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Abstract. Sea ice leads are elongated fractures within sea ice cover, playing an important role in the heat exchange from

between the ocean toand the overlying atmosphere, particularly narrow leads with widths of less than 100 meters.. We10
present a method for detecting sea ice leads in the Arctic using high-resolution infrared images from the Thermal Infrared

Spectrometer (TIS) on board the Sustainable Development Science Satellite 1 (SDGSAT-1), with a resolution of 30 m in a

swath of 300 km. With the spatial resolution of leads observed by infrared remote sensing increasing to tens of meters,

focused on the Beaufort Sea cases in April 2022, we achieved an overall accuracy of 96.3% in lead detection compared to

the Sentinel-2 visible images. For the three infrared bands of the TIS, the B2 (10.3-11.3 µm) and B3 (11.5-12.5 µm) bands,15
show similar performances in detecting leads. The B1 band (8.0-10.5 µm) can be usefully complementary to the other two

bands, as a result of different temperature measurement sensitivity. Combining the detected results from TIS three bands, the

TIS is able to detect more leads with widths less than hundreds of meters compared to the Moderate-Resolution Imaging

Spectroradiometer (MODIS). Our results demonstrate that SDGSAT-1 TIS data at 30 m resolution can effectively observe

previously unresolvable sea ice leads, providing new insight into the contribution of narrow leads to rapid sea ice changes in20
the Arctic.Narrow leads less than a hundred meters in width contribute considerable heat fluxes, requiring fine-scale

observation of Arctic leads. With the launch of Sustainable Development Science Satellite 1 (SDGSAT-1) by China on 5

November 2021, the on-board Thermal Infrared Spectrometer (TIS) provides thermal infrared imagery at an unprecedented

resolution of 30 m in a swath of 300 km. We propose a method adapted to the TIS high-resolution infrared images for lead

detection in the Arctic. For the first time, the spatial resolution of leads by infrared remote sensing increases from the scale25
of hundreds kilometers to tens of meters. For the Beaufort Sea cases in April 2022, the detection is consistent with the

Sentinel-2 visible images, yielding an overall accuracy of 96.30%. Compared with the Moderate-Resolution Imaging

Spectroradiometer (MODIS), the TIS presents more leads with width less hundreds of meters than the results based on the

MODIS data. For the three infrared bands of the TIS, the B2 (10.3-11.3 µm) and B3 (11.5-12.5 µm) bands, show similar

performances in detecting leads. The B1 band (8.0-10.5 µm) can be complementary to the other two bands, as the30
temperature measurement sensitivity is different from the other two, benefiting better detection by combining the three bands.

This study demonstrates that SDGSAT-1 TIS data at 30 m resolution is well applicable for observing previously
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unresolvable sea ice leads, and will provide insight into the contribution of narrow leads to rapid sea ice changes in the

Arctic.

1 Introduction35

Over several decades, the Arctic has experienced has warmeding at approximately twice the rate as the entire globe average,

as the result of a well-known phenomenon known ofas Arctic amplification (Serreze and FrancisArrhenius, 18962006) that

has attracted increasing attention. Among a suite of causes and processes contributing to Arctic amplificationArctic

amplification causes and processes, the ongoing changes in the Arctic sea ice extent and the heat fluxes between the ocean

and the atmosphere are particularly prominent (Serreze and Barry, 2011). Leads are elongated fractures within sea ice cover,40
which that develop as the a result of sea ice fracturing under wind and ocean stresses. Although these area of these openings

isare relatively small, covering less than 2% of the central Arctic, leadsthey hold significant importance for the Arctic mass

and heat balance (Vihma et al., 2014). Open water in leads may refreeze when exposed to a cold atmosphere, leaving so

leads contain unfrozen water and ice of varying thicknesses. Although the area of these openings is relatively small, covering

less than 2% of the central Arctic, leads hold significant importance for the Arctic mass and heat balance (Vihma et al.,45
2014). A small change of 1% in the lead fraction would can cause a large fluctuation in the air temperature, by up to 3.5 K

(Lüpkes et al., 2008). Leads provide windows for heat exchange between the air and water, contributing to more thanover

70% of the upward heat flux (Marcq and Weiss, 2012). During winter, newly opened leads and polynyas are the primary

main source of ice production, brine rejection, and turbulent heat loss to the atmosphere (Maykut, 1982; Alam and Curry,

1998). In spring, surface melt creates more openings, and releases allowings more heat exchange into with the atmosphere50
(Ledley, 1988; Tschudi et al., 2002). As preferential melting sites in early summer (Alvarez, 2022), leads strongly absorb

shortwave radiation during the melting season, promoting lateral and basal melt of sea ice (Maykut, 1982), accelerating sea

ice thinning (Kwok, 2018) and decreasing the mechanical strength of sea ice (Gimbert et al., 2012); these processes enable a

more considerable drifting speed, deformation, and possibly a faster export (Rampal et al., 2009; Onarheim et al., 2018). In

turn, more fracturing and earlier openings are expected to create more intensive networks of leads in the following spring55
(Steele et al., 2015).

Under the ongoing trend of sea ice retreat in the Arctic (Cavalieri and Parkinson, 2012; Stroeve et al., 2012), identifying the

characteristics of sea ice leads can help enhance our understanding of thermodynamic and mechanical processes in the Arctic.

Since the early 1990s, Vvarious remote sensing instruments, especially by moderate-resolution thermal infrared satellite

images, have been used for sea ice lead research since the early 1990s, especially by moderate-resolution thermal infrared60
satellite images, e.g., the Advanced Very High-Resolution Radiometer (AVHRR) (Key et al., 1993; Lindsay and Rothrock,

1995), Moderate-Resolution Imaging Spectroradiometer (MODIS) (Willmes and Heinemann, 2015a and 2015b; Hoffman et

al., 2019 and 2021; Reiser et al., 2020; Qu et al., 2021), and Landsat-8 Thermal Infrared Sensor (TIRS) (Qu et al., 2019; Fan

et al., 2020) dataand FY-D Moderate Resolution Spectral Imager Type II (MERSI-II) (Wang et al., 2022). High -resolution
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optical data ishas also been used for lead detection (Marcq and Weiss, 2012; Muchow et al., 2021). Other studies have also65
applied active and passive microwave data to lead detection, taking with the advantage that of the transparency of microwave

wavelengths are transparent to cloud cover; however, either the data resolution in these studies is either too coarse, e.g., with

the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) with a resolution of 6.25 km (Röhrs

and Kaleschke, 2012; Bröhan and Kaleschke, 2014) or the observations are discontinuous, e.g., by synthetic aperture radar

(SAR) (Murashkin and Spreen, 2018; Murashkin et al., and 20199; Liang et al., 2022) and altimeter (Wernecke and70
Kaleschke, 2015; Lee et al., 2018; Zhong et al., 2023). Table 1Table 1 summarizes the current publicly available lead

datasets, mainly developed from based on moderate resolution thermal infrared, with spatial resolutions on a

kilometrekilometer scale, limited to the winter season.

The key to detecting sea ice leads using thermal infrared data For sea ice lead detection based on thermal infrared data, the

key lies in deriving thermal contrasts, specifically namely, the temperature anomaly between sea ice and open water, and to75
distinguishing leads from thermal contrasts of ice ages and clouds. To this end, previous studies have utilized various

temperature datasetsvarious temperature datasets were used in previous studies. For instance, Willmes and Heinemann

(2015a) utilized used the MODIS ice surface temperature (IST) product to map pan-Arctic lead distribution from January to

April over the period of 2003 to 2015. They also developed Thea long-term daily lead product is available to assess seasonal

divergence patterns of sea ice in the Arctic Ocean (Willmes and Heinemann, 2015b). Essentially, IST data, which are usually80
generally retrieved by using the split-window technique (Key et al., 1997), are less accurate under in the presence of melt

ponds and leads because of the lower emissivity (0.96 compared to 0.99) of water compared tothan sea ice, because the

lower emissivity (0.96 compared to 0.99) can causinge a difference in the retrieved temperature (Hall et al., 2001).

