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Abstract. We developed an emulator for Integrated Assessment Models (emIAM) based on a marginal abatement cost 

(MAC) curve approach. Drawing on the output of IAMs in the ENGAGE Scenario Explorer and the GET model, we 

derived an extensive array of MAC curves, encompassing ten IAMs, global and ten regions, three gases CO2, CH4, and 

N2O, eight portfolios of available mitigation technologies, and two emission sources. We tested the performance of 

emIAM by coupling it with a simple climate model ACC2. Our analysis showed that the optimizing climate-economy 15 

model ACC2-emIAM adequately reproduced a majority of the original IAM emission outcomes under similar conditions. 

This can facilitate systematic exploration of IAMs with small computational resources. emIAM holds the potential to 

enhance the capabilities of simple climate models as a tool for calculating cost-effective pathways directly aligned with 

temperature targets. 

1 Introduction 20 

Integrated Assessment Models (IAMs) combine economic, energy, and sometimes also land-use modeling approaches and are 

commonly used to evaluate least-cost mitigation scenarios (Weyant, 2017). A variety of IAMs were integrated under common 

protocols in modeling intercomparison projects (MIPs) (O’Neill et al., 2016; Tebaldi et al., 2021) and provided input to the 

series of the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. However, simulating computationally 

expensive IAMs developed and maintained at different research institutions around the world requires large coordination 25 

efforts. Therefore, here we propose a new methodological framework to i) emulate the behavior of IAMs (i.e., emission 

abatement for a given carbon price) through MAC curves and then ii) reproduce the behavior of IAMs by using the MAC 

curves coupled with a simple climate model. We show that the MAC curves can be systematically applied to reproduce the 

behavior of IAMs as an emulator for IAMs (emIAM), paving a way to generate multi-IAM scenarios more easily than before, 

with small computational resources. 30 

In the context of climate change mitigation, a MAC generally represents the incremental cost of reducing an additional 
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unit of emissions; a MAC curve illustrates these costs as the level of emission reductions increases relative to the baseline. 

There is a burgeoning literature on MAC curves (Jiang et al., 2020) that can broadly fall into two categories (Kesicki and Ekins, 

2012): i) data-based MAC curves (bottom-up) and ii) model-based MAC curves (top-down). First, a data-based MAC curve 

provides a relationship between the emission abatement potential of each mitigation measure considered and the associated 35 

marginal costs, in the order of low- to high-cost measures based on individual data. A prominent example of such data-based 

MAC curves is McKinsey & Company (2009). Second, a model-based MAC curve provides a relationship between the amount 

of emission abatement and the system-wide marginal costs based on simulation results of a model (e.g., an energy system 

model and a computational general equilibrium (CGE) model) perturbed under different carbon prices or carbon budgets. Our 

work takes the second approach, building on previous studies (Nordhaus, 1991; Ellerman and Decaux, 1998; van Vuuren et 40 

al., 2004; Johansson et al., 2006; Klepper and Peterson, 2006; Johansson, 2011; Morris et al., 2012; Wagner et al., 2012; 

Tanaka et al., 2013; Su et al., 2017; Tanaka and O’Neill, 2018; Yue et al., 2020; Tanaka et al., 2021; Bossy et al., 2024; Su et 

al., 2024). While data-based MAC curves tend to be rich in the representation of technological details, they do not consider 

system-wide interactions that are captured by model-based MAC curves. Model-based MAC curves reflect such interactions, 

however, without much explicit technological detail. Advantages and disadvantages of MAC curves of different categories are 45 

discussed elsewhere (Vermont and De Cara, 2010; Kesicki and Strachan, 2011; Huang et al., 2016). 

In this study, we derive a large set of MAC curves from the simulation results of IAMs (see Figure 1 and Section 3), 

couple them with a simple climate model as an emulator (emIAM), and validate the simulation results with the original IAM 

results under similar conditions. Namely, we look up the ENGAGE Scenario Explorer hosted at IIASA, Austria 

(https://data.ene.iiasa.ac.at/engage), a publicly available database from the EU Horizon 2020 ENGAGE project (Drouet et al., 50 

2021; Riahi et al., 2021), and extract total anthropogenic CO2, CH4, and N2O emission pathways until 2100 from nine IAMs 

under a range of carbon budget constraints. For each IAM, we derive a set of CO2, CH4, and N2O MAC curves as a function 

of the respective emission reduction in percentage relative to the baseline at the global and regional (ten regions) levels. We 

then integrate the sets of MAC curves (i.e., emIAM) into a simple climate model called the Aggregated Carbon Cycle, 

Atmospheric Chemistry, and Climate (ACC2) model (Tanaka et al., 2007; Tanaka and O’Neill, 2018; Xiong et al., 2022). 55 

ACC2-emIAM works as a hard-linked optimizing climate-economy model that can derive an emission pathway to achieve a 

given climate target or carbon budget at the lowest cost. We validate to what extent the emission pathway derived from ACC2-

emIAM under a given carbon budget or a temperature target can reproduce the corresponding pathway from the original IAM 

in the ENGAGE Scenario Explorer.  

We further apply the emIAM approach to the GET model (Lehtveer et al., 2019), an IAM that did not take part in the 60 

ENGAGE project. We can directly simulate GET to derive MAC curves under different model configurations, which 

complements the existing data from IAMs simulated under single configurations for the ENGAGE project. We obtain global 

energy-related CO2 emission pathways under a range of carbon price projections, but with several different portfolios of 
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available mitigation technologies (e.g., differentiated Carbon Capture and Storage (CCS) capacity). We then derive a MAC 

curve for each technology portfolio. Although MAC curves concern only the total emission abatement without distinguishing 65 

individual mitigation measures, this approach allows us to explore the role of a particular mitigation measure by comparing 

MAC curves with and without that mitigation measure. Note that all IAMs emulated in this study take a cost-effectiveness 

approach, in which the least-cost emission pathways to achieve a climate-related target are calculated in terms of the cost of 

mitigation without considering climate damage and adaptation. 

To our knowledge, this study is one of the first attempts to apply the MAC curve approach extensively for developing 70 

an IAM emulator: we consider ten IAMs, global and ten regions, three gases (i.e., CO2, CH4, and N2O), eight technology 

portfolios, and two broad sources (i.e., total anthropogenic and energy-related emissions). We demonstrate the applicability of 

emIAM by implementing it to ACC2, but emIAM can also be used with other simple climate models (Joos et al., 2013; Nicholls 

et al., 2020). Thus, emIAM allows ACC2 and potentially other simple climate models to reproduce approximately global and 

regional cost-effective emission pathways from multiple IAMs under a range of given carbon budgets or temperature targets. 75 

In recent years, there have been efforts to develop emulators of Earth System Models (ESMs) in CMIP6 and the use of ESM 

emulators was exploited in the IPCC Sixth Assessment Report (AR6) (Leach et al., 2021; Tsutsui, 2022); however, no emulator 

has yet been developed for IAMs contributing to the IPCC. 

In this paper, following the common definitions of terminologies found in the literature (National Research Council, 

2012; Mulugeta et al., 2018), we use “emulate” to indicate a process of identifying a reduced-complexity model (i.e., a MAC 80 

curve) that approximates the behavior of a complex model (i.e., an IAM), “reproduce” to refer to a process of generating an 

output (i.e., an emission pathway) from an emulator with the same input and constraints given to an IAM (i.e., a cumulative 

carbon budget or end-of-century temperature, for example), and “validate” to indicate a process of investigating the extent to 

which an emulator reproduces an intended outcome in comparison to the corresponding original outcome from an IAM. 

Regarding the units, we use the original units of each model (i.e., US$2010 and tCO2-eq with 100-year Global Warming 85 

Potential (GWP100) for all IAMs emulated here) to keep the comparability with underlying data, unless noted otherwise.  

The remainder of the manuscript consists of five sections: Section 2 introduces the IAMs under consideration and 

their experiments used to derive MAC curves. Section 3 describes the methodology to derive MAC curves and presents the 

MAC curves that are derived (i.e., emIAM). Section 4 shows the validation results for ACC2-emIAM. Section 5 discusses a 

specific aspect of our emulation approach: the time-independency and the time-dependency of MAC curves. The paper is 90 

concluded in Section 6 with general remarks on the utility of emIAM. Given the substantial amount of MAC curves generated 

in our analysis, results are presented only selectively in the main body of the paper; a more extensive and systematic 

presentation of the results can be found in Supplement and our Zenodo repository. 



 

4 

 

2 IAMs to emulate 

Our study uses the output from a total of ten IAMs: nine IAMs used in the ENGAGE project and another IAM GET. The 95 

subsections below describe these IAMs and their data used to derive MAC curves. 

2.1 IAMs from the ENGAGE project 

We selected the following nine IAM versions available in the database of the ENGAGE Scenario Explorer: AIM/CGE V2.2, 

COFFEE 1.1, GEM-E3 V2021, IMAGE 3.0, MESSAGEix-GLOBIOM 1.1, POLES-JRC ENGAGE, REMIND-MAgPIE 2.1-

4.2, TIAM-ECN 1.1, and WITCH 5.0 (thereafter, shorter labels indicated in Table 1 will be used). These IAMs are diverse in 100 

terms of solution concepts (general equilibrium and partial equilibrium models) and solution methods (intertemporal 

optimization and recursive dynamic models) (Table 1), among many other perspectives (Guivarch et al., 2022). A series of 

scenarios following a carbon budget ranging from 200 to 3,000 GtCO2 (for the period of 2019-2100), as well as baseline 

scenarios, are available from each IAM. All scenarios incorporate second marker baseline scenario from the Shared 

Socioeconomic Pathways (SSP2), which reflect middle-of-the-road socioeconomic conditions (Riahi et al., 2017). The 105 

ENGAGE Scenario Explorer is now part of the larger IPCC Sixth Assessment Report (AR6) Scenario Explorer (Byers et al., 

2022), which was not available at the time of our analysis. Although the use of the entire AR6 scenario dataset could be 

advantageous in terms of the number of IAMs and scenarios available for analyses (189 IAMs (including different model 

versions) and 1389 scenarios in the AR6 Scenario Explorer; 20 IAMs (including different model versions) and 231 scenarios 

in the ENGAGE Scenario Explorer), an advantage of using the ENGAGE Scenario Explorer is that the data from IAMs were 110 

obtained under a common experimental protocol, allowing consistent analyses.  

There are two types of scenarios in the ENGAGE Scenario Explorer: i) end-of-century budget (ECB) scenarios (with 

“f” in the original scenario name) and ii) peak budget (PKB) scenarios (without “f” in the original scenario name) (Riahi et al., 

2021). While the former type of scenarios is defined with a carbon budget till the end of this century, including a possibility 

of temporarily overspending it before (i.e., a possibility of achieving net negative CO2 emissions), the latter type of scenarios 115 

is defined with a carbon budget without allowing temporal budget overspending (i.e., a possibility of achieving net-zero CO2 

emissions, but not net negative CO2 emissions). The distinction of the two sets of scenarios may have important near-term 

implications (Johansson, 2021) and are considered when MAC curves are derived. For each type of scenarios, there are another 

two types of scenarios: i) scenarios without INDC, which only consider currently implemented national policies (indicated as 

“NPi2020” in the original scenario name); ii) scenarios with INDC, which further consider national emission pledges until 120 

2030 (indicated as “INDCi2030” in the original scenario name). The availability of scenarios depends on the types of scenarios 

and varies across IAMs (Table S7). For each IAM, we used the NPi2100 scenario, a scenario assuming a continuation of 

current stated policies until 2100, as the baseline scenario for all carbon budget scenarios in our analysis. The NPi2100 

scenarios, which are available for all IAMs considered here, are only slightly different from the NoPolicy scenarios assuming 

no climate policies at all. 125 
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The ENGAGE Scenario Explorer contains emission data for many greenhouse gases (GHGs) and air pollutants from 

each IAM, including CO2, CH4, and N2O emissions analyzed in our study. Emission data are available at global and regional 

levels (for nine and five IAMs, respectively). There are two sets of regionally aggregated emission data, with one for five 

regions and the other for ten regions, the latter of which was used in our study: that is, China (CHN), European Union and 

Western Europe (EUWE), Latin America (LATAME), Middle East (MIDEAST), North America (NORAM), Other Asian 130 

countries (OTASIAN), Pacific OECD (PACOECD), Reforming Economies (REFECO), South Asia (SOUASIA), and Sub-

Saharan Africa (SUBSAFR). Although all ENGAGE IAMs are regionally disaggregated, only a subset of the IAMs provides 

data for ten regions in the ENGAGE Scenario Explore as shown in Table 1. Note that the GEM model provides emissions for 

Rest of World (ROW), one more region in addition to the ten regions, in the ENGAGE Scenario Explorer. In other IAMs, we 

also allocated emissions for ROW to account for the discrepancy between global emissions and the sum of regional emissions 135 

(e.g., 3% difference in CO2 emissions in AIM/CGE V2.2). Regarding emission sources, total anthropogenic emissions and 

energy-related emissions (e.g., energy and industrial processes) were separately used to derive global MAC curves for three 

gases (only total anthropogenic emissions for regional MAC curves due to computational requirements for validating regional 

MAC curves). Non-energy-related emissions (e.g., agriculture, forestry, and land-use sector), the differences between the two, 

were not used to generate MAC curves because non-energy-related emissions did not appear to be strongly correlated with 140 

carbon prices in most IAMs in the ENGAGE project. 

