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Abstract 13 

Land degradation is a cause of many social, economic, and environmental problems. 14 

Therefore identification and monitoring of high-risk areas for land degradation are 15 

necessary. Despite the importance of land degradation due to wind and water erosion, 16 

the topic receives often relatively little attention. The present study aims to create a land 17 

degradation map in terms of soil erosion caused by wind and water erosion of semi-dry 18 

land. We focus on the Lut watershed in Iran encompassing the Lut Desert that is 19 

influenced by both monsoon rainfalls and dust storms. Dust sources are identified using 20 

MODIS satellite images with the help of four different indices to quantify uncertainty. 21 

The dust source maps are assessed with three machine learning algorithms 22 

encompassing artificial neural network (ANN), random forest (RF), and flexible 23 

discriminant analysis (FDA) to map dust sources paired with soil erosion susceptibility 24 

due to water. We assess the accuracy of the maps from the machine learning results 25 

with the metric Area Under the Curve (AUC) of the Receiver Operating Characteristic 26 

(ROC). The water and aeolian soil erosion maps are used to identify different classes 27 

of land degradation risks. The results show that 43% of the watershed is prone to land 28 

degradation in terms of both aeolian and water erosion. Most regions (45%) have a risk 29 

of water erosion and some regions (7%) a risk of aeolian erosion. Only a small fraction 30 

(4%) of the total area of the region had a low to very low susceptibility for land 31 

degradation. The results of this study underline the risk of land degradation for in an 32 

inhabited region in Iran. Future work should focus on land degradation associated with 33 

soil erosion from water and storms in larger regions to evaluate the risks also elsewhere.  34 

 35 
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Introduction 39 

Land degradation is one of the most pressing environmental issues around the globe. 40 

Several aspects of this issue have been recognized by the United Nations Convention 41 

(Gholami et al. 2019a). Land degradation can be driven by both water and wind, of 42 

which the former can have a stronger impact on soil erosion in a short time (Gia et al. 43 

2018). A total of 30% of global land area and three billion people are affected by land 44 

degradation (Wieland et al., 2019). In Iran, it is estimated that land and water 45 

degradation cost about US $12.8 billion per year which is four percent of the total Gross 46 

Domestic Product (GDP) (Emadodin et al. 2012). Therefore, spatial mapping of risks 47 

of land degradation is necessary which can provide a basis to support managers and 48 

policymakers in risk mitigation and adaptation to aeolian and water erosion. 49 

Land degradation driven by aeolian erosion is a known problem (Shi et al. 2004). Dust 50 

storms, which are a natural hazard, are associated with soil erosion. This phenomenon 51 

has detrimental impacts on the Earth system, e.g., for food security (Boroughani et al. 52 

2022), water supply (Duniway et al., 2019), human health (Moridnejad et al., 2015), 53 

geochemical conditions (Gholami et al., 2020b), and the Earth’s carbon cycle 54 

(Gherboudj et al., 2017). Identifying dust sources as potential areas of dust emission is 55 

therefore necessary for developing a better understanding of land degradation. Spatial 56 

mapping of dust source susceptibility areas (DSSAs) is a crucial step for erosion 57 

mitigation and watershed management.  58 

In addition to soil erosion by wind, water-driven soil erosion is a known mechanism for 59 

soil degradation. This kind of soil erosion is a known environmental threat and can 60 

influence both terrestrial and aquatic systems (Halecki et al. 2018, Sun et al. 2014). 61 

Therefore, knowing the spatial distribution of water-induced soil erosion susceptibility 62 

areas (SESA) is also necessary.  63 

Different approaches for identifying DSSAs exist, e.g., using meteorological data 64 

(Yang et al. 2019), numerical modeling (Péré et al. 2018), and remote sensing (Jafari et 65 

al. 2021). Remote sensing can provide worldwide information on aerosol properties 66 

(Park et al. 2014). The present study uses Moderate Resolution Imaging 67 

Spectroradiometer MODIS satellite images in combination with machine learning to 68 
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detect dust aerosols and map its susceptibility over the Lut Desert. Moreover, several 69 

numerical models exist for predictions and risk evaluations of water-induced soil 70 

erosion (Chicas et al., 2016, Gao et al., 2017, Anache et al., 2018, Gia et al., 2018, 71 

Halecki et al., 2018), but none used machine learning to combine different 72 

observational data sets for assessing soil erosion. Machine learning has emerged as a 73 

subfield of data science and helps to better understand environmental problems 74 

(Gholami et al. 2019b). It can integrate data from different sources to create forecasts 75 

and discover patterns (Gholami et al. 2020a). In environmental sciences, algorithms 76 

such as support vector machine, random forest (RF), artificial neural networks (ANN), 77 

and multivariate adaptive regression spline have been applied, e.g., for groundwater 78 