MoreoverFurthermore, cloud masking defects affect lead detection (Hoffman et al., 2019; Reiser et al., 2020). To address

these limitations, Hoffman et al. (2019) focused on using at-sensor brightness temperature (BT) data and improved cloud85
masking to detect leads . They detected leads for January through April over the period of 2003 to 2018., However, the lead

area estimation was lower than that ofpresenting a lower estimation for the lead area compared with the results in Willmes

and Heinemann (2015cb); the reason is due to the differences in the spatial resolutions of the lead datasets (1 km2 compared

to 2 km2, seeas listed in Table 1Table 1). More recently,The recently Hoffman et al. (2021) published work applied the a

convolutional neural network U-Net to detect leads based on Visible Infrared Imaging Radiometer Suite (VIIRS) 11 μm BT90
images for lead detection (Hoffman et al., 2021). The lead area analysis of lead area over the winter season from between

2002 to 2022 showed had a small slight decreasing trend due to increasing cloud cover in the Arctic, but an increasing trend

of 3,700 km2 per year after removing the impact of cloud cover changes (Hoffman et al., 2022a). Qu et al. (2021) proposed a

modified algorithm from Willmes and Heinemann (2015a) to detect daily spring leads in the Beaufort Sea based on the IST

data retrieved from MODIS swath products, providing better results in terms of identifying open water leads and refrozen95
leads; they found a positive interannual trend in the April lead area for the study period of 2001 to 2020 of approximately

2,612 km2 per year.
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Accurate Adequate lead observations are crucial to have important contributions to understanding rapid sea ice changes in

the Arctic Ocean (Zhang et al., 2018; Ólason et al., 2021). Narrow leads of less than a hundred meters in width are over two

times more efficient at transmitting turbulent heat than larger leads of hundreds of meters (Marcq and Weiss, 2012).100
However, due to the limitations of spaceborne thermal infrared sensors in terms of spatial resolution, current lead

observations are only available only up toat a moderate resolution on a kilometer scale. Key et al. (1994) assessed the effect

of sensor resolution on lead width statistics. They and suggested that the mean lead width expands “grows” as the pixel size

builds up in gradually degraded imagesThe narrowest lead widths that can be revealed by the detection are several

kilometers or even coarser (Key et al., 1993). Qu et al. (2019) resampled Landsat-8 TIRS data with a resolution of 100 m to105
30 m to estimate heat fluxes over the detected leads. Their result showed an underestimated lead information detected by

MODIS data compared to TIRS data, owing to the inability of MODIS to resolve small leads (widths smaller than 1 km).

Consequently, the heat flux estimation from Landsat-8 TIRS data is larger than that from MODIS data, where small leads

contribute to more than a quarter of the total heat flux. Yin et al. (2021) proposed a convolutional neural network-based

framework to estimate turbulent heat flux over leads at the sub-pixel scale, usingbased on MODIS data. The super-resolution110
estimates are better than those obtained estimated byfrom the original moderate resolution data (1 km) and by interpolation-

based high high-resolution data (100 m), but still have limitations for very narrow leads. Consequently, Therefore, the

kilometer-scale spatial resolution is inadequate for reproducing the actual lead characteristics in the Arctic Ocean. on a

kilometer-scale does not support the reproductionparameterization of actual lead characteristics in the Arctic Ocean. High-

resolution observations are essential urgently needed tofor revealing narrow leads and their variability processesdynamics.115
An emerging opportunity to obtain high-resolution observations is the Sustainable Development Science Satellite 1

(SDGSAT-1), which was successfully launched on November 5, 2021, and is the first satellite customized for the United

Nations (UN) 2030 Agenda for Sustainable Development (Guo et al., 2022). Three payloads, the thermal infrared

spectrometer (TIS), Glimmer Imager for Urbanization (GIU), and Multispectral Imager for Inshore (MII), allow the satellite

to obtain high-quality data as well as full-time monitoring capabilities to facilitate the evaluation of SDG indicators (Guo,120
2019; Guo et al., 20222021). The TIS is used for global thermal radiation detection with three thermal infrared bands (see

Table 1see Section. 2.1 for data detailsfor the sensor characteristics). More importantly, the TIS has a spatial resolution of 30

m, parallel with a wide swath of 300 km. With such an unprecedented infrared imaging capability, SDGSAT-1 TIS is

expected to provide far more details of sea ice characteristics in polar regions than current thermal infrared sensors in orbit.

To date, the TIS has acquired substantial high-resolution thermal infrared data from the critical seas in the Arctic,125
e.g.,including the Beaufort Sea and the Laptev Sea. Figure 1 presents a few cases in March and April 2022 under clear sky

conditions. Under such attractive prospects, we pioneered the scientific application based onof SDGSAT-1 TIS data to

examine its feasibility in detecting sea ice leads from the Arctic Ocean. With regard to the thermal characteristics of high-

resolution data, we proposed an improved lead detection method based on a combination of a binary segmentation and a

designed filter. To determine the reliability of the detailed features resolved at 30 m resolution, a series of comparisons were130
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performed, including comparisons with visible and SAR data at high resolutions, as well as comparisons with comparable

sea ice lead products at moderate resolutions.

This study focuses on observing Arctic sea ice leads based on spaceborne thermal infrared remote sensing at 30 m resolution

and reveals more details than the moderate-resolution thermal infrared sensorsThis study focuses on observing Arctic sea ice

leads based on spaceborne thermal infrared remote sensing at 30 m resolutionThis study is the first to observe Arctic sea ice135
leads at 30 m resolution and reveals the details that are unresolvable by moderate-resolution thermal infrared sensors. The

results will help to understand the processes of Arctic lead variability and its contribution to Arctic sea ice retreat. The paper

is organized as follows. Section 2 introduces the data used in this study, including SDGSAT-1 TIS data for lead detection,

visible images for validation, and others for comparative analysis. Section 3 presents the method applied to derive sea ice

leads. Section 4 presents the high-resolution lead detection results of this study, the validation against visible images, the140
cross-comparison among three infrared bands, and the comparison with moderate-resolution results. In Section Sect. 5, we

explore the factors affecting lead detection and the lead properties resolved by high-resolution imagery. Finally, a summary

and conclusion are given in Section Sect. 6.
Table 1. Arctic sea ice lead datasetsproducts and with their spatial resolutions and time spans

Dataset Satellite sensor Spatial resolution Time span and seasonal coverage

RöhrsBröhan and
KaleschkeKaleschke (20142) AMSR-E 6.25 km × 6.25 km 2002 to 2011 November to April

Willmes and Heinemann (2015b) MODIS 2 km2 2003 to 2015 January to April

Reiser et al. (2020) MODIS 1 km2 2002 to 2021 November to April

Hoffman et al. (2021)

MODIS 1 km2 2002 to 2022 November to April

VIIRS 1 km2 2011 to 2022 November to April

145
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Figure 1: Geospatial distributions of SDGSAT-1 TIS data collected from the Arctic Ocean in March and April in 2022 used in this
study for sea ice lead detection. The black borders mark four successive groups of cloudless images (group 1 was acquired on 3150
April, group 2 on 28 April, groups 3 and 4 on 23 March), where with the color representsing the BT values from the TIS B2 band.
The small red squares indicate are the regions where the TIS data are matched with the Sentinel-2 visible images for validation.

2 Data and pre-processingData

2.1 SDGSAT-1 TIS

As listed in Table 2, the TIS has three infrared bands, which are centered at 9.3 µm (8.0-10.5 µm, Band 1 (B1)), 10.8 µm155
(10.3-11.3 µm, Band 2 (B2)), and 11.8 µm (11.5-12.5 µm, Band 3 (B3)) and has the ability to resolve temperature

differences as low as 0.2°C (@ 300 K) (Guo et al., 2022). In the commissioning phase of the satellite, the analysis shows that

the accuracy of the radiometric measurement is better than 0.42 K for the three bands (Hu et al., 2022), which satisfyingies

the preflight requirements (≤1 K). In particular, tThe B1 band shows less strip noise (i.e., signal fluctuations along the sensor

scan caused by detector noise) than the other two bands. The B2 and B3 bands are the two split-window channels widely160
used in surface temperature retrieval as two split-window channels, while the B1 band is not commonly used in infrared

observation missions. Liu et al. (2021) estimated the ability of SDGSAT-1 TIS data to retrieve land surface temperature

when different split-window algorithms were applied, i.e., the generalized split-window algorithm using the B2 and B3

bands and the three split-window algorithm using the B1, B2 and B3 bands together. Their results showed that the three-

band method may performs better than the two-band method with a root mean square error lower than 1 K.165
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Considering the benefit of incorporating three thermal infrared bands for observation, Thus, theall three bands of SDGSAT-1

TIS data are used for lead detection of ice leads in this study. The georeferenced level-4 TIS data (CBAS, 2022) in the

Beaufort Sea and the Laptev Sea in during the spring season of 2022 were collected and manually selected manually forwith

cloud coverage of less than 10% for sea ice lead detection. Four successive scenes grouped scenarios of by the 11 TIS data is170
are shown in Figure 1Fig. 1, and t(he corresponding information is provided in see Table 3 for the data information).