2.2 GET model 

GET is a global energy system model designed to study climate mitigation and energy strategies to achieve long-term climate 

targets under exogenously given energy demand scenarios (Azar et al., 2003; Hedenus et al., 2010; Azar et al., 2013; Lehtveer 

and Hedenus, 2015; Lehtveer et al., 2019). It is an intertemporal optimization model that, with perfect foresight, minimizes 145 

the total cost of the energy system discounted over the simulation period till 2150 (default discount rate of 5%). To do so, 

various technologies for converting and supplying energy are evaluated in the model. The model considers primary energy 

sources such as coal, natural gas, oil, biomass, solar, nuclear, wind, and hydropower. Energy carriers considered in the model 

are petroleum fuels (gasoline, diesel, and natural gas), synthetic fuels (e.g., methanol), hydrogen, and electricity. End-use 

sectors in the model are transport, feedstock, residential heat, industrial heat, and electricity. We employed GET version 10.0 150 

(Lehtveer et al., 2019) with the representation of ten regions. 

To develop global energy-related CO2 MAC curves reflecting different sets of available mitigation measures, we 

constructed the following eight technology portfolios: i) Base, ii) Optimistic, iii) Pessimistic, iv) No CCS+Carbon Capture and 

Utilization (CCU)+Direct Air Capture (DAC) (No_cap), v) Large bioenergy (L_bio), vi) Large bioenergy + Small carbon 

storage (L_bio/S_str), vii) Small bioenergy + Large carbon storage (S_bio/L_str), and viii) No nuclear (No_nc). The Base 155 

portfolio uses the default set of assumptions associated with mitigation options available in the model. The Optimistic portfolio 

combines the assumptions of Large bioenergy supply, Large carbon storage potential, CCS+CCU+DAC, and Nuclear power. 
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The Pessimistic portfolio, in contrast, combines those of Small bioenergy supply, Small carbon storage potential, No 

CCS+CCU+DAC, and No nuclear power. Large and Small bioenergy cases assume 100% more and 50% less bioenergy, 

respectively, than the default level (134 EJ/year globally). Large and Small carbon storage cases assume 8,000 GtCO2 and 160 

1,000 GtCO2, respectively (2,000 GtCO2 by default). With each of these portfolios, we simulated the model under 22 different 

carbon price scenarios. In all carbon price scenarios, the carbon price grows 5% each year with a range of initial levels in 2010 

(1, 2, 3, 5, 7, 10, …, 140 US$2010/tCO2) (see Table S1 for details), following the principle of the Hotelling rule where there 

is a limit on the cumulative emissions (Hof et al., 2021). We assumed a discount rate of 5% for all portfolios and carbon price 

scenarios. Our analysis used a scenario with zero carbon prices as the baseline scenario. We derived only global energy-related 165 

CO2 MAC curves from GET since the model does not explicitly describe processes related to non-energy-related emissions.  

3 Development of emIAM 

3.1 Deriving MAC curves 

Our MAC curve approach aims to capture the relationship between the carbon price and the emission abatement in IAMs. For 

each IAM (i.e., ENGAGE IAMs and GET), we calculated the emission reduction level relative to the respective baseline level 170 

at each time step. Emission reductions can be expressed either in absolute terms (for example, in GtCO2) or in percentage 

terms (in percentage relative to the baseline level) (Kesicki, 2013; Jiang et al., 2022), the latter of which is used in our analysis. 

When the emission is at the baseline level, the relative emission reduction is, by definition, 0%. When it is 100%, which can 

occur for CO2, the emission is (net) zero. When it exceeds 100%, the emission becomes (net) negative. The carbon price for 

each case is also the relative level to the baseline scenario. If there are non-zero carbon prices in the baseline scenarios (small 175 

carbon prices can be found in baseline scenarios from some IAMs), we subtracted them from the carbon prices in the mitigation 

scenarios. The MAC curves were derived from the data for the period 2020-2100 in the case of ENGAGE IAMs and GET (we 

did not consider the data from GET after 2100). 

There are three key assumptions in our approach: i) MAC curves are assumed to be time-independent, ii) abatement 

levels are assumed to be independent across gases, and iii) abatement levels are assumed to be independent across regions. 180 

While MAC curves are more commonly time-dependent or for a specific point in time, time-independent MAC curves have 

also been used for long-term pathway calculations (Johansson et al., 2006; Tanaka and O’Neill, 2018; Tanaka et al., 2021) and 

short-term assessments (De Cara and Jayet, 2011). The implications of the first assumption are discussed later in this section 

and Section 5. The second assumption implies that co-reductions of GHG emissions (e.g., CO2 and CH4 emission reductions 

from an early retirement of a coal-fired power plant (e.g., Tanaka et al., 2019)) are not explicitly considered in our MAC curve 185 

approach. The third assumption implies that GHG abatements occur exclusively in each region without relying on other regions. 

The validity of these assumptions can be seen in Section 4. Additional conditions were applied to derive MAC curves from 

each model, as summarized in Table 1. These conditions were identified based on visual inspection of the data from each IAM. 
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Table 1. Models and data considered for emIAM. This table describes the features of models (including the versions used) and the data (gases, regions (ten regions)) that were used to derive our MAC 

curves. “Solution concept” and “solution method” for ENGAGE IAMs (first nine IAMs in the table) are based on Riahi et al. (2021), Guivarch et al. (2022), and IAMC_wiki (2022). Total anthropogenic 

(and separately energy-related and non-energy-related) CO2, CH4, and N2O emissions were taken from ENGAGE IAMs; only energy-related CO2 emissions were used from GET. 

Model Label 
Solution 
concept 

Solution 
method 

Spatial 
resolution 

Gas 
Range of carbon 
budget (GtCO2) 

Number of 
scenarios 

Data range for MAC curve fitting 

AIM/CGE V2.2 AIM 
General 
equilibrium 

Recursive 
dynamic 

Global 
Regional 

CO2 

CH4 

N2O 
300-1,800 33 Carbon prices lower than $100/tCO2 before 2040 and all data after 2040 

COFFEE 1.1 COFFEE 
Partial 
equilibrium 

Intertemporal 
optimization 

Global 
Regional 

CO2 

CH4 

N2O 
400-2,500 52 

Carbon prices lower than $50/tCO2 with abatement levels below 100% 
under scenarios without negative emissions  

GEM-E3 V2021 GEM 
General 
equilibrium 

Recursive 
dynamic 

Global 
Regional 

CO2 
CH4 
N2O 

400-1,800 23 All scenarios 

IMAGE 3.0 IMAGE 
Partial 
equilibrium 

Recursive 
dynamic 

Global 
Regional 

CO2 
CH4 
N2O 

600-3,000 21 
All data except:  
EN_INDCi2030_800f, EN_NPi2020_600f,  
EN_INDCi2030_1000f, EN_Npi2020_800 

MESSAGEix-
GLOBIOM 1.1 

MESSAGE 
General 
equilibrium 

Intertemporal 
optimization 

Global 
Regional 

CO2 
CH4 
N2O 

200-3,000 51 
All scenarios except: 
EN_NPi2020_450, EN_NPi2020_500 

POLES-JRC 
ENGAGE 

POLES 
Partial 
equilibrium 

Recursive 
dynamic 

Global 
CO2 
CH4 
N2O 

300-3,000 53 
Carbon price below $1,000/tCO2 before 2050 and below $5,000/tCO2 
thereafter 

REMIND-
MAgPIE 2.1-4.2 

REMIND 
General 
equilibrium 

Intertemporal 
optimization 

Global 
CO2 
CH4 
N2O 

200-3,000 57 
All scenarios except: 
EN_INDCi2030_700, EN_INDCi2030_800,  
EN_NPi2020_400, EN_NPi2020_500 

TIAM-ECN 1.1 TIAM 
Partial 
equilibrium 

Intertemporal 
optimization 

Global 
CO2 
CH4 
N2O 

800-3,000 35 All scenarios 

WITCH 5.0 WITCH 
General 
equilibrium 

Intertemporal 
optimization 

Global 
CO2 
CH4 
N2O 

400-3,000 53 All scenarios 

GET 10.0 GET 
Partial 
equilibrium 

Intertemporal 
optimization 

Global 
Energy 
 CO2 

- 22 
Carbon prices lower than $5,000/tCO2; excluded data for very high 
abatements with disproportionally low costs (found typically after 2100) 
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We fit a mathematical function �(�) to the data from each IAM as a MAC curve to capture the emission abatement 195 

level for a given carbon price. In selecting the functional form of MAC curves, we had to balance the competing requirements 

of i) capturing complex nonlinear relationships between the carbon price and the abatement level and ii) keeping the functional 

form at low complexity. We therefore tested the performance of several functional forms to fit the data, some of which were 

based on previous studies (Johansson, 2011; Su et al., 2017; Tanaka and O’Neill, 2018). The candidate functions are 

summarized in Table S2, along with the ranges of parameters considered. To infer a good functional form, we further tried the 200 

symbolic regression approach by using the software HeuristicLab, but we were unable to obtain a functional form that is more 

satisfactory than those suggested in Table S2. Our results indicated that the polynomial function with two algebraic terms 

(equation (1)) gave the highest �� and adjusted �� among the equations tested in more than 50% of the cases, consistently 

performing best for all IAMs (see the Zenodo repository and Table S3). A polynomial function with only one algebraic term 

was insufficient: two distinct algebraic terms are generally needed to capture the trend of our data (sometimes with a kink like 205 

a “reversed L” shape or with a plateau as shown later). 

Therefore, we used a common functional form of equation (1) to generate MAC curves for all cases (i.e., models, 

gases, regions, and sources in ENGAGE IAMs, and portfolios in GET) for consistency, comparability, and simplicity of use.  

�(�) = � × �� + � × ��                                                                                                                                                             (1) 

�, �, �, and � are the parameters to be optimized in each case. � is the variable representing the emission abatement level in 210 

percentage relative to the assumed baseline level. The carbon price (i.e., �(�) in equation (1)) is expressed in per ton of CO2-

equivalent emissions, using GWP100 (28 and 265 for CH4 and N2O, respectively (IPCC, 2013)) to convert CH4 and N2O 

emissions, as assumed in the IAMs emulated here (Harmsen et al., 2016). GWP100 is effectively the default emission metric 

used to convert non-CO2 GHG emissions to the common scale of CO2 and has been used for decades in multi-gas climate 

policies and assessments, including the Paris Agreement (Lashof and Ahuja, 1990; Fuglestvedt et al., 2003; Tanaka et al., 2010; 215 

Tol et al., 2012; Levasseur et al., 2016; UNFCCC, 2018; UNFCCC, 2023). Furthermore, we calculate the confidence intervals 

of the fitted curves using ��� ∓ ��

�
× �� ×

�
1 +

�

�
+

(����̅)�

∑ ��
��

(∑ ��)�
���

�

�
�
���

 (Thomson and Emery, 2014), where �� = �
∑ (������)��

���

���
, � 

is the sample size, ��

�
 is the critical value of t-distribution, �̅ is the mean of samples, ��� = �(��), and ��, �� are the original 

abatement level and carbon price from the IAM, respectively. Uncertainty is reported in all MAC curves derived in this study. 

While such uncertainty is useful to indicate the confidence level of the MAC curve, it is not necessarily very obvious how to 220 

make use of the uncertainty range in reproducing scenarios by optimization from the IAM emulator (Figure S241).  