(Lee et al. 2017), gully erosion (Zabihi et al. 2018), sediment contamination (Mirchooli 79 

et al. 2019), dust sources (Boroughani et al. 2020), landslides (Youssef and 80 

Pourghasemi 2021), floods (Tehrany et al. 2014), and trace elements (Derakhshan-81 

Babaei et al. 2022).  82 

However land susceptibility to soil erosion and dust emsission has been assessed in 83 

different and separate studies, it has attracted less attention to investigate both of them 84 

in the same study. So, the novelty of this study lies in constructing an integrated 85 

framework based on field survey, different environmental factors, and machine learning 86 

algorithms to assess both of water erosion and dust emission. 87 

This research is conducted to test some hypotheses including (1) the central and western 88 

parts of the watershed are the highest susceptible areas to water erosion and aerosol 89 

emission, respectively (2) NADI and land use are the most important factors for water 90 

erosion and aolian emission and (3) Central areas are the most prone parts of the 91 

watershed to these phonemona. Correspondigly, the aims of the current study are (1) to 92 

assess the spatially resolved contribution of soil erosion by water and wind using three 93 

machine learning algorithms, (2) determine the most important factor influencing water 94 

and dust emission susceptibility and (3) to combine the findings into spatially resolved 95 

information on risks for land degradation and recognize the hotspot area in terms of 96 

water erosion and dust emission.  97 

 98 

2. Data and methods  99 

The focus of this study is on the Lut watershed situated in the east and southeast of Iran 100 

covering an area of 206242 km2 ( 28º 10' to 32º 30' N latitude and  55º 45' to 61º 15' E 101 

longitude) and is marked in Fig. 1. This watershed include a great diversity of 102 
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topographic charactristics, with an elevation ranging from 124 to 4269m, and slope 103 

ranging from 0 to 28.04 degree. In this region, southwest and northeast aspects have the 104 

most frequencies (34% of the area). This watershed covers some parts of the South 105 

Khorasan, Yazd, Kerman, and Sistan-Baluchestan Provinces of Iran. In addition, 106 

several important cities and towns such as Birjand, Tabas, Bam located in the 107 

watershed. Aridisols is the dominant soil order of the watershed in which it constitutes 108 

40.1% of this region. The  studywatershed includes the largest desert of the country, the 109 

Lut Desert. The region contributes to the increasing dust concentration in southwest 110 

Asia (Ebrahimi-khusfi et al. 2021). This area is chosen to develop and test the methods 111 

based on regional data on erosion observations with examples shown in Fig. 1a-d. It 112 

underlines the impacts of land degradation that goes well beyond impacts on the natural 113 

environment. 114 

     115 

 116 

Fig.1 Geographical location of the study watershed. Green shading marks the Lut watershed. The Lut 117 

Desert is located in the centre of the watershed. Settlements are primarily situated in the northern and 118 

south-western parts. Example of soil erosion in the watershed are sheet erosion (a), rill erosion (b), 119 

gully erosion (c), and wind erosion (d). 120 

 121 

2. 1. Land degradation mapping 122 

Our land degradation zonation consists of three main processing steps, graphically 123 

depicted in Fig. 2. At first, spatial mapping of water erosion is conducted (section 2.1.1). 124 

In the second step, spatial mapping of dust source susceptibility is carried out with 125 

machine learning methods (section 2.1.2). In the last step, the patterns of water erosion 126 

and dust source susceptibility are combined to identify risk areas of land degradation 127 

(section 2.2.3). 128 
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 129 

 130 

Fig.2 Flowchart of inputs (red boxes), data processing (green boxes), and outputs 131 

(blue boxes) in the present study 132 

 133 

 134 

2.1.1 water erosion map 135 

Quantifying the erosion susceptibility of an area requires to determine a spatial 136 

distribution of observed water-induced soil erosion that can have different 137 

characteristics, e.g., gully erosion, rill erosion, and surface erosion. That information is 138 

extracted from data collected during an own field survey paired with previous research 139 

(Shit et al. 2020). In the previous research, a combination of consulting with provincial 140 

experts, satellite images, recent aerial photos, and field survey were applied to identify 141 

soil erosion. The aim of the field survey for the present study was to identify regions 142 

where sheet, rill, and gully erosion took place. This field survey was carried out in 143 

accessible parts of the watershed in April 2020. These accessible parts are mostly 144 

distributed around the cities (such as Bam, Ravar, Shahdad, Baravar, Birjand, Tabas, 145 

etc) with proper road access located in the watershed. The data set contains the type of 146 

water-induced soil erosion along with the geographical location using a Global 147 

