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Abstract. We developed an emulator for Integrated Assessment Models (emIAM) based on a marginal abatement cost (MAC) 

curve approach. Using the output of IAMs in the ENGAGE Scenario Explorer and the GET model, we derived a large set of 

MAC curves: ten IAMs; global and eleven regions; three gases CO2, CH4, and N2O; eight portfolios of available mitigation 

technologies; and two emission sources. We tested the performance of emIAM by coupling it with a simple climate model 

ACC2. We found that the optimizing climate-economy model emIAM-ACC2 adequately reproduced a majority of original 15 

IAM emission outcomes under similar conditions, allowing systematic explorations of IAMs with small computational 

resources. emIAM can expand the capability of simple climate models as a tool to calculate cost-effective pathways linked 

directly to a temperature target. 

1 Introduction 

Integrated Assessment Models (IAMs) combine economy, energy, and sometimes also land-use modeling approaches and are 20 

commonly used to evaluate climate policies under least-cost scenarios (Weyant, 2017). A variety of IAMs were integrated 

under common protocols in modeling intercomparison projects (MIPs) (O’Neill et al., 2016) and provided input to the series 

of the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. Simulating computationally expensive IAMs 

developed and maintained at different research institutes around the world, however, requires large coordination efforts. Here 

we propose a new methodological framework to i) emulate the emerging behavior of IAMs (i.e., emission abatement for a 25 

given carbon price) through marginal abatement cost (MAC) curves and then ii) reproduce the behavior of IAMs by using the 

MAC curves coupled with a simple climate model. We show that the MAC curves can be systematically applied to reproduce 

the behavior of IAMs as an emulator for IAMs (emIAM), paving a way to generate multi-IAM scenarios more easily than 

before, with small computational resources. 

There is a burgeoning literature on MAC curves (Jiang et al., 2020) that can broadly fall into two categories (Kesicki 30 

and Ekins, 2012): i) data-based MAC curves (bottom-up) and ii) model-based MAC curves (top-down). First, a data-based 

MAC curve gives a relationship between the emission abatement potential from each of the mitigation measures considered 
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and the associated marginal costs, in the order of low- to high-cost measures based on individual data. A prominent example 

of such data-based MAC curves is McKinsey & Company (2009). Second, a model-based MAC curve gives a relationship 

between the amount of emission abatement and the system-wide marginal costs based on simulation results of a model (e.g., 35 

an energy system model and a computational general equilibrium (CGE) model) perturbed under different carbon prices or 

carbon budgets. Our work takes the second approach, building on earlier studies (Nordhaus, 1991; Ellerman and Decaux, 1998; 

van Vuuren et al., 2004; Johansson et al., 2006; Klepper and Peterson, 2006; Johansson, 2011; Morris et al., 2012; Wagner et 

al., 2012; Tanaka et al., 2013; Su et al., 2017; Tanaka and O’Neill, 2018; Yue et al., 2020; Tanaka et al., 2021). While data-

based MAC curves tend to be rich in the representation of technological details, they do not consider system-wide interactions 40 

that are captured by model-based MAC curves. Model-based MAC curves reflect such interactions, however, without much 

explicit technological detail. Advantages and disadvantages of MAC curves of different categories are discussed elsewhere 

(Vermont and De Cara, 2010; Kesicki and Strachan, 2011; Huang et al., 2016). 

This study derives a large set of MAC curves from the simulation results of IAMs, couples them as an emulator 

(emIAM) with a simple climate model, and validates the simulation results with the original IAM results under similar 45 

conditions. Namely, we look up the ENGAGE Scenario Explorer hosted at IIASA, Austria (https://data.ene.iiasa.ac.at/engage), 

a publicly available database from the EU Horizon 2020 ENGAGE project (Riahi et al., 2021; Drouet et al., 2021), and extract 

total anthropogenic CO2, CH4, and N2O emission pathways until 2100 from nine IAMs under a range of carbon budget 

constraints. For each IAM, we derive a set of CO2, CH4, and N2O MAC curves as a function of the respective emission 

reduction in percentage relative to the baseline at global and regional levels (eleven regions). We then implement the sets of 50 

MAC curves (i.e., emIAM) into a simple climate model called the Aggregated Carbon Cycle, Atmospheric Chemistry, and 

Climate (ACC2) model (Tanaka et al., 2007; Tanaka and O’Neill, 2018; Xiong et al., 2022). emIAM-ACC2 works as a hard-

linked optimizing climate-economy model where total cost of mitigation is optimized under a climate target or carbon budget. 

We validate to what extent the emission pathway derived from emIAM-ACC2 under a certain carbon budget or a temperature 

target can reproduce the corresponding pathway from the original IAM in the ENGAGE Scenario Explorer. We further apply 55 

the emIAM approach to the GET model (Lehtveer et al., 2019), an IAM that did not take part in the ENGAGE project: we 

obtain global energy-related CO2 emission pathways under a range of carbon price projections but with several different 

portfolios of available mitigation technologies (e.g., differentiated Carbon Capture and Storage (CCS) capacity). We then 

derive a MAC curve for each technology portfolio. Although each MAC curve concerns only the total emission abatement 

without distinguishing individual mitigation measures, this approach allows us to explore the role of a specific mitigation 60 

measure by comparing the outcomes based on MAC curves with and without this mitigation measure. Note that all IAMs 

emulated in this study take a cost-effectiveness approach, in which least-cost emission pathways to achieve a climate-related 

target are calculated in terms of the cost of mitigation without considering climate damage. 

To our knowledge, this study is one of the first attempts to apply the MAC curve approach extensively for developing 
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an IAM emulator: we consider ten IAMs, global and eleven regions, three gases (i.e., CO2, CH4, and N2O), eight technology 65 

portfolios, and two broad sources (i.e., total anthropogenic and energy-related emissions). We demonstrate the applicability of 

emIAM by implementing it to ACC2, but emIAM can be used also with other simple climate models (Joos et al., 2013; Nicholls 

et al., 2020). emIAM allows ACC2 and potentially other simple climate models to reproduce approximately global and regional 

cost-effective emission pathways from multiple IAMs under a range of carbon budgets and temperature targets. In recent years, 

efforts have been made to develop emulators of Earth System Models (ESMs) in CMIP6 and the use of ESM emulators was 70 

exploited in the latest IPCC Sixth Assessment Report (AR6) (Leach et al., 2021; Tsutsui, 2022); however, no emulator has yet 

been developed for IAMs.  

The rest of the manuscript consists of four sections: Section 2 introduces the IAMs and the experiments used to derive 

MAC curves. Section 3 describes the methodology to derive MAC curves and presents the MAC curves that are derived (i.e., 

emIAM). Section 4 shows the validation results for emIAM-ACC2. The paper is concluded with general remarks on the use 75 

of emIAM in Section 5. Due to the large number of MAC curves spanning several dimensions, there are a vast amount of 

display items from our analysis. Results are only selectively shown in the main paper; they are more comprehensively and 

systematically presented in the Supplement and our Zenodo repository. 

Following the common definitions of terminologies found in the literature (National Research Council, 2012; 

Mulugeta et al., 2018), we use “emulate” to indicate a process of identifying a reduced-complexity model (i.e., a MAC curve) 80 

that approximates the behavior of a complex model (i.e., an IAM), “reproduce” to refer to a process of generating an output 

(i.e., an emission pathway) from an emulator with the same input and constraints given to an IAM (i.e., a cumulative carbon 

budget or end-of-the-century temperature, for example), and “validate” to indicate a process of investigating the extent to 

which an emulator reproduces an intended outcome in comparison to the corresponding original outcome from an IAM. 

Regarding the units, we use the original units of each model (i.e., US$2010 and tCO2-eq with 100-year Global Warming 85 

Potential (GWP100) for all IAMs emulated here) to keep the comparability with underlying data, unless noted otherwise. 

2 IAMs to emulate 

Our study uses the output from a total of ten IAMs: nine IAMs used in the ENGAGE project and another IAM GET. The 

subsections below describe these IAMs and their data used to derive MAC curves. 

2.1 IAMs from the ENGAGE project 90 

Nine IAMs are available in the database of the ENGAGE Scenario Explorer: AIM/CGE V2.2, COFFEE 1.1, GEM-E3 V2021, 

IMAGE 3.0, MESSAGEix-GLOBIOM 1.1, POLES-JRC ENGAGE, REMIND-MAgPIE 2.1-4.2, TIAM-ECN 1.1, and 

WITCH 5.0 (thereafter, shorter labels will be used as in Table 1). These IAMs are diverse in terms of solution concepts (general 

and partial equilibrium models) and solution methods (intertemporal optimization and recursive dynamic models) (Table 1), 

among many other perspectives (Guivarch et al., 2022). A series of scenarios following a carbon budget ranging from 200 to 95 
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3,000 GtCO2 (for the period of 2019-2100), as well as baseline scenarios, are available from each IAM. All scenarios 

incorporate second marker baseline scenario from the Shared Socioeconomic Pathways (SSP2), which reflect middle-of-the-

road socioeconomic conditions (Riahi et al., 2017). 

There are two types of scenarios in the ENGAGE Scenario Explorer: i) net-negative emissions scenarios (implying a 

temperature overshoot; with “f” in the scenario name) and ii) net-zero CO2 emissions scenarios (implying a limited or no 100 

temperature overshoot; without “f” in the scenario name) (Riahi et al., 2021). While the former type of scenarios is defined 

with a carbon budget till the end of this century including a possibility of temporarily overspending it before (i.e., a possibility 

of achieving net negative CO2 emissions), the latter type of scenarios is defined with a carbon budget till the point of meeting 

net-zero CO2 emissions without allowing a budget overspending. The distinction of the two sets of scenarios may have 

important near-term implications (Johansson, 2021) and are considered when MAC curves are derived. For each type of 105 

scenarios, there are another two types of scenarios: i) NPi2020 scenarios, which consider currently implemented national 

policies; ii) INDCi2030 scenarios, which further consider national emission pledges until 2030. The availability of scenarios 

depends on the types of scenarios and varies across IAMs. We used the NPi2100 scenario as the baseline scenario for all 

carbon budget scenarios in our analysis. 

The ENGAGE Scenario Explorer contains emission data for many greenhouse gases (GHGs) and air pollutants from 110 

each IAM, including CO2, CH4, and N2O emissions analyzed in our study. Emission data are available at global and regional 

levels (for nine and five IAMs, respectively). There are two sets of regional emission data, with one for five regions and the 

other for ten regions, the latter of which was used in our study: that is, China (CHN), European Union and Western Europe 

(EUWE), Latin America (LATAME), Middle East (MIDEAST), North America (NORAM), Other Asian countries 

(OTASIAN), Pacific OECD (PACOECD), Reforming Economies (REFECO), South Asia (SOUASIA), Sub-Saharan Africa 115 

(SUBSAFR), and Rest of World (ROW). Although all ENGAGE IAMs are regionally disaggregated, only a subset of the 

IAMs provides data for ten regions in the ENGAGE Scenario Explore as shown in Table 1. Note that only the GEM model 

provides emissions for ROW in the ENGAGE Scenario Explorer. In other IAMs, we allocated emissions for ROW to account 

for the discrepancy between global emissions and the sum of regional emissions (e.g., 3% difference in CO2 emissions in 

AIM/CGE). Regarding emission sources, total anthropogenic emissions and energy-related emissions (e.g., energy and 120 

industrial processes) were separately used to derive global MAC curves for three gases (only total anthropogenic emissions 

for regional MAC curves due to computational requirements for validating regional MAC curves). Non-energy-related 

emissions (e.g., agriculture, forestry, and land-use sector), the differences between the two, were not used for generating MAC 

curves because non-energy-related emissions did not appear to be strongly correlated with carbon prices in most IAMs and 

influenced by other factors (Diniz Oliveira et al., 2021). 125 

2.2 GET model 

GET is a global energy system model designed to study climate mitigation and energy strategies to achieve long-term climate 
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targets under exogenously given energy demand scenarios (Azar et al., 2003; Hedenus et al., 2010; Azar et al., 2013; Lehtveer 

and Hedenus, 2015; Lehtveer et al., 2019). It is an intertemporal optimization model that minimizes with perfect foresight the 

total energy system costs discounted over the simulation period till 2150 (5% discount rate by default). To do so, various 130 

technologies for converting and supplying energy are evaluated in the model. The model considers primary energy sources 

such as coal, natural gas, oil, biomass, solar, nuclear, wind, and hydropower. Energy carriers considered in the model are 

petroleum fuels (gasoline, diesel, and natural gas), synthetic fuels (e.g., methanol), hydrogen, and electricity. End-use sectors 

in the model are transport, feedstock, residential heat, industrial heat, and electricity. We employed GET version 10.0 (Lehtveer 

et al., 2019) with the representation of ten regions. 135 

To develop global energy-related CO2 MAC curves reflecting different sets of available mitigation measures, we set 

up the following eight technology portfolios: i) Base, ii) Optimistic, iii) Pessimistic, iv) No CCS+Carbon Capture and 

Utilization (CCU)+Direct Air Capture (DAC), v) Large bioenergy, vi) Large bioenergy + Small carbon storage, vii) Small 

bioenergy + Large carbon storage, and viii) No nuclear. The Base portfolio uses the default set of assumptions associated with 

mitigation options available in the model. The Optimistic portfolio combines the assumptions of Large bioenergy supply, 140 

Large carbon storage potential, CCS+CCU+DAC, and Nuclear power. The Pessimistic portfolio, on the contrary, combines 

those of Small bioenergy supply, Small carbon storage potential, No CCS+CCU+DAC, and No nuclear power. Large and 

Small bioenergy cases assume 100% larger and 50% smaller bioenergy, respectively, than default levels (134 EJ/year globally). 