In addition to deriving the MAC curves, we derived the maximum abatement level from each IAM, which reflected, 

for example, the limit of CCS capacity and hard-to-abate sectors. The minimum abatement level is, by definition, zero in all 

simulation periods, as inter-sectoral emission trading that can increase emissions is irrelevant here. We also estimated upper 

limits of the first and second derivatives of temporal changes in abatement levels, which account for the limits of the rate of 225 
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technological change and the socio-economic inertia (e.g., barriers to the diffusion of new technologies (Schwoon and Tol, 

2006)), respectively. The limits on the first and second derivatives of abatement changes will prohibit the use of deep mitigation 

levels in the MAC curve in early periods. These barriers to rapid emission reductions and the associated costs could also be 

introduced by more complex functional forms internally in the MAC curves (Ha-Duong et al., 1997; Schwoon and Tol, 2006; 230 

De Cara and Jayet, 2011; Hof et al., 2021), but we applied such limits externally on the MAC curves. Processes and factors 

that can cause inertia in IAMs, including capital stock, growth rate constraints on technology expansion, availability of new 

technologies, learning by doing, and learning with time (Gambhir et al., 2019; Krey et al., 2019; Tong et al., 2019; Shiraki and 

Sugiyama, 2020), are not explicitly considered in our MAC curve approach, but are partially captured in our approach, which 

describes percentage reduction rates relative to rising baseline scenarios. For example, constant emission reductions in absolute 235 

terms can appear smaller over time in relative terms and thus become less costly in our approach. 

For each IAM, we computed the rate of change in the abatement level at each time step from the previous time step 

(i.e., first derivatives) over the entire available period. We then approximated such data with a log-normal distribution and 

assumed the three-sigma level (upper side) as the maximum of the first derivative of abatement changes. Likewise, we 

computed the rate of change of the change in the abatement level (i.e., second derivatives), approximated the data with a 240 

normal distribution, and assumed the three-sigma level as the maximum of the second derivative of abatement changes. We 

further assumed that the minimum of the first and second derivatives were at the opposite sign of the maximum of the first and 

second derivatives, respectively. These limits are applied when MAC curves are coupled with ACC2 to generate cost-effective 

pathways (Section 4). 

 245 
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Figure 1. Overview of the methods to derive MAC curves and limits on abatement (upper limits on abatement levels and their 

first and second derivatives). The figure uses the data for global total anthropogenic CO2 emissions from REMIND for illustration. 250 

The chromatic colors indicate the respective carbon budgets for the period 2019 – 2100 in GtCO2. The gray color indicates the baseline 

scenario (“NPi2100” in the original scenario name). Scenarios without INDC consider currently implemented national policies (circle; 

indicated as “NPi2020” in the original scenario name); scenarios with INDC further consider national emission pledges until 2030 

(triangle; indicated as “INDCi2030” in the original scenario name). ECB scenarios consider carbon budgets till the end of this century, 

with a possibility of temporal budget overspending (filled symbols; with “f” in the original scenario name); PKB scenarios consider 255 

carbon budgets without allowing temporal budget overspending (open symbols; without “f” in the original scenario name). Crosses 

indicate data points from scenarios that were not considered in the derivation of the MAC curve (i.e., EN_INDCi2030_700, 

EN_INDCi2030_800, EN_NPi2020_400, and EN_NPi2020_500 for REMIND (see Table 1)). In the equation of the MAC curve, �, �, 

�, and � are the parameters to be optimized; � is the variable representing the abatement level in percentage relative to the assumed 

baseline level. Note that Panel (c) shows data only for every ten years for the sake of presentation. 260 

 

In summary, we combined a MAC curve with the upper and lower limits on abatement levels and their first and 

second derivatives to emulate the behavior of an IAM, as illustrated in Figure 1 using the output from REMIND as an example 

(corresponding figures for AIM and MESSAGE in Figures S1 and S2 of Supplement). The upper two Panels show the original 

data from REMIND: the carbon price pathways corresponding to the series of carbon budgets (Figure 1a) and the global 265 

anthropogenic CO2 emissions (Figure 1b) from the four types of scenarios (PKB scenarios with INDC, ECB scenarios with 
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INDC, PKB scenarios without INDC, and ECB scenarios without INDC). These data are rearranged to show the relationship 

between the carbon price and the abatement level in percentage relative to baseline every ten years (original data every five 275 

years before 2060) (Figure 1c). In the near term, data points can only be seen at low abatement levels. With time, data points 

proceed to deeper abatement levels. Taken together over all years, Figure 1d shows a consistent relationship, providing a basis 

for a time-independent MAC curve. Outliers arising from very low carbon budget scenarios (crosses in Figure 1d) were 

identified and manually excluded from the derivation of the MAC curve (Table 1), although excluding such scenario(s) limits 

the range of applicability of the MAC curve. 280 

The stable MAC curve is an interesting finding in itself because, despite the presence of time-dependent processes 

in this intertemporal optimization model (Campiglio et al., 2022), the same relationship persists over time between the carbon 

price and the abatement level. But why does this time-independent approach work so well to capture IAMs that include time-

dependent processes? The use of percentage reductions in our MAC curve approach goes some way to explaining this. Since 

most of the baseline scenarios are rising as noted above, the same amount of emission abatement in absolute terms can become 285 

smaller with time in percentage terms, which inadvertently but effectively captures the influences from time-dependent 

processes in IAMs. When the underlying data are presented in absolute terms, the data distribution appears more dispersed 

(Figure S3 for AIM, MESSAGE, but to a lesser extent for REMIND). Limits associated with the time-independent approach 

will be further explored in Section 5. 

3.2 MAC curves from ENGAGE IAMs 290 

3.2.1 Carbon price and abatement level  

Figure 2 shows the relationships between the carbon price and the abatement level for global total anthropogenic CO2 emissions 

obtained from nine ENGAGE IAMs. Overall, the relationships between the carbon price and the CO2 abatement level are well 

captured by time-independent MAC curves for most IAMs here. The results vary in terms of the range of carbon prices, the 

range of abatement levels, and the dispersion of data points. For example, the carbon prices of AIM and COFFEE remain 295 

below $500/tCO2, while the carbon prices of POLES and MESSAGE can exceed $5,000/tCO2. The maximum abatement levels 

of COFFEE, POLEs and REMIND are over 140%, while most of the others are in the range of 110%-130%. AIM provides a 

limited amount of data at low abatement levels. IMAGE and POLES produce more dispersed data distributions than other 

models, which may be related to the fact that these models are recursive dynamic models (Table 1); however, the other 

recursive dynamic models, AIM and GEM, produce less dispersed data distributions that can be well captured by MAC curves. 300 

POLES can be seen as an example where our time-independent MAC curve approach does not work well (See Section 5 for 

further discussion). The MAC curve, if taken every five years, shifts to the right over time (Figure S4). Visual inspection of 

the data distributions reveals little difference between the ECB scenarios and PKB scenarios (except for WITCH), indicating 

that the MAC curves are generally consistent for both types of scenarios in these IAMs. Note that the MAC curves are not 

very sensitive to the underlying sets of scenarios considered, at least for the five IAMs (COFFEE, MESSAGE, POLES, 305 
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REMIND, and WITCH), which provide comparable carbon budget ranges and similar numbers of scenarios, while the 310 

distributions of scenarios are generally not homogeneous (Table S7). The MAC curves of the five IAMs are only slightly 

affected when we consider only a subset of scenarios whose carbon budgets are available for all five models (19 scenarios) 

(Figure S37). Results for other gases and for energy-related emissions are shown in Figures S5-S36. 

 

 315 

Figure 2. Relationships between the carbon price and the global total anthropogenic CO2 abatement level obtained from nine 

ENGAGE IAMs. Each Panel shows the results from each ENGAGE IAM. Data were obtained from the ENGAGE Scenario Explorer 

and are shown in colors and markers as designated in the legend. Black lines are the MAC curves. Crosses are the data points that were 

not included in the derivation of MAC curves (Table 1). The shaded bands are the 95% confidence intervals of the fitted curves.  

3.2.2 First and second derivatives of abatement changes  320 

The first and second derivatives of temporal changes in abatement levels for global total anthropogenic CO2 emissions from 

each ENGAGE IAM are shown in Figure 3. Data for the first derivatives primarily distribute on the positive side and can be 

best captured by log-normal distributions, among other distributions tested. On the other hand, data for the second derivatives 

spread on both the positive and negative sides and can be approximated by normal distributions. Based on visual inspection, 

we found that three-sigma ranges of distributions can largely capture data ranges. We therefore use three-sigma ranges as the 325 

limits on the first and second derivatives of abatement changes. There are outliers (now shown) originating from PKB scenarios, 

which we speculate were caused by sudden declines in carbon prices around the period of achieving net zero CO2 emissions 

(Figure SI 1.1-6 of Riahi et al. (2021)). These outliers were effectively removed by considering three-sigma ranges (rather 

than the maxima and minima of the original data points). For other gases and for energy-related emissions, see Figures S38-

Deleted: panel

Deleted: are



 

13 

 

S87. 

 

 

Figure 3. The first and second derivatives of temporal changes in abatement levels for the global total anthropogenic CO2 335 
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emissions from each ENGAGE IAM. A log-normal distribution is applied to the data for the first derivatives of abatement changes 

obtained from each IAM (Panels (a1) to (a9)). A normal distribution is applied to the data for the second derivatives of abatement changes 

obtained from each IAM (Panels (b1) to (b9)). 340 

 

The upper limits on the first and second derivatives of abatement changes estimated for ENGAGE IAMs are 

summarized in Table 2. Those for ACC2 were assumed to be 4.0 %/year and 0.4 %/(year)2, respectively, for all three gases 

(CO2, CH4, and N2O) (Tanaka and O’Neill, 2018; Tanaka et al., 2021). ENGAGE IAMs give higher upper limits on the first 

and second derivatives than ACC2 for CO2. For the other two gases, ENGAGE IAMs also give higher upper limits on the 345 

second derivatives but tend to indicate lower upper limits on the first derivatives. 

The upper limits on the first and second derivatives of CO2 abatement can determine the earliest possible year of 

achieving net zero CO2 emissions (i.e., 100% abatement) for each IAM. In the case of ACC2, it is the year 2050 when net zero 

CO2 emissions become first possible, if the abatement can start in 2020. Figure S88 compares the earliest possible net zero 

years implied by the upper limits on the first and second derivatives with the years of net zero in carbon budget scenarios from 350 

each ENGAGE IAM. The figure shows that the former precedes the latter in all IAMs, indicating that the upper limits based 

on three-sigma ranges are large enough to allow pathways to achieve net zero as shown by each IAM. 

3.2.3 Global MAC curves  

Figure 4 shows the global MAC curves for total anthropogenic and energy-related CO2, CH4, and N2O emissions from nine 

ENGAGE IAMs and other studies. The parameter values of these global MAC curves and associated limits on abatement are 355 

shown in Table 2 (for total anthropogenic emissions) and Table S4 (for energy-related emissions). 
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Figure 4. Global MAC curves for total anthropogenic and energy-related CO2, CH4, and N2O emissions derived from nine 

ENGAGE IAMs. In Panels (a) to (f), the solid line indicates that the MAC curve is within the applicable range; the dashed line means 

that it is outside the applicable range (i.e., above the maximum abatement level indicated from underlying IAM simulation data or above 

the range of carbon prices considered for fitting the MAC curve; see Tables 1 and 2). Different colors indicate different IAMs. The MAC 

curves from selected previous studies (Su et al., 2017; Harmsen et al., 2019; Tanaka et al., 2021) are shown for comparison. The MAC 365 

curves from Harmsen et al., (2019) are time-dependent and the figure shows those for the years 2050 and 2100. 

 

Table 2. Parameter values of global MAC curves for total anthropogenic CO2, CH4, and N2O emissions derived from nine 

ENGAGE IAMs and associated limits on abatement. See equation (1) for parameters �, �, �, and �. MaxABL denotes the maximum 

abatement level (%) of each gas indicated from IAM simulation data. The units for � and � are US$2010/tCO2. Max1st and Max2nd 370 

represent the maximum first and second derivatives (%/year and %/(year)2), respectively, of abatement changes of each gas also derived 

from IAM simulation data. For those of global MAC curves for energy-related CO2, CH4, and N2O emissions, see Table S4. For those 

of regional MAC curves, see the Zenodo repository.  