Positioning System (GPS). A selection of the identified water soil erosions in the study 148 

region is shown in Fig. 1. 149 

We translated the observations of the field survey into maps of non-degraded and 150 

degraded areas. These areas were plotted in an inventory map and prepared for further 151 

analysis, although not all desert areas are fully covered by the survey. 152 
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 153 

2.1.2 Dust aerosol map  154 

The large desert area to be covered is a motivation for the use of satellite data for 155 

estimating dust sources. We used MODIS images from the Terra (morning) and Aqua 156 

(afternoon) satellites (Vickery and Eckardt, 2013) to identify dust aerosols. We define 157 

dusty days, when the horizontal visibility is less than 2000 m for at least one hour during 158 

the day based on available weather stations in Iran (Vickery and Eckardt, 2013; 159 

Boroughani et al., 2021). According to the mentioned condition, more than 500 dusty 160 

days were identified during 2010–2021 distributed over the stations in Birjand, 161 

Zahedan, Kerman, Bam, Doostabad, Bisheh, Rafsanjan and Mighan. We pair the station 162 

observations with satellite data to estimate the spatial extent of the dust aerosol plumes. 163 

Due to the overpass of the Terra and Aqua satellites once per day, we acquired 28 164 

satellite images from the MODIS sensor that during times when the weather stations 165 

had documented dusty conditions in the ten-year period. For identifying pixels with 166 

dust aerosols in these images, we calculate four different dust indices (BTD2931, 167 

BTD3132, NDDI and D) for dust aerosol identification (Boroughani et al., 2020, 2021 168 

Hahnenberger and Nicoll, 2014). 169 

𝐵 𝑇, 𝜆 =
2ℎ𝑐2

𝜆5 ℎ𝑐

 𝑒𝜆𝑘𝑡−1 

                                                                                                    (1) 170 

where B(T, λ) represents the Planck equation at λ (μm), T is the BT (K), h is the 171 

Planck's constant (6.62610-34 m2kgs-1), k is the Boltzmann's constant (1.3810-23)5, c 172 

is the speed of light (2.99108
 ms-1), and T is the temperature (Hao et al., 2007) 173 

 174 

𝑇 =
ℎ𝑐

𝜆𝑘𝑙𝑛 1+
2ℎ𝑐2

𝐿𝜆5  
                                                                                                                     (2) 175 

Using Planck’s equation, the value of the temperature can be derived, where L is the 176 

amount of radiance in the images (in Wm-2sr-1μm-1). 177 
 178 

𝑁𝐷𝐷𝐼 =  𝑝2.13 − 𝑝0.469 / 𝑝2.13 + 𝑝0.469                                                                             179 

(3) 180 

 181 

where �2.13 and �0.469 depict the reflectance value at the top-of-atmosphere at 2.13 182 

and 0.469 μm, respectively (Qu et al., 2006) 183 
 184 

𝐷 = 𝑒𝑥𝑝{−[𝑟𝑟 × 𝑎 +  𝐵𝑇𝐷 − 𝑏 ]}                                                                                        (4) 185 
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where rr shows the reflectance proportion among wavelengths of 0.54 μm and 0.86 μm 186 

and BTD is the difference among the bands 11 and 12 μm; a and b are constants taken 187 

during the initial calibration (Eq. 1). (Qu et al., 2006; Miller, 2003; Hao et al., 2007; 188 

Boroughani et al., 2020, 2021). 189 

 We compute false color maps using four combinations of channels (1: NDDI, B4, B3; 190 

2: D, BTD2931, NDDI; 3: D, BTD3132, NDDI; and 4: BTD2931, B4, B3) in ENVI 191 

software. We choose these four different indices for cross-validating the presence of 192 

dust aerosols. With each of these methods we see dust aerosol in different color and 193 

qualities in the MODIS images over 28 days. After combining the four methods in the 194 

software ENVI, we choose the method that shows the dust plume in the MODIS image 195 

more clearly as the best method (Boroughani et al., 2020, 2022). This method is based 196 

on a cone of dust diffusion seen in the processed MODIS images, where the apex 197 

denotes the dust's source (Lee et al., 2009; Walker et al., 2009). Ultimately, the 198 

inventory map of the dust aerosols in the Lut watershed was created. 199 

 200 

2.2. Identification of key factors controlling for aeolian and water erosion 201 

To develop DSSA and SESA, the identification and selection of appropriate dust 202 

sources and soil erosion effective factors are necessary. The main factors affecting 203 

DSSA and SESA were selected and constructed based on literature, available data and 204 

geographical maps (Torabi et al., 2021; Zabihi et al., 2018; Boroughani et al., 2020; 205 