Large and Small carbon storage cases assume 8,000 GtCO2 and 1,000 GtCO2, respectively (2,000 GtCO2 by default). With 

each of these technology portfolios, we simulated the model under 22 different carbon price scenarios. In all carbon price 145 

scenarios, the carbon price grows 5% each year with a range of initial levels in 2010 (1, 2, 3, 5, 7, 10, …, 140 US$2010/tCO2) 

(more details can be seen in Table S2), following the Hotelling rule (Hof et al., 2021). We assumed a discount rate of 5% for 

all portfolios and carbon price scenarios. Our analysis used a scenario with zero carbon prices as the baseline scenario. We 

derived only global energy-related CO2 MAC curves from GET since the model did not explicitly describe processes related 

to non-energy related emissions.  150 

3 MAC curves emulating IAMs 

3.1 Deriving MAC curves 

Our MAC curve approach aims to capture the relationship between the carbon price and the emission abatement in IAMs. For 

each IAM (i.e., ENGAGE IAMs and GET), we calculated the emission reduction level relative to the respective baseline level 

each year. Emission reductions can be expressed either in the absolute term (for example, in GtCO2) or in the fractional term 155 

(in percentage relative to the baseline level) (Kesicki, 2013; Jiang et al., 2022), the latter of which is used in our analysis. When 

the emission is at the baseline level, the relative emission reduction is 0% by definition. When it is 100%, which can occur for 

CO2, the emission is (net) zero. When it exceeds 100%, the emission turns (net) negative. If there are non-zero carbon prices 
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in baseline scenarios (small carbon prices can be found in baseline scenarios from some IAMs), we subtracted them from the 

carbon prices in mitigation scenarios. 160 

We then fitted a mathematical function 𝑓(𝑥) (equation (1); selected among several others as explained below) as a 

MAC curve to capture the emission abatement level for a given carbon price. We used a common time-invariant functional 

form of equation (1) for all cases (i.e., models, gases, regions, sources, and portfolios) for consistency, comparability, and 

simplicity of use. 

𝑓(𝑥) = 𝑎 ∗ 𝑥௕ + 𝑐 ∗ 𝑥ௗ                                                                                                                                                               (1) 165 

𝑎, 𝑏, 𝑐, and 𝑑 are the parameters to optimize for each case. 𝑥 is a variable representing the emission abatement level in 

percentage relative to the assumed baseline level. The carbon price is in per ton of CO2-equivalent emissions, in which 

GWP100 (28 and 265 for CH4 and N2O, respectively (IPCC., 2013)) is used to convert to the prices of CH4 and N2O, as 

assumed in the IAMs emulated here (Harmsen et al., 2016). GWP100 is practically a default emission metric used to convert 

non-CO2 GHG emissions to the common scale of CO2, which has been used for decades in multi-gas climate policies and 170 

assessments including the Paris Agreement (Lashof and Ahuja, 1990; Fuglestvedt et al., 2003; Tanaka et al., 2010; Tol et al., 

2012; Levasseur et al., 2016; UNFCCC., 2018). MAC curves were obtained from the data for the period 2020-2100. There are 

three key assumptions in our approach: i) MAC curves are assumed time-independent, ii) abatement levels are assumed 

independent across gases, and iii) abatement levels are assumed independent across regions. While MAC curves are more 

commonly time-dependent or for a specific point in time, time-independent MAC curves have also been used for long-term 175 

pathway calculations (Johansson et al., 2006; Tanaka and O’Neill, 2018; Tanaka et al., 2021) and shorter-term assessments 

(De Cara and Jayet, 2011). The implications of the first assumption will be discussed later in this section. The second 

assumption indicates that co-reductions of GHG emissions (e.g., emission abatement of CO2 and CH4 from an early retirement 

of a coal-fired power plant (e.g. Tanaka et al., 2019)) are not explicitly considered in our MAC curve approach. The third 

assumption implies that the regional distribution of GHG abatements is determined primarily by the global cost-effectiveness 180 

(Su et al., 2022). The validities of these assumptions can be seen in Section 4, in which MAC curves are combined with a 

simple climate model to reproduce original IAM outcomes. There are further conditions applied to derive MAC curves from 

each model as summarized in Table 1. These conditions were identified based on visual inspection of data from each IAM. 

 

Model Label 
Solution 
concept 

Solution 
method 

Spatial 
resolution 

Gas 
Data range captured by MAC 
curves 

AIM/CGE V2.2 AIM 
General 
equilibrium 

Recursive 
dynamic 

Global 
Regional 

CO2 

CH4 

N2O 

Carbon prices lower than $110/tCO2 
before 2040 and all data after 2040 

COFFEE 1.1 COFFEE 
Partial 
equilibrium 

Intertemporal 
optimization 

Global 
Regional 

CO2 

CH4 

N2O 

Carbon prices lower than $50/tCO2 
with abatement levels below 100% 
under scenarios without negative 
emissions  

GEM-E3 V2021 GEM 
General 
equilibrium 

Recursive 
dynamic 

Global 
Regional 

CO2 
CH4 
N2O 

All data  
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IMAGE 3.0 IMAGE 
Partial 
equilibrium 

Recursive 
dynamic 

Global 
Regional 

CO2 
CH4 
N2O 

All data except: 
EN_INDCi2030_800f 
EN_NPi2020_600f 
EN_INDCi2030_1000f 
EN_Npi2020_800 

MESSAGEix-
GLOBIOM 1.1 

MESSAGE 
General 
equilibrium 

Intertemporal 
optimization 

Global 
Regional 

CO2 
CH4 
N2O 

All data except: 
EN_NPi2020_450 
EN_NPi2020_500 

POLES-JRC 
ENGAGE 

POLES 
Partial 
equilibrium 

Recursive 
dynamic 

Global 
CO2 
CH4 
N2O 

Carbon prices lower than 
$5,000/tCO2 

REMIND-
MAgPIE 2.1-4.2 

REMIND 
General 
equilibrium 

Intertemporal 
optimization 

Global 
CO2 
CH4 
N2O 

All data except: 
EN_INDCi2030_700 
EN_INDCi2030_800 
EN_NPi2020_400 
EN_NPi2020_500 

TIAM-ECN 1.1 TIAM 
Partial 
equilibrium 

Intertemporal 
optimization 

Global 
CO2 
CH4 
N2O 

All data 

WITCH 5.0 WITCH 
General 
equilibrium 

Intertemporal 
optimization 

Global 
CO2 
CH4 
N2O 

All data 

GET 10.0 GET 
Partial 
equilibrium 

Intertemporal 
optimization 

Global 
Energy 
 CO2 

Carbon prices lower than 
$5,000/tCO2; excluded data for very 
high abatements with 
disproportionally low costs (found 
typically after 2100) 

 185 

Table 1. Models and data considered for emIAM. This table describes the features of models and the data (gases, regions (10 regions)) 

that were used to derive our MAC curves. “Solution concept” and “solution method” for ENGAGE IAMs (first nine IAMs in the table) 

are based on Riahi et al. (2021), Guivarch et al. (2022), and IAMC_wiki (2022). Total anthropogenic (and separately energy-related and 

non-energy-related) CO2, CH4, and N2O emissions were taken from ENGAGE IAMs; only energy-related CO2 emissions were used 

from GET. 190 

 

In selecting the functional form for fitting MAC curves (i.e., equation (1)), we needed to balance the competing 

requirements for i) capturing complex nonlinear relationships between the carbon price and the abatement level and ii) keeping 

the functional form at low complexity. Therefore, we tested the performance of several functional forms for fitting the data. 

The candidate functions, some of which are based on previous studies (Johansson, 2011; Su et al., 2017; Tanaka and O’Neill, 195 

2018), are summarized in Table S1, with the ranges of parameters considered. To infer a good functional form, we further tried 

the symbolic regression approach by using the software HeuristicLab, but we were not able to obtain a functional form 

satisfactory for our purpose. Our results indicated that the polynomial function with two algebraic terms (equation (1)) gave 

the highest R2 and adjusted R2 among the equations tested for more than 50% of cases, performing consistently the best for all 

IAMs (see the Zenodo repository). Therefore, we applied equation (1) to generate MAC curves. A polynomial function with 200 

only one algebraic term was insufficient: two distinct algebraic terms were generally needed to capture the trend of our data 

(sometimes with a kink like a “reversed L” shape or with a plateau as shown later). It should be noted that we do not consider 

the parametric uncertainties in individual MAC curves, but a use of MAC curves from multiple IAMs can provide a sense of 

model uncertainties. 
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In addition to the derivation of MAC curves, we derived the maximum abatement level for each IAM from its 205 

simulation results under all carbon budgets or carbon prices, which reflected, for example, the limit of CCS capacity and hard-

to-abate sectors. The minimum abatement level is, by definition, zero in all simulation periods. We also calculated for each 

gas and each IAM the maximum first and second derivatives of temporal changes in abatement levels, which corresponded 

roughly to the limit of the technological change rate and the socio-economic inertia, respectively. The limits on the first and 

second derivatives of abatement changes can prevent the use of deep mitigation levels in the MAC curve in early periods. 210 

These limits could be introduced also by more complex functional forms internally in the MAC curves (Ha-Duong et al., 1997; 

Schwoon and Tol, 2006; De Cara and Jayet, 2011; Hof et al., 2021), but we externally applied such limits on the MAC curves. 

“Learning by doing” and “learning with time,” which reduces the mitigation cost with abatement and time, respectively (Hof 

et al., 2021), are not explicitly considered in our MAC curve approach but in part, albeit unintended, captured in our approach 

that describes percentage reduction rates relative to rising baseline scenarios (until 2080). For example, constant emission 215 

reductions in the absolute term can appear smaller with time in the percentage term and thus become less expensive in our 

approach. 

For each gas and each IAM, we computed the rate of change in the abatement level at each time step from the previous 

time step (i.e., first derivatives) over the entire available period. We then approximated such data with a log-normal distribution 

and assumed the three-sigma level (upper side) as the maximum first derivative of abatement changes for each gas and each 220 

IAM. Likewise, we computed the rate of change of the rate of change in the abatement level (i.e., second derivatives), 

approximated the data with a normal distribution, and assumed the three-sigma level (upper side) as the maximum second 

derivative of abatement changes. We further assumed that the minimum first and second derivatives were at the opposite signs 

of the maximum first and second derivatives, respectively. These limits will be applied when MAC curves are coupled with 

ACC2 to generate cost-effective pathways (Section 4). 225 
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Figure 1. Overview of the methods to derive MAC curves and limits on abatement (upper limits on abatement levels and their 230 

first and second derivatives). The figure uses the data for global total anthropogenic CO2 emissions from REMIND as an example. 

Scenario names indicate respective cumulative carbon budgets for the period 2019 – 2100 in GtCO2. NPi2020 scenarios consider 

currently implemented national policies (circle); INDCi2030 scenarios further consider national emission pledges until 2030 (triangle). 

Among NPi2020 scenarios, those with “f” are net-negative emissions scenarios (filled circles); those without “f” are net-zero CO2 

emissions scenarios (open circles). Crosses indicate data points from scenarios that were not considered in the derivation of the MAC 235 

curve. In the equation of the MAC curve, 𝑎, 𝑏, 𝑐, and 𝑑 are the parameters to optimize; 𝑥 is the variable representing the abatement level 

in percentage relative to the assumed baseline level (i.e., NPi2100 (not shown)). 

 

Figure 1 illustrates the approach described above by using the output from REMIND as an example (corresponding figures for 

AIM and MESSAGE in Figures S1 and S2 of Supplement (note: figures and tables with “S” in numbering are in Supplement)). 240 

In sum, we combined a MAC curve with the upper limits on abatement levels and their first and second derivatives to emulate 

the behavior of an IAM. The series of panels in Figure 1 show the relationship between the carbon price and the abatement 

level at each point in time (every five years) as obtained from REMIND simulated with the range of carbon budgets. Data 

points can be seen only at low abatement levels in the near-term. With time, data points proceed to deeper abatement levels. 

Putting together across all years, the right panel of Figure 1 shows a secular relationship, which allows us to approximate with 245 

a time-independent MAC curve. Even though there are time-dependent processes due to technological changes and socio-

economic inertia in this intertemporal optimization model, the same relationship can apply over time between the carbon price 

and the abatement level. There are outliers arising from very low carbon budget scenarios (crosses in the right panel of Figure 

1). To capture the time-independent characteristics of the data, we identified outlier scenarios (if any) from each IAM and 

manually excluded them from the derivation of the MAC curve. However, it needs to be kept in mind that excluding such 250 

scenario(s) limits the range of applicability for the MAC curve. 

But why does this time-independent approach work so well to capture IAM processes collectively that are time-
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dependent? The use of percentage reductions in our MAC curve approach goes some way in explaining this. Since most of the 

baseline scenarios are rising as pointed out earlier, the same amount of emission abatement in the absolute term can become 

smaller with time in the percentage term, which inadvertently but effectively captures “learning by doing” and “learning with 255 

time,” at least partially. If the underlying data are shown in the absolute term, the data distribution does appear more dispersed 

(Figures S3-S5 for AIM, MESSAGE, and REMIND). 

3.2 MAC curves from ENGAGE IAMs 

3.2.1 Carbon price and abatement level  

Figure 2 shows the relationships between the carbon price and the abatement level for global total anthropogenic CO2 emissions 260 

obtained from nine ENGAGE IAMs. The results differ in terms of the range of carbon prices, the range of abatement levels, 

and the dispersion of data points. For example, the carbon prices of AIM and COFFEE stay below $500/tCO2, while the carbon 

prices of POLES and MESSAGE can exceed $5,000/tCO2. The maximum abatement levels of COFFEE and REMIND are 

above 150%, while others are in the range of 100%-120%. AIM offers a limited amount of data in the near term. IMAGE and 

POLES give more dispersed data distributions than other models, which may be related to the fact that these models are 265 

recursive dynamic models (Table 1). However,  the other recursive dynamic models, AIM and GEM, produce less dispersed 

data distributions, which can be well captured by MAC curves. Nevertheless, on the whole, the relationships between the 

carbon price and the CO2 abatement level are well captured by time-independent MAC curves for most IAMs here. Visual 

inspection of the data distributions reveals little differences between net-negative emissions scenarios and net-zero CO2 

emissions scenarios (except for WITCH), indicating that MAC curves are generally valid for both types of scenarios. If we 270 

consider in terms of the absolute amount of abatement, instead of percentage abatement, the data distributions become more 

dispersed (Figure S3-S5). Results for other gases and for energy-related emissions can be found in Figures S6-S37. 
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Figure 2. Relationships between the carbon price and the global total anthropogenic CO2 abatement level obtained from nine 275 

ENGAGE IAMs. Each panel shows the results from each ENGAGE IAM. Data were obtained from the ENGAGE Scenario Explorer 

and are shown in colors and markers as designated in the legend. Black lines are the MAC curves. Crosses are the data points that were 

not considered in the derivation of MAC curves (Table 1). 

