
#Reviewer 1 

This study estimated a large set of marginal abatement cost (MAC) curves based on the output 

of IAMs in the ENGAGE Scenario Explorer and the GET model. The MAC curves were then 

applied to the emulator for Integrated Assessment Models (emIAM) and coupled to a simple 

climate model, ACC2. The test results showed that emIAM was able to reproduce the original 

IAM emission outcomes under similar conditions. The topic provided rich information about 

MAC curves under various IAMs, as well as different regions evaluated in the manuscript. 

While I agree with the authors that the analysis provided by the authors is certainly of general 

interest to climate-economic model developers and climate-focused researchers, I unfortunately 

cannot recommend publication of the manuscript in its present form. Here are my concerns: 

[Response] We thank the reviewer for taking the time to read our manuscript and for providing 

useful comments. We have carefully revised the manuscript based on the reviewer’s comments. 

First, the authors reviewed a range of existing literature about the categories of MAC curves 

and different MAC curves estimated under various backgrounds. However, the results and 

analysis generally focused on the outcome of this study. I recommend adding a comparison 

between the estimated MAC curves in this study and those presented in existing studies, 

including differences in function forms, appropriate interpretation of parameters, and other 

major differences compared to existing estimates. 

[Response] We selected several previous studies using MAC curves and compared them with 

ours (see Figure 4 and Figure 7). We added the following text to the manuscript: 

The functional form of the MAC function used by Su et al. (2017) is consistent with 

our study, and Tanaka et al. (2021) used equation (2) in Table S2. Harmsen et al. (2019) 

considered time-dependent MAC curves and no explicit function is provided. Despite some 

differences in the form of the functions, the MAC curves for energy-related CO2 used in Su et 

al. (2017) and Tanaka et al. (2021) are within the range of the MAC curves from ENGAGE 

IAMs, but the MAC curves for CH4 and N2O used in Tanaka et al. (2021) show a higher level 

of marginal carbon price. Harmsen et al. (2019) show that CH4 MAC curve in 2050 is also to 

the left of our results, but that in 2100 are close to our study. Meanwhile, their results for N2O 

are in the middle of our results and not much different between 2050 and 2100. 

 



 

Figure 1. Global MAC curves for total anthropogenic and energy-related CO2, CH4, and 

N2O emissions derived from nine ENGAGE IAMs. In panels (a) to (f), the solid line indicates 

that the MAC curve is within the applicable range; the dashed line means that it is outside the 

applicable range (i.e., above the maximum abatement level indicated from underlying IAM 

simulation data or above the range of carbon prices considered for fitting the MAC curve; see 

Tables 1 and 2). Different colors indicate different IAMs. The MAC curves from selected previous 

studies (Su et al., 2017; Harmsen et al., 2019; Tanaka et al., 2021) are shown for comparison. The 

MAC curves from Harmsen et al., (2019) are time-dependent and the figure shows those for the 

years 2050 and 2100. 

 

Figure 7. Global MAC curves for energy-related CO2 emissions derived from the GET 

model with different portfolios of available mitigation technologies. Different colors indicate 



different technology portfolios (see Section 2.2 for details). Global MAC curves for energy-

related CO2 emissions from ENGAGE IAMs are shown as a comparison in gray lines, and the 

MAC curves from selected previous studies (Su et al., 2017; Tanaka et al., 2021) are shown in 

star-shaped lines. 

Second, the ENGAGE Scenario dataset includes a wide range of outputs from various IAMs 

and regions. I am not quite sure about the reasons why the output of a separate GET model was 

also used for estimating the MAC curves. An explanation of the necessity of adding the output 

of the GET model is needed for readers to understand the framework of this study more clearly. 

[Response] It is correct that the ENGAGE scenario database covers a broad range of output 

from various IAMs. However, we still simulated the GET model and used the output to 

additionally explore the effect of technological assumptions (e.g. CCS capacity) on the MAC 

curves. This was possible only with GET because we have a capability to run the GET model 

as needed, but this was not possible with ENGAGE IAMs because no such output is included 

in the ENGAGE Scenario Explorer (i.e. technological assumptions are kept the same in each 

model when it is simulated under different carbon prices). The motivation for using GET was 

already stated in the initial manuscript:  

We further apply the emIAM approach to the GET model (Lehtveer et al., 2019), an 

IAM that did not take part in the ENGAGE project. We can directly simulate GET to derive 

MAC curves under different model configurations, which complements the existing data from 

IAMs simulated under single configurations for the ENGAGE project.  

Third, the manuscript mentions that the emIAM-ACC2 model minimized total abatement costs 

to obtain possible emission pathways for reproducing the outcomes from other IAMs. More 

information about how this process works is needed, including the necessary equations and the 

objective function for minimizing. 

[Response] We thank the reviewer for the suggestion. We have added a more detailed 

description of this process in Section 4.1, as in the following statements: 

More specifically, ACC2 uses equation (2) to calculate the abatement costs (𝐴𝐵𝐶) of 

regions (or global total), gases, and years. 

𝐴𝐵𝐶𝑡,𝑟,𝑔 = 𝐸𝑏𝑡,𝑟,𝑔 ∙ ∫ 𝑓𝑡,𝑟,𝑔(𝑥)𝑑𝑥
𝑥

0
                                                                                                          (2) 

where 𝑡, 𝑟, 𝑔 represent year, region, and gas, respectively. 𝑥 is the abatement level compared 

to the baseline scenario. 𝑓𝑡,𝑟,𝑔(𝑥) is the MAC function. 𝐸𝑏 is the baseline emission level for the 

IAM. The objective of the model is to minimize the net present value of the total abatement cost 

(𝑇𝐴𝐵𝐶), that is:  



𝑚𝑖𝑛𝑇𝐴𝐵𝐶 =∑
𝐴𝐵𝐶𝑡,𝑟,𝑔

(1+𝐷𝑆𝐶)𝑡−𝑡0𝑡,𝑟,𝑔
                                                                                              (3) 

where 𝐷𝑆𝐶  is the discount rate and 𝑡0  represents the base year used for abatement cost 

calculations (2010 in this study). 