Gholami et al., 2020a). The considered factors in this study included: elevation, land 206 

use, slope of terrain, lithology, annual rainfall, distance from rivers, and distance from 207 

roads, the Topographic Wetness Index (TWI), and Normalized Difference Vegetation 208 

Index (NDVI). Various sources were used to gather data for these factors, introduced 209 

in the following in more detail. All collected data were mapped to a horizontal grid of 210 

1km resolution. 211 

The shuttle radar topography mission (SRTM) images were used to create the digital 212 

elevation model (DEM, , Fig 3c) (Ghorbanzadeh et al., 2018). The lowest and highest 213 

elevation of the study area is 124 m in the centre of the desert and 3966 m at the western 214 

and eastern margins of the study watershed, respectively (Fig. 3c). Vegetation cover 215 

considerably supports soil conservation. Areas with low vegetation cover would be 216 

more sensitive to both erosion by water and wind (Arabameri et al., 2019a; Gholami et 217 

al. 2019b). Therefore, we use the Normalized Difference Vegetation Index (NDVI) to 218 
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assess the vegetation cover in the study area from MODIS images following 219 

(Arabameri et al., 2019a; Boroughani et al., 2020): 220 

NDVI= 
𝑁𝐼𝑅+𝑅

𝑁𝐼𝑅−𝑅
 221 

Where R is the red (0.620-0.670 µm) and NIR is near-infrared bands (0.841-0.876 µm) 222 

(Fig. 3d). 223 

Annual rainfall (Fig. 3e) was obtained from Iran Meteorological Organization for the 224 

period of 2000-2021. Mean annual rainfall was calculated using 40 different 225 

meteorological stations located within or close to the watershed (Fig.3e). The inverse 226 

distance weighting (IDW) interpolation method was applied to integrate rainfall over 227 

the study area in the ArcGIS environment (Gholami et al., 2020a). Topographic 228 

Wetness Index (TWI), which indicates the spatial distribution of areas of potential soil 229 

saturation, is an effective factor to indicate water erosion including landslides and also 230 

flooding (Arabameri et al., 2019b). TWI which determines the dry and wet zones 231 

calculated as (Beven and Kirkby 1979): 232 

𝑇𝑊𝐼 = 𝑙𝑛 
𝛼

𝑡𝑎𝑛𝛽
  233 

where α is the cumulative up-slope area from a point (per unit contour length) and β is 234 

the slope angle at that point. This index was calculated in the SAGA-GIS environment 235 

and classified into four groups viz. 14-17, 17-19, 17-21, 21-24 (Fig. 3f).  The aspect 236 

map was also generated using DEM and grouped into ten classes (Fig. 3 g). Distance 237 

from road is an indicator of infrastructure development which influences soil erosion 238 

and land degradation (Torabi et al., 2021). This factor is shown in five classes in Fig. 3 239 

h. Distance from river is one of the most effective factors on water-caused erosion 240 

(Amiri et al., 2019) which is classified into six groups (Fig. 3i). 241 

The slope map (%) was created using a Digital Elevation Map (DEM, Fig. j) and 242 

classified into five groups including 0-3%, 3-6%, 6-12%, 12-21%, and 21-54%. The 243 

lithology map indicates eleven different soil classes in the study area (Fig. 3k). 244 

Land use and soil maps were obtained from base maps developed by the Iranian Forest, 245 

Rangeland, and Watershed Management Organization (https://frw.ir/). In the study 246 

region, there are fourteen land-use classes including wetlands, rangelands of three states 247 

(poor, medium, and rich), dry farming, agricultural lands, urban area, fallow land, rock-248 

covered land, wetland, saltland, woodland, bare surfaces, and sand dunes (Fig. 3m). A 249 

large percentage (83%) of the watershed area is covered by bare land, poor rangeland, 250 
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and sand dunes. All three land use classes are prone to wind erosion due to sparse or no 251 

vegetation.  252 
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 253 
Fig.3 Location of dust observation points for training and validation (a), water-induced soil erosion 254 

points for training and validation (b), and the conditional factors (Elevation (c), NDVI (d), Rainfall (e), 255 

TWI (f), Aspect (g), Distance from road (h), Distance from river (i), Slope (j), Lithology (k), Land use 256 

(l)) in the watershed. 257 

 258 

2.4. Spatial mapping of DSSA and SESA using machine learning algorithms 259 

We combine the two susceptibility maps for DSSA and SESA to create the land 260 

degradation hazard map with regards to water- and wind-induced soil erosion. For both 261 

types of soil erosion, three machine learning models were constructed and applied. The 262 

land degradation susceptibility map was then created by synthesizing the results for 263 
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both soil erosion types in an ArcGIS 10.5 environment, and the land degradation 264 

susceptibility was ultimately evaluated with four classes. 265 

A wide range of machine learning algorithms has been applied for spatial mapping of 266 

environmental phenomena in the past. The effective factors described in Section 2.2 267 

and the inventory maps of water and wind erosion were used as the input of the machine 268 

learning algorithms. In the present study, the algorithms of random forest (RF), artificial 269 

neural network (ANN), and flexible discriminate analyses (FDA) were used to produce 270 