3.2.2 First and second derivatives of abatement changes  

The first and second derivatives of temporal changes in abatement levels for global total anthropogenic CO2 emissions from 280 

each ENGAGE IAM are shown in Figure 3. Data for the first derivatives primarily distribute on the positive side and can be 

best captured by log-normal distributions, among other distributions tested. On the other hand, data for the second derivatives 

spread on both the positive and negative sides and can be approximated by normal distributions. On the basis of visual 

inspection, three-sigma ranges of distributions can largely capture data ranges. We thus use three-sigma ranges as the limits 

on the first and second derivatives of abatement changes. There are outliers (now shown) originating from net-zero CO2 285 

emissions scenarios, which we speculate are caused by sudden drops in carbon prices (Figure SI 1.1-6 of Riahi et al. (2021)). 

These outliers were effectively removed by considering three-sigma ranges (rather than the maxima and minima of original 

data points). For other gases and for energy-related emissions, see Figures S40-S87. 
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 290 

 

Figure 3. The first and second derivatives of temporal changes in abatement levels for the global total anthropogenic CO2 

emissions from each ENGAGE IAM. A log-normal distribution is applied to the data for the first derivatives of abatement changes 
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obtained from each IAM. A normal distribution is applied to the data for the second derivatives of abatement changes obtained from 

each IAM. 295 

 

The upper limits on the first and second derivatives of abatement changes estimated for ENGAGE IAMs are 

summarized in Table 2. Those for ACC2 were assumed to be 4.0 %/year and 0.4 (%/year)2, respectively, for all three gases 

(CO2, CH4, and N2O) (Tanaka and O’Neill, 2018; Tanaka et al., 2021). ENGAGE IAMs give higher upper limits on the first 

and second derivatives than ACC2 for CO2. For other two gases, ENGAGE IAMs also give higher upper limits on the second 300 

derivatives but tend to indicate lower upper limits on the first derivatives. 

The upper limits on the first and second derivatives of CO2 abatement can determine the earliest possible year of 

achieving net zero CO2 emissions (i.e., 100% abatement) for each IAM. In the case of ACC2, it is the year 2050 when net zero 

CO2 emissions become first possible, if the abatement can start in 2020. Figure S88 compares earliest possible net zero years 

implied by the upper limits on the first and second derivatives with the years of net zero available in carbon budget scenarios 305 

from each ENGAGE IAM. The figure shows that the former precedes the latter in all IAMs, indicating that the upper limits 

based on three-sigma ranges are large enough to allow pathways to achieve net zero as shown by each IAM. 

3.2.3 Global MAC curves  

Figure 4 shows the global MAC curves for total anthropogenic and energy-related CO2, CH4, and N2O emissions from nine 

ENGAGE IAMs. The parameter values of these global MAC curves and associated limits on abatement are shown in Table 2 310 

(for total anthropogenic emissions) and Table S3 (for energy-related emissions). 
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Figure 4. Global MAC curves for total anthropogenic and energy-related CO2, CH4, and N2O emissions derived from nine 315 

ENGAGE IAMs. In panels (a) to (f), the solid line indicates that the MAC curve is within the applicable range; the dashed line means 

that it is outside the applicable range (i.e., above the maximum abatement level indicated from underlying IAM simulation data or above 

the range of carbon prices considered for fitting the MAC curve; see Tables 1 and 2). Different colors indicate different IAMs.  

 

MAC curves for total anthropogenic and energy-related CO2 emissions resemble each other since total anthropogenic 320 

CO2 emissions are predominantly energy-related CO2 emissions. COFFEE gives the lowest carbon prices among all IAMs 

over a wide range of abatement levels; POLES shows the highest carbon prices. AIM has the second-lowest carbon prices at 

the abatement level of 63% and beyond. REMIND gives higher carbon prices than AIM beyond the abatement level of 60%. 

The difference between MAC curves for total anthropogenic and energy-related emissions are more distinct for CH4 

and N2O than CO2 because of disproportionally larger mitigation opportunities outside of the energy sector. CH4 MAC curves 325 

generally rise sharply at lower abatement levels than CO2 MAC curves. All MAC curves for energy-related CH4 emissions are 

low up to about 50% abatement level, presumably reflecting low-cost abatement opportunities. AIM and WITCH give a low 

carbon price up to 80-90% abatement level for energy-related CH4 emissions. Due to limited N2O abatement opportunities, 

N2O MAC curves rise steeply at low abatement levels, with the one from REMIND rising earliest.  

 330 
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Model Gas a b c d MaxABL Max1st Max2nd 

AIM  

CO2 182.14 1.27 8.68 19.71 116.2 5.9 1.0 
CH4 108.99 0.91 78686 17.91 73.6 6.1 1.3 
N2O 282.34 1.46 243642 11.84 56.1 4.5 1.0 

COFFEE  

CO2 46.66 1.29 22.59 7.01 146.7 6.1 1.0 
CH4 3658.91 4.05 3658.91 4.05 47.0 2.3 1.1 
N2O 102.75 0.37 102.75 0.37 20.2 3.6 1.3 

GEM  

CO2 267.14 1.76 36.85 8.53 118.2 6.1 1.1 
CH4 7133.48 10.70 486.16 1.59 71.9 4.3 0.9 
N2O 240.14 0.83 31072 6.54 51.1 3.8 0.7 

IMAGE  

CO2 28.57 29.83 330.58 1.27 110.1 6.3 1.2 
CH4 959.11 2.53 959.11 2.53 58.3 3.1 0.6 
N2O 1.54E+08 9.70 426.52 0.68 26.3 2.4 0.5 

MESSAGE  

CO2 18.30 30.24 368.79 2.78 120.9 5.4 0.8 
CH4 3.29E+07 29.08 16789 6.57 73.3 3.5 0.6 
N2O 610.67 0.97 7909596 9.47 45.2 1.9 0.3 

POLES  

CO2 1347.98 2.52 144.57 21.87 131.9 4.8 0.9 
CH4 48160 9.36 48160 9.36 75.7 4.2 0.9 
N2O 1513291 94.73 1512842 6.42 37.3 2.2 0.5 

REMIND  

CO2 269.52 3.38 269.52 3.38 136.2 5.9 1.0 
CH4 1.61E+11 28.11 1002.16 2.11 51.2 3.2 0.9 
N2O 633401 4.92 224.21 0.65 24.8 1.6 0.8 

TIAM  

CO2 78.52 13.31 384.32 1.48 121.7 6.0 0.8 
CH4 1.23E+07 17.81 157.83 100 59.5 3.9 1.0 
N2O 215121 16.79 99.08 100 73.3 4.3 2.3 

WITCH  

CO2 462.12 1.89 10.13 18.05 126.5 4.5 1.2 
CH4 6658.29 6.72 2.78E+15 69.59 65.6 3.7 2.0 
N2O 681.73 1.52 9.13E+18 43.78 42.7 3.0 1.0 

 

Table 2. Parameter values of global MAC curves for total anthropogenic CO2, CH4, and N2O emissions derived from nine 335 

ENGAGE IAMs and associated limits on abatement. See equation (1) for parameters 𝑎, 𝑏, 𝑐, and 𝑑. MaxABL denotes the maximum 

abatement level (%) of each gas indicated from IAM simulation data. The units for 𝑎 and 𝑐 are UD$2010/tCO2. Max1st and Max2nd 

represent the maximum first and second derivatives ((%/year) and (%/year)2), respectively, of abatement changes of each gas also 

indicated from IAM simulation data. For those of global MAC curves for energy-related CO2, CH4, and N2O emissions, see Table S3. 

For those of regional MAC curves, see the Zenodo repository.  340 
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Figure 5. Regional MAC curves for total anthropogenic CO2, CH4, and N2O emissions derived from five ENGAGE IAMs. The 

solid line indicates that the MAC curve is within the applicable range; the dashed line means that it is outside the applicable range (i.e., 

above the maximum abatement level indicated from underlying IAM simulation data or above the range of carbon prices considered for 

fitting the MAC curve; see Tables 1 and 2). Different colors indicate different regions: China (CHN), European Union and Western 345 

Europe (EUWE), Latin America (LATAME), Middle East (MIDEAST), North America (NORAM), Other Asian countries (OTASIAN), 

Pacific OECD (PACOECD), Reforming Economies (REFECO), South Asia (SOUASIA), Sub-Saharan Africa (SUBSAFR), and Rest 

of World (ROW). 
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3.2.4 Regional MAC curves 350 

Figure 5 shows the regional MAC curves for total anthropogenic CO2, CH4, and N2O emissions from five ENGAGE IAMs. 

The parameter values of the regional MAC curves and associated limits on abatement can be found in our Zenodo repository. 

While various inter-model and inter-regional differences can be seen in Figure 5, the regional variations of AIM MAC curves 

look smallest for all three gases.  

MIDEST generally shows a high CO2 MAC curve relative to other regions. LATAM gives the lowest MAC curve at 355 

abatement levels above approximately 79% in all IAMs considered here, except for the IMAGE model with SOUASIA and 

REFECO being the lowest MAC curve at the abatement level of above and below 90%, respectively. LATAM also indicates 

very deep CO2 abatement potentials exceeding 150% in some models. The CH4 MAC curves from AIM indicate low-cost CH4 

abatement opportunities up to abatement levels of approximately 50% in all regions, while such opportunities appear less 

abundant in the CH4 MAC curves from other models. REFECO exhibits a very low CH4 MAC curve in all five models. 360 

MIDEST gives either a high or a low CH4 MAC curve, depending on the IAM. The N2O MAC curves generally rise sharply 

earlier than the CH4 MAC curves. 

3.3 MAC curves from GET 

Figure 6 shows the relationships between the carbon price and the abatement level of global energy-related CO2 emissions and 

their dependency on underlying technology portfolios considered in GET. MAC curves from different technology portfolios 365 

are compared in Figure 7. They are further compared with the Global MAC curves for energy-related CO2 emissions from 

ENGAGE IAMs. The parameter values of these global MAC curves and associated limits on abatement are in Table 3. Further 

details of the first and second derivatives of abatement changes from GET can be found in Figures S38 and S39. 
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Figure 6. Relationships between the carbon price and the global energy-related CO2 abatement level obtained from GET with 370 

different portfolios of available mitigation technologies. Panel (a) shows the results obtained from an older version of GET (Azar et 

al., 2013) for the sake of comparison. Panels (b) to (i) show the results from GET (Lehtveer et al., 2019) with different technology 

portfolios. See Section 2.2 for the definitions of technology portfolios. Points are the data obtained from GET; lines are the MAC curves 

calculated based on our approach. Open circles are the data that were not considered in the derivation of MAC curves (Table 1) and are 

typically found after 2100, in some cases above the abatement level of 160% (not shown). Note that we have converted the unit in Panel 375 

(a) from US$2010/tC, which is used in the older version of GET, to UD$2010/tCO2, the commonly used unit here. 

 

Global MAC curves for energy-related CO2 emissions from different technology portfolios span a wide range. The 

range is nearly as wide as that from ENGAGE IAMs (i.e., inter-technology portfolio range ≈ inter-model range), if we disregard 

the MAC curve from COFFEE (Figure 2d). The MAC curve from the Base portfolio is generally higher than the MAC curve 380 

based on the previous version of the model (Azar et al., 2013; Tanaka and O’Neill, 2018), reflecting the biomass supply 

potential being smaller in GET used in our analysis (i.e., 134 EJ/year) than in the previous version (approximately 200 EJ/year), 

among other reasons. The maximum abatement level of the Base portfolio is about 120%, which is slightly higher than the 

estimate of 112% based on the previous model version. The Optimistic portfolio generally gives lower carbon prices and 

deeper mitigation potentials than the Base portfolio. Conversely, the Pessimistic portfolio shows higher carbon prices and 385 

more limited mitigation potentials than the Base portfolio. The Optimistic and Large bioenergy portfolios yield more than 

150% CO2 abatement levels at maximum. The Large bioenergy + Low carbon storage portfolio gives lower maximum 
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abatement levels than the previous two portfolios due to the assumed lower carbon storage potential. The Low bioenergy + 

Large carbon storage portfolio limits the maximum CO2 abatement levels at only slightly above 100%. With the Pessimistic 

portfolio, the maximum CO2 abatement levels do not exceed 100% (i.e., no net negative CO2 emissions) primarily because no 390 

carbon capture technologies such as CCS, CCU, and DAC are available. Likewise, the No CCS+CCU+DAC portfolio also 

gives a maximum abatement level below 100%. The No nuclear portfolio gives a similar relationship to the one from the Base 

portfolio, indicating a limited role of nuclear energy here. Finally, the results are somewhat but not strongly sensitive to the 

choice of discount rate (5% by default), as indicated from the results based on alternative discount rates of 3% and 7%, in 

which the growth rate of carbon price is fixed at the value of the respective discount rate based on the Hotelling rule (Figure 395 

S89). 

 

 

Figure 7. Global MAC curves for energy-related CO2 emissions derived from the GET model with different portfolios of 

available mitigation technologies. Different colors indicate different technology portfolios (see Section 2.2 for details). Global MAC 400 

curves for energy-related CO2 emissions from ENGAGE IAMs are shown as a comparison in gray lines. 