Model Gas a b c d MaxABL Max1st Max2nd 

AIM 

CO2 182.14 1.27 8.68 19.71 116.2 5.9 1.0 

CH4 108.99 0.91 7.868 × 104 17.91 73.6 6.1 1.3 

N2O 282.34 1.46 2.436 × 105 11.84 56.1 4.5 1.0 

COFFEE 

CO2 46.66 1.29 22.59 7.01 147.2 6.5 1.8 

CH4 3,658.91 4.05 3,658.91 4.05 47.7 2.3 1.3 

N2O 102.75 0.37 102.75 0.37 20.2 3.9 1.4 

GEM 

CO2 267.14 1.76 36.85 8.53 118.2 6.5 1.4 

CH4 486.16 1.59 7,133.48 10.70 72.0 4.6 1.1 

N2O 240.14 0.83 3.107 × 104 6.54 51.1 4.0 0.9 

IMAGE 

CO2 330.58 1.27 28.57 29.83 110.1 6.3 1.2 

CH4 959.11 2.53 959.11 2.53 58.3 3.1 0.6 

N2O 426.52 0.68 1.541 × 10⁸ 9.70 26.3 2.4 0.5 

MESSAGE 

CO2 368.79 2.78 18.30 30.24 120.9 5.4 0.8 

CH4 16789 6.57 3.292 × 107 29.08 73.3 3.5 0.6 

N2O 610.67 0.97 7.910 × 106 9.47 45.2 1.9 0.3 

POLES 

CO2 1,347.98 2.52 144.57 21.87 147.1 5.3 1.2 

CH4 4.816 × 104 9.36 4.816 × 104 9.36 75.9 4.3 1.0 

N2O 1.513 × 106 6.42 1.513 × 106 94.73 37.3 2.3 0.5 

REMIND 

CO2 269.52 3.38 269.52 3.38 141.6 6.4 1.3 

CH4 1,002.16 2.11 1.610 × 1011 28.11 51.2 3.4 1.2 

N2O 224.21 0.65 6.334 × 105 4.92 24.8 1.6 1.0 

TIAM 

CO2 384.32 1.48 78.52 13.31 121.7 5.6 0.9 

CH4 1.23 × 107 17.81 157.83 100 59.5 3.9 1.0 

N2O 2.151 × 105 16.79 99.08 100 73.3 4.3 2.3 

WITCH 

CO2 462.12 1.89 10.13 18.05 128.2 4.7 1.4 

CH4 6,658.29 6.72 2.781 × 1015 69.59 66.7 3.7 2.1 

N2O 681.73 1.52 9.130 × 1018 43.78 42.8 3.1 1.1 

 

MAC curves for total anthropogenic and energy-related CO2 emissions resemble each other since total anthropogenic 375 

CO2 emissions are predominantly energy-related CO2 emissions. COFFEE gives the lowest carbon prices among all IAMs 

Deleted: panels

Deleted: 78686

Deleted: 243642

Deleted: 3658

Deleted: 3658

Deleted: 7133

Deleted: 31072

Deleted: 54

Deleted: 29

Deleted: 7909596

Deleted: 1347

Deleted: 48160

Deleted: 48160

Deleted: 1512842

Deleted: 1513291

Deleted: 136.2

Deleted: 5.9

Deleted: 0

Deleted: 1002

Deleted: 61

Deleted: 633401

Deleted: 215121

Deleted: 6658

Deleted: 78

Deleted: 13



 

16 

 

over a wide range of abatement levels; POLES shows the highest carbon prices. AIM has the second-lowest carbon prices at 

abatement levels of 63% and above. REMIND gives higher carbon prices than AIM above the abatement level of 60%. The 

functional form of the MAC function used by Su et al. (2017) is consistent with our study and Tanaka et al. (2021) used 

equation (2) in Table S2. Harmsen et al. (2019) considered time-dependent MAC curves and no explicit function is provided. 405 

Despite some differences in the form of the functions, the MAC curves for energy-related CO2 used in Su et al. (2017) and 

Tanaka et al. (2021) are within the range of the MAC curves from ENGAGE IAMs, but the MAC curves for CH4 and N2O 

used in Tanaka et al. (2021) are higher. The CH4 MAC curve in 2050 of Harmsen et al. (2019) is also higher than the range of 

the CH4 MAC curves from ENGAGE IAMs, but that in 2100 are close to that range. Harmsen’s N2O MAC curves are within 

the corresponding range of ENGAGE IAMs and not much different between 2050 and 2100. 410 

The difference between MAC curves for total anthropogenic and energy-related emissions is more pronounced for 

CH4 and N2O than for CO2 because of greater mitigation opportunities outside of the energy sector. CH4 MAC curves generally 

rise sharply at lower abatement levels than CO2 MAC curves. All MAC curves for energy-related CH4 emissions are low up 

to about 50% abatement level, presumably reflecting low-cost abatement opportunities. AIM and WITCH give a low carbon 

price up to 80-90% abatement level for energy-related CH4 emissions. Due to limited N2O abatement opportunities, N2O MAC 415 

curves rise steeply at low abatement levels, with the one from REMIND rising earliest.  
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Figure 5. Regional MAC curves for total anthropogenic CO2, CH4, and N2O emissions derived from five ENGAGE IAMs. The 

solid line indicates that the MAC curve is within the applicable range; the dashed line means that it is outside the applicable range (i.e., 420 

above the maximum abatement level indicated from underlying IAM simulation data or above the range of carbon prices considered for 

fitting the MAC curve; see Tables 1 and 2). Different colors indicate different regions: China (CHN), European Union and Western 
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Europe (EUWE), Latin America (LATAME), Middle East (MIDEAST), North America (NORAM), Other Asian countries (OTASIAN), 

Pacific OECD (PACOECD), Reforming Economies (REFECO), South Asia (SOUASIA), Sub-Saharan Africa (SUBSAFR), and Rest of 

World (ROW). 425 

3.2.4 Regional MAC curves 

Figure 5 shows the regional MAC curves for total anthropogenic CO2, CH4, and N2O emissions from five ENGAGE IAMs. 

The parameter values of the regional MAC curves and associated limits on abatement can be found in our Zenodo repository. 

While various inter-model and inter-regional differences can be seen in Figure 5, the regional variations of the AIM MAC 

curves appear to be the smallest for all three gases.  430 

MIDEST generally shows a high CO2 MAC curve relative to other regions. LATAM gives the lowest MAC curve at 

abatement levels above approximately 79% in all IAMs considered here, except for the IMAGE model with SOUASIA and 

REFECO being the lowest MAC curve at abatement levels of above and below 90%, respectively. LATAM also indicates very 

deep CO2 abatement potentials exceeding 150% in some models. AIM’s CH4 MAC curves indicate low-cost CH4 abatement 

opportunities up to abatement levels of approximately 50% in all regions, while such opportunities appear less abundant in the 435 

CH4 MAC curves from other models. REFECO exhibits a very low CH4 MAC curve in all five models. MIDEST gives either 

a high or a low CH4 MAC curve, depending on the IAM. The N2O MAC curves generally rise sharply earlier than the CH4 

MAC curves. 

3.3 MAC curves from GET 

Figure 6 shows the relationships between the carbon price and the abatement level of global energy-related CO2 emissions and 440 

their dependency on the underlying technology portfolios considered in GET. MAC curves from different technology 

portfolios are compared in Figure 7. They are further compared with the global MAC curves for energy-related CO2 emissions 

from ENGAGE IAMs and other studies. The parameter values of these global MAC curves and associated limits on abatement 

are shown in Table 3. Further details of the first and second derivatives of abatement changes from GET can be found in 

Figures S38 and S39. 445 
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Figure 6. Relationships between the carbon price and the global energy-related CO2 abatement level obtained from GET with 

different portfolios of available mitigation technologies. Panel (a) shows the results obtained from an older version of GET (Azar et al., 

2013) for the sake of comparison. Panels (b) to (i) show the results from GET (Lehtveer et al., 2019) with different technology portfolios. 

See Section 2.2 for the definitions of technology portfolios. Points are the data obtained from GET; lines are the MAC curves calculated 450 

based on our approach. Open circles are the data that were not considered in the derivation of MAC curves (Table 1) and are typically 

found after 2100, in some cases above the abatement level of 160% (not shown). Note that we have converted the unit in Panel (a) from 

US$2010/tC, which is used in the older version of GET, to US$2010/tCO2, the commonly used unit here. The shaded bands are the 95% 

confidence intervals of the fitted curves calculated. 

 455 

Global MAC curves for energy-related CO2 emissions from different technology portfolios cover a wide range. The 

range is almost as wide as that from ENGAGE IAMs (i.e., inter-portfolio range ≈ inter-model range), if we disregard the MAC 

curve from COFFEE (Figure 2d). The MAC curve from the Base portfolio is generally higher than the MAC curve based on 

the previous version of the model (Azar et al., 2013; Tanaka and O’Neill, 2018), reflecting the biomass supply potential being 

smaller in the GET version used in our analysis (i.e., 134 EJ/year) than in the previous version (approximately 200 EJ/year), 460 

among other reasons. The maximum abatement level of the Base portfolio is about 120%, which is slightly higher than the 

estimate of 112% based on the previous model version. The Optimistic portfolio generally gives lower carbon prices and 

deeper mitigation potentials than the Base portfolio. Conversely, the Pessimistic portfolio shows higher carbon prices and 

more limited mitigation potential than the Base portfolio. The Optimistic and Large bioenergy portfolios yield more than 150% 
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CO2 abatement levels at maximum. The Large bioenergy + Low carbon storage portfolio gives lower maximum abatement 465 

levels than the previous two portfolios due to the assumed lower carbon storage potential. The Low bioenergy + Large carbon 

storage portfolio limits the maximum CO2 abatement levels at only slightly above 100%. With the Pessimistic portfolio, the 

maximum CO2 abatement levels do not exceed 100% (i.e., no net negative CO2 emissions) primarily because no carbon capture 

technologies such as CCS, CCU, and DAC are available. Likewise, the No CCS+CCU+DAC portfolio also gives a maximum 

abatement level below 100%. The No nuclear portfolio gives a similar relationship to the one from the Base portfolio, 470 

indicating a limited role of nuclear energy here. Finally, the results are somewhat, but not strongly, sensitive to the choice of 

discount rate (5% by default), as indicated by the results based on alternative discount rates of 3% and 7%, where the growth 

rate of carbon price is fixed at the value of the respective discount rate based on the Hotelling rule (Figure S89). The 

deployment of some technologies leads to a rapid increase and then a saturating increase rate of abatement price, as reflected 

in values of � less than 1 and values of � greater than 1 (Table 3). In general, a policy mix with more technologies leads to 475 

lower carbon costs, despite the relatively high upfront costs of technology deployment and use. 

 

 

Figure 7. Global MAC curves for energy-related CO2 emissions derived from the GET model with different portfolios of available 

mitigation technologies. Different colors indicate different technology portfolios (see Section 2.2 for details). Global MAC curves for 480 

energy-related CO2 emissions from ENGAGE IAMs are shown as a comparison in gray lines, and the MAC curves from selected previous 

studies (Su et al., 2017; Tanaka et al., 2021) are shown in lines with stars. 
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Table 3. Parameter values of global MAC curves for energy-related CO2 emissions derived from GET and associated limits on 

abatement. See equation (1) for parameters �, �, �, and �. The units for � and � are US$2010/tCO2. MaxABL denotes the maximum 490 

abatement level (%) of CO2 indicated from GET simulation data. Max1st and Max2nd represent the maximum first and second 

derivatives (%/year and %/(year)2), respectively, of abatement changes. 

Technology portfolio Gas a b c d MaxABL Max1st Max2nd 

Azar 2013 CO2 338.61 1.58 57.08 24.59 112 5.6 0.9 

Base CO2 441.86 0.72 142.54 18.73 121 7.4 1.3 

Optimistic CO2 292.67 0.46 32.43 11.41 148 11.5 2.1 

Pessimistic CO2 1,839.19 1.97 6,716.35 34.62 100 4.5 0.8 

No CCS + CCU + DAC CO2 1,775.74 2.49 3,707.48 53.90 100 5.4 0.9 

Large bioenergy CO2 340.99 0.59 69.68 9.17 148 11.3 2.0 

Large bioenergy + Small carbon storage CO2 452.10 0.82 229.12 8.52 140 7.6 1.5 

Small bioenergy + Large carbon storage CO2 480.65 0.75 1,992.76 15.93 105 6.1 1.1 

No nuclear CO2 489.97 0.80 131.23 19.52 120 7.2 1.3 

4. Validation of ACC2-emIAM 

4.1 ACC2 model 

To validate the performance of our MAC curves emulating IAM responses (i.e., emIAM), we coupled emIAM with the ACC2 495 

model (ACC2-emIAM). ACC2 dates back to the impulse response functions of the global carbon cycle and climate system 

(Hasselmann et al., 1997; Hooss et al., 2001; Bruckner et al., 2003). The model was later developed to a simple climate model 

with a full set of climate forcers (Tanaka et al., 2007) and then to the current form (Tanaka et al., 2013; Tanaka and O’Neill, 

2018; Tanaka et al., 2021): a simple climate-economy model1 that consists of i) carbon cycle, ii) atmospheric chemistry, iii) 

physical climate, and iv) mitigation modules. 500 

The representations of natural Earth system processes in the first three modules of ACC2 are at the global-annual-

mean level as in other simple climate models (Joos et al., 2013; Nicholls et al., 2020). The carbon cycle module falls into the 

category of box models (Mackenzie and Lerman, 2006) and the physical climate module is a heat diffusion model DOECLIM 