DSSA and SESA maps. We choose three different algorithms to test the dependency of 271 

the results on the method as a measure of uncertainty. The  three algorithms are 272 

described in more detail in the following.  273 

 274 

2.4.1 Random forest (RF) 275 

Random forest developed by Breiman (2001) is a machine learning algorithm for non-276 

parametric multivariate classification. RF builds multiple trees using a random selection 277 

of the training dataset. The data not included are called out-of- bag (OOB) determines 278 

the model accuracy using generalization error estimation (Breiman 2001). Diversity 279 

among the classification trees increases using resampling the data with replacement and 280 

also randomly change of predictors set during tree induction processes (Youssef et al., 281 

2016). Information from numerous decision trees has been combined in the RF 282 

algorithm.  283 

Generally, it is essential to define two parameters to run the RF model including the 284 

number of trees (ntree) and the number of factors prepared from the data shown in Fig. 285 

3 (mtry). The former is built while the RF model is running, while the latter is used in 286 

the tree-building process. Both the number of trees and factors need to be optimized to 287 

minimize the generalization error (Rahmati et al. 2016). The optimisation was done 288 

through sensitivity tests.   289 

 290 

2.4.2 Artificial neural network (ANN) 291 

The artificial neural network (ANN) is a machine learning tool developed by imitating 292 

human brain performances and making connections between inputs and outputs 293 

(Sakizadeh et al. 2017). The human brain is mimicked in two ways: Firstly, obtaining 294 

information and knowledge using a learning process, and secondly, storing knowledge 295 

using synaptic weights. Therefore, ANN has been identified as the model that finds the 296 

optimal solution for non-linear problems, such as dust source and soil erosion 297 
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susceptibility, by identifying patterns with conditioning factors (Ghorbanzadeh et al. 298 

2019). In an ANN, a neuron is the smallest data processing unit which could make many 299 

neural network structures and be used in research for different purposes. The standard 300 

structure of ANN consists of three layers, namely, the input layer, the hidden layers, 301 

and the output layer. The input layer consists of training data and conditioning factors 302 

of dust source, the neurons in the hidden layer analyze the complex information 303 

contained in the data, and the output layer is the maps of dust source susceptibility. In 304 

this structure, the neurons across the same layer are not connected, but they are linked 305 

with neurons in the previous and subsequent layers. In ANN, the algorithm determines 306 

a weight for each input factor and a transfer function to build results (Kalantar et al. 307 

2017).  308 

 309 

2.4.3 Flexible discriminate analyses (FDA) 310 

The modification of the linear regression model for the application to non-linear 311 

problems is the purpose of FDA (Avand et al. 2021). Nonparametric regression models, 312 

nonlinear discriminant analysis, and classification methods are combined into one 313 

framework. This algorithm is flexible for non-linear classifications because non-linear 314 

transformation is used and clusters are soft (Kalantar et al. 2020), here clusters for the 315 

relationship between soil erosion and the predictor factors from Fig. 3. In this way, 316 

variables in FDA are firstly aligned with the multivariate adaptive regression splines 317 

(MARS) and then dimension reduction is performed (Kim and Kim 2021). FDA can 318 

overcome the problem of linear discriminant analysis (LDA) and it is minimizing the 319 

square average of the residuals (Mosavi et al. 2020), while linear regression is replaced 320 

by nonparametric regression in FDA. Therefore, FDA has the potential to apply for 321 

non-linear natural problems such as soil erosion, dust, flood, and landslide.  322 

 323 

2.5. Evaluation of machine learning algorithms 324 

In our DSSA and SESA assessment, 70% of point data are randomly selected for the 325 

training dataset and 30% for model validation. The prediction accuracy of the machine 326 

learning algorithms is assessed by comparing the DSSA map with the validation dataset 327 

of dust sources. These data were extracted from MODIS images and some indicators 328 

which were explained in section 2.1.2. The Receiver Operating Characteristic (ROC) 329 

curve and the Area Under the Curve (AUC) are applied following past studies that used 330 

these to test the prediction skill of a model for the occurrence or non-occurrence of the 331 
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studied phenomena (Naghibi et al. 2017). The AUC ranges from 0 to 1 in which the 332 

models that better perform represent the AUC close to one.  333 

 334 

3. Results and Discussion 335 

3.1. Spatial distribution of DSSA 336 

3.1.1. Dust aerosol detection  337 

An illustration of a dust storm seen in MODIS FCC satellite imagery over the Lut 338 

watershed on August 7, 2019, is shown in Fig. 4. Following a visual analysis of the 339 

images, we determined that the false colour combination (R: BTD2931, G: Band 4, B: 340 