 In this study, we replace the existing set of MAC curves in ACC2 with the global and 

regional MAC curves obtained in this study. We also replace the limits on abatement (i.e., upper 

limits on abatement levels and their first and second derivatives) with those obtained from this 

study. We assume a 5% discount rate in the validation tests, a rate commonly assumed in IAMs 

(Emmerling et al., 2019), which is also consistent with some of the IAMs analyzed here such as 

MESSAGE and GET (Figures SI 1.2-1 and 1.2-2 of Riahi et al. (2021)). But we were unable to 

find the discount rates used in the other IAMs. Note that a 4% discount rate was used as default 

in recent studies using ACC2 (Tanaka and O’Neill, 2018; Tanaka et al., 2021) We consider the 

mitigation costs through 2100 in scenario optimizations. 

Fourth, this study provided many figures (some of which are similar) to present the estimations 

of the MAC curves and the emulating results, especially in the Supplement. While these figures 

provide visual information to present relevant results, there are too many figures stacked 

together, making it difficult for readers to find the information they need. An appropriate way 

to manage these figures, such as indexing them using tables or other means of relevance, should 

be added. 

[Response] We thank the reviewer for the suggestion. We have added a list of tables and 

figures to Supplement so that it is easier for readers to find the relevant content.  

  



#Reviewer 2 

Xiong et al have developed an emulator for integrated assessment models (IAMs) using a 

"marginal abatement cost (MAC)" approach. The emulator uses a large set of MACs derived 

from IAM-based scenarios in an existing database to reproduce most original IAM emission 

outcomes at a much lower computational cost than the original model. Additionally, the 

emulator can be coupled to a simple climate model to generate emission pathways for a specific 

temperature target. In general, this is a positive modeling development, as emulators are 

common in various fields, including climate models, but are currently lacking in the IAM field. 

As IAMs continue to advance in complexity, emulators could be valuable in scenario discovery. 

[Response] We thank the reviewer for recognizing the future potential of our work and for 

providing comments that were useful for improving the quality of our manuscript. 

While this study represents one of the first attempts to develop an IAM emulator, there are three 

main areas for improvement, as summarized below and discussed in detail. 

Firstly, the overall flow should be better. Sometimes, the details are provided before a general 

overview, creating challenges for readers. 

[Response] We thank the reviewer for pointing out this problem. We have substantially revised 

the paper structure to improve the flow of the paper. 

Secondly, the visualization could be improved. Many figures are too busy to deliver the critical 

message. 

[Response] We thank the reviewer for the suggestion. We have made systematic refinement of 

the visualization of the figures so that they present the desired information more clearly. For 

example, we improved the layout of Figure 1 (see below), with panel c presenting results for 

each decade (rather than every five years) in larger subpanels. Panel d, which shows MAC 

curves, is now shown in a larger format. In addition, we have also improved the legend of the 

figure. We think the legend is now easier to understand. 



 

Figure 2. Overview of the methods to derive MAC curves and limits on abatement (upper 

limits on abatement levels and their first and second derivatives). The figure uses the data for 

global total anthropogenic CO2 emissions from REMIND for illustration. The chromatic colors 

indicate the respective carbon budgets for the period 2019 – 2100 in GtCO2. The grey color 

indicates the baseline scenario (“NPi2100” in the original scenario name). Scenarios without 

INDC consider currently implemented national policies (circle; indicated as “NPi2020” in the 

original scenario name); scenarios with INDC further consider national emission pledges until 

2030 (triangle; indicated as “INDCi2030” in the original scenario name). ECB scenarios consider 

carbon budgets till the end of this century, with a possibility of temporal budget overspending 

(filled circles; with “f” in the original scenario name); PKB scenarios consider carbon budgets 

without allowing temporal budget overspending (open circles; without “f” in the original scenario 

name). Crosses indicate data points from scenarios that were not considered in the derivation of 

the MAC curve (i.e., EN_INDCi2030_700, EN_INDCi2030_800, EN_NPi2020_400, and 

EN_NPi2020_500 for REMIND (see Table 1)). In the equation of the MAC curve, 𝑎, 𝑏, 𝑐, and 𝑑 

are the parameters to be optimized; 𝑥  is the variable representing the abatement level in 

percentage relative to the assumed baseline level). Note that panel c shows data only for every ten 

years for the sake of presentation. 

Lastly, while I appreciate the massive details and results provided by authors, most of the result 

text was just purely describing the results, without a high-level generalization or explanation of 
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the reason behind the findings. There is little discussion about the model structures, which 

might help explain the results. 

[Response] We thank the reviewer for the suggestion. We have substantially expanded Section 

5 to provide a high-level generalization. Regarding the model structures, we have the following 

discussion in Section 3:  

The results vary in terms of the range of carbon prices, the range of abatement levels, 

and the dispersion of data points. For example, the carbon prices of AIM and COFFEE remain 

below $500/tCO2, while the carbon prices of POLES and MESSAGE can exceed $5,000/tCO2. 

The maximum abatement levels of COFFEE and REMIND are over 150%, while others are in 

the range of 100%-120%. AIM provides a limited amount of data at low abatement levels. 

IMAGE and POLES produce more dispersed data distributions than other models, which may 

be related to the fact that these models are recursive dynamic models (Table 1); however, the 

other recursive dynamic models, AIM and GEM, produce less dispersed data distributions that 

can be well captured by MAC curves. POLES can be seen as an example where our time-

independent MAC curve approach does not work well. The MAC curve, if taken every five years, 

shifts to the right over time (Figure S4). 

Detailed comments: 

1.  Line 108: please explain what’s the NPi2100 scenario. Previous sentences mentioned 

other scenarios like NPi2020 and INDCi2030, but not NPi2100. 

[Response] We have added an explanation about what NPi2100 is in that sentence. Here, 

NPi2100 is our reference scenario that assumes a continuation of the current stated policies 

until 2100. 