 

Technology portfolio Gas a b c d MaxABL Max1st Max2nd 

Azar 2013 CO2 338.61 1.58 57.08 24.59 112 5.6 0.9 

Base CO2 441.86 0.72 142.54 18.73 121 7.4 1.3 

Optimistic CO2 292.67 0.46 32.43 11.41 148 11.5 2.1 

Pessimistic CO2 1839.19 1.97 6716.35 34.62 100 4.5 0.8 

No CCS + CCU + DAC CO2 3707.48 53.90 1775.74 2.49 100 5.4 0.9 

Large bioenergy CO2 340.99 0.59 69.68 9.17 148 11.3 2.0 
Large bioenergy + Small 
carbon storage 

CO2 229.12 8.52 452.10 0.82 140 7.6 1.5 

Small bioenergy +  
Large carbon storage 

CO2 480.65 0.75 1992.76 15.93 105 6.1 1.1 

No nuclear CO2 489.97 0.80 131.23 19.52 120 7.2 1.3 
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Table 3. Parameter values of global MAC curves for energy-related CO2 emissions derived from GET and associated limits on 

abatement. See equation (1) for parameters 𝑎, 𝑏, 𝑐, and 𝑑. The units for 𝑎 and 𝑐 are UD$2010/tCO2. MaxABL denotes the maximum 405 

abatement level (%) of each gas indicated from GET simulation data. Max1st and Max2nd represent the maximum first and second 

derivatives ((%/year) and (%/year)2), respectively, of abatement changes. 

4. Validation tests for emIAM-ACC2 

4.1 ACC2 model 

To validate the performance of our MAC curves emulating IAM responses (i.e., emIAM), we couple emIAM with the ACC2 410 

model. ACC2 dates back impulse response functions of the global carbon cycle and climate system (Hasselmann et al., 1997; 

Hooss et al., 2001; Bruckner et al., 2003). The model was later developed to a simple climate model with a full set of climate 

forcers (Tanaka et al., 2007) and then the current form (Tanaka et al., 2013; Tanaka and O’Neill, 2018; Tanaka et al., 2021): a 

simple climate-economy model that consists of i) carbon cycle, ii) atmospheric chemistry, iii) physical climate, and iv) 

mitigation modules.  415 

The representations of natural Earth system processes in the first three modules of ACC2 are at the global-annual-

mean level as in other simple climate models (Joos et al., 2013; Nicholls et al., 2020). The carbon cycle module falls into the 

category of box models (Mackenzie and Lerman, 2006) and the physical climate module is a heat diffusion model DOECLIM 

(Kriegler, 2005). ACC2 covers a comprehensive set of direct and indirect climate forcers: CO2, CH4, N2O, O3, SF6, 29 species 

of halocarbons, OH, NOx, CO, VOC, aerosols (both radiative and cloud interactions), and stratospheric H2O. The model 420 

captures key nonlinearities, for example, those associated with CO2 fertilization, tropospheric O3 production from CH4, and 

ocean heat diffusion. Uncertain parameters are optimized (Tanaka et al., 2009a, b; Tanaka and Raddatz, 2011) based on an 

inverse estimation theory (Tarantola, 2005). The equilibrium climate sensitivity is assumed at 3 °C, the best estimate of IPCC 

(2021). The mitigation module contains a set of global MAC curves for CO2, CH4, and N2O (Johansson, 2011; Azar et al., 

2013), which is a previous version of MAC curves to be replaced with the MAC curves discussed in this study. ACC2 can be 425 

used to derive CO2, CH4, and N2O emission pathways based on a cost-effectiveness approach. That is, the model can calculate 

least-cost emission pathways for the three gases since year 2020, while meeting a climate target (e.g., 2 °C warming target) 

with the lowest total cumulative mitigation costs in terms of the net present value. The model is written in GAMS and 

numerically solved using CONOPT3 and CONOPT4, solvers for nonlinear programming or nonlinear optimization problems. 

In this study, we replace the existing set of MAC curves with the variety of global and regional MAC curves obtained 430 

from our study. We further replace the limits on abatement (i.e., upper limits on abatement levels and their first and second 

derivatives) with those obtained from this study. We assume a 5% discount rate in the validation tests, a rate commonly 

assumed in IAMs (Emmerling et al., 2019), which is also consistent with some of the IAMs analyzed here such as MESSAGE 

and GET. In fact, we were not able to find the estimates of discount rates used in ENGAGE IAMs, but we inferred the discount 

rate used in MESSAGE by comparing Figures SI 1.2-1 and 1.2-2 of Riahi et al. (2021) with data in ENGAGE Scenario 435 
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Explorer. Note that a 4% discount rate was used as default in recent studies using ACC2 (Tanaka and O’Neill, 2018; Tanaka 

et al., 2021). We discuss the results until 2100 thus consider the mitigation costs until 2100 in scenario optimizations. With 

the updates described above, we generate cost-effective pathways through emIAM-ACC2. 

emIAM-ACC2 (and ACC2 with the previous version of MAC curves) can be regarded broadly as an IAM, that is, a 

simple cost-effective IAM considering global mitigation costs relative to an assumed baseline. In terms of the level of 440 

simplicity, emIAM-ACC2 is akin to the DICE model (Nordhaus, 2017) and other simple cost-benefit IAMs informing the 

social cost of carbon (Errickson et al., 2021; Rennert et al., 2022). However, emIAM-ACC2 does not have an economic growth 

model and does not consider climate damage. In this study, emIAM-ACC2 is characterized as a climate-economy model, but 

not an IAM, to distinguish itself from the more complex IAMs emulated by the MAC curves. emIAM-ACC2 is also different 

from these complex IAMs, which are usually not directly coupled with a climate model, with a previous version of GET (Azar 445 

et al., 2013) being an exception. ACC2 itself is a hybrid of a simple climate model and a climate-economy model, depending 

on how the model is used (i.e., with or without the mitigation module). For the sake of discussion, ACC2 is characterized as a 

simple climate model in this paper when it is coupled with MAC curves obtained from this study. 

4.2 Experimental setups for the validation tests 

The emission pathways of ENGAGE IAMs were generated under a series of cumulative carbon budgets (Section 2.1). Those 450 

of GET were calculated with a series of carbon price pathways (Section 2.2). All these pathways are not directly related to a 

temperature target, which is typically used as a constraint for ACC2. Given this, we validated the performance of emIAM-

ACC2 successively by applying a constraint first on the cumulative emission budget (Test 1) and then on the global-mean 

temperature (Tests 2 to 4). Four types of experiments were progressively performed as summarized in Table 4. Test 1 mimics 

a condition for how the original IAM simulations were carried out. Thus, it can be regarded as a test for MAC curves, strictly 455 

speaking. Tests 2 to 4 are more practical test to check how MAC curves can work with a simple climate model in an applied 

setting. However, the settings of these three tests deviate from how the original IAM simulations were performed. The 

outcomes of these three tests are influenced by how the temperature target is set. 

 

 Test 1 Test 2 Test 3 Test 4 

Target Emission budget 2100 temperature 2100 temperature 
2100 temperature 
Peak temperature 

Variable Separately gas by gas Separately gas by gas 
Simultaneously 
all three gases 

Simultaneously 
all three gases 

Table 4. Experimental designs of the validation tests for emIAM-ACC2. See text for details. 460 

 

 Test 1: Constraint on the cumulative emission budget of each gas. We generate least-cost emission pathways with a cap 

on cumulative emissions of each gas separately (total anthropogenic CO2, CH4, and N2O emissions for ENGAGE IAMs; 

energy-related CO2 emissions for GET). The cap on CO2 for an ENGAGE IAM is equivalent to the cumulative carbon 

budget as specified in each ENGAGE IAM simulation. The cap on CO2 for GET was calculated from the output of GET, 465 
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which was simulated under carbon price pathways. The caps on CH4 and N2O for ENGAGE IAMs were obtained by 

calculating respective cumulative emissions from 2019 to 2100. Note that the cumulative CH4 budget, or an emission 

budget of short-lived gases in general, does not offer any useful physical interpretation, while the cumulative CO2 budget, 

or an emission budget of long-lived gases, can be an indicator of the global-mean temperature change (Matthews et al., 

2009; Allen et al., 2022). It should also be noted that this experiment does not directly make use of the carbon cycle, 470 

atmospheric chemistry, physical climate modules of ACC2 (i.e., simple climate model) since these modules do not 

influence the results. But this test is about the way how the cumulative emission budget can be distributed over time, 

which depends on the MAC curves and the limits on abatement (i.e., upper limits on abatements and their first and 

second derivatives), with the total abatement costs being minimized. 

 475 

 Test 2: Constraint on the end-of-the-century warming for one gas at a time. We first use ACC2 to calculate the 

temperature pathway from each carbon budget scenario of each IAM. The end-of-the-century temperature is used as a 

constraint on emIAM-ACC2. To keep consistency with the emission budget, this test does not use temperature data 

found in the ENGAGE Scenario Explorer, which were calculated using different simple climate models (Xiong et al., 

2022). We calculate least-cost emission pathways only for one gas at a time (CO2, CH4, or N2O for ENGAGE IAMs). 480 

For example, when we compute a least-cost emission pathway for CO2, the CH4 and N2O emissions follow the respective 

pathways from the corresponding carbon budget scenario available in the ENGAGE Scenario Explorer. This test 

validates the temporal distribution of emissions under an end-of-the-century warming target with global MAC curves 

and additionally the trade-off among different regions with regional MAC curves; however, it does not validate the 

trade-off among different gases. 485 

 

 Test 3: Constraint on the end-of-the-century warming for three gases simultaneously. This test is the same as Test 2, 

except that least-cost emission pathways are calculated simultaneously for three gases (CO2, CH4, and N2O for ENGAGE 

IAMs). This test validates not only the aspects described for Test 2 but also the trade-offs among different gases. It 

should be noted that we do not use GWP100 in emIAM-ACC2 to generate least-cost emissions pathways for CO2, CH4, 490 

and N2O. In other words, abatement levels among the three gases are determined directly through the MAC curves 

without being constrained by GWP100. It is well-known that a use of GWP100 in an IAM leads to a deviation from the 

cost-effective solution (O’Neill, 2003; Reisinger et al., 2013; van den Berg et al., 2015; Tanaka et al., 2021). Although 

the deviation is probably not very large in the scenarios simulated with the IAMs here, this can be a small source of 

discrepancy between the original and reproduced emission pathways.  495 

  

 Test 4: Constraint on the end-of-the-century warming and the mid-century peak warming for three gases simultaneously. 
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This test is the same as Test 3, except that the maximum temperature in mid-century is used as an additional constraint 

on emIAM-ACC2. The peak temperature was taken from the temperature calculation using ACC2 as done in Test 2 for 

each carbon budget scenario of each IAM. The constraint of the mid-century peak warming aims to influence near-term 500 

CH4 emissions, which are known to have strong impacts on peak temperatures in mid-century but little impacts on end-

of-the-century temperatures (Shoemaker et al., 2013; Sun et al., 2021; Xiong et al., 2022; McKeough, 2022). 

 

There are further technical notes applied to all four tests above. When the scenario allows only a limited or no 

temperature overshoot (i.e., scenarios without ‘f’; see Section 2.1), we impose a condition prohibiting net negative CO2 505 

emissions on emIAM-ACC2. In Test 1, when the scenario allows a temperature overshoot (i.e., scenarios with ‘f’), we assume 

that a carbon budget can be interpreted simply as a net budget as commonly assumed in the IAM community, although such 

an assumption may not hold under large temperature overshoot scenarios (Tachiiri et al., 2019; Melnikova et al., 2021; Zickfeld 

et al., 2021). For INDCi2030 scenarios, which follow NDCs until 2030, we impose the original scenarios until 2030 and 

perform the optimization from 2030. For NPi2020 scenarios, on the other hand, we perform the optimization from 2020. For 510 

emissions scenarios of all GHGs and air pollutants other than the three gases, we prescribe corresponding scenarios from 

ENGAGE Scenario Explore or the most proximate SSP in the case of GET.  

It is important to note that the outcome of the tests described above needs to be interpreted differently, depending on 

whether the IAM is an intertemporal optimization model or a recursive dynamic model (Table 1) (Babiker et al., 2009; 

Guivarch and Rogelj, 2017; Melnikov et al., 2021). While the temporal distribution of emission abatement is internally 515 

calculated in an intertemporal optimization model, it is usually an a priori assumption in a recursive dynamic model and 

determined either by a given emission pathway or by a given carbon price pathway. In a recursive dynamic model, the 

underlying economic and energy-related relationships that determine the temporal distribution of emission abatement may not 

be consistent with those used to allocate emission abatement across sectors and regions at each time step. 

4.3 Results from the validation tests 520 

Figure 8 provides an overview of the validation results, using REMIND as an example. Overall, emIAM-ACC2 has closely 

reproduced original CO2 emission pathways from REMIND in the series of four tests. The outcomes for CH4 and N2O were 

generally also satisfactory if not as successful as those for CO2 in general. When the test was performed for each gas with the 

emission budget (Test 1), the results were good for all three gases. The results were similar with the 2100 temperature target 

for each gas (Test 2), except for a minor discrepancy arising from a small rise in emissions at the end of the century. A small 525 

rise in emission is known to occur in ACC2 before a temperature target is achieved after an overshoot due to the inertia of the 

system (Tanaka et al., 2021). However, when such a test was performed simultaneously for three gases (Test 3), the results 

indicated discrepancies in near-term CH4 pathways from low carbon budget cases and late-century CH4 and N2O pathways 

from high carbon budget cases. The discrepancy of near-term CH4 emissions seemed to have been caused by the trade-off 
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between CH4 and N2O: the N2O MAC curve underestimates the prices at high abatement levels (above 20% for N2O) (Figure 530 

S20), which might have led to an overestimate of N2O abatements and, in turn, an underestimate of CH4 abatements. The 

discrepancy for near-term CH4 emissions was narrowed down with the additional constraint on peak temperatures in mid-

century (Test 4). CH4 abatements tend to be incentivized later in the century in the cost optimization of ACC2 with the high 

discount rate of 5% (Tanaka et al., 2021). This effect can be compensated by the additional constraint on peak temperature in 

mid-century because near-term CH4 emissions can strongly influence mid-century temperatures (Shoemaker et al., 2013; Sun 535 

et al., 2021; Xiong et al., 2022; McKeough, 2022). 
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Figure 8. Overview of the validation results for emIAM-ACC2 with REMIND as an example. The outcomes for scenarios with “f” 540 

(i.e., net-negative emissions scenarios (filled circles)) are shown in the upper set of panels; those for scenarios without “f” (i.e., net-zero 

CO2 emissions scenarios (open circles)) are in the lower set of panels. The points show the original emission pathways from REMIND 

obtained from the ENGAGE Scenario Explorer; the lines show the emission pathways reproduced from emIAM-ACC2. The same color 

is used for each pair of original and reproduced pathways. Scenario names indicate respective cumulative carbon budgets for the period 

2019 – 2100 in GtCO2. NPi2100 is the baseline scenario for our analysis (black open circles). For the sake of presentation, only the 545 

outcomes of NPi2020 scenarios, which consider currently implemented national policies, are presented; the outcomes of INDCi2030 

scenarios, which further consider national emission pledges until 2030, are not shown here.  