First, aAll digital numbers (DNs) are converted into at-sensor radiance using formulaEq. (1).

� = ���� × �� + ���� − �� , (1)

where the ���� gain and ���� bias are radiometric calibration coefficients provided by the scientific calibration team,175

which have included relative and absolute radiometric calibrations; �� is the background radiance of the black body. Then,

the BT is calculated from the at-sensor radiance using the Planck function.
Table 2. SDGSAT-1 TIS characteristics and radiometric performance (CBAS, 2022)

Spatial resolution 30 m

Swath width 300 km

Revisit time 11 days

Band wavelengths

B1: 8.0-10.5 µm

B2: 10.3-11.3 µm

B3: 11.5-12.5 µm

Dynamic range 220 K-340 K

Noise equivalent differential

temperature (NE∆T)
0.2 K @300 K

Radiometric calibration accuracy
Absolute radiometric calibration: ≤1K,

Relative radiometric calibration: 5%

180

2.2 Sentinel-1 and Sentinel-2

Sentinel-2 (S2) is a constellation of two satellitesis formed by two satellites, S2A and S2B,. Bboth satellites are equipped

with a Multispectral Instrument (MSI) with thirteen spectral channels covering the visible, near-infrared wave and shortwave

infrared spectral zones (ESA, 2015). Level-1c S2 products provide top-of-atmosphere reflectance processed in with

radiometric and geometric corrections in tile form., with Eeach tile is being an ortho-image in a 100 by 100 km2 area. S2185
MSI visible green band images at a resolution of 10 m are used for to comparison compare with the leads detected by the

TIS in this study for validation. We mainly used the 3 band 3 (560 nm) imagedata, which offers gives a good discrimination

between leads and surrounding sea ice in visual comparisons for the scenarios applied in this study., given that the visible
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spectrum centered at 560 nm gives a good effect (König et al., 2019) for a scene containing sea ice and seawater. Images

acquired over the Beaufort Sea and the Laptev Sea in March and April 2022 were collected (see Table 3 for the data190
information, and see the red squares in Figure 1Fig. 1 for their locationcoverage).

Sentinel-1 (S1) is a C-band SAR that operates imaging day and night regardless of the weather. Both S1A and 1B acquire

dual-polarization (HH and HV) imagery, covering the vast Arctic region. The S1 extra-wide (EW) swath data have has a

swath width of approximately 400 km, with a pixel size of 40 m by 40 m (ESA, 2013). We used the S1 level-1b data in the

format of ground range detected medium resolution (GRDM). As S1B has been out of operation work since December 2021,195
only the S1A data are available in during this study period. Considering that the backscatter values of SAR in different

polarizations give different sensitivities for leads fully opened or covered by thin ice, we collected S1A dual-polarization

data in the Beaufort Sea on April 3 and 28, in 2022 (see Table 3). The dual-polarization data were radiometrically calibrated,

and a false-color composition was performed by assigning the HH, the subtraction of HH by HV, and the HV images to the

red, green, and blue channels, respectively.200

2.3 MODIS IST products

The MODIS is an instrument onboard the two polar-orbiting satellites, Terra and Aqua, which are part of NASA’s Earth

Observing System (EOS). The MODIS acquiracquires data in 36 discrete spectral bands from that cover the optical to the

thermal infrared radiance wavelength region. The swath width of the MODIS is 2330 km. The daily level-2 sea ice products,

MOD29 and MYD29, daily level-2 sea ice products include sea ice cover and IST datasets (Hall and Riggs, 2021). Each205
product contains 5 minutes of swath data observed at a resolution of 1 km. The IST data are retrieved byusing the split-

window technique based on the MODIS 31 and 32 bands, with an accuracy of 1.2-1.3 K (Hall et al., 2004). Cloud masking

from the MODIS cloud products for daytime and nighttime (Ackerman et al., 1998) is integrated into the IST retrieval. The

IST data produced by MODIS/Terra, i.e., MOD029 products, and the MOD03 geolocation product (MODIS

Characterization Support Team, 2017) are used in this studyThe MOD29P1D and MYD29P1D daily level-3 sea ice products210
include daily sea ice cover and IST datasets (Hall and Riggs, 2021). Each product contains a tile of data gridded into the

Lambert azimuthal equal-area map projection, which is approximately 1200 by 1200 km2 in area. The IST datasets have a

spatial resolution of 1 km. The IST data are retrieved by the split-window technique based on the MODIS 31 and 32 bands,

with an accuracy of 1.2-1.3 K (Hall et al., 2004). Cloud masking from the MODIS cloud products for daytime and nighttime

(Ackerman et al., 1998) is integrated into the IST retrieval. Given that the SDGSAT-1 mainly passes over the Laptev Sea215
and the Beaufort Sea in the morning, IST data produced by MODIS/Terra, i.e., MOD029P1D products, are mainly used in

this study (see Table 3 for data information).

2.4 ERA5 air temperature data

The European Centre for Medium-Range Weather Forecasts (ECMWF) provides the fifth-generation reanalysis data (ERA5)

for global climate and weather for the past seven decades (Hersbach et al., 2018). The ERA5 near-surface air temperature (2220
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m air temperature) data is available by every 6 hourlys and in a regular grid of 0.25 degrees. In this study, we used 2 m air

temperature data for the period between March and April 2022from March to April 2022 to explore analyze the possible

variations in the atmospheric environment.

2.5 OMI/Aura product

Since the TIS B1 band (8.0-10.5 µm) corresponds to covers an absorption channel for ozone (Wan and Li, 1997), we225
analyzed the potential possible absorption effects of different ozone resolutions on thermal infrared radiation in this study.

The Ozone Monitoring Instrument (OMI) is an instrument onboard the EOS Aura mission. The OMI measurements cover a

spectral region of 264–504 nm, which aims to continue the record for total ozone and other atmospheric parameters related

to ozone chemistry and climate. The total column ozone is retrieved based on the long-standing TOMS V8 retrieval

algorithm (Bhartia, 2002), which uses a weakly absorbing wavelength (331.2 nm) to estimate an effective surface reflectivity230
and another wavelength (317.5 nm) with stronger ozone absorption to estimate ozone. The level-3 OMI/Aura Ozone Total

Column data (OMTO3) are produced by using best pixel data from approximately 15 orbits, covering the whole globe and

mapped in a grid size of 0.25 degrees (Bhartia, 2012).

Table 3. Information of satellite data and derived product used in this study235

SDGSAT-1 TIS Sentinel-2 MSI
MOD029 and

MOD03P1D
Sentinel-1A EW

Date and

time

(UTC)

2022-03-23

10:52:13

10:52:59

10:53:43

10:54:13

03:55:34

h07/08/09/10

v07/08/0910:30

12:05

/

2022-04-03

04:26:39

04:27:09

04:27:39

04:28:09

21:00:23
h07/08/09/10

v07/08/0905:10
15:53:09

2022-04-28

04:56:25

04:55:26

04:55:55

22:42:28
h07/08/09/10

v07/08/0905:05
/

Spatial resolution 30 m 10 m 1 km Pixel size: 40 m
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3 Method

Figure 2: Flowchart of sea ice lead detection based on SDGSAT-1 TIS data.