2.  Section 2 breaks the entire flow. First, it’s unclear what precisely the MAC is in this 

context. Some experienced readers might generally know a MAC as a function between the 

carbon price and % emission reductions. Still, different kinds of literature might have different 

definitions (i.e., carbon price or emission price) or sectoral and gas specifications. This critical 

“background” information did not show up until Section 3.1. So before diving into the IAM 

and overwhelming scenarios definitions, this paper could benefit from a high-level schematic 

showing the entire working flow. (BTW, the current Fig.1 is overwhelming, with many texts 

and details but somewhat unclear logic). 



[Response] We thank the reviewer for the comment. Given the general structure of our paper, 

we think that the discussion on scenarios (Section 2) should come before the discussion of MAC 

curves (Section 3). In Section 1, we have a paragraph that introduces the general concept of 

MAC curves and why the MAC curve approach was used to conduct these studies in the 

Introduction. We have further added the following text in Section 1: “In the context of climate 

change mitigation, a MAC generally represents the incremental cost of reducing an additional 

unit of emissions; a MAC curve illustrates these costs as the level of emission reductions 

increases relative to the baseline.” We have modified Figure 1 to more clearly present the 

methodological flow. We put the description of the paper structure at the end of Section 1. In 

revising the manuscript, we kept in mind that the paper structure should be clearer (we further 

made use of footnotes where necessary). We hope that our revision adequately addresses the 

reviewer’s concern. 

3.  From section 2, It’s unclear why this paper needs the GET model in addition to the 

ENGAGE scenario database. 

[Response] This point was also raised by reviewer #1. The reason why we use the GET model 

is that we can directly simulate the GET model to explore the effect of technological 

assumptions on the MAC curves. Though the ENGAGE Scenario Explorer provides a large 

number of scenarios that show the carbon price pathways under different carbon budgets, it is 

not suited for the type of analyses that can be possible with GET. While we have a capability 

of simulating GET, we cannot directly simulate the IAMs in the ENGAGE Scenario Explorer 

and can only use existing output from these IAMs. The GET model provides a set of CO2 

emission pathways due to the change of carbon prices under different technical portfolios, 

which can complement the output of the ENGAGE IAMs. Therefore, we use both ENGAGE 

IAMs and the GET model for this study. 

4.  Line 157: “if there are non-zero carbon prices in baseline, we subtracted them from 

the carbon price in mitigation scenarios”, is this implicitly assuming a linear relationship 

between CO2 price and emission reductions? i.e., a linear MAC? 

[Response] We thank the reviewer for the question. All our MAC curves are nonlinear as 

described in Section 3.1. The carbon price for each case is also the relative level to the baseline 

scenario. The small corrections that the reviewer pointed out should not influence the functional 

form of the MAC curve. 

5.  Line 163: I know the term “portfolio” is clearly defined in the GET modeling part in 

Section 2.2, but what does the “portfolio” mean in the ENGAGE scenario database? 



[Response] A portfolio is a set of technological assumptions in the GET model. In the 

ENGAGE Scenario Explorer, there is only one portfolio for each IAM, so the portfolio is 

irrelevant to ENGAGE IAMs. Therefore, we revised the statement as follows:  

for all cases (i.e., models, gases, regions, and sources in ENGAGE, and portfolios in GET). 

6. Line 165 and below: what exactly does this functional form mean? Again, this is 

breaking the flow, as I saw additional explanations 30 lines below in line 192. 

[Response] We have revised this section to improve the flow of the argument. Meanwhile, we 

have further explained this function, and the definition of each parameter has been clarified as 

well. 

7.  Line 165, where is the carbon price in this equation (1)? I guess the carbon price is 

f(x), but the text below, albeit with many details embedded, did not indicate which term 

represents the carbon price. 

[Response] Yes, the carbon price is f(x), which means that the carbon price is a function of the 

abatement level. We added a further explanation for this equation to the following statements:  

𝑎, 𝑏, 𝑐, and 𝑑 are the parameters to be optimized in each case. 𝑥 is the variable 

representing the emission abatement level in percentage relative to the assumed baseline level. 

The carbon price (i.e., 𝑓(𝑥) in equation (1)) is expressed in per ton of CO2-equivalent emissions, 

using GWP100 (28 and 265 for CH4 and N2O, respectively (IPCC, 2013)) to convert CH4 and 

N2O emissions, as assumed in the IAMs emulated here (Harmsen et al., 2016). GWP100 is 

effectively the default emission metric used to convert non-CO2 GHG emissions to the common 

scale of CO2 and has been used for decades in multi-gas climate policies and assessments, 

including the Paris Agreement (Lashof and Ahuja, 1990; Fuglestvedt et al., 2003; Tanaka et 

al., 2010; Tol et al., 2012; Levasseur et al., 2016; UNFCCC, 2018, 2023).  

8.  Line 199, “performing consistently the best for all IAMs (see the Zenodo repository)”. 

This crucial result needs at least a supplementary table or figure or even a main figure/table. 

[Response] We thank the reviewer for the suggestion. We have added the table below in 

Supplement to show this result: 

 

 



Table S3. Statistics for function choices 

Function Count Percentage (%) 

T1 127 51.42  

T2 15 6.07  

T3 45 18.22  

T4 60 24.29  

Total 247 100 

9.  Line 208-209: why do the maximum first and second derivatives of temporal change 

in abatement levels correspond roughly to the limit of the technological change rate and the 

socio-economic inertia? 

[Response] We thank the reviewer for the question. The technological change rate of mitigation 

measures shows limitations in the speed of implementation, while socio-economic inertia 

interferes with the rate of technology change by revealing that some systems need more time 

to change and adapt (Schwoon and Tol, 2006; Harmsen et al., 2019; Hof et al., 2021). In our 

study, we interpret technological change rate as the first derivative of the abatement levels, and 

socio-economic inertia as the second derivative. Therefore, the upper limits of the first and 

second derivatives, derived from individual model behavior, respectively represent the peak 

rate of technological change and socio-economic inertia for the entire sample of the IAM. 