 

Figure 9 shows the validation results from Test 4 for all nine ENGAGE IAMs (global total anthropogenic CO2, CH4, 

and N2O emissions) and GET with different technology portfolios (global energy-related CO2, emissions). The entire 550 

validation results from Tests 1 to 4 can be found in Figures S90-S108, Figures S128-S146, Figures S166-S183, and Figures 

S202-S216, respectively. CO2 emission pathways were generally well reproduced through emIAM-ACC2 for all ENGAGE 

IAMs. The outcomes for CH4 and N2O were not as good as those for CO2: only a subset of ENGAGE IAMs such as REMIND 

and WITCH was reasonably well captured by emIAM-ACC2. Some of the mismatches can be explained by the poor fits of 

N2O MAC curves from COFFEE and TIAM (Figure S11). The general difficulty in capturing IMAGE through MAC curves 555 

(Figure S17) can be seen in the mismatches for IMAGE in Figure 9. It is also worth mentioning that, in spite of very good fits 

of MAC curves of GEM (Figure S16), CH4 and N2O emission pathways of GEM were not well reproduced. The results for 

GET were also generally good, but the Large bioenergy + Small carbon storage portfolio gave a relatively poor result. This 

might have been caused by the relatively poor fit of the MAC curve for this technology portfolio, compared to those from 

other portfolios (Figure 6). 560 
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Figure 9. Original and reproduced global emission pathways from Test 4 for nine ENGAGE IAMs (total anthropogenic CO2, 565 

CH4, and N2O emissions) and GET (energy-related CO2 emissions) with different technology portfolios. The first three sets of 

panels are from the nine ENGAGE IAMs. The last set of panels is from GET with different technology portfolios. The points show the 

original emission pathways from ENGAGE IAMs and GET; the lines show the emission pathways reproduced from emIAM-ACC2. 
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The same color is used for each pair of original and reproduced pathways. For the legend of the panels for ENGAGE IAMs, see the 

caption of Figure 8. For the legend of the panel for GET, the number indicates the initial carbon price (US$2010/tCO2), from which the 570 

carbon price grows 5% each year. 

4.4 Statistics of the validation tests 

To measure to what extent emission pathways obtained from emIAM-ACC2, denoted as 𝑦, agree with original pathways from 

ENGAGE IAMs and GET, denoted as 𝑥, we calculate the following two different indicators for samples: i) ordinary Pearson’s 

correlation coefficient 𝑟௉ and ii) Lin’s concordance coefficient 𝑟஼ . Each of these indicators is discussed below. 575 

First, because of the prevalent use of 𝑟௉ and its square form (i.e., coefficient of simple determination, so-called 𝑟ଶ) in 

numerous applications, we use 𝑟௉  as a reference for comparison, although 𝑟௉  is known to be inappropriate for testing 

agreement: it is suited to test the strength of linear relationship, but not the strength of agreement (Martin Bland and Altman, 

1986; Cox, 2006). More specifically, 𝑟௉ (and  𝑟ଶ) shows the strength of linear regression line 𝑦́ = 𝛼𝑥́ + 𝛽, not necessarily 𝑦́ =

𝑥́, a special case of agreement. Note that it is possible to calculate  𝑟ଶ based on 𝑦́ = 𝑥́ by using the sum of square of residuals 580 

and the total sum of squares (i.e., not equation (2)); however, if 𝑦́ = 𝑥́  is a very poor regression line, 𝑟ଶ can become negative 

(page 21 of Hayashi (2000)) and cannot be interpreted as a square of 𝑟௉. Other arguments that suggest a more restricted use of 

𝑟௉ can be found elsewhere (Ricker, 1973; Laws, 1997; Tanaka and Mackenzie, 2005). For our application, 𝑟௉ is defined as 

below. 

𝑟௉ =
∑ ∑ ൫௫೔,ೕି௫̅൯೘

ೕసభ
೗
೔సభ ൫௬೔,ೕି௬ത൯

ට∑ ∑ ൫௫೔,ೕି௫̅൯
మ೘

ೕసభ
೗
೔సభ

ට∑ ∑ ൫௬೔,ೕି௬ത൯
మ೘

ೕసభ
೗
೔సభ

                                                                                                                                                                                  (2) 585 

where 𝑥௜,௝ and 𝑦௜,௝ are the original and reproduced emission, respectively, for year 𝑖  (for 𝑖 = 1, … , 𝑙) under scenario 𝑗  (for 𝑗 =

1, … , 𝑚). 𝑥̅ and 𝑦ത are the mean of 𝑥௜,௝ and 𝑦௜,௝ , respectively, over 𝑖 and 𝑗. 𝑟௉ can change between -1 and 1. When it is 1, the 

samples have a perfect linear relationship, which is a necessary condition for a perfect agreement. When it is 0, there is no 

linear relationship in the samples. 

Second, 𝑟஼   is a more appropriate indicator for measuring agreement than 𝑟௉ (Lin, 1989; Barnhart et al., 2007; Lin et 590 

al., 2012). 𝑟஼   is defined as follows. 

𝑟஼ =
ଶ௦ೣ೤

௦ೣ
మା௦೤

మା(௫̅ି௬ത)మ                                                                                                                                                                                                                (3) 

where 𝑠௫
ଶ  and 𝑠௬

ଶ  are the variance of 𝑥௜,௝  and 𝑦௜,௝ , respectively. That is, 𝑠௫
ଶ =

ଵ

௟×௠
∑ ∑ ൫𝑥௜,௝ − 𝑥̅൯

ଶ௠
௝ୀଵ

௟
௜ୀଵ  and 𝑠௬

ଶ =

ଵ

௟×௠
∑ ∑ ൫𝑦௜,௝ − 𝑦ത൯

ଶ௠
௝ୀଵ

௟
௜ୀଵ , respectively. 𝑠௫௬  is the covariance of 𝑥௜,௝ and 𝑦௜,௝. That is, 𝑠௫௬ =

ଵ

௟×௠
∑ ∑ ൫𝑥௜,௝ − 𝑥̅൯൫𝑦௜,௝ − 𝑦ത൯௠

௝ୀଵ
௟
௜ୀଵ . 

𝑟஼  also distributes between -1 and 1. When it is 1, 0, and -1, it indicates a perfect concordance, no concordance, and a perfect 595 

discordance (or reverse concordance), respectively. 𝑟஼  is commonly interpreted either similar to  𝑟௉ or in the following way: 

>0.99, almost perfect; 0.95 to 0.99, substantial; 0.90 to 0.95, moderate; <0.90, poor (Akoglu, 2018). An underlying assumption 

for this parametric statistic is that the population follows Gaussian distributions. 
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 600 

Figure 10. Statistical validation of global emission pathways reproduced from emIAM-ACC2 with original emission pathways 

from nine ENGAGE IAMs and GET. The upper and lower panels are the results for ENGAGE IAMs (global total anthropogenic CO2, 

CH4, and N2O emissions) and GET (global energy-related CO2 emissions), respectively. The figure shows two indicators: i) ordinary 

Pearson’s correlation coefficient 𝑟௉ and ii) Lin’s concordance coefficient 𝑟஼. The higher the value of the indicator is, the darker the color 

of the cell is. See text for the details of these statistical indicators. 605 

AIM COFFEE GEM IMAGE MESSAGE POLES REMIND TIAM WITCH
CO2 0.986 0.990 0.983 0.975 0.981 0.960 0.976 0.985 0.937
CH4 0.962 0.977 0.964 0.973 0.975 0.967 0.976 0.927 0.985
N2O 0.921 0.966 0.948 0.875 0.985 0.964 0.962 0.466 0.975

CO2 0.984 0.996 0.982 0.979 0.991 0.985 0.962 0.997 0.980
CH4 0.667 0.943 0.805 0.890 0.965 0.954 0.941 0.951 0.954
N2O 0.908 0.962 0.777 0.875 0.985 0.969 0.962 0.531 0.978

CO2 0.983 0.989 0.989 0.974 0.974 0.981 0.973 0.879 0.973
CH4 0.678 0.914 0.898 0.886 0.968 0.934 0.903 0.740 0.934
N2O 0.933 0.950 0.978 0.600 0.977 0.962 0.945 0.549 0.956

CO2 0.989 0.990 0.985 0.990 0.981 0.990 0.981 0.995 0.953
CH4 0.879 0.916 0.951 0.954 0.978 0.951 0.955 0.953 0.940
N2O 0.954 0.955 0.964 0.713 0.977 0.957 0.960 0.607 0.935

CO2 0.981 0.985 0.981 0.974 0.980 0.955 0.975 0.983 0.918
CH4 0.957 0.977 0.960 0.968 0.974 0.966 0.976 0.927 0.984
N2O 0.916 0.964 0.946 0.863 0.981 0.963 0.962 0.385 0.972

CO2 0.979 0.995 0.980 0.978 0.991 0.984 0.962 0.997 0.977
CH4 0.549 0.932 0.730 0.833 0.960 0.942 0.919 0.949 0.941
N2O 0.901 0.958 0.764 0.863 0.982 0.969 0.961 0.454 0.975

CO2 0.976 0.986 0.988 0.973 0.971 0.978 0.972 0.877 0.964
CH4 0.558 0.908 0.880 0.858 0.962 0.930 0.877 0.715 0.919
N2O 0.914 0.947 0.975 0.572 0.975 0.948 0.944 0.494 0.945

CO2 0.987 0.987 0.982 0.990 0.978 0.987 0.981 0.993 0.949
CH4 0.852 0.911 0.934 0.931 0.964 0.933 0.944 0.946 0.935
N2O 0.935 0.954 0.956 0.699 0.972 0.940 0.960 0.482 0.920

r C

Test 1

Test 2

Test 3

Test 4

Test 1

Test 2

Test 3

Test 4

r P

Azar2013 Base Optimistic Pessimistic No_cap L_bio L_bio/S_str S_bio/L_str No_nc

0.992 0.983 0.973 0.991 0.981 0.964 0.964 0.984 0.984
0.985 0.943 0.973 0.982 0.968 0.967 0.965 0.904 0.938
0.988 0.945 0.979 0.982 0.967 0.971 0.967 0.910 0.939
0.992 0.983 0.972 0.991 0.979 0.963 0.964 0.983 0.984
0.985 0.938 0.973 0.981 0.963 0.966 0.964 0.885 0.932
0.988 0.940 0.979 0.981 0.963 0.971 0.967 0.894 0.933

r C

Test 1
Test 2
Test 4

GET technology
portfolio

r P

Test 1
Test 2
Test 4
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Figure 11. Statistical validation of regional emission pathways reproduced from emIAM-ACC2 with original emission pathways 

from five ENGAGE IAMs. Ordinary Pearson’s correlation coefficient 𝑟௉ and Lin’s concordance coefficient 𝑟஼ are shown in the figure. 

The higher the value of the indicator is, the darker the color of the cell is. 

 610 

The statistics of the validation tests for global MAC curves are shown in Figure 10. Those for regional MAC curves 

are in Figure 11. The values of  𝑟஼  are generally lower than the corresponding values of  𝑟௉, as expected. The reproducibility 

is generally higher for CO2 than for CH4 and N2O. Certain models tend to have higher values for such indicators than other 

models. In the global case, AIM tends to show relatively low values for CH4. IMAGE and TIAM tend to show low values for 

N2O. In the regional results, COFFEE gives lowest values for CO2 for Test 1, but in other Tests, it gives similar values with 615 

other models. The outcome for CH4 and N2O are diverse and difficult to be generalized. Finally, ROW is marked with low 

values in many models and from most of the Tests. 

AIM COFFEE GEM IMAGE MESSAGE AIM COFFEE GEM IMAGE MESSAGE AIM COFFEE GEM IMAGE MESSAGE AIM COFFEE GEM IMAGE MESSAGE
SUBSAFR 0.954 0.528 0.978 0.963 0.979 0.951 0.960 0.973 0.966 0.989 0.954 0.951 0.971 0.956 0.989 0.961 0.952 0.982 0.978 0.988
CHN 0.974 0.893 0.978 0.966 0.990 0.970 0.991 0.973 0.965 0.995 0.975 0.988 0.969 0.957 0.992 0.982 0.989 0.980 0.984 0.994
EUWE 0.979 0.706 0.974 0.973 0.994 0.977 0.930 0.969 0.979 0.996 0.984 0.924 0.975 0.974 0.993 0.982 0.923 0.973 0.988 0.995

SOUASIA 0.965 0.578 0.964 0.957 0.958 0.961 0.914 0.952 0.956 0.974 0.964 0.917 0.956 0.957 0.975 0.976 0.915 0.968 0.971 0.982
LATAME 0.964 0.500 0.962 0.909 0.964 0.962 0.965 0.948 0.906 0.975 0.968 0.964 0.952 0.904 0.968 0.964 0.964 0.966 0.920 0.971
MIDEAST 0.983 0.575 0.964 0.952 0.979 0.982 0.947 0.946 0.957 0.986 0.985 0.946 0.941 0.952 0.981 0.987 0.945 0.957 0.976 0.977
NORAM 0.981 0.838 0.959 0.963 0.990 0.980 0.962 0.957 0.965 0.993 0.986 0.958 0.958 0.958 0.992 0.981 0.957 0.961 0.977 0.989
PACOECD 0.969 0.329 0.966 0.945 0.993 0.967 0.979 0.960 0.944 0.995 0.973 0.976 0.964 0.937 0.993 0.976 0.976 0.968 0.954 0.994
REFECO 0.986 0.592 0.944 0.969 0.993 0.985 0.968 0.934 0.971 0.996 0.987 0.965 0.943 0.974 0.993 0.988 0.964 0.950 0.982 0.996
OTASIAN 0.979 0.385 0.970 0.957 0.988 0.977 0.982 0.962 0.957 0.991 0.983 0.978 0.959 0.947 0.987 0.983 0.978 0.972 0.972 0.988
ROW 0.772 0.040 0.922 0.873 0.659 0.767 0.823 0.890 0.883 0.616 0.790 0.836 0.882 0.870 0.629 0.802 0.835 0.935 0.888 0.624