Band 3) is the best and applied it to 26 MODIS images of dusty days. As a result, the 341 

Lut watershed's dust source locations were identified (Fig. 4). 342 

 343 

  

Fig.4 The dust storm on 07 August 2019, as seen above is an example of the visual 344 

inspection of a dust storm (a) MODIS true colour (Red: Band 5, Green: Band 4, Blue: 345 

Band 3), and (b) enhanced MODIS satellite photos,  (Red: BTD2931, Green: Band 4, 346 

Blue: Band 3). 347 

 348 

3.1.2 The importance of conditioning factors for DSSA 349 
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Since multicollinearity among factors has been identified as an obstacle to explaining 350 

the results (Roy and Saha 2019), the Variance Inflation Factor (VIF) was calculated to 351 

assess the relationships among conditioning factors. This was conducted because 352 

multicollinearity among factors will decline the accuracy of the models (Arabameri et 353 

al. 2019b). In the present study, VIF values for DSSA mapping range from 1.05 to 1.57 354 

which illustrated no collinearity among the eight factors. Therefore, no exclusion was 355 

applied and all factors were considered in successor calculations and modeling. 356 

The importance and impact of each factor depend on the machine learning algorithms. 357 

The result of DSSA mapping using RF showed that NDVI, elevation, land use, and 358 

lithology had the greatest degree of effect among conditioning factors. Land use and 359 

NDVI as an index of vegetation cover proved to have a controlling impact on wind 360 

erosion and dust emission (Gholami et al., 2020). Elevation is an effective factor for 361 

DSSA in which lowlands have higher impacts than highlands. This was confirmed by 362 

other studies such as Darvand et al., 2021. Lithology is another important factor in this 363 

watershed since dust emission is mostly occur in the sensitive lithology rather than 364 

resistant ones (Sissakian et al., 2013). Overall, the impacts of these factors on DSSA 365 

have been proved by previous investigations (Gholami et al. 2020a, 2020b). Other 366 

factors such as the distance from rivers, rainfall, and slope were identified as rather 367 

weak predictors, respectively. These findings agree with other research (Boroughani 368 

and Pourhashemi 2020, Darvand et al. 2021). 369 

The FDA approach showed that however elevation, NDVI, and land use had the highest 370 

effects on dust sources susceptibility, other factors had no impact on DSSA. Similarly, 371 

with ANN, elevation, NDVI, and land use were identified as the three most effective 372 

factors, and other factors were weaker predictors rather than formers. However these 373 

two models of FDA and ANN provide similar results in term of the importance of 374 

conditioning factors, FDA could be used rather than ANN because of its higher 375 

accuracy which is shown in the next section.  376 

 377 

3. 1. 3 Spatial distribution of dust source susceptibility 378 

The dust source susceptibility (DSS) maps created by RF, FDA, and ANN are classified 379 

into five risk classes (very high, high, moderate, low, and very low) shown in Fig. 5. 380 

These classes are set as in earlier studies (Mosavi et al., 2020; Boroughani, 381 

Mohammadi, Mirchooli, & Fiedler, 2022). The results of the model evaluation using 382 

ROC indicates that the RF model with an accuracy of 75.0% provides the most accurate 383 
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outputs. FDA and ANN had similar performances with the accuracy of 71.7% and 384 

70.7%. In terms of True Skill Statistic (TSS), similar results have been obtained in 385 

which RF with an accuracy of 45.8% had again the best performance in comparison to 386 

FDA (32.4%) and ANN (35.8%). In this way, RF introduces different priorities for the 387 

effective factors in comparison with FDA and ANN. RF proposes NDVI, elevation, 388 

land use, and lithology as the most important factors, while FDA and ANN suggest 389 

elevation, NDVI, and land use as the most influencing factors. The dominance of 390 

NDVI, elevation and land use as the most effective factors for DSS is consistent with 391 

the understanding of dust source locations that are typically found in topographic 392 

depressions with sparse or no vegetation. The DSSA map from RF was selected for 393 

further analysis due to the highest accuracy, although the differences between FDA and 394 

ANN are in the statistical sense relatively small. According to the DSSA maps, 29% 395 

and 17% of the watershed were classified as areas of high and very high DSSA, i.e., 396 

almost half of the study area. Only 4% and 16% of the watershed have a very low and 397 

low susceptibility to soil erosion through winds, respectively. The spatial extent of high 398 

and very high risk areas from RF is smaller than the ones obtained by ANN and FDA. 399 