(Kriegler, 2005). ACC2 covers a comprehensive set of direct and indirect climate forcers: CO2, CH4, N2O, O3, SF6, 29 species 

of halocarbons, OH, NOx, CO, VOC, aerosols (both radiative and cloud interactions), and stratospheric H2O. The model 505 

captures key nonlinearities, for example, those associated with CO2 fertilization, tropospheric O3 production from CH4, and 

ocean heat diffusion. Uncertain parameters are optimized (Tanaka et al., 2009a; Tanaka et al., 2009b; Tanaka and Raddatz, 

2011) based on an inverse estimation theory (Tarantola, 2005). The equilibrium climate sensitivity is assumed at 3 °C, the best 

 
1 ACC2-emIAM (and ACC2 with the previous version of MAC curves) can be broadly viewed as an IAM, that is, a simple 
cost-effective IAM that considers global mitigation costs relative to an assumed baseline. In terms of the level of simplicity, 
ACC2-emIAM is similar to the DICE model (Nordhaus, 2017) and other simple cost-benefit IAMs that inform the social cost 
of carbon (Errickson et al., 2021; Rennert et al., 2022). However, ACC2-emIAM does not have an economic growth model 
and does not account for climate damage. In this study, ACC2-emIAM is characterized as a climate-economy model, but not 
an IAM, to distinguish it from the more complex IAMs emulated by the MAC curves. ACC2-emIAM also differs from these 
complex IAMs, which are typically not directly coupled with a climate model, with some versions of GET (Azar et al., 2013; 
Gaucher et al., 2023) being exceptions. 
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estimate of IPCC (2021). The mitigation module contains a set of global MAC curves for CO2, CH4, and N2O (Johansson, 

2011; Azar et al., 2013), which is a previous version of MAC curves to be replaced with the MAC curves derived in this study. 515 

ACC2 can be used to optimize CO2, CH4, and N2O emission pathways based on a cost-effectiveness approach. That is, the 

model can calculate least-cost emission pathways for the three gases from the year 2020, while meeting a specified climate 

target (e.g., 2 °C warming target) with the lowest total cumulative mitigation costs in terms of the net present value. The model 

is written in GAMS and numerically solved using CONOPT3 and CONOPT4, the solvers for nonlinear programming or 

nonlinear optimization problems available in GAMS. 520 

More specifically, ACC2 uses equation (2) to calculate the abatement costs (���) of years, regions (or global total), 

and gases. 

����,�,� = ���,�,� × ∫ ��,�,�(�)��
�

�
                                                                                                                                         (2) 

where �, �, � represent year, region, and gas, respectively. � is the abatement level compared to the baseline scenario. ��,�,�(�) 

is the MAC function. �� is the baseline emission level for the IAM. The objective of the model is to minimize the net present 525 

value of the total abatement cost (����) such that the climate target is achieved (e.g., the temperature change is kept below 

at a certain level such as the 2 °C level), that is:  

min ���� = �
����,�,�

(�����)����
�,�,�

                                                                                                                                             (3) 

where ��� is the discount rate and �0 represents the base year used for abatement cost calculations (2010 in this study). 

In this study, we replace the existing set of MAC curves in ACC2 with the global and regional MAC curves obtained 530 

in this study. We also replace the limits on abatement (i.e., upper limits on abatement levels and their first and second 

derivatives) with those obtained from this study. We assume a 5% discount rate in the validation tests, a rate commonly 

assumed in IAMs (Emmerling et al., 2019), which is also consistent with some of the IAMs analyzed here such as MESSAGE 

and GET (Figures SI 1.2-1 and 1.2-2 of Riahi et al. (2021)). But we were unable to find the discount rates used in the other 

IAMs. Note that a 4% discount rate was used as default in recent studies using ACC2 (Tanaka and O’Neill, 2018; Tanaka et 535 

al., 2021). We consider the mitigation costs through 2100 in scenario optimizations. 

4.2 Experimental setups for the validation tests 

The emission pathways of ENGAGE IAMs were generated under a series of cumulative carbon budgets (or corresponding 

carbon price pathways) (Section 2.1). Those of GET were calculated under a series of carbon price pathways (Section 2.2). 

All these pathways are not directly linked to a temperature target, which is typically used as a constraint for ACC2. Therefore, 540 

we successively validated the performance of ACC2-emIAM by applying a constraint first on the cumulative emission budget 

(Test 1) and then on the global-mean temperature (Tests 2 to 4). Four types of experiments were progressively performed as 

summarized in Table 4. Test 1 mimics the condition under which the ENGAGE IAM simulations were carried out (for CO2) 

and can thus be regarded as a direct validation of MAC curves. Tests 2 to 4 are more applied validations to check how MAC 
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curves can work with a simple climate model. Tests 2 to 4 can also be seen as applications, rather than validations, of emIAM 

for temperature targets because the ACC2-emIAM setup takes into account the individual gas characteristics such as the short 

lifetime of CH4 in deriving least-cost emission pathways, which the original IAM setups do not take into account (i.e., using 

GWP100 weighting instead).  

 550 

Table 4. Experimental designs of the validation tests for ACC2-emIAM. See text for details. 

 Test 1 Test 2 Test 3 Test 4 

Target Emission budget 2100 temperature 2100 temperature 
2100 temperature 
Peak temperature 

Abatement 
Separately 
gas by gas 

Separately 
gas by gas 

Simultaneously 
all three gases 

Simultaneously 
all three gases 

 

 Test 1: Constraint on the cumulative emission budget of each gas. We generate least-cost emission pathways with a cap 

on the cumulative emissions of each gas separately (total anthropogenic CO2, CH4, and N2O emissions for ENGAGE 

IAMs; energy-related CO2 emissions for GET). The cap on CO2 for an ENGAGE IAM is equal to the cumulative carbon 555 

budget as specified in each ENGAGE IAM simulation. The cap on CO2 for GET was calculated from the output of GET, 

which was simulated under carbon price pathways. The caps on CH4 and N2O for ENGAGE IAMs were obtained by 

calculating the respective cumulative emissions from 2019 to 2100. Note that the cumulative CH4 budget, or an emission 

budget of short-lived gases in general, does not offer any useful physical interpretation, while the cumulative CO2 budget, 

or an emission budget of long-lived gases, can be an indicator of the global-mean temperature change (Matthews et al., 560 

2009; Allen et al., 2022). It should also be noted that this experiment does not directly make use of the carbon cycle, 

atmospheric chemistry, and physical climate modules of ACC2 (i.e., simple climate models), as these modules do not 

affect the results. Test 1 evaluates how the cumulative emission budget can be distributed over time, which depends on 

the MAC curves and the limits on abatement (i.e., upper limits on abatements and their first and second derivatives), 

while minimizing the total abatement costs. 565 

 

 Test 2: Constraint on the end-of-century warming for one gas at a time. We first use ACC2 to calculate the temperature 

pathway from each carbon budget scenario of each IAM. The calculated temperature at the end of the century is used as 

a constraint on ACC2-emIAM. This test does not use the temperature data found in the ENGAGE Scenario Explorer, 

which were calculated using different simple climate models (Xiong et al., 2022). We calculate least-cost emission 570 

pathways for only one gas at a time (CO2, CH4, or N2O for ENGAGE IAMs). For example, when calculating a least-

cost emission pathway for CO2, we assume the CH4 and N2O emissions to follow the respective pathways from the 

corresponding carbon budget scenario in the ENGAGE Scenario Explorer. This test validates the temporal distribution 

of emissions under an end-of-century warming target with global MAC curves. It also validates the trade-off among 

different regions with regional MAC curves; however, it does not address the trade-off among different gases. 575 
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 Test 3: Constraint on the end-of-century warming for three gases simultaneously. This test is the same as Test 2, except 

that it calculates least-cost emission pathways for three gases simultaneously (CO2, CH4, and N2O for ENGAGE IAMs). 

This test validates not only the aspects described for Test 2 but also the trade-off among different gases. Note that we 580 

do not use GWP100 in ACC2-emIAM to generate least-cost pathways for CO2, CH4, and N2O. In other words, abatement 

levels among the three gases are determined directly by the MAC curves without being constrained by GWP100. It is 

well-known that the use of GWP100 in an IAM leads to a deviation from the cost-effective solution (O’Neill, 2003; 

Reisinger et al., 2013; van den Berg et al., 2015; Tanaka et al., 2021). Although the deviation is unlikely to be very large, 

this can be a small source of discrepancy between the original and reproduced pathways.  585 

  

 Test 4: Constraint on the end-of-century warming and the mid-century peak warming for three gases simultaneously. 

This test is the same as Test 3, except that the maximum temperature in mid-century is used as an additional constraint 

on ACC2-emIAM. The peak temperature was taken from the temperature calculation using ACC2 performed for Test 

2. The constraint of the mid-century peak warming is intended to control near-term CH4 emissions, which are known to 590 

have a strong effect on peak temperatures in mid-century but little effect on end-of-century temperatures (Shoemaker et 

al., 2013; Sun et al., 2021; McKeough, 2022; Xiong et al., 2022). 

 

There are other technical notes that apply to all four tests above. For PKB scenarios, we impose a condition that prohibits 

net negative CO2 emissions on ACC2-emIAM. For ECB scenarios (for Test 1 only), we assume that a carbon budget can be 595 

interpreted simply as a net budget when it is related to the final temperature through the property of the Transient climate 

response to cumulative carbon emissions (TCRE), as commonly assumed in the IAM community. It should, however, be noted 

that such an assumption may not hold for large temperature overshoot scenarios (Tachiiri et al., 2019; Melnikova et al., 2021; 

Zickfeld et al., 2021; Mastropierro et al., 2023). For scenarios with INDC, which follow NDC up to 2030, we impose the 

original scenarios up to 2030 and perform the optimization from 2030 onwards. For scenarios without INDC, on the other 600 

hand, we perform the optimization starting in 2020. Emissions scenarios for all GHGs and air pollutants other than the three 

gases are assumed to follow the corresponding scenarios from the ENGAGE Scenario Explore or the most proximate SSP in 

the case of GET. The original scenarios from GET are available from 2010, but we reproduced the GET scenarios from 2020 

(as done for ENGAGE IAMs) and adopted the GET scenarios from 2010 to 2020 in ACC2-emIAM. When a scenario was 

removed from the MAC curve fitting (Table 1), the scenario was also removed from the validation. 605 

It is important to note that the outcome of the tests described above needs to be interpreted differently, depending on 

whether the IAM is an intertemporal optimization model or a recursive dynamic model (Table 1) (Babiker et al., 2009; 

Guivarch and Rogelj, 2017; Melnikov et al., 2021). While the temporal distribution of emission abatement is internally 
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calculated in an intertemporal optimization model, it is typically a priori assumption in a recursive dynamic model and 

determined by a given carbon price pathway. In a recursive dynamic model, the underlying economic and energy-related 

relationships that determine the temporal distribution of emission abatement are not necessarily consistent with those used to 

allocate emission abatement across sectors and regions at each time step. 615 

4.3 Results from the validation tests 

Figure 8 provides an overview of the validation results, using REMIND as an example. Overall, ACC2-emIAM has closely 

reproduced the original CO2 emission pathways from REMIND in the series of four tests. The outcomes for CH4 and N2O 

were also generally satisfactory, although not as successful as those for CO2. For Test 1, the results were good for all three 

gases. The results were similarly good for Test 2, except for a minor discrepancy due to a small rise in emissions at the end of 620 

the century. A small increase in emissions is known to occur in ACC2 before a temperature target is reached after an overshoot 

due to the inertia of the system (Tanaka et al., 2021). However, discrepancies were found in Test 3 for the near-term CH4 

pathways in low budget cases and the late-century CH4 and N2O pathways in high budget cases. The discrepancy for near-

term CH4 emissions was reduced in Test 4. CH4 abatements tend to be incentivized later in the century in the cost optimization 

of ACC2 with the discount rate of 5% (Tanaka et al., 2021). This effect can be offset by the additional constraint on the mid-625 

century peak temperature, as near-term CH4 emissions can strongly influence mid-century temperatures (Shoemaker et al., 

2013; Sun et al., 2021; McKeough, 2022; Xiong et al., 2022). When interpreting the validation tests, it is useful to keep in 

mind that only Test 1 can be strictly considered as a pure validation; certain levels of discrepancies can be expected from Tests 

2 to 4 due to the difference in the model setup between the original IAMs and ACC2-emIAM.   

 630 
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Figure 8. Overview of the validation results for ACC2-emIAM with REMIND as an example. The outcomes for ECB scenarios 

(filled circles) are shown in the upper set of Panels (a1) to (a12); those for PKB scenarios (open circles) are in the lower set of Panels 

(b1) to (b12). The points show the original emission pathways from REMIND obtained from the ENGAGE Scenario Explorer; the lines 635 

show the emission pathways reproduced from ACC2-emIAM. The same color is used for each pair of original and reproduced pathways. 

For the sake of presentation, only the outcomes of scenarios without INDC are presented; the outcomes of scenarios with INDC are not 

shown here. The outcomes of the full set of scenarios can be seen in Figure S90. 