In this section, we propose a method for sea ice lead detection adaptable to high-resolution TIS images, based on the240
principle of exploiting both the relative and absolute temperature characteristics of sea ice leads.3.2 Detection of ice leads

LIce leads containing seawater and thin ice have temperatures higher than the surrounding sea ice. Therefore, detecting leads

is based on the the temperature contrast between leads and the sea ice surface is the basis of detecting ice leads (Willmes and

Heinemann, 2015a; Hoffman et al., 2019; Qu et al., 2021). However, as the spatial resolution of thermal infrared imagery

improvesis improved, the temperature variations in sea ice with different thicknesses pose a challenge for accurate lead245
identification. To address this issue, the algorithm we proposed mainly involves two steps: a segmentation and a filter, which

correspond to the two major steps in the flowchart in Figure 2Fig. 2 shows the flowchart for detecting leads based on

SDGSAT-1 TIS data in this study, which contains a segmentation and a filter.. The algorithm’s input is the BT data of each

TIS band (B1, B2, and B3 bands), ). A representative scenario containing both large and narrow leads, along with surface

temperature variations, is presented in as shown in Figure . 3 (a) , using the TIS B1 band as an examplefor an example of the250
B1 band. Thanks to the high spatial resolution of 30 m, the thermal features of sea ice and leads are clearly observable. In

addition to the leads presenting as distinct yellow and red colors (in the temperature range of 242 K to 252 K) colors on the

BT map, slight variations in sea ice surface temperature can be identified from approximately 237 K to 242 K. The

brightness temperature anomaly (BTA) images are derived from the BT data by subtracting the mean temperature in

neighbouring windows with sizes of 2.4 km by 2.4 km (80 pixels by 80 pixels), as shown in Figure 3Fig. 3 (b). Undoubtedly,255
the BTA data further highlight the presence of leads, but the positive BTA values caused by thinner sea ice are also

highlighted. To this end, the first step of our lead detection involves is applying a binary segmentation to extracts potential

leads from the BTA data. In the second step, the derived potential leads are used together with the BT data to extract the BT

values of the potential leads, and then used in a designed filter to obtain the consequent leads.A designed filter is further
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applied to the segmentation, and the leads are consequently obtained. The following next two subsections describe the two260
major steps involved in the proposed method.

(a) (b)
Figure 3: Example for the BT image and BTA image based on the SDGSAT-1 TIS B1 band (8-10.5 µm) acquired on April 3 in
2022. (a) The BT image. (b) The derived BTA image.
SDGSAT-1 TIS data ID: KX10_TIS_20220403_W128.84_N73.00_202200033226.

3.2.1 Potential lead segmentation of ice leads based on the BTA data265

The key to performing a binary segmentation by the BTA data is to identify find an appropriate threshold to segment sea ice

and leads. To achieve this, we collected By collecting eight seven TIS data acquired between April 3 and April 28, 2022 in

the Arctic Ocean, we and analyzed the distribution of their BTA data, as illustrated shown in Figure 4Fig. 4. The BTA data

follow show a normal distribution, as demonstrated by the Gaussian fitting as the overlaid Gaussian fitting (with μ = -0.25 K,

σ2 = 0.38 K) overlaid on the graphindicates. The peak in the histogram displays a peak appears at -0.25 K, accounting for270
15.09% of all the data. The long tail on the positive side of the histogram suggests that the presence of images contain leads

in the images, as they have a higher temperatures than the surrounding sea ice. Thereforeus, it is necessary towe need to

determine a threshold in the positive BTA range to accurately segment the leads from other features.

Previous methods studies applied variousa variety of BTA thresholds for lead detection (Willmes and Heinemann, 2015a;

Hoffman et al., 2019; Qu et al., 2021). For instance, Bbased on BTA derived from the MODIS IST product, Willmes and275
Heinemann (2015a) compared the standard deviation and a set of non-parameterized methods. In terms of BTA derived by

MODIS 11 µm swath data, Hoffman et al. (2019) identified a threshold of 1.5 K. Qu et al. (2021) took 1.2 K, 1.5 K and 2 K

as thresholds for different types of leads, corresponding to large to small uncertainty levels. We enlarged a part of the

histogram tail in Figure 4Fig. 4 and observed that . Tthe Gaussian curve gradually deviates from the bars when the BTA

value exceeds is greater than 1.2 K, which should indicatinge a transition from ice to leads. We tested various thresholds and280
found that selecting choosing 1.2 K, 1.8 K, and 2.7 K as thresholds yields results in distinguishable differences in the

segmentation results, as illustrated one example presented in Figure 5Fig. 5. Using a threshold of 1.2 K results in false-



12

positive detections (i.e., sea ice or others features classified as leads), as exemplified bye.g., the white pixels marked by the

orange square in Figure 5Fig. 5 (a) (this can be identified in the original BTA map shown in Figure 3Fig. 3 (b)). In contrast,

using 2.7 K as the threshold causesresults in a loss of detail, e.g.,as highlighted by the part marked by the orange square in285
Figure 5Fig. 5 (c) (compared to Figure 5Fig. 5 (b)). Multiple threshold segmentation was tested when theby varying the BTA

threshold was varied from 1.2 K to 2.7 K in 0.1 K steps. After visual comparison, we found that using 1.8 K as the threshold

yields presented a significantly different segmentation effect, which can Multiple tests using 1.8 K as the BTA threshold

avoidss many false-positive detections while still capturing lead details, as demonstrated in Fig. 5 (b). Therefore, . Thea BTA

threshold of 1.8 K was applied to all SDGSAT-1 TIS data in this study for potential lead segmentation.290

Figure 4: Statistical BTA histogram of seven TIS data acquired from April 3 to April 28, 2022, with a bin width of 0.25 K. The
orange curve is the Gaussian fitting, with μ = -0.25 K and σ2 = 0.38 K.

Figure 5: BTA threshold tests for potential lead segmentation using the thresholds of 1.2, 1.5 and 2.7 K (left to right). BTA values295
greater than or equal to the threshold are classified as 1 (white areas) and values less than the threshold are assigned 0 (black
background). Orange squares indicate false detections.
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3.2.2 Further filter based on a BT threshold

300
Figure 6: Characteristics of potential leads after segmentation based on the TIS B1 image. The left panel presents a binary image
on the left panelof presents the potential leads detected by segmentation (the same as Fig. 5 (b)),, with where tthe two squares are
highlighted: view 1 represents: highly reliable detection, and while view 2 is: part of a false-positive detection. Corresponding to
the two views, the right panel displays the BTA images of For these potential leads in both the first row and the views, their BTA
images are shown in the first row on the right panel, and the BT images are shown in the last row, whereith the gray background305
representings the the ice surface.

SDGSAT-1 TIS data ID: KX10_TIS_20220403_W128.84_N73.00_202200033226.
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(a)

(b)

Figure 7: BT threshold tests and filtered results based on by the different thresholds. , 1: mean plus standard deviation (std.) of310
BT before segmentation, 2: iterative threshold, and 3: Otsu’s threshold. (a) BT histogram of potential leads overlaid, with the
overlaid three lines indicating the three BT thresholds selections selected for the BT threshold of the filter. (b) The filtered
results by the three thresholds, where the pixels with BT values below the threshold are rejected and classified as background.
These thresholds are 1: mean plus standard deviation (std) of BT before segmentation, 2: iterative threshold, and 3: Otsu’s
threshold.315

SDGSAT-1 TIS data ID: KX10_TIS_20220403_W128.84_N73.00_202200033226.

After conducting Following the segmentation conducted in the previous step, a few false-positive detections remain in the

result. False positive detections can be attributed to imperfectly removed clouds, cloud edges, or sea ice of different

thicknessesThis situation is unavoidable to some extent because masses of information on the sea ice surface are also

resolved by high-resolution thermal infrared data. Even smallThese interferences changes cause gradient variations in the BT320
values measured by the TIS sensor,in the temperature gradient could resulting in yielding high BTA values,. To improve the

detection accuracy, weresulting in false-positive detections. We decided to identify the reliability of those potential leads for

better detection accuracy. IOn the left panel of Figure 6Fig. 6, the potential leads within the square marked by solid yellow

lines (in view 1) are considered reliable, while part of the white pixels marked by the other square (with dashed lines) (in

view 2) are false-positive detections. The right parallel panels of Fig. 6 show tThe BTA and BT data of the detected potential325
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leads in for the two views are displayed in the first row on the right panel, and the corresponding BT data are shown in the

next row. Whether for the first-row BTA or second-row BT data, the dark blue pixels (marked by white squares) are more

likely to represent those false-positive detections. However, it is difficult to evaluate further the reliability of potential leads

based on only on the BTA data, as both views in the first row have BTA values close to dark blue with no significant

differences. In contrast, false-positive detections can could be easily distinguished from leads based on the BT data. For330
example, in the second row of right parallel panels, the absolute values of the BT of those reliable leads in the first column

(in view 1) are all greater than those of the false-positive detections in the second column (in view 2) by at least 2 K.