10. Can you show the x- and y-axis in the same scale? (so that we can see how MACs shift 

in time) 

[Response] We thank the reviewer for the comment. We have expanded the sizes of the 

subpanels in panel c by showing the results for each decade, and we have also used the same 

scale of the x- and y-axis for all subpanels in panel c. It can now be easier to see how the data 

shifts over time. The revised figure was copied as part of our response to the second general 

comments. 

11. Line 248: “crosses in the right panel of Figure 1” --- I cannot find crosses in the right 

panel because they are too small. 

[Response] We thank the reviewer for the comment. In order to improve the clarity of the 

information displayed in Figure 1, we have adjusted Figure 1 so that the subpanels are larger 

and the information is easier to see. Please refer to the revised Figure 1 above. 



12.  In figure 2, the authors pointed out different models show very different carbon prices 

for the same level of reduction. For example, when reaching a 100% reduction, the 

corresponding price is about $150, while POLES is about $1000. However, this could be the 

masked effect of the single fitted line on a wide range of scenarios. Even the fitted value for 

POLES indicated an ~$1000 to achieve a 100% reduction, there are individual data points 

(scenarios) reaching 100% reduction with much lower prices. For this type of data and 

distribution, perhaps the MAC approach is not suitable because of the nature of some particular 

models. 

[Response] We thank the reviewer for the comment. We examined the data from POLES in 

more detail. We realized that the POLES model offers a sort of failed example of our MAC 

curve approach, in which the MAC curve, if taken every five years, shifts to the right over time 

(see Figure S4). In such cases, a time-independent MAC curve is not a proper approach to 

capturing the emission behavior of the model. We nevertheless present the results because a 

motivation of this study is to understand to what extent our general MAC curve approach can 

emulate the behavior of various IAMs. 

 

Figure S4. MAC curves of total anthropogenic CO2 emissions per five years for POLES. The 

dots are original data from the POLES model, and the lines are MAC curves derived from these 

data for different years. 



13.  Section 3.2.2 discussed the role of the first and second derivatives of the abatement 

changes, which is interesting, but I still don’t fully understand its value. I.e., do they have 

physical meanings? (see my comment # 8). Also, what if those upper limits for the first and 

second derivatives were removed? How could that change the fitted models? 

[Response] If the first and second derivatives are taken into account, the rate of increase in the 

abatement level will rise slowly in the near term. It can reach its upper limit when society and 

technology have adapted to the policy requirements of climate mitigation (see red and blue lines 

of Figure R1). However, if this constraint is removed, it means that the upper limit of emission 

reductions (e.g. net zero for CO2 or even negative CO2 emissions) can be reached immediately 

(see black line of Figure R1), which is clearly not the case in the original model output.  

 

Figure R1. Abatement level considering the most growth rate of mitigation. Here we assume 

the maximum potential of mitigation is 100%. If no social-economic inertia is considered for the 

MAC curve (black line), then the abatement level can reach 100% quickly. If only technological 

change inertia is considered for the MAC curve (red line), then the abatement level will grow with 

a fixed slope before it reaches 100%. If both technological change and social-economic inertia 

are considered for the MAC curve (green line), the abatement will increase slowly because the 

technology also needs time to change and adapt. 

14. Fig 4 seems to capture the model differences. However, the true question is to what 

extent are these differences because of the model’s structural differences or differences in the 

scenarios simulated by different models? Each model may contribute varying numbers of 

scenarios to the database with unevenly distributed scenario narratives. Thus, the differences 

here might be driven by the artificial selection of the training sample. I hope the authors can 



share some thoughts on this. Also, is there any notable structural differences that might be 

helpful to explain the observations in line 320-329? 

[Response] We thank the reviewer for the question. We aim to extract the relationship between 

abatement levels and carbon prices for models from a large number of scenarios, so the number 

of available scenarios can influence how well the MAC curves can be fitted. The larger the 

number of carbon budget scenario is, the more accurate the fitted curves will generally be. 

Therefore, the distribution of carbon budgets tested by individual models (Table S7; see below) 

can be a potential source of bias. Meanwhile, the model structure could also be a reason as well. 

For example, the five IAMs (COFFEE 1.1, MESSAGEix-GLOBIOM 1.1, POLES-JRC 

ENGAGE, REMIND-MAgPIE 2.1-4.2, and WITCH 5.0) have very similar carbon budget 

ranges and number of scenarios while different solution concepts and solution methods (Table 

1 and Table S7). Thus, we chose these IAMs and filtered the scenarios that they all provided 

(19 scenarios in total, see Table S7). The MAC curves for anthropogenic CO2 emissions are 

given in Figure S37. The MACs between the different IAMs still vary considerably, but the 

results of the three general equilibrium models are close to each other, while those of the two 

partial equilibrium models are far apart, although we do not have a further insight into why this 

occurs. Note that the results of the MAC curves are not very sensitive to the number of scenarios, 

as the results for the subsample of scenarios we used here are very similar to the results for the 

full sample. 

 

Figure S37. Global MAC curves for total anthropogenic CO2 emissions derived from the 

same scenarios for five ENGAGE IAMs. The solid lines are MAC curves derived from the 



subsample, and the dotted lines are MAC curves derived from the full sample. No upper limit of 

abatement level is shown for MAC curves. 

Table S7. Available scenarios for each model in the ENGAGE Scenario Explorer. 0 means 

that the model does not provide this scenario, while 1 means that the model provides this scenario. 

 

15. Table 2, why do some models have huge coefficients for a and c? For example, the “a” 

parameter for REMIND CH4 or the “c” parameter for WITCH CH4 and N2O? Is this because 

of the model itself, or were the scenarios chosen for fitting? Also, the main text did not make 

any comment on Table 2. 

[Response] We thank the reviewer for the question. In a single power function 𝑦 = 𝑎 ∗ 𝑥𝑏, a 

determines the position of the function curve in the vertical direction, and b determines its shape. 