In all three maps, it can be seen that the biggest potential for dust emission is located in 400 

the central parts (Lut Desert) of the watershed. These results are consistent with other 401 

research, indicating that RF allows more detailed spatial mapping of dust source 402 

susceptibility compared to other machine learning algorithms (Rahmati et al. 2020, 403 

Gholami et al. 2019b, Darvand et al. 2021). 404 

 405 
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 406 

Fig. 5 Dust sources susceptibility area (DSSA) based on random forest (RF), artificial neural network 407 

(ANN), and flexible discriminate analyses (FDA) 408 

 409 

As mentioned before, the watershed is one of the key regions with dust concentration 410 

in southwest Asia.  Spatial distribution of dust sources in this region is a key roadmap 411 

for preventive and adaptive measurement. This would reduce dust emission across the 412 

watershed, region, and even other near countries.  413 

 414 

3.2. Soil erosion susceptibility map 415 

3.2.1 Relative influential conditioning factors for SESA  416 

There are some differences in the contributions of influential factors among models. So 417 

that, RF indicates that rainfall, TWI, slope, elevation, land use, and geology are the 418 

most important conditioning factors. Considering this watershed located in arid region 419 

of Iran, rainfall and TWI play decisive and crucial role in soil erosion among them. 420 

TWI which indicate soil moisture and water-saturated area (Silva et al., 2023) has been 421 

also identified an effective factor for different kinds of soil erosion such as rill-interrill, 422 

gully, and piping erosions (Sholagberu et al., 2017; Hosseinalizadeh et al., 2019). Slope 423 

influences also soil erosion rate through effecting on runoff velocity, vegetation cover, 424 

and soil type (Avand et al., 2022). This conditioning factor has been also reported as 425 
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one of the most influential factor in most studies (Sholagberu et al., 2017; Pournader et 426 

al., 2018; Lei et al., 2020). Moreover, distance from roads and rivers were recognized 427 

as the least important factors. These findings of the impact of conditioning factors for 428 

SESA are similar in other regions (Arabameri et al. 2019a, Hosseinalizadeh et al. 2019). 429 

For ANN, TWI, slope, and land use were the most effective factors for prediction which 430 

is followed by NDVI, land use, and distance from the river. The results from FDA 431 

indicated that the most important conditioning factors are TWI, slope, and elevation, 432 

geology, and NDVI. TWI has an important impact on SESA in all three models. This 433 

is because the study watershed predominates with low slopes and elevations. The 434 

opposite result of this finding was obtained by Silva et al., 2023. 435 

 A large area of the watershed is land with typically little rain and vegetation cover such 436 

that bare soil is the main physical attribute in the watershed. This kind of surface is 437 

known to be prone to water-induced soil erosion, when rain events occur. The erosion 438 

can be particularly pronounced over slopes. This understanding is consistent with all 439 

algorithms pointing to a major role of TWI and slope for SESA. 440 

Some environmental factors (rainfall, TWI, slope, elevation, and geology) influence 441 

SESA more than DSSA. Land use as a human-induced conditioning factor, however, 442 

affects both SESA and DSSA, which underlines the importance of land-use planning 443 

and management. 444 

 445 

3.2.2. Spatial modeling of SESA 446 

Fig. 6 shows the SESA predictions from the three machine learning algorithms, 447 

classified by the soil erosion risk in the ArcGIS environment. Validation of the three 448 

machine learning algorithms highlights that RF was again the most reliable algorithm 449 

amongst the three, indicated by the best prediction rate. Based on ROC, RF yields a 450 

94% accuracy for SESA (Fig. 6c). The ROC coefficient of ANN and FDA were slightly 451 

lower, but still high with an accuracy of 91% and 89%, respectively. In the case of the 452 

TSS index, better performance was obtained again for RF (89%) rather than ANN 453 

(78%) and FDA (78%). High performance of RF model in classification issues is related 454 

to its potential to handle bigh datasets and apply large number of conditioning factors 455 

(Naghibi et al., 2018). In addition, Rahmati et al., 2020 states that high accuracy of RF 456 

is the results of several advantage of this model such as iterative nature and preventing 457 

problems by overfitting (Rahmati et al., 2020). 458 
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The majority of the land in the watershed (81%) has a high and very high risk for water-459 

induced soil erosion by RF. This is slightly lower than for ANN and FDA which 460 

classified 85% and 89% of the watershed as high and very high susceptible areas. The 461 

high and very high susceptible areas for water-driven soil erosion are mostly located in 462 

the north and south-west parts of the watershed. The high and very high susceptible 463 

areas have socio-economic implications, particularly because most settlements and 464 

cities of the watershed are located in the same regions. This can mean that human 465 

activity is a contributing factor to the water-induced soil erosion.  Mutually, intensified 466 

soil erosion might lead to migration of resident people to other places and even other 467 

countries.  468 

 469 

 470 

Fig. 6 soil erosion susceptibility areas map (GESM) using random forest (RF), artificial neural network 471 