The BT histogram for those the remaining potential leads is shown in Figure 7Fig. 7 (a). Those pixels with low temperature

on the left side represent the false-positive detections; the high-frequency pixels and the tail on the right represent are those

highly reliable leads. Thus, we used a filter to remove the pixels with BT values below a given threshold. Unlike using the335
BTA threshold as a constant, the threshold determined for the BT data is adaptive for environmental variations. In this regard,

we tested non-parameterized threshold selection methods, including Otsu’s threshold (Otsu, 1979), iterative selection (Ridler

and Calvard, 1978), and the threshold based on the BT mean and standard deviation (calculated by the BT map before

segmentation). The selected thresholds are shown as the three lines in Fig. 7 (a), and Tthe result filtering results using these

thresholds in Figure 7Fig. 7 (b) suggests that the iterative threshold filter performs the best because init rejects rejecting false340
detections. The mean and standard deviation filter ranks second. The Otsu’s threshold is not adapted for use in this filter.

Therefore, we chose the iterative selection as the method to determine the BT threshold in this filterthe iterative selection

determines the BT threshold in this filter. The starting position of the iteration is set to the sum of the BT mean and standard

deviation, which can save iterative times. For each TIS band, the respective threshold was selected, and the pixels with BT

values below the threshold was were filtered out. Finally, three binary results at 30 m resolution were derived separately345
from each of the three bands of the SDGSAT-1 TIS.Finally, the binary detection of leads at a 30 m resolution was derived

based on SDGSAT-1 TIS in three bands.

4 Results

This section presents the derived sea ice leads at a 30 m resolution based on SDGSAT-1 TIS data in the Arctic Ocean and

detailed comparisons with the S2 data and with the MODIS-derived leads, as well as the cross-comparisons among the three350
bands. The results are based on a total of 11 TIS data that are grouped into four scenes and have three sub-regions for

matching comparison with the S2 (see Figure 1Fig. 1).

4.1 Comparison of the TIS-detected sea ice leads with Sentinel-2 images

To assess examine the reliability of sea ice leads detected in this study, we first conducted a carried out comparisons of

typical cases under clear sky conditions. The two cases presented below are in the Beaufort Sea near the Canadian Arctic355
Archipelago are presented, as . Ssea ice leads in this region exhibit have typical seasonal variations (Steele et al., 2015). Here,
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we focused on the leads detected in April 2022 (marked by in the red squares on borders 1 and 2 in Figure 1Fig. 1) and

validated them using co-located. S2 MSI visible images were col-located with the derived leads for validation. The three BT

maps are displayed in the first row of Figure 8Fig. 8 displays the three BT maps., with Tthe detected leads in this study are

represented by the white pixels in the following binary maps that follow. For the matched visible images, the albedo of a360
lead is lower than that of the sea ice surface, so leads are the darker than the ice surface objects in the S2 images. According

to the a previous lead study based on leads using S2 data (Muchow et al., 2021), we calculated the normalized brightness and

determined specified that a pixel with a normalized brightness below 0.7 could be a lead, while a pixel with a normalized

brightness above 0.07 could be sea ice. Thus, a pPixels with a normalized brightness between 0.07 and 0.7 is considered to

have both possibilities. Apparently, our detection results based on the three infrared bands are highly consistent with these365
visible images. In particular, it is likely that some of the narrow leads we detected, with widths of tens of meters, have just

begun to formed, which are also subtle in 10 m resolution visible images.
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(a)
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(b)
Figure 8: Validation of sea ice lead detection based on SDGSAT-1TIS data compared with S2 visible images in the Beaufort Sea,
April 2022. The three rRows show the BT maps for the B1, B2 and B3 bands, their the lead detection results, the S2 images and
the normalized brightness (from 0.07 to 0.7), respectively. (a) TIS data acquired at 04:28 UTC and S2 data acquired at 21:00 UTC370
on April 3, 2022. IDs: KX10_TIS_20220403_W128.84_N73.00_202200033226,
KX10_TIS_20220403_W132.14_N74.67_202200033227. (b) TIS data acquired at 04:56 UTC and S2 data acquired at 22:42 UTC
on April 28, 2022. ID: KX10_TIS_20220428_W147.26_N77.60_202200049406.
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We performed a pixel-by-pixel compared comparison between the TIS-based ice leads with and the visible images on a

pixel-by-pixel basis. The definitions of TP (True Positive), FP (False Positive), FN (False Negative), and TN (True Negative)375
used are listed i in Table 4 lists the definitions of TP (True Positive), FP (False Positive), FN (False Negative), and TN (True

Negative) used in this study. Due to the imbalance between the distribution of leads and the ice background, we used three

indicators for to evaluate the detection performance: the commission error, the omission error, and the accuracy. The

statistics listed in Table 5 for the two cases in the Beaufort Sea show that, for all bands, the commission error, omission error,

and accuracy are 5.545%, 44.73%, and 96.30%, respectively. The overall accuracy fFor the three bands, the overall accuracy380
achieves a high level of 96.24%, 96.34% and 96.33%, respectively. The B1 band is shows satisfactory results with in terms

of an overall commission error of 5.439%, but yields a slightly high miss rate of 46.325%. The omission error mainly

attributes to a large FN result, resulting from subtle refrozen leads (covered by thin ice). More specifically, the case on April

3 (shown in Figure 8Fig. 8 (a)) yields a commission error less than 4.60%, while the commission error on April 28 is slightly

higher than the former. The reason lies in the differences in the lead distribution and fraction. For the April 28 case April 28385
(shown in Figure 8Fig. 8 (b)), more leads that undoubtedly exacerbate the difficulty in detection are presented.

Moreover, the BT values recorded by SDGSDAT-1 TIS on these two days were different. Even in the overlapping region of

borders 1 and 2 in Figure 1Fig. 1, the BT on April 28 is approximately 5 K higher than that on April 3. This finding may

imply a short-term temperature variation in temperature on a short temporal scale in the late spring, allowing for the

formation of more leads and exhibiting more intricate lead networks. On the other hand, a warming environment can reduce390
the contrast in thermal infrared data, resulting in lower BTA values for leads. The phenomenon is related to different

atmospheric conditions, which we further analyze in the Discussion.

By aApplying this detection method to the TIS data acquired over the Laptev Sea on March 23, 2022 (shown within

rectangle 3 in Figure 1Fig. 1), we found a complex situation when compared to the S2 visible image, as shown in Fig.ure 9.

The expansive gray feature on the S2 images is more likely to be cloud shadow than leads (McIntire and Simpson, 2002).395
Detecting leads under this interference is quite challenging difficult since the thermal contrast is far less distinct than that on

a clean ice surface, as shown in the following BTA maps. Compared to the visible image, the accuracy values for the B1, B2

and B3 bands are 95.53%, 95.43%, and 95.566%, respectively. However, some FP detections remain in the three bands,

which are marked by yellow rectangles in the third row. Thus, although this detection based on SDGSAT-1 TIS data show

promising applicability, the uncertainty caused by cloud interference remains to be further explored.400

Table 4. Definition of comparison a pixel-by-pixel results comparison offor the binary lead detection and with the optical visible
images with normalized brightness.

Normalized brightness of the S2 visible image

< 0.7 > 0.07

Leads
detection

1 TP (True Positive, sea ice leads) FP (False Positive)

0 FN (False Negative) TN (True Negative, sea ice)
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405
Table 5. Lead detection performance based on the TIS data in the Beaufort Sea on April 3 and 28, 2022. Results from each TIS
band are aggregated into overall results, which are then aggregated and from all TIS bandsinto the all-band results. are
aggregated

Commission Error (%) Omission Error (%) Accuracy (%)
FP

TP + FP
FN

FN + TP
TP + TN

TP + TN + FP + FN

April 3

B1 4.566 45.94 96.31
B2 3.994.0 47.394 96.328
B3 3.93 47.73 96.326

April 28

B1 6.70 46.73 96.12
B2 7.283 38.869 96.44
B3 7.283 38.71 96.43

Overall

B1 5.394 46.253 96.24

B2 5.485 43.91 96.34

B3 5.475 44.04 96.33

All Bands 5.455 44.73 96.30
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Figure 9: Application of the lead detection method to the SDGSAT-1 TIS data acquired over the Laptev Sea at 10:53 UTC on410
March 23, 2022, and comparison with the S2 visible image at 03:55 UTC on the same day (similar illustration to the previous
figure). IDs: KX10_TIS_20220323_E129.38_N75.60_202200028841 and KX10_TIS_20220323_E133.08_N73.96_202200028843

4.2 Cross-comparison of sea ice lead detection based on the three TIS infrared bands

The three TIS bands all yield good accuracy in lead detection but do present some discrepancies. In this subsection, we

performed cross-comparisons of these results to focus on the effectiveness of the three thermal infrared bands in detecting415
leads. Counting the lead pixels derived from each TIS band, a total of 46,301,986 pixels comprise the consistency detection

(co), i.e., a pixel that is detected as a ice leads from all three bands. Thus, the additional detection (ad) is calculated (i.e.,

detected as a ice leads by a specific band) using formulas Eq. (2) and Eq. (3).
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NBn, ad = NBn - Nco , (12)

PBn, ad = NBn, ad / Nco × 100% , (13)420

where N is the total number of pixels; Bn is the infrared band (n = 1, 2, 3); and P is the proportion. The results listed in Table

6 show that the additional detections from the B1, B2 and B3 bands account for 11.46%, 23.30%, and 21.88%, respectively.