That is, when b>1, the curve is flatter near the origin and then rises sharply. When 0<b<1, the 

curve is steeper near the origin and then flattens out. A large a implies a large y value. The 



function 𝑦 = 𝑎 ∗ 𝑥𝑏  𝑐 ∗ 𝑥𝑑 , which has two power functions, allows us to capture more 

complex trends of MAC curves.  

Therefore, we think the phenomenon that the reviewer raised is due to a combination of the 

chosen function and the data distribution of models. The reason for the very high value of a for 

REMIND CH4 and c for WITCH CH4 and N2O is that the mitigation price is very low at a low 

abatement level, but rises sharply when the abatement level is close to the upper limit (nearly 

vertically for the REMIND and WITCH models (see Figure S7(g), S7(i), and S10(i)).  

  

Figure S7(g) Global total CH4 MAC Figure S7(i) Global total CH4 MAC 

 

Figure S10(i) Global total N2O MAC 

16. Line 366: “They are further compared with the Global MAC curves for energy-related 

CO2 emissions from ENGAGE IAMs.” 

[Response] This review comment looks incomplete, but we guess that the reviewer asks why 

we compare the GET model’s results with ENGAGE IAMs. We aim to see if there is any 

significant difference between the two datasets for MAC curves. The results show that the range 

is nearly as wide as that from ENGAGE IAMs (i.e., inter-technology portfolio range ≈ inter-

model range) if we disregard the MAC curve from COFFEE.  



17.  Figures 7 and 8: Given the current presentation, there’s no way to check the model 

performance for emIAM-ACC2 visually. Please avoid showing so many lines/dots in one 

figure; this busy chart provides minimal information. 

[Response] We thank the reviewer for the suggestion. We assume that the reviewer refers to 

Figures 8 and 9. We think that Figure 8 in the original manuscript was clear enough for the 

comparison because it shows only a subset of simulations (i.e. results of EBC scenarios without 

INDC). However, Figure 9 in the original manuscript was more difficult to read because all 

scenarios are shown. Therefore, we have modified Figure 9 to present only EBC scenarios 

without INDC (consistent with Figure 8).  

18.  Technically, the entire validation test (section 4) is performed in the “training set”. 

Ideally, this should be done in a validation set outside the training set. Authors could 1) try to 

select scenarios from another scenario database, such as IPCC AR6, with the same set of models 

and selected scenarios as validation, or 2) just randomly choose a part of the ENGAGE 

scenarios as the training set to fit MACs (if there’s enough sample size), then use the remaining 

ENGAGE scenarios as the validation set. 

[Response] We thank the reviewer for the suggestion. It is an interesting idea, but since our 

framework considers both the MAC function and the baseline scenario, as well as the 

constraints of the first and second derivative of abatement rates, selecting scenarios from other 

projects in AR6 can lead to inconsistency between the model used to train the emulator and the 

model that give test scenarios. The second point is also a useful suggestion, but the number of 

scenarios used to generate MAC curves in the dataset in this study is limited, so we decided to 

stick to our current approach. Nevertheless, we thank the reviewer for sharing the thoughts, 

which could be applied to our future study.  

19.  Comparing Figures 10 and 11, I wonder why COFFEE performed well in the global 

test but poorly for most regions for CO2. Are they consistent? 

[Response] We thank the reviewer for the question. We double checked and updated the results. 

Because of our mistakes, we provided the wrong emission pathways for scenarios with INDC 

from ACC2-emIAM. Now we have updated these figures with the correct results. The revised 

results show that the COFFEE model also performed well in reproducing the regional CO2 

emissions. 

20.  Line 623 “The results showed that the original emission pathways were reproduced 

reasonably well in a majority of cases.” This is oversimplified. The performance depends on 



the gas, model, and maybe other features (if Figures 7 and 8 could have been clearer). Here 

needs a better summary of the findings. 

[Response] We thank the reviewer for the suggestion. We have substantially expanded the 

discussion in Section 5. The new Section 5 has a high-level summary of the findings as follows:  

▪ The validation results for the two long-lived gases CO2 and N2O did not strongly differ 

across all four Tests, even though for Tests 2 to 4, there is a difference in the model setup 

between the original IAMs (GHG aggregation using GWP100) and ACC2-emIAM 

(individual gas cycle modeling without using GWP100). On the other hand, the validation 

results for the short-lived gas CH4 in Tests 2 to 4 were not as good as those in Test 1. Test 

4, with the additional mid-century temperature target, yielded higher reproducibility for 

CH4 than Tests 2 and 3. 

▪ Overall, the global emissions were better reproduced than the regional emissions. CO2 

emission pathways were generally better reproduced than CH4 and N2O pathways. 

Specific pathway features such as CO2 emissions in 2030, 2050, and 2100, cumulative 

negative CO2 emissions from 2020 to 2100, the year to net zero for CO2, and that for 

GHG were reproduced to varying degrees across models and carbon budgets (Figure 10). 

While certain biases for some models were found for certain pathway features, as 

reported earlier, no general conclusions can be drawn. 

▪ Some IAMs were more easily emulated than other IAMs, reflecting specific model features 

such as solution methods, technology assumptions, and abatement inertia. The emulator 

can usually reproduce the emission pathways of an IAM better if the model response to 

carbon price are well fitted with a MAC function. 

▪ Certain data points were difficult to capture by MAC curves. In particular, PKB scenarios 

with low carbon budgets can give very large carbon prices in the near-term. Such data 

points tend to deviate from the trend of other data points and were manually removed 

from the MAC curve fitting where appropriate (Figure 1 and Table 1). Except for these 

“outliers,” no discernible difference in the data trend was found between ECB scenarios 

and PKB scenarios, supporting the use of common MAC curves for ECB and PKB 

scenarios. Note also that certain data points from GET at high abatement levels do not 

follow the trend of other data points and were also removed from the MAC curve fitting 

where appropriate. We speculate that these data points are affected by the limit on CCS 

capacity assumed in GET. 