SUBSAFR 0.952 0.890 0.949 0.838 0.956 0.556 0.861 0.680 0.691 0.776 0.567 0.828 0.786 0.669 0.838 0.878 0.859 0.931 0.750 0.927
CHN 0.980 0.988 0.962 0.984 0.980 0.792 0.979 0.783 0.921 0.976 0.800 0.982 0.858 0.942 0.985 0.932 0.986 0.958 0.972 0.991
EUWE 0.935 0.989 0.920 0.923 0.940 0.695 0.976 0.758 0.770 0.953 0.693 0.982 0.794 0.828 0.955 0.884 0.985 0.879 0.927 0.957

SOUASIA 0.906 0.533 0.947 0.938 0.930 0.566 0.520 0.717 0.782 0.795 0.567 0.513 0.810 0.829 0.852 0.810 0.567 0.947 0.901 0.932
LATAME 0.969 0.975 0.962 0.900 0.981 0.752 0.956 0.739 0.811 0.936 0.760 0.976 0.838 0.813 0.964 0.913 0.983 0.962 0.846 0.985
MIDEAST 0.966 0.953 0.958 0.801 0.877 0.689 0.953 0.785 0.718 0.844 0.697 0.949 0.857 0.721 0.852 0.897 0.958 0.962 0.832 0.913
NORAM 0.924 0.942 0.952 0.933 0.979 0.634 0.906 0.698 0.750 0.982 0.630 0.949 0.808 0.797 0.979 0.864 0.955 0.952 0.906 0.981
PACOECD 0.905 0.909 0.849 0.882 0.958 0.547 0.864 0.471 0.766 0.920 0.544 0.884 0.574 0.784 0.953 0.818 0.897 0.825 0.857 0.972
REFECO 0.957 0.801 0.968 0.939 0.968 0.737 0.701 0.823 0.749 0.834 0.736 0.730 0.883 0.787 0.889 0.906 0.770 0.967 0.861 0.956
OTASIAN 0.964 0.970 0.953 0.973 0.994 0.695 0.960 0.807 0.905 0.956 0.701 0.964 0.861 0.931 0.973 0.895 0.972 0.953 0.972 0.990
ROW 0.895 0.000 0.945 0.000 0.000 0.665 0.000 0.776 0.000 0.999 0.672 0.000 0.836 0.000 0.999 0.782 0.000 0.947 0.000 0.999

SUBSAFR 0.969 0.953 0.867 0.859 0.902 0.965 0.924 0.885 0.857 0.905 0.979 0.974 0.905 0.776 0.896 0.982 0.973 0.897 0.803 0.906
CHN 0.982 0.933 0.967 0.971 0.952 0.977 0.954 0.967 0.970 0.952 0.984 0.965 0.980 0.977 0.967 0.982 0.964 0.983 0.983 0.966
EUWE 0.924 0.967 0.828 0.851 0.971 0.908 0.961 0.805 0.839 0.972 0.951 0.959 0.810 0.703 0.980 0.958 0.959 0.795 0.767 0.984

SOUASIA 0.913 0.603 0.947 0.863 0.930 0.900 0.880 0.946 0.860 0.932 0.948 0.826 0.966 0.841 0.945 0.939 0.824 0.977 0.843 0.959
LATAME 0.951 0.807 0.953 0.068 0.930 0.940 0.873 0.954 0.090 0.934 0.968 0.867 0.969 -0.153 0.943 0.957 0.867 0.973 -0.122 0.941
MIDEAST 0.874 0.735 0.963 0.984 0.935 0.859 0.793 0.963 0.983 0.940 0.929 0.762 0.971 0.990 0.965 0.922 0.770 0.968 0.992 0.974
NORAM 0.915 0.899 0.874 0.864 0.930 0.898 0.956 0.899 0.863 0.934 0.948 0.978 0.925 0.807 0.962 0.948 0.978 0.924 0.843 0.968
PACOECD 0.848 0.811 0.873 0.038 0.971 0.811 0.876 0.906 0.013 0.971 0.916 0.848 0.913 -0.106 0.974 0.925 0.845 0.917 -0.023 0.972
REFECO 0.926 0.631 0.389 0.430 0.774 0.910 0.656 0.452 0.431 0.787 0.956 0.558 0.518 0.207 0.885 0.956 0.558 0.531 0.263 0.873
OTASIAN 0.925 0.725 0.933 0.739 0.953 0.908 0.830 0.935 0.737 0.957 0.955 0.797 0.949 0.532 0.973 0.952 0.800 0.939 0.571 0.979
ROW 0.000 0.000 0.862 0.000 0.998 0.000 0.000 0.879 0.000 0.998 0.000 0.000 0.895 0.000 0.999 0.000 0.000 0.920 0.000 0.999

SUBSAFR 0.945 0.430 0.976 0.959 0.978 0.941 0.960 0.970 0.980 0.989 0.949 0.950 0.962 0.953 0.988 0.958 0.952 0.972 0.978 0.985
CHN 0.963 0.878 0.976 0.964 0.989 0.957 0.989 0.970 0.978 0.994 0.968 0.985 0.958 0.954 0.990 0.976 0.985 0.972 0.980 0.993
EUWE 0.973 0.704 0.941 0.973 0.994 0.971 0.922 0.936 0.991 0.996 0.981 0.912 0.955 0.972 0.992 0.982 0.911 0.951 0.986 0.994

SOUASIA 0.958 0.578 0.957 0.957 0.952 0.953 0.885 0.946 0.984 0.973 0.959 0.892 0.941 0.956 0.974 0.972 0.889 0.951 0.971 0.981
LATAME 0.958 0.427 0.951 0.898 0.952 0.956 0.957 0.936 0.962 0.968 0.964 0.955 0.933 0.891 0.958 0.963 0.954 0.949 0.912 0.962
MIDEAST 0.978 0.531 0.961 0.951 0.974 0.977 0.939 0.943 0.997 0.984 0.983 0.940 0.924 0.951 0.980 0.986 0.938 0.939 0.974 0.975
NORAM 0.976 0.767 0.957 0.962 0.985 0.974 0.955 0.956 0.977 0.991 0.983 0.949 0.952 0.956 0.991 0.981 0.948 0.953 0.976 0.986
PACOECD 0.962 0.202 0.958 0.943 0.993 0.959 0.975 0.955 0.941 0.995 0.968 0.971 0.957 0.935 0.992 0.975 0.970 0.964 0.952 0.993
REFECO 0.982 0.522 0.940 0.961 0.993 0.980 0.960 0.929 0.957 0.996 0.985 0.957 0.932 0.965 0.993 0.987 0.956 0.941 0.978 0.995
OTASIAN 0.975 0.273 0.968 0.953 0.987 0.972 0.978 0.961 0.971 0.991 0.982 0.974 0.954 0.941 0.986 0.983 0.973 0.968 0.968 0.986
ROW 0.705 0.002 0.891 0.561 0.300 0.699 0.658 0.877 0.953 0.417 0.746 0.687 0.866 0.580 0.432 0.751 0.684 0.931 0.591 0.431

SUBSAFR 0.944 0.885 0.942 0.793 0.953 0.512 0.853 0.537 0.621 0.713 0.514 0.826 0.727 0.628 0.814 0.876 0.856 0.921 0.625 0.911
CHN 0.973 0.986 0.955 0.978 0.980 0.681 0.977 0.666 0.846 0.969 0.684 0.981 0.810 0.898 0.984 0.912 0.985 0.943 0.957 0.989
EUWE 0.913 0.989 0.824 0.914 0.932 0.552 0.974 0.757 0.686 0.952 0.536 0.979 0.761 0.784 0.953 0.842 0.983 0.740 0.903 0.951

SOUASIA 0.894 0.351 0.938 0.927 0.910 0.428 0.385 0.595 0.682 0.728 0.424 0.392 0.755 0.783 0.812 0.772 0.438 0.929 0.848 0.913
LATAME 0.961 0.972 0.955 0.877 0.981 0.630 0.953 0.614 0.724 0.917 0.629 0.972 0.783 0.757 0.958 0.889 0.980 0.948 0.787 0.984
MIDEAST 0.960 0.950 0.953 0.766 0.857 0.566 0.950 0.693 0.638 0.802 0.570 0.948 0.821 0.656 0.816 0.872 0.957 0.952 0.774 0.891
NORAM 0.903 0.934 0.949 0.919 0.969 0.492 0.881 0.588 0.678 0.982 0.474 0.938 0.766 0.759 0.974 0.821 0.948 0.941 0.850 0.973
PACOECD 0.888 0.907 0.841 0.841 0.957 0.409 0.846 0.413 0.697 0.902 0.394 0.876 0.568 0.724 0.950 0.776 0.892 0.799 0.749 0.965
REFECO 0.947 0.721 0.965 0.919 0.962 0.615 0.623 0.733 0.621 0.783 0.607 0.666 0.851 0.700 0.859 0.878 0.714 0.958 0.829 0.947
OTASIAN 0.955 0.966 0.948 0.969 0.993 0.564 0.958 0.728 0.844 0.937 0.562 0.963 0.830 0.899 0.963 0.866 0.971 0.935 0.956 0.986
ROW 0.767 0.000 0.923 0.000 0.000 0.452 0.000 0.707 0.000 0.999 0.461 0.000 0.776 0.000 0.999 0.675 0.000 0.868 0.000 0.999

SUBSAFR 0.950 0.768 0.857 0.832 0.854 0.952 0.905 0.874 0.839 0.856 0.971 0.973 0.903 0.768 0.882 0.971 0.972 0.897 0.796 0.889
CHN 0.969 0.925 0.961 0.958 0.926 0.963 0.954 0.960 0.958 0.927 0.970 0.961 0.978 0.961 0.959 0.971 0.960 0.983 0.972 0.958
EUWE 0.896 0.919 0.693 0.835 0.970 0.871 0.939 0.685 0.824 0.971 0.939 0.929 0.660 0.684 0.978 0.946 0.929 0.630 0.757 0.983

SOUASIA 0.910 0.545 0.939 0.834 0.909 0.898 0.865 0.938 0.837 0.917 0.920 0.776 0.963 0.817 0.941 0.920 0.775 0.975 0.820 0.958
LATAME 0.939 0.618 0.948 0.067 0.903 0.927 0.804 0.948 0.089 0.907 0.949 0.796 0.967 -0.152 0.929 0.941 0.796 0.972 -0.121 0.926
MIDEAST 0.873 0.726 0.957 0.979 0.910 0.858 0.775 0.956 0.980 0.919 0.904 0.681 0.968 0.987 0.959 0.901 0.696 0.966 0.990 0.970
NORAM 0.891 0.873 0.871 0.854 0.913 0.870 0.954 0.896 0.853 0.916 0.916 0.977 0.925 0.795 0.959 0.919 0.978 0.920 0.836 0.966
PACOECD 0.836 0.800 0.830 0.024 0.958 0.791 0.875 0.879 0.008 0.957 0.901 0.819 0.879 -0.069 0.966 0.910 0.816 0.881 -0.014 0.964
REFECO 0.901 0.484 0.354 0.370 0.691 0.877 0.573 0.414 0.371 0.703 0.947 0.438 0.485 0.174 0.865 0.947 0.438 0.509 0.231 0.851
OTASIAN 0.913 0.610 0.927 0.700 0.941 0.895 0.798 0.929 0.698 0.946 0.932 0.746 0.943 0.497 0.967 0.932 0.748 0.931 0.545 0.974
ROW 0.000 0.000 0.806 0.000 0.998 0.000 0.000 0.840 0.000 0.998 0.000 0.000 0.833 0.000 0.999 0.000 0.000 0.866 0.000 0.999
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5. Conclusions 

We have developed emIAM, a novel modeling approach to emulating IAMs by using a large set of MAC curves: ten IAMs 

(nine ENGAGE IAMs and GET); global and eleven regions; three gases (CO2, CH4, and N2O); eight portfolios of available 620 

mitigation technologies; and two emission sources (total anthropogenic and energy-related). A series of four validation tests 

were performed using emIAM-ACC2, the hard-linked optimizing climate-economy model, to reproduce original IAM 

outcomes. The results showed that the original emission pathways were reproduced reasonably well in a majority of cases. 

However, if one is interested in using emIAM, the goodness of fit of the MAC curves to the original IAM data and the results 

of validation tests should be carefully examined. We do not provide specific recommendations on the appropriateness of the 625 

use of each MAC curve and leave the users to decide which MAC curves to apply. Materials that are required for making such 

decisions are systematically presented in Supplement and our Zenodo repository. Some IAMs were more easily emulated than 

other IAMs. The goodness of fit of the MAC curves depends on gases and regions.  

This study demonstrated 1) a methodological framework to generate MAC curves from multiple IAMs simulated 

under a range of carbon budgets and carbon price scenarios and 2) another methodological framework to assess the 630 

performance of MAC curves with a simple climate model to reproduce original IAM outcomes. Our methods are generic and 

transparent, providing an avenue for extending simple climate models to hard-linked climate-economy models. Future studies 

may emulate specific IAMs with more tailored parameterization approaches. We also open up an avenue for performing a 

quasi-multiple IAM analysis with a small computational cost. In view of the diversity of IAMs available today, insights from 

multiple IAMs are indispensable for creating robust findings. Finally, simple models are complementary to complex models; 635 

modeling is an art that can shed light into the fundamental laws of complex systems (Yanai, 2009). In similar vein, emIAM 

can further pave an avenue for understanding the general behavior of IAMs. 

 

Code availability. GAMS code (emIAM v1.0) for deriving MAC curves is archived on Zenode with doi: 

10.5281/zenodo.7478234. 640 

 

Data availability. Data for the parameters in MAC curves and associated upper limits on abatement levels and their first and 

second derivatives are available on Zenodo with doi:10.5281/zenodo.7478234. The supplement related to this article is also 

available online. 