 

Figure 9 shows the validation results from Test 4 for all nine ENGAGE IAMs (global total anthropogenic CO2, CH4, 640 

and N2O emissions) and GET with different technology portfolios (global energy-related CO2 emissions). The full set of 

validation results from Tests 1 to 4 can be found in Figures S91-S109, S129-S147, S167-S184, and S203-S221, respectively. 

CO2 emission pathways were generally well reproduced through ACC2-emIAM for all ENGAGE IAMs. The outcomes for 

CH4 and N2O were not as good as those for CO2: only a subset of ENGAGE IAMs such as REMIND and WITCH was 

adequately captured by ACC2-emIAM. Some of the mismatches can be explained, for example, by the poor fits of N2O MAC 645 

curves from COFFEE and TIAM (Figure S10). The general difficulty in capturing IMAGE through MAC curves (Figure S16) 

can be seen in the mismatches in these tests for IMAGE in Figure 9. It is also worth noting that, despite very good fits of MAC 

curves from GEM (Figure S15), CH4 and N2O emission pathways were not well reproduced. The results for GET were also 

generally good, but the Large bioenergy + Small carbon storage portfolio gave a relatively poor result. This may be due to the 

relatively poor fit of the MAC curve for this technology portfolio, compared to those from other portfolios (Figure 6). 650 
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Figure 9. Original and reproduced global emission pathways from Test 4 for nine ENGAGE IAMs (total anthropogenic CO2, 660 

CH4, and N2O emissions) and GET (energy-related CO2 emissions) with different technology portfolios. The first three sets of 

Panels (a1) to (a9), (b1) to (b9), and (c1) to (c9) are from the nine ENGAGE IAMs for total anthropogenic CO2, CH4, and N2O emissions, 

respectively. For the sake of presentation, only the outcomes of ECB scenarios without INDC are presented; those of the full scenarios 
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can be seen in Figures S204 to S206. The last set of Panels (d1) to (d9) is from GET with different technology portfolios. The points 665 

show the original emission pathways from ENGAGE IAMs and GET; the lines show the emission pathways reproduced from ACC2-

emIAM. The same color is used for each pair of original and reproduced pathways. For the legend of Panels for GET, the number 

indicates the initial carbon price (US$2010/tCO2), from which the carbon price grows 5% each year.  

 

Furthermore, we examine several selected features of the original and reproduced emission pathways from Test 4 670 

(ECB scenarios without INDC only), such as CO2 emissions in 2030, 2050, and 2100, cumulative negative CO2 emissions 

from 2020 to 2100, the year to net zero for CO2, and that for GHG. Figure 10a-c indicates that the reproducibility of CO2 

emissions for three different points in time varies across models and carbon budgets, but it is worth noting that ACC2-emIAM 

nearly consistently overestimates and underestimates 2030 CO2 emissions from AIM and REMIND, respectively. Cumulative 

negative CO2 emissions are negatively underestimated for COFFEE (Figure 10d), which is related to the general 675 

overestimation of 2100 CO2 emissions for COFFEE (Figure 10c). The year to net zero for CO2 tends to be overestimated (later 

than the original year) for REMIND with the carbon budget at or below 800 GtCO2. 

 

Figure 10. Differences in the pathway features between ENGAGE IAMs and ACC2-emIAM. This figure presents the results from 

Test 4 for ECB scenarios without INDC. Panels (a) to (c) show the difference in CO2 emissions for 2030, 2050, and 2100, respectively, 680 

between ENGAGE IAMs and ACC2-emIAM. Panel (d) shows the difference in cumulative negative CO2 emissions. Panels (e) and (f) 

show the difference in the year to net zero for CO2 and GHG (for CO2, CH4, and N2O), respectively. Positive values indicate that ACC2-

emIAM overestimates the pathway feature (i.e., the emulator gives larger emissions (Panels (a) to (c)), less negative cumulative 

emissions (Panel (d)), or later year (Panels (e) and (f)), while negative values indicate the opposite). Gray boxes without black crosses 
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indicate that the corresponding scenarios were not available in the ENGAGE Scenario Explorer, while those with black crosses indicate 695 

that the corresponding scenarios were available but not successfully reproduced by ACC2-emIAM (i.e., infeasible solutions). 

4.4 Statistics of the validation tests 

To measure to what extent emission pathways obtained from ACC2-emIAM, denoted as �, agree with original pathways from 

ENGAGE IAMs and GET, denoted as �, we calculate the following two different indicators: i) ordinary Pearson’s correlation 

coefficient ��  and ii) Lin’s concordance coefficient ��. Each of these indicators is discussed below. 700 

First, because of the prevalent use of ��  and its square form (i.e., coefficient of simple determination, so-called ��) in 

numerous applications, we use ��  as a reference for comparison, although ��  is known to be inappropriate for testing 

agreement: it is suited to test the strength of linear relationship, but not the strength of agreement (Bland and Altman, 1986; 

Cox, 2006). More specifically, ��  (and ��) shows the strength of linear regression line �́ = ��́ + �, not necessarily �́ = �́, a 

special case of agreement. Note that it is possible to calculate �� based on �́ = �́ by using the sum of square of residuals and 705 

the total sum of squares (i.e., not equation (2)); however, if �́ = �́ is a very poor regression line, �� can become negative (page 

21 of Hayashi (2000)) and cannot be interpreted as a square of �� . Other arguments that suggest a more restricted use of ��  can 

be found elsewhere (Ricker, 1973; Laws, 1997; Tanaka and Mackenzie, 2005). For our application, ��  is defined as below. 

�� =
∑ ∑ ���,���̅�

�
���

�
��� ���,�����

�∑ ∑ ���,���̅�
��

���
�
��� �∑ ∑ ���,�����

��
���

�
���

                                                                                                                                     (4) 

where ��,� and ��,� are the original and reproduced emission, respectively, for year � (for � = 1, … , �) under scenario � (for � =710 

1, … , �). �̅ and �� are the mean of ��,� and ��,�, respectively, over � and �. ��  can change between -1 and 1. When it is 1, the 

samples have a perfect linear relationship, which is a necessary condition for a perfect agreement. When it is 0, there is no 

linear relationship in the samples. 

Second, ��  is a more appropriate indicator for measuring agreement than ��  (Lin, 1989; Barnhart et al., 2007; Lin et 

al., 2012). ��  is defined as follows. 715 

�� =
����

��
����

��(�̅���)�                                                                                                                                                                       (5) 

where ��
�  and ��

�  are the variance of ��,�  and ��,� , respectively. That is, ��
� =

�

�×�
∑ ∑ ���,� − �̅�

��
���

�
���  and ��

� =

�

�×�
∑ ∑ ���,� − ���

��
���

�
��� , respectively. ��� is the covariance of ��,� and ��,� . That is, ��� =

�

�×�
∑ ∑ ���,� − �̅����,� − ����

���
�
��� . 

��  also distributes between -1 and 1. When it is 1, 0, and -1, it indicates a perfect concordance, no concordance, and a perfect 

discordance (or reverse concordance), respectively. �� is commonly interpreted either similar to  ��  or in the following way: 720 

>0.99, almost perfect; 0.95 to 0.99, substantial; 0.90 to 0.95, moderate; <0.90, poor (Akoglu, 2018). An underlying assumption 

for this parametric statistic is that the population follows Gaussian distributions. 

Two other indicators (i.e., the root-mean-square-error (RMSE) and the mean-average-error (MAE)) are computed to 

provide additional insights into the magnitude of the deviations. All four indicators are reported in Figures S110-S128, S148-
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S166, S189-S202, and S222-S240 in Supplement. 725 

 
Table 5. Statistical validation of global emission pathways reproduced from ACC2-emIAM with original emission pathways from 

nine ENGAGE IAMs and GET. The upper and lower Panels are the results for ENGAGE IAMs (global total anthropogenic CO2, CH4, 

and N2O emissions) and GET (global energy-related CO2 emissions), respectively. The table shows two indicators: i) ordinary Pearson’s 

correlation coefficient �� and ii) Lin’s concordance coefficient �� . The higher the value of the indicator is, the darker the color of the cell 730 

is. See text for the details of these statistical indicators. This table presents the results from all scenarios. Results only from the ECB 

scenarios without INDC can be found in Table S5. The results for Test 3 are not reported for GET because Tests 2 and 3 are, by definition, 

equivalent for GET. 

 

 735 
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Table 6. Statistical validation of regional emission pathways reproduced from ACC2-emIAM with original emission pathways 

from five ENGAGE IAMs. Ordinary Pearson’s correlation coefficient �� and Lin’s concordance coefficient ��  are shown in the table. 

The higher the value of the indicator is, the darker the color of the cell is. This table presents the results from all scenarios. Results only 745 

from the ECB scenarios without INDC can be found in Table S6. Emissions from the ROW were not reproduced in some IAMs due to 

the small emission values. 

 

 

The statistics of the validation tests for global MAC curves are shown in Table 5. Those for regional MAC curves are 750 

in Table 6. The values of  ��  are generally lower than the corresponding values of  �� , as expected. Reproducibility is generally 

higher for CO2 than for CH4 and N2O. Certain models tend to have higher values for such indicators than other models. In the 

global case, AIM tends to show relatively low values for CH4. IMAGE and TIAM tend to show low values for N2O. In the 
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regional results, these models give similar values for CO2 for all Tests. The outcomes for CH4 and N2O are diverse and difficult 

to generalize. Finally, ROW is marked with low values in many models and from most of the Tests. 

5. On the time-dependency of MAC curves 

5.1 Deriving time-dependent MAC curves: transitional and free-fitting approaches 

While the time-independent assumption of MAC curves is key to simplifying our IAM emulation approach, it raises questions 760 

about what this simplification entails. Here, we test time-dependent MAC curves to better understand the implications of our 

time-independent approach. Of ten IAMs analyzed in our paper, we selected three IAMs (AIM, POLES, and WITCH) for such 

a test because, based on our visual inspection, these models provide data that appear to be suitable for the use of time-dependent 

MAC curves (Figure 11). As detailed below, we developed time-dependent MAC curves using two different methods. 

 765 
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Figure 11. CO2, CH4, and N2O abatement levels and carbon prices from three IAMs (AIM, POLES, and WITCH) and their 

time-independent (in black) and transitional and free-fitting time-dependent MAC curves (in chromatic colors). Panels (a1) 

to (a6), (b1) to (b6), and (c1) to (c6) show the MAC curves for CO2, CH4, and N2O, respectively. In each set of Panels, data from the 775 
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three IAMs are presented. Time-independent MAC curves are shown in black lines. Transitional time-dependent MAC curves are in 780 

chromatic color lines on the left column; free-fitting time-dependent MAC curves are in chromatic color lines on the right column. 

The vertical gray bars indicate the maximum abatement levels that can be potentially achieved at each point in time every five years 

(gray text), as determined by the upper limits of the first and second derivatives of abatement changes, as well as the upper limit of 

the abatement level (Table 2). See Table 8 for the goodness of fit (coefficients of simple determination) for the time-independent and 

time-dependent MAC curves. 785 

 

First, we introduced the time-dependency to the MAC curves in a way that smoothly extends the time-independent 

MAC curves and their parameterizations as originally used, referred to as “transitional time-dependent MAC curves” (left 

column of Figure 11). For AIM, the relationships between the relative abatement levels of CO2, CH4, and N2O and the carbon 

price are adequately captured by the time-independent MAC curves from 2050 onwards. It is thus sufficient to introduce the 790 

time-dependency to the MAC curve only before 2050. Namely, we modified the time-independent functional form by 

introducing time-dependent terms so that the MAC curves can be shifted to the left (or shifted up) as we go back in time from 

2050. Regarding the two other IAMs, we also applied the same approach to CH4 from POLES and CH4 and N2O from WITCH. 

For the remaining cases (i.e., CO2 and N2O data from POLES and CO2 from WITCH), on the other hand, we stretched the 

time-dependent MAC curve approach all the way to 2100, as it is evident that the data show a temporary shifting trend until 795 

2100. 

Hence, we extended the time-dependent MAC curve approach either to 2050 or to 2100, based on the visual 

inspection of the data for the relationship between the abatement level and the carbon price from each model and gas. For 

time-dependent MAC curves that shift until 2050, we used the following functional form for each applicable model and gas. 