▪ The overall good reproducibility of emIAM relies on our novel approach: time-

independent MAC curves for percentage emission reductions. The behaviors of IAMs that 

contain various time-dependent processes were generally well captured by the time-



independent MAC curves. A plausible explanation is that the use of percentage abatement 

levels relative to rising baseline can offset the effect of lowering mitigation costs through 

learning. 

21. Line 626, “Materials that are required for making such decisions are systematically 

presented in Supplement and our Zenodo repository.” This is essential information; the authors 

should provide a couple of high-level bullet points. 

[Response] As we responded above, the revised manuscript provides several high-level bullet 

points.  

22. Line 627, “Some IAMs were more easily emulated than other IAMs. The goodness of 

fit of the MAC curves depends on gases and regions.” Again, this is another place that should 

have provided richer information beyond the current simple comment (which readers would 

even know before reading this paper).  

[Response] This also relates to the two previous comments. We hope that the newly added 

bullet points address the reviewer’s concern.  

  



#Reviewer 3 

Summary: 

The paper describes an emulator for Integrated Assessment Models (IAMs) based on an 

aggregation of MAC curves of different models, regions, time points and greenhouse gases. 

The idea is interesting and useful, because it allows for quick assessments of abatement given 

different carbon prices, for which running IAMs may be computationally costly. The paper 

focuses on the calculation of these MAC curves, on which the authors are thorough, and on the 

validation of the resulting emulator in comparison to the output of the IAMs that the authors 

started with. 

[Response] We thank the reviewer for taking the time to read our manuscript and for providing 

useful comments. We also thank the reviewers for recognizing the usefulness and thoroughness 

of our work. 

General comments 

While the idea of this emulator is interesting and useful, I unfortunately do not recommend 

publication in the paper’s current form and am providing a few suggestions below that may be 

used for major revision. 

1.  The scenarios used as input are merely listed, but little motivation is given why the 

ENGAGE database is chosen, while I think this is key to the resulting MAC curves in the 

emIAM. My suggestion would be to at least motivate why the ENGAGE database is suitable 

for this exercise, and why the authors are not using the full AR6 scenario database that came 

out last year. 

[Response] We thank the reviewer for the comment. The AR6 Scenario database includes a 

large ensemble of scenarios from different projects, including the ENGAGE project. However, 

the AR6 Scenario database was not available at the time of our analysis. Meanwhile, we chose 

only the ENGAGE project because this project adopts the same socioeconomic assumptions 

(i.e. second marker baseline scenario from the Shared Socioeconomic Pathways (SSP2), which 

reflect middle-of-the-road socioeconomic conditions (Riahi et al., 2017)) and provides plenty 

of cases to derive the MAC curves (see Figure 3.2 of (Riahi et al., 2022)). Thus, we argue that 

the ENGAGE Scenario Explorer is the best dataset for our application as it gives a range of 

scenarios under different carbon budgets for many models with consistent configurations. We 



have added some text to explain why we only used the scenarios from the ENGAGE project 

instead of the full dataset of AR6: 

The ENGAGE Scenario Explorer is now part of the larger IPCC Sixth Assessment 

Report (AR6) Scenario Explorer (Byers et al., 2022), which was not available at the time of our 

analysis. Although the use of the entire AR6 scenario dataset could be advantageous in terms 

of the number of IAMs and scenarios available for analyses (189 IAMs (including different 

model versions) and 1389 scenarios in the AR6 Scenario Explorer; 20 IAMs (including different 

model versions) and 231 scenarios in the ENGAGE Scenario Explorer), an advantage of using 

the ENGAGE Scenario Explorer is that the data from IAMs were obtained under a common 

experimental protocol, allowing consistent analyses. 

2. A major concern is the lack of discussion in this paper. The paper contains a lot of 

detailed description of results, along with many detailed figures, but lacks broader discussion. 

For example, where to the gas differences in Fig. 4 or the regional differences in Fig. 5 come 

from? Could we have expected them beforehand? And what do the significant model 

differences in Fig. 2 imply for the ultimate results? 

[Response] We thank the reviewer for pointing out this problem. However, we are afraid that 

it is nearly impossible to directly answer these questions because the IAMs we are dealing with 

are very different from each other and we do not have deep insight into each of these IAMs (we 

are not taking part in the ENGAGE project. We are merely using the publicly available database 

of ENGAGE). In this sense, we argue that our study is not designed to provide explanations for 

the differences found. Rather, our study aims to explore to what extent our generic MAC curve 

approach works for different models, gases, regions, etc, although we discuss possible reasons 

of good/poor MAC curve fitting and reproducibility where possible.  

3. The paper can be written more concise and requires a bit more flow to guide the reader 

throughout the steps. Also, the paper contains too many figures/panels which are not well 

readable, especially when it comes to symbols (circles/triangles, etc.) and scenario labels. The 

authors may consider moving some to the SI. 

[Response] We thank the reviewer for the comment. We have made efforts to streamline the 

content and improve the flow throughout the manuscript. We have also polished the manuscript 

figures for better readability (e.g., font size and color scheme). For example, we have modified 

Figure 1 to more clearly present the overall methodological flow (e.g. reduced the number of 

small panels over time; changed the figure legend to something more intuitive). In Figure 9, we 

reduced the number of scenarios presented so that each scenario can be read more clearly. In 



Section 3, we merged the content of the MAC functions from different paragraphs and moved 

it after the introduction of data processing. We also made use of footnotes where necessary to 

shorten the text and avoid breaking the flow of the manuscript. 

4. More details on the uncertainty of this approach is needed. Clearly, the results are gas, 

model, region and time dependent, while some of these things are actually aggregated into a 

single MAC in emIAM. What does this imply for the end results? Perhaps work with 

uncertainty bars in a summarizing plots in the end to give the reader a feeling for the uncertainty 

of emIAM. Similar for the parametric uncertainties in the values of a, b, c and d when fitting, 

which may require a sensitivity analysis. 