The fewest leads are detected by the B1 band, while the B2 and B3 bands give similar results.

Table 6. Statistics of lead pixels detected based on the three infrared bands of the SDGSAT-1 TIS425

Leads Pixels Number
Additional detection

Pixels Number Proportion

B1 51,609,678 5,307,692 11.46%

B2 57,088,756 10,786,770 23.30%

B3 56,430,724 10,128,738 21.88%

Consistency 46,301,986

To further investigate the discrepancies, we depicted the detections with different colors. As depicted shown in Figure 10Fig.

10, dark red, orange and dark blue colors mark represent the leads detected by the B1, B2, and B3 bands, respectively. The

discrepancies primarily occur in the lead margins of leads. Comparisons in the second (B1 vs. B2) and fourth columns (B1

vs. B3) in In Figure 10Fig. 10 (a), the comparisons in the second (B1 vs. B2) and fourth columns (B1 vs. B3) indicate that430
the B1-derived leads are generally less than those from the B2 and B3 bands. The third column (B2 vs. B3) presents only a

small number of spatial variations, probably due to local temperature gradients. Thus, it can be concluded that the TIS B2

and B3 bands yield almost comparable performances in detecting sea ice leads. These two infrared radiance bands, applied

as the two split windows for temperature retrieval, are widely used in infrared sensors, e.g., the currently in-orbit Gaofen-5

(GF-5) Visual and Infrared Multispectral Sensor (VIMS), Landsat-8 TIRS, Landsat-9 TIRS-2, and Terra/Aqua MODIS.435
However, the scenario example in Figure 10Fig. 10 (b) shows a different situationscenario. There are more dark red pixels in

the cross-comparisons. In particular, some dark red pixels (marked by the black squares) are only presented in the B1 band

results, while the B2 and B3 bands almost lose all this information. Figure 10 (c) shows the S2 visible images acquired in the

same location, where the lead characteristics are evident (marked by white squares). Indeed, the BT and BTA maps found no

apparent differences in the lead thermal characteristics. It is speculated that the missing data in the B2 and B3 bands may440
result from interference induced by strip noise, which is particularly pronounced in the two bands (a similar phenomenon is

also presented in the split-window channels of MODIS and Landsat 8 TIS). Regardless, this example suggests that using the

TIS B1 band appears to achieve unexpected effects in the presence of interference in B2 and B3 data. In other words, the B1

band can be complementary to the two split-window bands. Thus, combining the results of the three bands is beneficial for

resolving the narrow leads with better accuracy.445
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(a)

(b)

(c)
Figure 10: Cross-comparisons of lead detections between the detections among the three TIS infrared bands. The first column in
(a) and (b) shows the lead detections by the three bands. The following three columns are the pairwise comparisons, where with
dark red, orange, and dark blue representing the B1, B2, and B3 results, respectively.the dark red, orange, and dark blue pixels
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represent the B1-derived and B2-derived B3-derived results, respectively. White pixels areis the consistency detections, and the
light gray background isindicates the ice surface. Acquired from the same location as (b), the left panel in (c) shows the S2 image450
as a reference, and with BT and BTA maps in two parallel rowsthe two parallel rows of panels are the BT and BTA maps for the
three bands. (a) TIS data acquired at 04:56 UTC on April 28. ID: KX10_TIS_20220428_W147.26_N77.60_202200049406. (b) and
(c) TIS data acquired at 04:28 UTC on April 3. ID: KX10_TIS_20220403_W132.14_N74.67_202200033227. (c) S2 data acquired at
21:00 UTC on April 3.

4.3 Comparison of the TIS-derived sea ice leads with the MODIS455

(a) (b) (c) (d)
Figure 11: Comparisons between of lead detections based onfrom MODIS data and SDGSAT-1 TIS data in the Beaufort Sea on
April 3, 2022. (a) MODIS IST products, where with off-white cloudsthe clouds are off-white, dark gray the land is dark gray, and
the overlaid black border denotes denoting a coverage for (b), (c) and (d). (b) Leads detections at 1 km resolution derived byfrom
MODIS IST product. (c) Lead detections Leads at 30 m resolution derived from the combined result of SDGSAT-1 TIS B1, B2 and
B3 bands. IDs: KX10_TIS_20220403_W126.10_N71.30_202200033225, KX10_TIS_20220403_W128.84_N73.00_202200033226,460
KX10_TIS_20220403_W132.14_N74.67_202200033227. (d) Lead detections Leads at 1 km resolution derived byfrom Hoffman et
al. (2022b).

465

470
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Table 7. Statistics of the lLead areas estimated from the MODIS IST data, and the SDGSAT-1 TIS data and Hoffman et al.475
(2022b).

Sea ice lead area (km2) Additional lead area by

the TIS than by Hoffman

et al. (2022b) (km2)
MODIS IST SDGSAT-1 TIS TIS MODIS IST

1
Beaufort Sea

on April 3
14,283 15,362 1.151.08 5,679

2
Beaufort Sea

on April 28
4,238 10,500 2.486.48 4,590

3
Laptev Sea on

March 23
4,021 4,519 1.101.12 1,462

4
Laptev Sea on

March 23
3,886 3,936 1.011.01 2,415

Total 26,427 34,318 1.301.50 14,145

We further compared the TIS-derived ice leads with the MODIS IST data at a moderate resolution. To achieve a fair

comparison between the two sensors, we used analogous methods, as shown in a case study in the Beaufort Sea on April 3,

2022, depicted in As one case in the Beaufort Sea on April 3, 2022 presented in Figure 11Fig. 11 (a),. Tthe IST products

were used to derive the BTA maps and then applied a BTA threshold of 1.5 K for binary segmentation (Qu et al., 2021),480
which is also based on fixed thresholds (similarthus analogous to our proposed method). Thus, the use of analogous methods

allows for a fair comparison of the differences in lead observation between the two sensors. TThe MODIS-derived lead map

is shown in Figure 11Fig. 11 (b). ConcurrentlySimultaneously, as per the findings in Sect. 4.2, we combined our three lead

maps, based on the three TIS bands, into one binary map, in whichwhere the combined pixel is positive as long as any one of

the three maps yields gives a positive pixel. The combined map contains the most leads,We further compared the TIS-485
derived ice leads with the MODIS data at a moderate resolution. The previously developed method (Qu et al., 2021) was

applied to detect the leads based on the MODIS IST data. The IST products in March and April 2022 were first mosaicked

(as one case in the Beaufort Sea on April 3, 2022 presented in Fig. 11 (a)) and then applied to the binary segmentation by a

BTA threshold of 1.2 K to derive the lead data (the corresponding result is shown in Fig. 11 (b)). Simultaneously, we

combined the lead detections based on the three TIS bands, and the result is one binary map containing the most leads as490
shown in(see Figure 11Fig. 11 (c)). There is a significant difference between the high- and moderate-resolution results. The

TIS resolves more lead details, e.g., the narrow leads connecting those wide ones. FurthermoreNotably, some of the leads in

Figure 11Fig. 11 (c) are even obtained in places areas that are considered clouds by the MODIS cloud mask. Cloud-masked

pixels were not compared for consistency purposesFor the sake of unity, no comparisons were made in the cloud-masked

pixels.495
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Correspondingly, the lead area was calculated by from theboth two datasets in the same regions, as shown in. For the four

regions shown in Figure 1Fig. 1, and the comparisons results of the ice lead areas are listed in Table 7. The area estimated

from the TIS data is significantly larger than that estimated from MODIS IST, with the total area being 1.3 times larger than

the latter.exceeding the latter by more than half. In particular, the difference of in the lead area between the TIS and MODIS

reaches is the most significant its maximum infor the comparison of the case study in the Beaufort Sea on April 28. The500
leads detected by the TIS are 10,500 km2 in area (with the B1, B2 and B3 bands of 7,752 km2, 9,346 km2 and 8,973 km2,

respectively). This could be attributed to the temperature variations on a short temporal scale. The IST increases to

approximately 260 K in the Beaufort Sea on April 28, far beyond the general IST range of from 240 K to 250 K for the study

area (also see Figure 12Fig. 12 (a)). Consequently, the reduced thermal contrast of leads severely limits the ability of

MODIS to detect leads. In contrast, the high-resolution imaging capability and high sensitivity of the SDGSAT-1 TIS can505
present more significant thermal contrasts of leads and ice.