 645 

Author contributions. Conceptualization of the IAM emulator, W.X. and K.T.; simulations using emIAM-ACC2, W.X. and 

K.T.; simulations using GET, K.T, D.J., and M.L.; analysis of simulation results, W.X., K.T., and D.J.; writing - original draft 

preparation, W.X. and K.T.; writing – revision and editing, W.X., K.T., P.C., D.J., and M.L. All authors have read and agreed 

to the submitted version of the manuscript. 

 650 

Competing interests. The author declares that he has no conflict of interest. 

 

Acknowledgments. K.T. dedicates this paper to the memory of Prof. Hiroshi Yanai (1937-2021) at Keio University, Tokyo, 

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

32 
 

Japan, a pioneer of Operations Research and his bachelor thesis supervisor, by whom K.T. was taught the fundamentals of 

mathematical modeling and academic writing and the joy of intellectual pursuit. We are grateful for comments from Nico 655 

Bauer, Stéphane De Cara, Yann Gaucher, Xiangping Hu, Xuanming Su, Kiyoshi Takahashi, and Tokuta Yokohata, which 

were useful for this study. W.X. acknowledges financial support from the China Scholarship Council. This research was 

conducted as part of the Achieving the Paris Agreement Temperature Targets after Overshoot (PRATO) Project under the Make 

Our Planet Great Again (MOPGA) Program and funded by the National Research Agency in France under the Programme 

d’Investissements d’Avenir, grant number ANR-19-MPGA-0008. We acknowledge the Environment Research and Technology 660 

Development Fund (JPMEERF20202002) of the Environmental Restoration and Conservation Agency (Japan). 

  

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

33 
 

References 

Akoglu, H.: User’s guide to correlation coefficients, Turkish Journal of Emergency Medicine, 18, 91–93, 

https://doi.org/10.1016/j.tjem.2018.08.001, 2018. 665 

Allen, M. R., Peters, G. P., Shine, K. P., Azar, C., Balcombe, P., Boucher, O., Cain, M., Ciais, P., Collins, W., Forster, P. 

M., Frame, D. J., Friedlingstein, P., Fyson, C., Gasser, T., Hare, B., Jenkins, S., Hamburg, S. P., Johansson, D. J. A., 

Lynch, J., Macey, A., Morfeldt, J., Nauels, A., Ocko, I., Oppenheimer, M., Pacala, S. W., Pierrehumbert, R., Rogelj, J., 

Schaeffer, M., Schleussner, C. F., Shindell, D., Skeie, R. B., Smith, S. M., and Tanaka, K.: Indicate separate contributions 

of long-lived and short-lived greenhouse gases in emission targets, npj Clim Atmos Sci, 5, 5, 670 

https://doi.org/10.1038/s41612-021-00226-2, 2022. 

Azar, C., Lindgren, K., and Andersson, B. A.: Global energy scenarios meeting stringent CO2 constraints—cost-effective 

fuel choices in the transportation sector, Energy Policy, 31, 961–976, https://doi.org/10.1016/S0301-4215(02)00139-8, 

2003. 

Azar, C., Johansson, D. J. A., and Mattsson, N.: Meeting global temperature targets—the role of bioenergy with carbon 675 

capture and storage, Environ. Res. Lett., 8, 034004, https://doi.org/10.1088/1748-9326/8/3/034004, 2013. 

Babiker, M., Gurgel, A., Paltsev, S., and Reilly, J.: Forward-looking versus recursive-dynamic modeling in climate policy 

analysis: A comparison, Economic Modelling, 26, 1341–1354, https://doi.org/10.1016/j.econmod.2009.06.009, 2009. 

Barnhart, H. X., Haber, M. J., and Lin, L. I.: An Overview on Assessing Agreement with Continuous Measurements, 

Journal of Biopharmaceutical Statistics, 17, 529–569, https://doi.org/10.1080/10543400701376480, 2007. 680 

van den Berg, M., Hof, A. F., van Vliet, J., and van Vuuren, D. P.: Impact of the choice of emission metric on greenhouse 

gas abatement and costs, Environ. Res. Lett., 10, 024001, https://doi.org/10.1088/1748-9326/10/2/024001, 2015. 

Bruckner, T., Hooss, G., Füssel, H.-M., and Hasselmann, K.: Climate System Modeling in the Framework of the 

Tolerable Windows Approach: The ICLIPS Climate Model, Climatic Change, 56, 119–137, 

https://doi.org/10.1023/A:1021300924356, 2003. 685 

Cox, N. J.: Assessing agreement of measurements and predictions in geomorphology, Geomorphology, 76, 332–346, 

https://doi.org/10.1016/j.geomorph.2005.12.001, 2006. 

De Cara, S. and Jayet, P.-A.: Marginal abatement costs of greenhouse gas emissions from European agriculture, cost 

effectiveness, and the EU non-ETS burden sharing agreement, Ecological Economics, 70, 1680–1690, 

https://doi.org/10.1016/j.ecolecon.2011.05.007, 2011. 690 

Diniz Oliveira, T., Brunelle, T., Guenet, B., Ciais, P., Leblanc, F., and Guivarch, C.: A mixed‐effect model approach for 

assessing land‐based mitigation in integrated assessment models: A regional perspective, Glob Change Biol, 27, 4671–

4685, https://doi.org/10.1111/gcb.15738, 2021. 

Drouet, L., Bosetti, V., Padoan, S. A., Aleluia Reis, L., Bertram, C., Dalla Longa, F., Després, J., Emmerling, J., Fosse, 

F., Fragkiadakis, K., Frank, S., Fricko, O., Fujimori, S., Harmsen, M., Krey, V., Oshiro, K., Nogueira, L. P., Paroussos, 695 

L., Piontek, F., Riahi, K., Rochedo, P. R. R., Schaeffer, R., Takakura, J., van der Wijst, K.-I., van der Zwaan, B., van 

Vuuren, D., Vrontisi, Z., Weitzel, M., Zakeri, B., and Tavoni, M.: Net zero-emission pathways reduce the physical and 

economic risks of climate change, Nat. Clim. Chang., 11, 1070–1076, https://doi.org/10.1038/s41558-021-01218-z, 2021. 

Ellerman, A. D. and Decaux, A.: Analysis of Post-Kyoto CO2 Emissions Trading Using Marginal Abatement Curves | 

MIT Global Change, 1998. 700 

Emmerling, J., Drouet, L., Wijst, K.-I. van der, Vuuren, D. van, Bosetti, V., and Tavoni, M.: The role of the discount rate 

for emission pathways and negative emissions, Environ. Res. Lett., 14, 104008, https://doi.org/10.1088/1748-

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

34 
 

9326/ab3cc9, 2019. 

Errickson, F. C., Keller, K., Collins, W. D., Srikrishnan, V., and Anthoff, D.: Equity is more important for the social cost 

of methane than climate uncertainty, Nature, 592, 564–570, https://doi.org/10.1038/s41586-021-03386-6, 2021. 705 

Fuglestvedt, J. S., Berntsen, T. K., Godal, O., Sausen, R., Shine, K. P., and Skodvin, T.: Metrics of climate change: 

assessing radiative forcing and emission indices, Climatic Change, 58, 267–331, 

https://doi.org/10.1023/A:1023905326842, 2003. 

Guivarch, C. and Rogelj, J.: Carbon price variations in 2°C scenarios explored, 

https://www.carbonpricingleadership.org/s/Guivarch-Rogelj-Carbon-prices-2C.pdf, January 2017. 710 

Guivarch, C., Kriegler, E., Portugal-Pereira, J., Bosetti, V., Edmonds, J., Fischedick, M., Havlík, P., Jaramillo, P., Krey, 

V., Lecocq, F., Lucena, A., Meinshausen, M., Mirasgedis, S., O’Neill, B., Peters, G. P., Rogelj, J., Rose, S., Saheb, Y., 

Strbac, G., Hammer Strømman, A., van Vuuren, D. P., and Zhou, N.: IPCC, 2022: Annex III: Scenarios and modelling 

methods, in: IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to 

the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 715 

Cambridge, UK and New York, NY, USA, 2022. 

Ha-Duong, M., Grubb, M. J., and Hourcade, J.-C.: Influence of socioeconomic inertia and uncertainty on optimal CO2-

emission abatement, Nature, 390, 270–273, https://doi.org/10.1038/36825, 1997. 

Harmsen, M. J. H. M., van den Berg, M., Krey, V., Luderer, G., Marcucci, A., Strefler, J., and Vuuren, D. P. V.: How 

climate metrics affect global mitigation strategies and costs: a multi-model study, Climatic Change, 136, 203–216, 720 

https://doi.org/10.1007/s10584-016-1603-7, 2016. 

Hasselmann, K., Hasselmann, S., Giering, R., Ocana, V., and v. Storch, H.: Sensitivity Study of Optimal CO2 Emission 

Paths Using a Simplified Structural Integrated Assessment Model (SIAM), Climatic Change, 37, 345–386, 

https://doi.org/10.1023/A:1005339625015, 1997. 

Hayashi, F.: Econometrics, Princeton University Press, Princeton, 683 pp., 2000. 725 

Hedenus, F., Karlsson, S., Azar, C., and Sprei, F.: Cost-effective energy carriers for transport – The role of the energy 

supply system in a carbon-constrained world, International Journal of Hydrogen Energy, 35, 4638–4651, 

https://doi.org/10.1016/j.ijhydene.2010.02.064, 2010. 

Hof, A. F., van der Wijst, K.-I., and van Vuuren, D. P.: The Impact of Socio-Economic Inertia and Restrictions on Net-

Negative Emissions on Cost-Effective Carbon Price Pathways, Front. Clim., 3, 785577, 730 

https://doi.org/10.3389/fclim.2021.785577, 2021. 

Hooss, G., Voss, R., Hasselmann, K., Maier-Reimer, E., and Joos, F.: A nonlinear impulse response model of the coupled 

carbon cycle-climate system (NICCS), Climate Dynamics, 18, 189–202, https://doi.org/10.1007/s003820100170, 2001. 

Huang, S. K., Kuo, L., and Chou, K.-L.: The applicability of marginal abatement cost approach: A comprehensive review, 

Journal of Cleaner Production, 127, 59–71, https://doi.org/10.1016/j.jclepro.2016.04.013, 2016. 735 

IAMC_wiki: https://www.iamcdocumentation.eu/index.php/IAMC_wiki, last access: 28 October 2022. 

IPCC.: Summary for Policymakers., in: Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA., 2013. 

IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working 740 

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA, 3–32, 2021. 

Jiang, H.-D., Dong, K.-Y., Zhang, K., and Liang, Q.-M.: The hotspots, reference routes, and research trends of marginal 

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

35 
 

abatement costs: A systematic review, Journal of Cleaner Production, 252, 119809, 

https://doi.org/10.1016/j.jclepro.2019.119809, 2020. 745 

Jiang, H.-D., Purohit, P., Liang, Q.-M., Dong, K., and Liu, L.-J.: The cost-benefit comparisons of China’s and India’s 

NDCs based on carbon marginal abatement cost curves, Energy Economics, 109, 105946, 

https://doi.org/10.1016/j.eneco.2022.105946, 2022. 

Johansson, D. J. A.: Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles, Climatic 

Change, 108, 107–134, https://doi.org/10.1007/s10584-010-9969-4, 2011. 750 

Johansson, D. J. A.: The question of overshoot, Nat. Clim. Chang., 11, 1021–1022, https://doi.org/10.1038/s41558-021-

01229-w, 2021. 

Johansson, D. J. A., Persson, U. M., and Azar, C.: The Cost of Using Global Warming Potentials: Analysing the Trade 

off Between CO2, CH4 and N2O, Climatic Change, 77, 291–309, https://doi.org/10.1007/s10584-006-9054-1, 2006. 

Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, 755 

N. R., Friedrich, T., Frölicher, T. L., Halloran, P. R., Holden, P. B., Jones, C., Kleinen, T., Mackenzie, F. T., Matsumoto, 

K., Meinshausen, M., Plattner, G.-K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, 

K., Timmermann, A., and Weaver, A. J.: Carbon dioxide and climate impulse response functions for the computation of 

greenhouse gas metrics: a multi-model analysis, Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-

2793-2013, 2013. 760 

Kesicki, F.: Marginal Abatement Cost Curves: Combining Energy System Modelling and Decomposition Analysis, 

Environ Model Assess, 18, 27–37, https://doi.org/10.1007/s10666-012-9330-6, 2013. 

Kesicki, F. and Ekins, P.: Marginal abatement cost curves: a call for caution, Climate Policy, 12, 219–236, 

https://doi.org/10.1080/14693062.2011.582347, 2012. 

Kesicki, F. and Strachan, N.: Marginal abatement cost (MAC) curves: confronting theory and practice, Environmental 765 

Science & Policy, 14, 1195–1204, https://doi.org/10.1016/j.envsci.2011.08.004, 2011. 

Klepper, G. and Peterson, S.: Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy 

Prices, 28, 1–23, https://doi.org/10.1016/j.reseneeco.2005.04.001, 2006. 

Kriegler, E.: Imprecise Probability Analysis for Integrated Assessment of Climate Change, Universität Potsdam, 

Germany, 2005. 770 

Lashof, D. A. and Ahuja, D. R.: Relative contributions of greenhouse gas emissions to global warming, Nature, 344, 

529–531, https://doi.org/10.1038/344529a0, 1990. 

Laws, E. A.: Mathematical methods for oceanographers: an introduction, Wiley, New York, 343 pp., 1997. 

Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J., and Allen, M. R.: 

FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration, Geosci. 775 

Model Dev., 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, 2021. 

Lehtveer, M. and Hedenus, F.: Nuclear power as a climate mitigation strategy – technology and proliferation risk, Journal 

of Risk Research, 18, 273–290, https://doi.org/10.1080/13669877.2014.889194, 2015. 