�(��) = �
� × (��)� + � × (��)�, 2050 ≤ � ≤ 2100

� × (�� × (1 + �1 × (�0 − �)��))� + � × (�� × (1 + �1 × (�0 − �)��))�, 2025 ≤ � < 2050, �0 = 2050
               (6) 800 

From 2050 onwards, the equation above (including the parameter values) is equivalent to the time-independent MAC 

curve originally used for the respective model and gas. Although the time-independent MAC curves are derived using the data 

for the full period since 2025, outliers in the near term have been removed (Figure 2). As a result, the time-independent MAC 

curves are largely representative of the data for 2050-2100. For time-dependent MAC curves till 2100, we used the following 

functional form. 805 

�(��) = � × (�� × (1 + �1 × (�0 − �)��))� + � × (�� × (1 + �1 × (�0 − �)��))�, 2025 ≤ � ≤ 2100, �0 = 2100                 (7) 

�� in equations (6) and (7) is the variable representing the emission abatement level in percentage relative to the assumed 

baseline level at each point in time �. �, �, �, � are the parameters that take the model- and gas-specific values estimated for 

the respective time-independent MAC curve (Table 2). To represent the time-dependency, we basically shift the MAC curves 

horizontally by introducing the new terms using the parameters �1, �2, �1, �2. We optimized the parameters �1, �2, �1, �2 by 810 

minimizing the squared deviations from the original price-quantity data between 2025 and 2045 (for equations (6)) or between 
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2025 and 2095 (for equations (7)) for each model and gas (Table 7). Note that for AIM, �2 and �2 are assumed to be 2 for the 

sake of simplicity (they are optimized for POLES and WITCH), while �1 and �1 are optimized for all three IAMs.  

 835 

Table 7. Values of additional parameters used in the transitional time-dependent MAC curves for the three IAMs. For the 

definitions of time-dependent ranges and parameters, see equations (6) and (7) and the related text. 

IAM Gas 
Time-dependent 

range 

Parameter 

e1 e2 f1 f2 

AIM 

CO2 Up to 2050 9.991 × 10-4 2.000 2.974 × 10-3 2.000 

CH4 Up to 2050 9.684 × 10-4 2.000 9.610 × 10-4 2.000 

N2O Up to 2050 4.099 × 10-4 2.000 9.593 × 10-4 2.000 

POLES 

CO2 Up to 2100 8.580 × 10-8 3.794 × 100 4.554 × 10-5 2.229 × 100 

CH4 Up to 2050 6.353 × 10-2 6.276 × 10-1 0.000 0.000 

N2O Up to 2100 1.609 × 10-7 3.541 × 100 0.000 0.000 

WITCH 

CO2 Up to 2100 1.091 × 10-10 5.038 × 100 1.369 × 10-4 1.953 × 100 

CH4 Up to 2050 6.854 × 10-8 4.573 × 100 1.851 × 10-2 4.161 × 10-1 

N2O Up to 2050 1.291 × 10-4 2.390 × 100 6.551 × 10-3 1.192 × 100 

 

The transitional time-dependent MAC curves generally well captured the temporary shifting data from the three IAMs, 

compared to the time-independent MAC curves. The time-dependent MAC curves maintain shapes comparable to the original 840 

time-independent MAC curves and, as the time goes, converge to respective time-independent MAC curves either in 2050 or 

2100. 

Second, in contrast to the transitional approach discussed above, we also introduced the time-dependency to the MAC 

curves by optimizing the parameters in the functions of the MAC curves at each time step, referred to as “free-fitting time-

dependent MAC curves” (right column of Figure 11). More specifically, we maintained the functional form used for the time-845 

independent MAC curves and optimized the four parameters �, �, �, � at each time step (every five years from 2025 to 2100) 

for each IAM (AIM, POLES, and WITCH) and for each gas (CO2, CH4, and N2O). The free-fitting approach captures the data 

point as closely as possible at each time step, testing the limit of the time-dependent MAC curves approach, while the 

transitional approach is more suited for applications as an emulator, as the underlying parameterization is simpler for 

implementation. The goodness of fit in terms of the coefficient of simple determination (��) is summarized for each case in 850 

Table 8. 

 

Table 8. Coefficients of simple determination (��) of the time-independent and time-dependent MAC curves to the IAM data for 

the relationship between the abatement level and the carbon price. The dark blue indicates the highest �� value and the light blue 

the next highest �� value. See Figure 11 for the MAC curves and IAM data. 855 

Gas Type of MAC curve 
IAM 

AIM POLES WITCH 

CO2 
Time-independent 0.957 0.466 0.909 

Time-dependent (transitional) 0.978 0.711 0.957 
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Time-dependent (free-fitting) 0.971 0.812 0.989 

CH4 

Time-independent 0.941 0.739 0.723 

Time-dependent (transitional) 0.980 0.857 0.740 

Time-dependent (free-fitting) 0.993 0.937 0.818 

N2O 

Time-independent 0.952 0.379 0.757 

Time-dependent (transitional) 0.981 0.608 0.790 

Time-dependent (free-fitting) 0.991 0.816 0.774 

 

The �� values from free-fitting time-dependent MAC curves are generally higher than those from transitional time-

dependent MAC curves (seven out of the nine cases). For example, near-term data points from WITCH for CO2 are better 

captured by the free-fitting time-dependent MAC curves than by the transitional time-dependent MAC curves (Panels (a5) and 865 

(a6) of Figure 11). On the other hand, the transitional time-dependent MAC curves are more consistent in terms of the way the 

MAC curves shift over time, as the underlying mathematical functions are formulated to yield such results. The free-fitting 

time-dependent MAC curves are less consistent because they are more strongly influenced by diverging data points from 

different scenario assumptions (i.e., end-of-century budget and peak budget; with and without INDC) (for example, Panels 

(a3) and (a4) of Figure 11). 870 

5.2 Reproducing the IAM scenarios with the time-dependent emulator: methods 

Now we implement the transitional and free-fitting time-dependent MAC curves to emIAM. For each carbon budget pathway 

of each IAM, we imposed the same remaining carbon budget to emIAM as a constraint and calculated the least-cost pathway 

for CO2. Our focus here is on CO2 because of its greatest relevance. This approach is equivalent to Test 1 discussed in Section 

4 and is the most direct and simplest way to evaluate the performance of MAC curves, among other Tests in Section 4. In this 875 

set of experiments, our emulator derives CO2 emission pathways in the same way as a subset of IAMs: intertemporal 

optimization models using a remaining carbon budget as the constraint (Table 1). 

We also performed an additional set of experiments by prescribing the carbon price pathway directly to emIAM (i.e., 

without endogenously optimizing it) and calculated the CO2 emission pathway. This is an even more direct way to test the 

MAC curves than the carbon budget experiments discussed above. The prescribed carbon price pathway uniquely determines 880 

the CO2 emission pathway through the MAC curve(s) without any optimization involved (the carbon budget constraints and 

the change rate and inertia limits for abatement are irrelevant here). Thus, any deviation from the original CO2 emission 

pathway can be ascribed to the misfit of the MAC curve(s) to the underlying data from the IAM, while in the previous 

experiments, it can also be ascribed to a deviation of the endogenously optimized carbon price pathway from the original 

carbon price pathway of the IAM. In this set of experiments, our emulator derives CO2 emission pathways in the same way as 885 

another subset of IAMs: recursive dynamic models using a carbon price pathway (exogenously computed from the remaining 

carbon budget) as the constraint. 

We further checked the sensitivity regarding the upper limits of the first and second derivatives of abatement changes 
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(Table 2). The same upper limits are applied to time-independent and time-dependent approaches. These limits can affect the 

experiments to test the MAC curves, as they define the segment of MAC curves that can be utilized at each time step (vertical 

gray bars in Figure 11). That is, in the near term, only a low range of MAC curves can be utilized by emIAM due to the first 

and second derivative limits.  

In sum, we have a total of nine experimental Cases for each IAM as summarized in Table 9. The first three Cases A 910 

to C test the extent to which the CO2 emission pathways of each IAM can be reproduced by emIAM under the corresponding 

carbon budget constraints by using the respective three different types of MAC curves and abatement limits, while also 

optimizing the carbon price pathways (our default setting). The next three Cases D to F are the same, except that the abatement 

limits are not used. The last three Cases G to I provide the corresponding tests under the carbon price constraints, instead of 

the carbon budget constraints. Note that we focus on the ECB scenarios without INDC, among other sets of scenarios. This set 915 

of scenarios provides the cleanest data for testing how well the MAC curves reproduce the original scenarios because these 

scenarios are free of constraints for net-zero emissions and INDC target levels, which cannot be captured by MAC curves. 

 

Table 9. Statistical validations of CO2 emission pathways reproduced from emIAM against the original emission pathways from 

the three IAMs. For the type of MAC curve, “Indepnd.” indicates time-independent MAC curve (default), “Depnd./Trans.” transitional 920 

time-dependent MAC curve, and “Depnd./Free” free-fitting time-dependent MAC curve. For the abatement limits, “Incl.” means that 

the upper limits of the first and second derivatives of abatement changes are included in emIAM (default); “Excl.” indicates otherwise. 

For the carbon price, “Opt.” indicates that the carbon price is endogenously optimized in emIAM (default); “Presc.” indicates that the 

carbon price from the original IAM is prescribed to emIAM. Dark blue indicates the highest value; light blue the next highest value. The 

table shows the results for the ECB scenarios without INDC. 925 

Experimental case A B C D E F G H I 

Type of MAC curve Indepnd. 
Depnd./ 
Trans. 

Depnd./ 
Free 

Indepnd. 
Depnd./ 
Trans. 

Depnd./ 
Free 

Indepnd. 
Depnd./ 
Trans. 

Depnd./ 
Free 

Abatement limits Incl. Incl. Incl. Excl. Excl. Excl. Excl. Excl. Excl. 

Carbon price Opt. Opt. Opt. Opt. Opt. Opt. Presc. Presc. Presc. 

AIM 

�� 0.9859 0.9757 0.9821 0.9856 0.9758 0.9858 0.9784 0.9939 0.9964 

�� 0.9796 0.9648 0.9716 0.9804 0.9651 0.9779 0.9777 0.9928 0.9961 

MAE 3.3244 4.4760 3.4676 3.1482 4.4452 3.1701 2.5589 1.6386 1.1885 

RMSE 4.3878 5.8783 5.2018 4.2717 5.8526 4.5156 4.3345 2.5061 1.8183 

POLES 

�� 0.9891 0.9862 0.9822 0.9764 0.9835 0.9823 0.9643 0.9831 0.9898 

�� 0.9891 0.9831 0.9764 0.9738 0.9815 0.9762 0.9606 0.9659 0.9892 

MAE 2.0402 2.6271 2.7632 2.8913 2.7222 3.0789 4.2122 3.8071 1.7276 

RMSE 2.7512 3.5772 4.1719 4.1323 3.7007 3.9869 5.4772 5.0704 2.7676 

WITCH 

�� 0.9748 0.9725 0.9657 0.9743 0.9724 0.9698 0.9902 0.9958 0.9976 

�� 0.9625 0.9584 0.9485 0.9654 0.9602 0.9592 0.9893 0.9909 0.9972 

MAE 3.7224 3.8778 4.2143 3.4942 3.7722 3.7820 1.6708 1.5686 0.6386 

RMSE 4.6483 4.9326 5.4789 4.4011 4.7899 4.7323 2.2389 2.0672 1.1471 

 

5.3 Reproducing the IAM scenarios with the time-dependent emulator: results 

In the first three experiments with the carbon budget constraints including the abatement limits (Cases A to C), the statistical 
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indicators showed that the use of the transitional and free-fitting time-dependent MAC curves did not improve the 1090 

reproducibility of emission scenarios (Table 9). For all three IAMs, the scenario reproducibility was, in fact, slightly decreased 

with the introduction of the time-dependency to the MAC curves. In the next three experiments also with the carbon budget 

constraints but excluding the abatement limits (Cases D to F), the use of the time-dependent MAC curves generally only 

improved the scenario reproducibility for POLES. In contrast, in the last three experiments with the carbon price constraints 

(Cases G to I), the use of the time-dependent MAC curves unanimously improved the scenario reproducibility, with the free-1095 

fitting time-dependent MAC curves being superior to the transitional time-dependent MAC curves. To understand why the use 

of time-dependent MAC curves improved the scenario reproducibility only under certain conditions, we examine the results 

separately for the carbon budget simulations (Cases A to F) and the carbon price simulations (Cases G to I) below. 