Furthermore, Hoffman et al. (2022b) published the a lead dataset since 2002 for the season between November through April,

which were detected by the U-net model (Hoffman et al., 2021) based onfrom MODIS 11 µm thermal imagery. This dataset

has ae spatial resolution of the dataset is 1 km, which were and reporteds as daily aggregated detection frequency. As

showed in Figure 11Fig. 11 (d), the lead widths and areas detected by this dataset are significantly larger, especially as small510
leads in close are identified as an one entire large lead (see the orange squares marked in Figure 11Fig. 11 (c) and (d)). Given

that this dataset is not appropriate for direct estimation of lead area, we used it as a mask and only calculated the area for the

TIS-derived leads beyond this mask (i.e., the additional area). The statistics are presented in the last column of Table 7. The

TIS-derived leads have an additional A total of additional leads derived by the TISarea is of 14,145 km2 compared to that

derived by Hoffman et al. (2022b), which is generally in line with the comparison result of between the TIS and MODIS IST515
comparison (11,407 km2). . Thus, while the moderate resolution sensor ismay possible to over-represent the width and area

of leads, the narrow leads overlooked under the kilometer scale resolution are predominated.This result suggests that the

overlooked narrow leads by the moderate-resolution sensor are predominant. Since the width of leads strongly influences the

turbulent exchange efficiency over themthe turbulent exchange efficiency over the leads is very strongly determined by their

width and area, the lead observation of leads at a high spatial resolution is critical essential to achieve an accurate lead width520
parameterization and to further estimate their thermal effects. These comparisons with moderate-resolution sensor prove that

the TIS is a competitive sensor for detecting sea ice leads in polar regions.

5 Discussion

Based on the high-resolution thermal infrared data available from the TIS onboard SDGSAT-1 with the high-resolution

thermal infrared data available, we successfully detected sea ice leads in the Arctic for the first time at 30 m resolution,525
achieving good results in terms of the detection accuracy, adaptability and ability to characterize narrow details. In this

section, we focus on discussing the influence of different atmospheric conditions on uncertainties in TIS leads observation
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and analyzing the leads properties property revealed in the detection. This will provide insights into the factors affecting the

accuracy of the TIS observation and the physical characteristics of the detected leads.

5.1 Atmospheric influences on sea ice leads detection by the three TIS infrared bandsTIS three bands530

(a)

(b)

(c)
Figure 12: Temperature of ice surface and near-surface air and ozone solution for March 23, April 4, and 28, 2022 (columns left to
right). (a) MODIS IST, where black borders indicate the TIS acquisition range on the day. (b) ERA5 2 m air temperature. (c)
OMTO3 ozone solution.

First, as an important constraint on the Arctic lead detection, it is necessary to consider the impact of cloud interference.535
Although cloudy conditions are prevalent in the Arctic (see the large white area in the MODIS daily IST product shown in

Figure 12Fig. 12 (a)), due to the unavailable cloud products synchronised with the SDGSAT-1 TIS, this study only

demonstrates the lead detection under clear sky conditions. However, we agree with the view of Hoffman et al. (2019) that

using cloud mask products in ice leads detection would produce omissions as a result of incomplete cloud information. They

reclassed the MODIS cloud mask products to eliminate omission errors and assumed that a lead pixel would have a BT less540
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than 271 K (otherwise, it would be open water or warm cloud). We manually collected cloud-less data and used the BT filter,

which rejected the pixels with BT values lower than approximately 245 K. Therefore, clouds are likely to haved a relatively

small impact on the results of this study, but the impact of warm clouds still remains. In the future, with the availability of

the SDGSAT-1 cloud product, we can further investigate the lead detection for the cloudy conditions.

Apart from cloud interference, other atmospheric components also affect lead detection. The TIS B2 and B3 bands, the two545
atmospheric windows, are nearly transparent to the atmosphere, and therefore, to some extent, they can obtain surface

radiance independent of the atmosphere. In contrast, the B1 band, as an absorption channel for ozone (Wan and Li, 1997),

has attenuation in the atmosphere. As a result, the B1 band data present different temperature gradients from the other two

bands, particularly pronounced at high latitudes (Prabhakara and Dalu, 1976). In addition, short-term temperature variations

also affect the temperature contrast for the three thermal infrared bands and thus the detection of leads. Since the at-sensor550
BT data used in this study were not corrected for atmospheric radiation, this temperature variation results from a

combination of sea ice radiation and atmospheric radiation. As displayed in Figure 12Fig. 12, the temperature of sea ice

surface and 2 m air, and the ozone resolution present significant temporal and regional variations. Both the air and ice

temperatures gradually increase and show similar spatial patterns. The ozone resolution is high in the Laptev Sea and the

Beaufort Sea, and its distribution changes rapidly on a monthly scale. We analyzed the sensitivity of lead temperature555
characteristics to these factors. First, based on the detected leads, we extracted the BT and BTA data only for those lead

pixels and allocated them to the geographic grids at 30 km resolution (one tenth of the TIS swath width to allow comparison

with coarse-resolution datasets). Then, regression analysis was conducted to find the relation between the thermal

characteristics and IST, air temperature, or ozone resolution, as listed in the Table 8.

In general, the BT data from the TIS three bands have show significant positive correlations with the IST data and air560
temperature. Although the upward slope of the BT data with respect to ice and air temperatures for the B1 band is smaller

than that for B2 and B3 bands, the high correlation (of 0.72 with the IST and 0.68 with the air temperature) demonstrates its

effectiveness as a thermal infrared band for lead detection. On the other hand, changes in IST have only a small negative

correlation with the BTA values of leads. While changes in air temperature are more likely to diminish the thermal contrast

of the leads, which have less effect on the B1 band and more effect on the B2 band. These results imply that atmospheric565
correction and ice temperature retrieval of TIS thermal data could be effective approaches to improve the robustness of lead

detection. Among For the three thermal infrared bands of the TIS, the B1 band may not be as sensitive to temperature

variations as the B2 and B3 bands.

As we expectedIn our expectations, only the BT data from the B1 band exhibit have a negative correlation with ozone, with

the a correlation of -0.62. This result is not surprising sinceEvidently, only the B1 band radiance is heavily strongly absorbed570
by ozone, which also explains why the B1 band yields gives the lowest BT values for the presented cases in this paperstudy.

With respect to the BTA values of the leads, none of them shows significant correlations with the ozone resolution. This

finding implies that although ozone affects the B1 band temperature measurement, it barely weakens the thermal contrast

required for lead detection.
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Table 8. Correlation between the thermal characteristics of SDGSAT-1 TIS three infrared bands and the IST, 2 m air temperature,
and ozone resolution, with the slope of the regression fitting in brackets.