Lehtveer, M., Brynolf, S., and Grahn, M.: What Future for Electrofuels in Transport? Analysis of Cost Competitiveness 

in Global Climate Mitigation, Environ. Sci. Technol., 53, 1690–1697, https://doi.org/10.1021/acs.est.8b05243, 2019. 780 

Levasseur, A., Cavalett, O., Fuglestvedt, J. S., Gasser, T., Johansson, D. J. A., Jørgensen, S. V., Raugei, M., Reisinger, 

A., Schivley, G., Strømman, A., Tanaka, K., and Cherubini, F.: Enhancing life cycle impact assessment from climate 

science: Review of recent findings and recommendations for application to LCA, Ecological Indicators, 71, 163–174, 

https://doi.org/10.1016/j.ecolind.2016.06.049, 2016. 

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

36 
 

Lin, L., Hedayat, A. S., and Wu, W.: Continuous Data, in: Statistical Tools for Measuring Agreement, Springer New 785 

York, New York, NY, 7–54, https://doi.org/10.1007/978-1-4614-0562-7_2, 2012. 

Lin, L. I.-K.: A Concordance Correlation Coefficient to Evaluate Reproducibility, Biometrics, 45, 255, 

https://doi.org/10.2307/2532051, 1989. 

Mackenzie, F. T. and Lerman, A.: Carbon in the geobiosphere: earth’s outer shell, Springer, Dordrecht, 402 pp., 2006. 

Martin Bland, J. and Altman, DouglasG.: STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN 790 

TWO METHODS OF CLINICAL MEASUREMENT, The Lancet, 327, 307–310, https://doi.org/10.1016/S0140-

6736(86)90837-8, 1986. 

Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K.: The proportionality of global warming to cumulative carbon 

emissions, Nature, 459, 829–832, https://doi.org/10.1038/nature08047, 2009. 

McKeough, P.: A case for ensuring reductions in CO2 emissions are given priority over reductions in CH4 emissions in 795 

the near term, Climatic Change, 174, 4, https://doi.org/10.1007/s10584-022-03428-6, 2022. 

McKinsey & Company: Pathways to a Low-carbon Economy: Version 2 of the Global Greenhouse Gas Abatement Cost 

Curve., 2009. 

Melnikov, N. B., Gruzdev, A. P., Dalton, M. G., Weitzel, M., and O’Neill, B. C.: Parallel Extended Path Method for 

Solving Perfect Foresight Models, Comput Econ, 58, 517–534, https://doi.org/10.1007/s10614-020-10044-y, 2021. 800 

Melnikova, I., Boucher, O., Cadule, P., Ciais, P., Gasser, T., Quilcaille, Y., Shiogama, H., Tachiiri, K., Yokohata, T., and 

Tanaka, K.: Carbon Cycle Response to Temperature Overshoot Beyond 2°C: An Analysis of CMIP6 Models, Earth’s 

Future, 9, https://doi.org/10.1029/2020EF001967, 2021. 

Morris, J., Paltsev, S., and Reilly, J.: Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas 

Emissions Reductions: Results from the EPPA Model, Environ Model Assess, 17, 325–336, 805 

https://doi.org/10.1007/s10666-011-9298-7, 2012. 

Mulugeta, L., Drach, A., Erdemir, A., Hunt, C. A., Horner, M., Ku, J. P., Myers Jr., J. G., Vadigepalli, R., and Lytton, W. 

W.: Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in 

Neuroscience, Front. Neuroinform., 12, 18, https://doi.org/10.3389/fninf.2018.00018, 2018. 

National Research Council: Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of 810 

Verification, Validation, and Uncertainty Quantification, National Academies Press, Washington, D.C., 

https://doi.org/10.17226/13395, 2012. 

Nicholls, Z. R. J., Meinshausen, M., Lewis, J., Gieseke, R., Dommenget, D., Dorheim, K., Fan, C.-S., Fuglestvedt, J. S., 

Gasser, T., Golüke, U., Goodwin, P., Hartin, C., Hope, A. P., Kriegler, E., Leach, N. J., Marchegiani, D., McBride, L. A., 

Quilcaille, Y., Rogelj, J., Salawitch, R. J., Samset, B. H., Sandstad, M., Shiklomanov, A. N., Skeie, R. B., Smith, C. J., 815 

Smith, S., Tanaka, K., Tsutsui, J., and Xie, Z.: Reduced Complexity Model Intercomparison Project Phase 1: introduction 

and evaluation of global-mean temperature response, Geoscientific Model Development, 13, 5175–5190, 

https://doi.org/10.5194/gmd-13-5175-2020, 2020. 

Nordhaus, W. D.: The Cost of Slowing Climate Change: a Survey, EJ, 12, https://doi.org/10.5547/ISSN0195-6574-EJ-

Vol12-No1-4, 1991. 820 

Nordhaus, W. D.: Revisiting the social cost of carbon, Proc. Natl. Acad. Sci. U.S.A., 114, 1518–1523, 

https://doi.org/10.1073/pnas.1609244114, 2017. 

O’Neill, B. C.: Economics, Natural Science, and the Costs of Global Warming Potentials, Climatic Change, 58, 251–

260, https://doi.org/10.1023/A:1023968127813, 2003. 

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, 825 

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

37 
 

J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project 

(ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. 

Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., and Herrero, M.: Implications of alternative metrics 

for global mitigation costs and greenhouse gas emissions from agriculture, Climatic Change, 117, 677–690, 

https://doi.org/10.1007/s10584-012-0593-3, 2013. 830 

Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer, W., Kingdon, C., Wingenroth, J., Cooke, R., 

Parthum, B., Smith, D., Cromar, K., Diaz, D., Moore, F. C., Müller, U. K., Plevin, R. J., Raftery, A. E., Ševčíková, H., 

Sheets, H., Stock, J. H., Tan, T., Watson, M., Wong, T. E., and Anthoff, D.: Comprehensive evidence implies a higher 

social cost of CO2, Nature, 610, 687–692, https://doi.org/10.1038/s41586-022-05224-9, 2022. 

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., 835 

Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, 

K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., 

Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, 

J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The 

Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, 840 

Global Environmental Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. 

Riahi, K., Bertram, C., Huppmann, D., Rogelj, J., Bosetti, V., Cabardos, A.-M., Deppermann, A., Drouet, L., Frank, S., 

Fricko, O., Fujimori, S., Harmsen, M., Hasegawa, T., Krey, V., Luderer, G., Paroussos, L., Schaeffer, R., Weitzel, M., 

van der Zwaan, B., Vrontisi, Z., Longa, F. D., Després, J., Fosse, F., Fragkiadakis, K., Gusti, M., Humpenöder, F., 

Keramidas, K., Kishimoto, P., Kriegler, E., Meinshausen, M., Nogueira, L. P., Oshiro, K., Popp, A., Rochedo, P. R. R., 845 

Ünlü, G., van Ruijven, B., Takakura, J., Tavoni, M., van Vuuren, D., and Zakeri, B.: Cost and attainability of meeting 

stringent climate targets without overshoot, Nat. Clim. Chang., 11, 1063–1069, https://doi.org/10.1038/s41558-021-

01215-2, 2021. 

Ricker, W. E.: Linear Regressions in Fishery Research, J. Fish. Res. Bd. Can., 30, 409–434, https://doi.org/10.1139/f73-

072, 1973. 850 

Schwoon, M. and Tol, R. S. J.: Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change, 

EJ, 27, https://doi.org/10.5547/ISSN0195-6574-EJ-Vol27-No4-2, 2006. 

Shoemaker, J. K., Schrag, D. P., Molina, M. J., and Ramanathan, V.: What Role for Short-Lived Climate Pollutants in 

Mitigation Policy?, Science, 342, 1323–1324, https://doi.org/10.1126/science.1240162, 2013. 

Su, X., Takahashi, K., Fujimori, S., Hasegawa, T., Tanaka, K., Kato, E., Shiogama, H., Masui, T., and Emori, S.: Emission 855 

pathways to achieve 2.0°C and 1.5°C climate targets, Earth’s Future, 5, 592–604, https://doi.org/10.1002/2016EF000492, 

2017. 

Su, X., Tachiiri, K., Tanaka, K., Watanabe, M., and Kawamiya, M.: Identifying crucial emission sources under low 

forcing scenarios by a comprehensive attribution analysis, One Earth, S2590332222005358, 

https://doi.org/10.1016/j.oneear.2022.10.009, 2022. 860 

Sun, T., Ocko, I. B., Sturcken, E., and Hamburg, S. P.: Path to net zero is critical to climate outcome, Sci Rep, 11, 22173, 

https://doi.org/10.1038/s41598-021-01639-y, 2021. 

Tachiiri, K., Hajima, T., and Kawamiya, M.: Increase of the transient climate response to cumulative carbon emissions 

with decreasing CO 2 concentration scenarios, Environ. Res. Lett., 14, 124067, https://doi.org/10.1088/1748-

9326/ab57d3, 2019. 865 

Tanaka, K. and Mackenzie, F. T.: Ecosystem behavior of southern Kaneohe Bay, Hawaii: A statistical and modelling 

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

38 
 

approach, Ecological Modelling, 188, 296–326, https://doi.org/10.1016/j.ecolmodel.2005.02.018, 2005. 

Tanaka, K. and O’Neill, B. C.: The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 

2 °C temperature targets, Nature Clim Change, 8, 319–324, https://doi.org/10.1038/s41558-018-0097-x, 2018. 

Tanaka, K. and Raddatz, T.: Correlation between climate sensitivity and aerosol forcing and its implication for the 870 

“climate trap”: A Letter, Climatic Change, 109, 815–825, https://doi.org/10.1007/s10584-011-0323-2, 2011. 

Tanaka, K., Kriegler, E., Bruckner, T., Hooss, G., Knorr, W., and Raddatz, T.: Aggregated Carbon Cycle, Atmospheric 

Chemistry, and Climate Model (ACC2) – description of the forward and inverse modes, 2007. 

Tanaka, K., O’Neill, B. C., Rokityanskiy, D., Obersteiner, M., and Tol, R. S. J.: Evaluating Global Warming Potentials 

with historical temperature, Climatic Change, 96, 443–466, https://doi.org/10.1007/s10584-009-9566-6, 2009a. 875 

Tanaka, K., Raddatz, T., O’Neill, B. C., and Reick, C. H.: Insufficient forcing uncertainty underestimates the risk of high 

climate sensitivity, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL039642, 2009b. 

Tanaka, K., Peters, G. P., and Fuglestvedt, J. S.: Policy Update: Multicomponent climate policy: why do emission metrics 

matter?, Carbon Management, 1, 191–197, https://doi.org/10.4155/cmt.10.28, 2010. 

Tanaka, K., Johansson, D. J. A., O’Neill, B. C., and Fuglestvedt, J. S.: Emission metrics under the 2 °C climate 880 

stabilization target, Climatic Change, 117, 933–941, https://doi.org/10.1007/s10584-013-0693-8, 2013. 

Tanaka, K., Cavalett, O., Collins, W. J., and Cherubini, F.: Asserting the climate benefits of the coal-to-gas shift across 

temporal and spatial scales, Nat. Clim. Chang., 9, 389–396, https://doi.org/10.1038/s41558-019-0457-1, 2019. 

Tanaka, K., Boucher, O., Ciais, P., Johansson, D. J. A., and Morfeldt, J.: Cost-effective implementation of the Paris 

Agreement using flexible greenhouse gas metrics, Sci. Adv., 7, eabf9020, https://doi.org/10.1126/sciadv.abf9020, 2021. 885 

Tol, R. S. J., Berntsen, T. K., O’Neill, B. C., Fuglestvedt, J. S., and Shine, K. P.: A unifying framework for metrics for 

aggregating the climate effect of different emissions, Environ. Res. Lett., 7, 044006, https://doi.org/10.1088/1748-

9326/7/4/044006, 2012. 

Tsutsui, J.: Minimal CMIP Emulator (MCE v1.2): a new simplified method for probabilistic climate projections, Geosci. 

Model Dev., 15, 951–970, https://doi.org/10.5194/gmd-15-951-2022, 2022. 890 

UNFCCC.: “Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on the 

third part of its first session, held in Katowice from 2 to 15 December 2018. Addendum 2. Part two: Action taken by the 

Conference of the Parties serving as the meeting of the Parties to the Paris Agreement” (FCCC/PA/CMA/2018/3/ Add.2 

2019)., 2018. 

Vermont, B. and De Cara, S.: How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?, 895 

Ecological Economics, 69, 1373–1386, https://doi.org/10.1016/j.ecolecon.2010.02.020, 2010. 

van Vuuren, D. P., de Vries, B., Eickhout, B., and Kram, T.: Responses to technology and taxes in a simulated world, 

Energy Economics, 26, 579–601, https://doi.org/10.1016/j.eneco.2004.04.027, 2004. 

Wagner, F., Amann, M., Borken-Kleefeld, J., Cofala, J., Höglund-Isaksson, L., Purohit, P., Rafaj, P., Schöpp, W., and 

Winiwarter, W.: Sectoral marginal abatement cost curves: implications for mitigation pledges and air pollution co-900 

benefits for Annex I countries, Sustain Sci, 7, 169–184, https://doi.org/10.1007/s11625-012-0167-3, 2012. 

Weyant, J.: Some Contributions of Integrated Assessment Models of Global Climate Change, Review of Environmental 

Economics and Policy, 11, 115–137, https://doi.org/10.1093/reep/rew018, 2017. 

Xiong, W., Tanaka, K., Ciais, P., and Yan, L.: Evaluating China’s Role in Achieving the 1.5 °C Target of the Paris 

Agreement, Energies, 15, 6002, https://doi.org/10.3390/en15166002, 2022. 905 

Yanai, H.: Mathematical models (in Japanese), Asakura Publishing Co., Ltd., Tokyo, Japan, 2009. 

Yue, X., Deane, J. P., O’Gallachoir, B., and Rogan, F.: Identifying decarbonisation opportunities using marginal 

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 

39 
 

abatement cost curves and energy system scenario ensembles, Applied Energy, 276, 115456, 

https://doi.org/10.1016/j.apenergy.2020.115456, 2020. 

Zickfeld, K., Azevedo, D., Mathesius, S., and Matthews, H. D.: Asymmetry in the climate–carbon cycle response to 910 

positive and negative CO2 emissions, Nat. Clim. Chang., 11, 613–617, https://doi.org/10.1038/s41558-021-01061-2, 

2021. 

 

https://doi.org/10.5194/egusphere-2022-1508
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.


