3390/ijerph18041992
https://doi.org/https://doi.org/10.1175/JAMC-D-20-0259.1


Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz,

W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P.,

Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet,

L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-1050

Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse

gas emissions implications: An overview, Global Environmental Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009,

2017.

Rode, A., Carleton, T., Delgado, M., Greenstone, M., Houser, T., Hsiang, S., Hultgren, A., Jina, A., Kopp, R. E., McCusker, K. E.,

Nath, I., Rising, J., and Yuan, J.: Estimating a social cost of carbon for global energy consumption, Nature, 598, 308–314,1055

https://doi.org/10.1038/s41586-021-03883-8, number: 7880 Publisher: Nature Publishing Group, 2021.

Sanabria, L. A., Qin, X., Li, J., and Cechet, R. P.: Bias correction of extreme values of high-resolution climate simulations for risk analysis,

Theoretical and Applied Climatology, 150, 1015–1026, https://doi.org/10.1007/s00704-022-04210-5, 2022.

Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land

Surface Modeling, Journal of Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, publisher: American Meteorological Society1060

Section: Journal of Climate, 2006.

Sheridan, S. C., Lee, C. C., and Smith, E. T.: A Comparison Between Station Observations and Reanalysis Data in the Identification

of Extreme Temperature Events, Geophysical Research Letters, 47, e2020GL088 120, https://doi.org/10.1029/2020GL088120, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088120, 2020.

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.: Climate extremes indices in the CMIP5 multimodel1065

ensemble: Part 1. Model evaluation in the present climate, Journal of Geophysical Research: Atmospheres, 118, 1716–1733,

https://doi.org/10.1002/jgrd.50203, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgrd.50203, 2013.

Supharatid, S., Aribarg, T., and Nafung, J.: Bias-corrected CMIP6 climate model projection over Southeast Asia, Theoretical and Applied

Climatology, 147, 669–690, https://doi.org/10.1007/s00704-021-03844-1, 2022.

Tarek, M., Brissette, F. P., and Arsenault, R.: Large-Scale Analysis of Global Gridded Precipitation and Temperature Datasets for Climate1070

Change Impact Studies, Journal of Hydrometeorology, 21, 2623 – 2640, https://doi.org/https://doi.org/10.1175/JHM-D-20-0100.1, 2020.

Themeßl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical downscaling and error correction of regional climate models and its impact

on the climate change signal, Climatic Change, 112, 449–468, https://doi.org/10.1007/s10584-011-0224-4, 2012.

Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B.: Technical Note: Bias correcting climate model simulated daily temperature ex-

tremes with quantile mapping, Hydrology and Earth System Sciences, 16, 3309–3314, https://doi.org/10.5194/hess-16-3309-2012, pub-1075

lisher: Copernicus GmbH, 2012.

Thrasher, B., Wang, W., Michaelis, A., and Nemani, R.: NEX-GDDP-CMIP6, https://doi.org/10.7917/OFSG3345, 2021.

Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., and Nemani, R.: NASA Global Daily Downscaled Projections, CMIP6, Scientific

Data, 9, 262, https://doi.org/10.1038/s41597-022-01393-4, number: 1 Publisher: Nature Publishing Group, 2022.

Tian, B. and Dong, X.: The Double-ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean1080

Precipitation, Geophysical Research Letters, 47, e2020GL087 232, https://doi.org/10.1029/2020GL087232, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL087232, 2020.

58

https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1038/s41586-021-03883-8
https://doi.org/10.1007/s00704-022-04210-5
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1029/2020GL088120
https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1007/s00704-021-03844-1
https://doi.org/https://doi.org/10.1175/JHM-D-20-0100.1
https://doi.org/10.1007/s10584-011-0224-4
https://doi.org/10.5194/hess-16-3309-2012
https://doi.org/10.7917/OFSG3345
https://doi.org/10.1038/s41597-022-01393-4
https://doi.org/10.1029/2020GL087232


Van de Velde, J., Demuzere, M., De Baets, B., and Verhoest, N. E. C.: Impact of bias nonstationarity on the performance of uni- and

multivariate bias-adjusting methods, Hydrology and Earth System Sciences Discussions, pp. 1–47, https://doi.org/10.5194/hess-2020-639,

publisher: Copernicus GmbH, 2020.1085

van Hengstum, P. J., Donnelly, J. P., Fall, P. L., Toomey, M. R., Albury, N. A., and Kakuk, B.: The intertropical convergence zone modulates

intense hurricane strikes on the western North Atlantic margin, Scientific Reports, 6, 21 728, https://doi.org/10.1038/srep21728, number:

1 Publisher: Nature Publishing Group, 2016.

Warren, R., Hope, C., Gernaat, D. E. H. J., Van Vuuren, D. P., and Jenkins, K.: Global and regional aggregate damages associated with global

warming of 1.5 to 4 °C above pre-industrial levels, Climatic Change, 168, 24, https://doi.org/10.1007/s10584-021-03198-7, 2021.1090

Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L., and Fu, C.: Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and

future climate (1979–2100), Scientific Data, 8, 293, https://doi.org/10.1038/s41597-021-01079-3, number: 1 Publisher: Nature Publishing

Group, 2021.

59

https://doi.org/10.5194/hess-2020-639
https://doi.org/10.1038/srep21728
https://doi.org/10.1007/s10584-021-03198-7
https://doi.org/10.1038/s41597-021-01079-3