5.3.1 Carbon budget simulations 

In Cases A to C, both the transitional and free-fitting time-dependent approaches tend to give higher emissions in the near term 1100 

and lower emissions later in the century than the time-independent approach for all three IAMs (Figure 12). This finding can 

be explained by the relative positions of the time-independent and time-dependent MAC curves. Because the time-dependent 

MAC curves are higher (i.e. higher marginal cost for a specific level of abatement) than the time-independent MAC curves in 

the near term, mitigation becomes more costly, resulting in higher emissions in the near term. The results were opposite later 

in the century. Because the remaining carbon budget must be conserved, emissions later in the century become lower with 1105 

time-dependent MAC curves to compensate for the higher emissions earlier. Now, most results from Case A show that the 

time-independent approach already overestimated the emissions in the near term and underestimated the emissions later. Hence, 

those deviations were not reduced by the adoption of the time-dependent approach (Cases B and C); it was rather increased, 

despite the better fit of the time-dependent MAC curves to the price-quantity data from IAMs than the time-independent MAC 

curves.  1110 

Our implicit hypothesis was that the time-dependent approach yields a higher scenario reproducibility than the time-

independent approach; however, this hypothesis proved wrong for Cases A to C. To understand the unexpected outcome, it is 

important to consider the carbon price. There are two different yet associated quantities from the emulator that can be 

characterized as carbon price: i) value of the MAC curve and ii) shadow price. The shadow price is always higher than or equal 

to the value of the MAC curve, as the shadow price is not influenced by various model constraints. Although there is no 1115 

definitive argument to judge which quantity should be compared to the carbon price reported by IAMs, we primarily compare 

the value of the MAC curve with the IAM carbon price (available in the ENGAGE Scenario Explorer) (Figure 13). 

We now ask why both the time-independent and time-dependent approaches overestimated near-term CO2 emissions 

and underestimated long-term CO2 emissions. Taking AIM as an example, the emission overestimations till mid-century are 

primarily caused by the difference in carbon price between the emulator and the IAM. The MAC estimates are generally lower 1120 

than the corresponding carbon prices of AIM, with differences depending on the carbon budget of the scenario. The generally 
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lower MAC estimates largely explain the emission overestimations till mid-century. Later in the century, on the other hand, 

the MAC estimates become higher than the AIM carbon prices, resulting in the emission underestimations. The MAC estimates 1170 

from different carbon budget pathways converge after the emissions reach the lower limit defined by the maximum CO2 

abatement level for AIM (116.2% relative to the baseline (Table 2)). An exception is the emission overestimations in 2025, 

which stem from the upper limits of the first and second derivatives of abatement changes, which do not allow a rapid emission 

reduction required to follow the original AIM scenarios. If these assumed upper limits are dropped (Cases D to F), the 2025 

emissions became substantially lower and better reproduced the original emission levels (e.g., Panels (a1) and (b1) of Figure 1175 

12). However, the impact of these abatement bounds is limited to the very near term. The emission overestimations till mid-

century are better explained by the carbon price differences discussed above. 

Additional descriptions of the results from the other two IAMs follow (Cases A to F). For POLES, the time-

independent approach slightly underestimated the emissions in the near term. Similarly to the results from AIM, both time-

dependent approaches overcorrected this negative discrepancy and resulted in emission overestimations in the near term. Later 1180 

in the century, the time-dependent approaches overcorrected the discrepancy in the opposite way and resulted in emission 

underestimations. When the abatement limits are removed (Cases D to F), the transitional time-dependent approach 

outperformed (Table 9), which was however primarily the consequence of the excessive drop in 2025 emissions of the 

time-independent approach (Panels (a4) and (b4) of Figure 12), with high penalty in the statistical indicators for the time-

independent approach. For WITCH, the differences in the results between the time-independent and time-dependent 1185 

approaches are the smallest among the three IAMs. This reflects the fact that the time-independent MAC curve largely captured 

the relationship between the abatement level and the carbon price in the case of WITCH, except for a limited number of near-

term data points representing very high abatement levels (Panel (a5) of Figure 11). The WITCH results also exhibited the 

general deviation trend seen from other models: emission overestimations in the near term and emission underestimations later 

in the century. This general trend can be also explained by the carbon price differences. Furthermore, the comparison of the 1190 

carbon prices indicates that the discount rate in WITCH may be lower than the assumed discount rate of 5% used in our 

emulator. As discussed earlier, in the absence of information on the discount rate used by all but a few IAMs, our emulator 

assumes 5% for all IAMs. The discount rate in IAM may follow the Ramsey rule, meaning that the discount rate is time-

dependent, depending on the future economic growth. 

5.3.2 Carbon price simulations 1195 

In stark contrast to the results discussed above, the results based on the experiments using prescribed carbon prices (Cases G 

and I) show that the use of time-dependent MAC curves can improve the reproducibility of CO2 emission scenarios over the 

use of time-independent MAC curves (Panels (c1) to (c9) of Figure 12). In particular, near-term emission pathways up to mid-

century were more closely reproduced with the use of time-dependent MAC curves, following our expectation. This is because 

time-dependent MAC curves capture the near-term relationship between the abatement level and the carbon price much better 1200 
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than time-independent MAC curves. On the other hand, near-term emissions were underestimated with the use of time-

independent MAC curves because such MAC curves tended to be lower (i.e., lower carbon price for a given level of abatement) 1280 

than the near-term data points, which led to an underestimation of near-term mitigation costs and thus an overestimation of 

abatement. The use of free-fitting time-dependent MAC curves yielded higher scenario reproducibility than the use of 

transitional time-dependent MAC curves. 

The superiority of time-dependent MAC curves over time-independent MAC curves discussed above can be 

confirmed by the statistical indicators in Table 9. This table also indicates that such results can only be found under the simple 1285 

experimental setup with prescribed carbon prices. Under the more complex (and more applied) setup, in which carbon price 

pathways are endogenously optimized under given carbon budgets, the superiority of time-dependent MAC curves become 

less clear. This is due to the effect of carbon price pathways – an important determinant of scenario reproducibility – which 

can even negate the benefit of using time-dependent MAC curves. 

Ultimately, emission scenarios will be perfectly reproduced, if the following two conditions are met: first, the original 1290 

IAM data (the relationship between the abatement level and the carbon price) are perfectly captured by the MAC curve; second, 

the carbon price pathways are also perfectly reproduced by the emulator. While the first condition can be adequately satisfied 

with the use of time-dependent MAC curves within limits set by the functional form of the MAC curve, the second condition 

cannot necessarily be met due to various constraints in the IAMs that cannot be captured by the emulator. For example, the 

AIM carbon price pathways have first peaks in the near term, followed by second peaks later in the century. Such complex 1295 

terrains of carbon price pathways, which are exogenously imposed in recursive dynamic models, cannot be reproduced by our 

intertemporal optimization emulator. Even the carbon price pathways of the intertemporal optimization model WITCH, which 

shows a monotonic and exponential increase over time, differ from the carbon price pathways of the emulator. The discussion 

here points to the importance of investigating carbon price pathways to further improve the IAM emulator. 
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Figure 12. Comparison between the reproduced CO2 emissions from emIAM and the original emissions from the three IAMs for 

the experimental cases summarized in Table 9. The figure shows the results for the ECB scenarios without INDC. In Panels (c1) to 

(c9), carbon budgets are only indicative, as the simulations were driven by carbon prices, without using carbon budgets. 

 1325 



 

44 

 

 

Figure 13. Carbon price pathways from the time-independent and time-dependent emulators and the three IAMs. MAC 

indicates the value of the MAC curve at each period under each scenario. Shadow price indicates the change in the total policy cost 

(the area of the MAC curves) for an infinitesimal change in emissions from the optimal level. The carbon prices of IAMs are indicated 

by star symbols. Selected three carbon budget scenarios are shown for each IAM. Vertical axes are on a logarithmic scale. 1330 

6. Conclusions 

We have developed emIAM, a novel modeling approach to emulating IAMs by using an extensive array of MAC curves: ten 

IAMs (nine ENGAGE IAMs and GET); global and ten regions; three gases (CO2, CH4, and N2O); eight portfolios of available 

mitigation technologies; and two emission sources (total anthropogenic and energy-related). A series of four validation tests 

(Table 4) were performed using ACC2-emIAM, the hard-linked optimizing climate-economy model, to reproduce the original 1335 

IAM outcomes. The results showed that the original emission pathways were reproduced reasonably well in the majority of 

cases (Tables 5 and 6), although the reproducibility varied depending on the IAM, region, gas, portfolio, source, test, and 

scenario type as summarized below.  

 Certain data points were difficult to capture by MAC curves. In particular, PKB scenarios with low carbon budgets can 

give very large carbon prices in the near-term. Such data points tend to deviate from the trend of other data points and 1340 

were manually removed from the MAC curve fitting where appropriate (Figure 1 and Table 1). Except for these “outliers,” 
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no discernible difference in the data trend was found between ECB scenarios and PKB scenarios, supporting the use of 

common MAC curves for ECB and PKB scenarios. Note also that certain data points from GET at high abatement levels 

do not follow the trend of other data points and were also removed from the MAC curve fitting where appropriate. We 

speculate that these data points are affected by the limit on CCS capacity assumed in GET. 1345 

 Some IAMs were more easily emulated than other IAMs, reflecting specific model features such as solution methods, 

technology assumptions, and abatement inertia. The emulator can usually reproduce the emission pathways of an IAM 

better if the model response to carbon price is well fitted with a MAC function.  

 The validation results for the two long-lived gases CO2 and N2O did not strongly differ across all four tests, even though 

for Tests 2 to 4, there is a difference in the model setup between the original IAMs (GHG aggregation using GWP100) 1350 

and ACC2-emIAM (individual gas cycle modeling without using GWP100). On the other hand, the validation results 

for the short-lived gas CH4 in Tests 2 to 4 were not as good as those in Test 1. Test 4, with the additional mid-century 

temperature target, yielded higher reproducibility for CH4 than Tests 2 and 3. 

 Overall, the global emissions were better reproduced than the regional emissions. CO2 emission pathways were generally 

better reproduced than CH4 and N2O pathways. Specific pathway features such as CO2 emissions in 2030, 2050, and 1355 

2100, cumulative negative CO2 emissions from 2020 to 2100, the year to net zero for CO2, and that for GHG were 

reproduced to varying degrees across models and carbon budgets (Figure 10). While certain biases were found for certain 

pathway features for some models, as reported earlier, no general conclusions can be drawn. 

 The overall good reproducibility of emIAM relies on the use of time-independent MAC curves for percentage emission 

reductions. The behaviors of IAMs that contain various time-dependent processes were generally well captured by the 1360 

time-independent MAC curves in the second half of the century, although the goodness of fit varies considerably among 

IAMs. However, time-independent MAC curves can work only poorly on shorter timescales for many IAMs. A plausible 

explanation for the overall good reproducibility in the second half of the century is that the use of percentage abatement 

levels relative to rising baseline can offset the effect of lowering mitigation costs over time. In other words, the higher 

the baseline scenario is, the larger the absolute amount of emission reduction is (for the same percentage emission 1365 

reduction). If technology costs will not vary significantly over time, a time-independent MAC curve can be a reasonable 

assumption (under a stable baseline scenario). 

 For certain IAMs (AIM, POLES, and WITCH), time-dependent MAC curves provide a better fit to the price-quantity 

data generated from the original IAM than time-independent MAC curves. However, the use of time-dependent MAC 

curves improves the reproducibility of emission scenarios only when the equivalent carbon price pathway is prescribed 1370 

to the emulator. When the carbon price pathway is endogenously optimized under the equivalent carbon budget, it will 

differ from the carbon price pathway used for the IAMs. This difference in carbon prices can negate the benefit of using 

time-dependent MAC curves. The overall performance of the emulator is determined by a complex interplay of various 
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factors, including the MAC curves, the upper bounds of the first and second derivative limits, and carbon price pathways. 

Reproducing carbon price pathways will be an important consideration for the future development of IAM emulators. 

If one is interested in using emIAM, this could easily be done by combining the MAC curve(s), the limits on the 

abatement levels and their first and second derivatives, and the baseline scenario of the IAM of interest in an optimization 1385 

environment such as GAMS. We do not provide specific recommendations on the appropriateness of using each MAC curve 

and leave it up to the user to decide which MAC curves to use because the required accuracy of the IAM emulator depends on 

the purpose of the application. However, the goodness of fit of the MAC curves to the original IAM data and the results of 

validation tests should be carefully examined. Materials needed to make such decisions are systematically presented in 

Supplement and our Zenodo repository, in addition to the discussion above.  1390 

This study demonstrated 1) a methodological framework to generate MAC curves from multiple IAMs simulated 

under a range of carbon budgets and carbon price scenarios and 2) another methodological framework to assess the 

performance of MAC curves with a simple climate model to reproduce original IAM outcomes. Our methods are generic and 

transparent, providing an avenue for extending simple climate models to hard-linked climate-economy models. Future studies 

may emulate specific IAMs with more tailored parameterization approaches. We also open up an avenue for performing a 1395 

quasi-multiple IAM analysis with low computational cost. Given the variety of IAMs available today, insights from multiple 

IAMs are indispensable for creating robust findings. Finally, simple models are complementary to complex models; modeling 

is an art that can shed light into the fundamental laws of complex systems (Yanai, 2009). In similar vein, emIAM can further 

pave an avenue for understanding the general behavior of IAMs. 
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