[Response] We thank the reviewer for the suggestion. Though the relationship between the 

carbon price and the CO2 abatement level can be well captured by MAC curves for most IAMs 

we considered, the results vary in terms of the range of carbon prices, the range of abatement 

levels, and the dispersion of data points. We have added 95% confidence intervals of the fitted 

MAC curves in Figure 2 and Figure 6 (and more figures in Supplement). 

 

 

Figure 3. Relationships between the carbon price and the global total anthropogenic CO2 

abatement level obtained from nine ENGAGE IAMs. Each panel shows the results from each 

ENGAGE IAM. Data were obtained from the ENGAGE Scenario Explorer and are shown in 

colors and markers as designated in the legend. Black lines are the MAC curves. Crosses are the 



data points that were not included in the derivation of MAC curves (Table 1). The shaded bands 

are the 95% confidence intervals of the fitted curves calculated by �̂� ∓ 𝑡𝛼
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is the critical value of t-distribution, �̅� is the mean of samples, �̂� = 𝑓(𝑥), and 𝑥, 𝑦 are the original 

abatement level and carbon price result from the IAM, respectively. 

 

Figure 4. Relationships between the carbon price and the global energy-related CO2 

abatement level obtained from GET with different portfolios of available mitigation 

technologies. Panel (a) shows the results obtained from an older version of GET (Azar et al., 

2013) for the sake of comparison. Panels (b) to (i) show the results from GET (Lehtveer et al., 

2019) with different technology portfolios. See Section 2.2 for the definitions of technology 

portfolios. Points are the data obtained from GET; lines are the MAC curves calculated based on 

our approach. Open circles are the data that were not considered in the derivation of MAC curves 

(Table 1) and are typically found after 2100, in some cases above the abatement level of 160% 

(not shown). Note that we have converted the unit in Panel (a) from US$2010/tC, which is used 

in the older version of GET, to US$2010/tCO2, the commonly used unit here. The shaded bands 

are the 95% confidence intervals of the fitted curves calculated (see the caption of Figure 2) 



5.  The authors have chosen to work with percentage abatement w.r.t. baselines rather 

than absolute abatement. I understand the reasoning, but it is not trivial that this choice fully 

counteracts the lack of temporal dependency in the analysis (e.g., in the form of learning by 

doing), even though this is (perhaps even coincidentally) visible when comparing the 

percentage versions versus the absolute versions. Moreover, baselines significantly differ 

among models, which introduces another source of uncertainty. A discussion on this would be 

helpful in the paper. 

[Response] We thank the reviewer for the comment. We compared the data distribution of 

relative and absolute abatements for three models (AIM, REMIND, and MESSAGE) (see 

Figure S3). The figure shows the results for relative abatement are more concentrated, 

supporting the use of relative abatements for our MAC functions.  

Although there are large differences in the baselines of the models, many models assume a 

rising baseline scenario (especially for CO2). Rising baseline scenarios counteract, at least to a 

certain extent, the increasing abatement level over time at the same carbon price.  

We have the following relevant discussions in the manuscript (Sections 3.1 and 5): 

“Learning by doing” and “learning with time,” which reduce the mitigation cost 

with abatement (endogenously) and time (exogenously), respectively (Hof et al., 2021), are not 

explicitly considered in our MAC curve approach, but are partially captured in our approach, 

which describes percentage reduction rates relative to rising baseline scenarios. For example, 

constant emission reductions in absolute terms can appear smaller over time in relative terms 

and thus become less costly in our approach. 

▪ The overall good reproducibility of emIAM relies on the use of time-independent MAC 

curves for percentage emission reductions. The behaviors of IAMs that contain various 

time-dependent processes were generally well captured by the time-independent MAC 

curves. A plausible explanation is that the use of percentage abatement levels relative to 

rising baseline can offset the effect of lowering mitigation costs through learning. 

 

 



 

Figure S3. MAC curves defined with relative and absolute abatement for three 

models. The left three panels show the relationship between carbon price and relative 

abatement level, while the right three panels show the relationship between carbon price 

and absolute abatement. Black lines in the left three panels are MAC curves in percentage 

used in our study. 

6. The numbers in Fig. 10 and 11 are difficult to judge purely on their numerics. It would 

be useful to provide an example and focus on a number of key ingredients of emission pathways 

rather than pure correlations: how do the 2030 emissions differ, the netzero years, and the 

required negative emissions in overshoot scenarios? I guess that it is almost trivial to have a 

high correlation in general, because in all scenarios, emissions go down over time. Hence, to 

convince the reader, focusing on comparisons beyond mere correlation metrics would be useful.  

[Response] We thank the reviewers for their comments. This suggestion is very useful, and we 

have incorporated this idea into our manuscript. We considered several new indicators that 

would be useful for comparing emission pathways of ACC2-emIAM and EMGAGE IAMs. 

Specifically, we considered the difference in carbon emissions between our reproduced results 



and the original results for 2030, 2050, and 2100, as well as the difference in cumulative 

negative CO2 emissions during the period 2020-2100, the difference in the year in which net 

zero of CO2 and net zero of GHGs (CO2 + CH4 + N2O) are achieved. We added Figure 10, 

which presents the results for the ECB scenarios without INDC from Test 4, as well as 

associated discussions as follows:  

Furthermore, we examine several selected features of the original and reproduced 

emission pathways from Test 4 (ECB scenarios without INDC only), such as CO2 emissions in 

2030, 2050, and 2100, cumulative negative CO2 emissions from 2020 to 2100, the year to net 

zero for CO2, and that for GHG. Figure 10a-c indicates that the reproducibility of CO2 

emissions for three different points in time varies across models and carbon budgets, but it is 

worth noting that ACC2-emIAM nearly consistently overestimates and underestimates 2030 

CO2 emissions from AIM and REMIND, respectively. Cumulative negative CO2 emissions are 

negatively underestimated for COFFEE (Figure 10d), which is related to the general 

overestimation of 2100 CO2 emissions for COFFEE (Figure 10c). The year to net zero for CO2 

tends to be overestimated (later than the original year) for REMIND with the carbon budget at 

or below 800 GtCO2. 