(ANN), and flexible discriminate analyses (FDA) 472 

 473 

3.3. Land degradation susceptibility 474 

The majority of the study watershed is susceptible to a substantial risk for land 475 

degradation. The spatial distribution of land degradation susceptibility, shown in Fig. 476 

7, indicates that only 4% of the land area has low to very low risks of land degradation. 477 

Areas susceptible to both soil erosion by water and winds together constitute 43% of 478 
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the total area. Approximately 45% and 8% of the study area are at risk of soil erosion 479 

by water and wind, respectively. Taken together, it means that the majority of the Lut 480 

watershed falls under the category of land degradation risks. The watershed accounts 481 

for 12.5% of the total land of Iran. The findings of the present study are therefore 482 

consistent with a report that indicated water erosion as an environmental hazard in Iran 483 

(Bui et al. 2019).  The results of the study will be helpful and applicable for identifying 484 

water-induced and dust sources hotspots across the watershed and prioritizing 485 

appropriate conservation measurements and rehabilitative policies. 486 

The areas that fall under the category of both kind of land degradation might be most 487 

vulnerable concerning local self-sufficiency for food security and sustainability of 488 

human activities. For instance, dust storms drive water loss through failure of 489 

agricultural crops in Iran (Boroughani et al. 2022). Moreover, the adverse impacts of 490 

water-induced soil erosion are known from numerous other regions (Lal and 491 

Moldenhauer 2008, Gao et al. 2015, Standardi et al. 2018; Roy et al., 2022). 492 

 493 

Fig. 7 Land degradation susceptibility map in terms of soil erosion and dust sources areas 494 

 495 



21 

 

Conclusion 496 

Investigation of soil erosion through water along with wind-driven soil erosion from 497 

dust sources have received little attention in past studies, despite their importance for 498 

land degradation with associated social, economic, and environmental impacts. The 499 

present study used several different data sets, conducted a field survey  and paired the 500 

data with three different machine learning algorithms to construct spatial maps for areas 501 

of risk for land degradation for the Lut watershed in Iran. Three machine learning 502 

algorithms were successfully applied to create land susceptibility maps describing dust 503 

aerosol occurrence considering methodological uncertainty. In addition, these models 504 

were used to identify the areas prone to soil erosion by surface water runoff. These 505 

obtained maps were synthesized to generate a single map for risks of land degradation.  506 

The results of the present study show that the random forest algorithm outperformed 507 

the other two machine learning approaches for both dust sources and soil erosion 508 

susceptibility mapping with an accuracy of 75% and 94%, respectively.  509 

As expected, the vegetation cover, elevation, land use, and geology were important 510 

prerequisites for dust-emission occurrence in the watershed, while rainfall, 511 

Topographical Wetness Index (TWI), terrain slope, terrain elevation, land use, and 512 

geology were identified as the most influential factors for water-induced soil erosion.  513 

Based on the land degradation map, almost the entire study region is at risk. A large 514 

fraction of 43% of the area is prone to both high wind-driven plus water-driven soil 515 

erosion. In addition to these areas, another 45% and 8% of the area have a risk for water-516 

driven and wind-driven soil erosion, respectively. The methods tested in this study 517 

could be later transferred to similar assessments in other regions around the world. 518 

Choosing this region in Iran is further motivated by the impact of land degradation on 519 

the country’s economy. The current study has some limitation including the small 520 

sample size and non-uniform distribution of water-induced soil erosion points because 521 

of lack of accessibility to a road network in some parts of the watershed. Despite these 522 

limitations, these results can potentially be useful for managers and policy makers to 523 

identify local hotspots for land degradation to implement mitigation and adaptation 524 

measures in this watershed. Future studies could work on improving the spatial 525 

resolution and coverage of the risk assessment for providing more information on risks 526 

for land degradation. In addition, it is suggested that future research should estimate the 527 

role of other climatic factors such as humidity, and air temperature on soil erosion and 528 

dust source susceptibility. Prediction of NDVI and rainfall as the most effective factors 529 
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on soil erosion and dust sources and estimated of their impacts on future water induced-530 

soil erosion and dust sources susceptibility is also suggested for the other studies.  It 531 

requires more measurements for soil erosion by water and winds to train the machine 532 

learning models. 533 
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