 

 

Figure 5. Differences in the pathway features between ENGAGE IAMs and ACC2-emIAM. 

Panels a to c show the difference in CO2 emissions for 2030, 2050, and 2100, respectively. Panel 



d shows the difference in cumulative negative CO2 emissions. Panel e shows the difference in the 

year to net zero for CO2. Panel f shows the difference in the year to net zero for GHGs (for CO2, 

CH4, and N2O). Positive values indicate that the features in the original pathways (from ENGAGE 

IAMs) are larger than those in the reproduced pathways (from ACC2-emIAM), while negative 

values indicate the opposite. Gray boxes without black crosses indicate that the corresponding 

scenarios were not available in the ENGAGE Scenario Explorer, while those with black crosses 

indicate that the corresponding scenarios were available in the ENGAGE Scenario Explorer but 

not successfully reproduced by ACC2-emIAM (i.e., infeasible solutions). 

7. Perhaps more generally and related to aforementioned points: the MAC curve 

deductions themselves are interesting and a lot of insights can be obtained from them. However 

the analysis also reveals that “We do not provide specific recommendations on the 

appropriateness of the use of each MAC curve and leave the users to decide which MAC curves 

to apply” (p. 31), suggesting that the many differences between the MAC curves limit the 

universal applicability of emIAM. Potential users need to be guided better: which results are 

generalizable, what are the main uncertainties? A discussion section, looking at this question 

from a helicopter point-of-view may help in this respect, which is currently missing. This paper 

may be a first step in the direction of IAM-emulators, but then the authors are invited to write 

a bit more about what the next steps should be. 

[Response] We thank the reviewer for the suggestion. Another reviewer expressed the same 

concern. In the revised manuscript, we have added several bullet points that give a high-level 

summary of the findings. We hope this generalization can better guide potential users. 

▪ The validation results for the two long-lived gases CO2 and N2O did not strongly differ 

across all four Tests, even though for Tests 2 to 4, there is a difference in the model setup 

between the original IAMs (GHG aggregation using GWP100) and ACC2-emIAM 

(individual gas cycle modeling without using GWP100). On the other hand, the validation 

results for the short-lived gas CH4 in Tests 2 to 4 were not as good as those in Test 1. Test 

4, with the additional mid-century temperature target, yielded higher reproducibility for 

CH4 than Tests 2 and 3. 

▪ Overall, the global emissions were better reproduced than the regional emissions. CO2 

emission pathways were generally better reproduced than CH4 and N2O pathways. 

Specific pathway features such as CO2 emissions in 2030, 2050, and 2100, cumulative 

negative CO2 emissions from 2020 to 2100, the year to net zero for CO2, and that for 

GHG were reproduced to varying degrees across models and carbon budgets (Figure 10). 

While certain biases for some models were found for certain pathway features, as 

reported earlier, no general conclusions can be drawn. 



▪ Some IAMs were more easily emulated than other IAMs, reflecting specific model features 

such as solution methods, technology assumptions, and abatement inertia. The emulator 

can usually reproduce the emission pathways of an IAM better if the model response to 

carbon price are well fitted with a MAC function. 

▪ Certain data points were difficult to capture by MAC curves. In particular, PKB scenarios 

with low carbon budgets can give very large carbon prices in the near-term. Such data 

points tend to deviate from the trend of other data points and were manually removed 

from the MAC curve fitting where appropriate (Figure 1 and Table 1). Except for these 

“outliers,” no discernible difference in the data trend was found between ECB scenarios 

and PKB scenarios, supporting the use of common MAC curves for ECB and PKB 

scenarios. Note also that certain data points from GET at high abatement levels do not 

follow the trend of other data points and were also removed from the MAC curve fitting 

where appropriate. We speculate that these data points are affected by the limit on CCS 

capacity assumed in GET. 

▪ The overall good reproducibility of emIAM relies on the use of time-independent MAC 

curves for percentage emission reductions. The behaviors of IAMs that contain various 

time-dependent processes were generally well captured by the time-independent MAC 

curves. A plausible explanation is that the use of percentage abatement levels relative to 

rising baseline can offset the effect of lowering mitigation costs through learning. 

 

Minor comments 

1.  The portfolios for GET are described only qualitatively. The choices (p. 5) even seem 

arbitrary – e.g., why did the authors use the numbers of 100% larger and 50% smaller bioenergy 

constraints in the respective portfolios? 

[Response] This is just an arbitrary assumption used to illustrate our purpose. 

2.  Unclear: in Section 4, also the regional MAC curves from emIAM are used, while on 

p. 6 a regional independence is assumed. What is it you are actually using in section 4? 

[Response] Thank you for your comment. When we derived MAC curves for regions using the 

ENGAGE project, we assumed regions are independent. That is, we do not consider the 

correlation (or inter-dependency) between the abatement level of a region and that of another 

region. In Section 4, we used the regional MAC curves derived from the ENGAGE project. 

Here, the trade-off of abatement levels between regions with the least-cost emission pathways 



can be seen. The model will decide which region should remove a certain level of gases 

considering its carbon price. Therefore, the work in section 4 does not conflict with that 

assumption. 

3.  Could you elaborate a bit on Fig. 6 and where these points come from? 

[Response] We thank the reviewer for the comment. As stated in the figure caption, different 

panels in Figure 6 present the relationship between the carbon price and the global energy-

related CO2 mitigation level under different technology portfolios. The original results from the 

GET model are shown in points. The process to calculate the abatement level can be seen in 

Section 3.1. 

4.  Second derivative unit should be % / year^2 I guess, or are the numbers of the 

fractional order 1e-4? 

[Response] We thank the reviewer for pointing out this issue. The second derivative unit 

is %/(year)^2, and this has been corrected in the text. 
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