B1 band B2 band B3 band

BT value BTA value BT value BTA value BT value BTA value

IST 0.72(0.49) -0.26(-0.14) 0.63(0.63) -0.40(-0.26) 0.72(0.59) -0.37(-0.21)

Air temperature 0.68 (0.53) -0.39 (-0.26) 0.68 (0.75) -0.55 (-0.42) 0.68 (0.63) -0.50 (-0.25)

Ozone resolution -0.62 (-0.07) 0.14 (-0.01) -0.49 (-0.08) 0.19 (0.20) -0.59 (-0.08) 0.24 (0.02)

5.2 Sea ice lead property resolved by the TIS580

Due to thermal infrared imaging having long been limited to the moderate resolution of kilometers, it is difficult to confirm

either the widths of narrow leads or the variations inside within them. The detection at the 30 m resolution allows for

presents thermal variations to be observed inside within leads, as demonstrated in an interesting case shown shown in two

row panels on the left of Figure 13Fig. 13, which was acquired on April 3 over the Beaufort Sea. The TIS data present a

noticeable transition zone (with a BTA value less than 2 K), which is likely seawater intrusion into the sea ice, while the lead585
in the center (with a BTA value greater than 3 K) was just opening. As the method of used in this study aims to extract all

potential leads, the entire transition zone was marked as an ice lead. This is reasonable, as a previous study (Qu et al., 2020)

used a BTA threshold of 1.2 K for potential leads, 1.5 K for general leads, and 2 K for open water discrimination. Given that

the binary segmentation in this paper study applies a 1.8 K threshold, it again indicates that the thermal information obtained

by SDGSAT-1 TIS presents a greater more significant thermal contrast.590
Broadly speaking, fracture zones covered by thin ice and intruded by seawater are also considered as leads. For other

supporting evidence, we incorporated the S1A SAR images acquired on the same day. The dual-polarization data were

radiometrically calibrated, and a false-color composition was performed by assigning the HH, the subtraction of HH by HV

and the HV images to the red, green and blue channels, respectively. The HH and HV SAR data and as well as the false-

color composite images, are presented shown in the panel at the bottom right of Figure 13Fig. 13. The overall backscatter595
values for the HH and HV data are low. However, in the transition zone of the lead, the backscatter values of the HH and HV

data differ considerably, while the both the backscatter values are very low at the center openingopening in the center has

low backscatter values. Accordingly, the transition zone presents a yellowish color in the false-color composite image,

whereas while the opening lead is darker. HenceTherefore, the leads detected in this paper study based on thermal contrast

are consistent withagree with the properties resolved by the polarization differences in SAR. Regarding the application of600
SAR data to lead detection, its applicability to local sea ice conditions remains to be further explored.
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In addition, contours of multiyear ice with high backscatter values that are observed in SAR images are similar to some

negative BTA features. Such surface information is In particularly sensitive to the, the B2 band is more band,sensitive to

such surface information. This suggestsing surface temperature variations for different thicknesses of sea icebecause various

types of sea ice have different emissivity and produce different BT values. Similar surface temperature variations are also605
found in the 1 m resolution IST data obtained derived from helicopter-borne thermal infrared imaging (Thielke et al., 2022).

Thanks to the high-resolution characterization of the SDGSAT-1 TIS and the accurate radiometric measurement, it is

possible to reveal the sea ice properties, both (inside the leads and on the ice surface). However, Ffor sea ice with a high-

temperature characteristic, (possibly due to thicker or local resulting from local ttemperature gradients), its BTA can be too

similar to that of a lead and can be difficult to be distinguished (Key et al., 1993), which is why we preferred a BT filter after610
the lead segmentation in this study.

The special case shown in Figure 10Fig. 10 (b) and (c) arouses our interest in understanding why the B2 (b) and B3 (c) bands

missed some leads. As described in Section Sect. 4.2, the strip noise also affects lead detection. The strip noise is the most

severe in the B3 band and secondary in the B2 band, while it is absent in the B1 band. This discrepancy difference arises

occurs due to the fact that because when the TIS overpasses a homogeneous surface, which covers sea ice with a low615
radiance signal in this case, each detector generates gives a different noise bias (Corsini et al., 2000). This phenomenon is

even more pronounced severe for detectors with higher signal-to-noise ratios. Likewise, to overcome the strip noise, it is

necessary to apply the BT filter and use an appropriate threshold. In this case, tThe thresholds determined through by

iterative selection were 243.93 K, 248.02 K and 247.14 K for B1, B2 and B3 in this case, respectively. Consequently, the

high thresholds of B2 and B3 caused some lead details to be omitted during the detection processresulted in omissions of620
some lead details in the detection. From this perspective, residual noise in high-resolution thermal infrared images may have

an impact on the lead detection based on the TIS B2 and B3 bands; whereas while the B1 band is less susceptible affected

due to its relatively low sensitivity. It is noted that the forthcoming level-4b TIS data can suppress some of the stripe noise.

On the other hand, as the TIS data available within the scope of this paper study is relatively limited, these the individual

case studies presented may be weak in terms of generalizability. In the future, with support by a large amount of data, we625
aim to will develop work on a method that can overcome various a variety of interferences for application to SDGSAT-1 TIS

data to more accurately detect sea ice leads.
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Figure 13: Comprehensive analysis for lead properties property in the Beaufort Sea based on SDGSAT-1 TIS data acquired at
04:28 UTC on April 28 3 and the derived leads, along with the matched S1A data at 15:52 53 UTC on the same day. Two parallel630
rows of panels on the left show the BT and BTA maps for the three bands of SDGSAT-1 TIS. The first row on the right panel
shows the leads detected in this study. The panel at the bottom right displays the matched S1A HH, HV and false-color composite
images that present recognizable leads. SDGSAT-1 TIS data ID: KX10_TIS_20220403_W132.14_N74.67_202200033227.

6 Summary and conclusion

Over the past decades, the Arctic has experienced increasing temperatures and a rapid retreat of sea icethe increasing Arctic635
temperatures and rapid retreat of sea ice, include havewith profound implications for both the Arctic and the extra-polar

climate and ecosystems. Sea ice leads play a critical role in regulatingare a key factor influencing the heat exchange between

the ocean and the overlying atmosphere. However, previous lead observations based on thermal infrared remote sensing have

long been limited to moderate resolutions on a kilometer scale, making it challenging to resolve lead details and resulting in

inadequate estimates for ice lead parameters. There is an urgent need to develop fine-scale datasets of sea ice leads.640
The recently launched SDGSAT-1 provides an emerging opportunity to detect leads at high spatial resolutions up to 30 m by

its onboard payload the TIS payload. This paper study demonstrates the feasibility of using the three TIS infrared bands for

detecting ice leads in the Arctic Ocean. We proposed a method that combines binary segmentation with the BT filter to

detect leads by the three TIS data in three bands. The detection results show great details of on the narrow leads of tens of

meters in width, as well as high accuracy. For example, in the Beaufort Sea case in April 2022, the overall accuracies are645
96.24%, 96.34% and 96.33% for the B1, B2 and B3 bands, respectively, compared with the S2 visible images at 10 m

resolution. Because Since more narrow leads are detected by the TIS, the TIS-derived lead areas are 1.3 times more than the
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results based on the MODIS IST data at a 1 km resolution in the 11 collected cases. This Our finding indicates that more

leads exist in the Arctic Ocean than we have ever observed. These narrow leads beyond our expectations would allow for

more heat exchange (Marcq and Weiss, 2012). Therefore, the TIS sensor is expected to improve the lead representation,650
which is crucial for climate models.

The cross-comparisons among the TIS three infrared bands suggest that the B2 and B3 bands have similar performances in

detecting leads, whereas the B2 band yields the best performance among the three bands. Although the B1 band is less

commonly used in thermal infrared measurements, the leads detected by the B1 band can be complementary to the other two

on some occasions. We therefore recommend suggest using the combined results of the leads detected from the three TIS655
bands.

Furthermore, the analysis of the correlation between the detected leads and temperature suggests that the B1 (both its BT and

BTA data) is not less sensitive to the variations in surface and near-surface temperature. Although ozone in the atmosphere

absorbs B1 band radiance, ozone has little impact on the lead detection of ice leads by the B1 band. The different sensitivity

of the B1 band to surface information and atmospheric conditions from the other two bands produces an unexpected660
performance in sea ice lead detection. Regarding the variations inside the leads, an analysis incorporating the S1A data

agrees with the lead properties revealed by our results, but the threshold currently used does classify the transition zone as an

a ice lead. Thanks to the sufficiently high resolution of the SDGSAT-1 TIS, it is expected to provide crucial data for the

analysis of lead formation and refreezing based on sequential thermal infrared data, an aspect that deserves future attention.

This study is the first to investigates the detection of sea ice leads by spaceborne thermal infrared remote sensing at a high665
spatial resolution of tens of meters. The results demonstrate that the TIS onboard SDGAST-1 has excellent potential for

detecting sea ice leads (as well as possible IST retrieval) in polar regions. Nevertheless, limited by the imaging time and

cloudy conditions over the Arctic region, only individual case studies based on TIS data were carried out. Along with the

acquisition of more TIS datamore TIS data acquired in the Arctic throughout an entire year and the development of near-

real-time cloud product, we can expect to investigate its capability for the lead detection of ice leads in different seasons. By670
cCombining this data with more diverse datasets of sea ice, we wish aim to provide insights into the contribution of leads to

Arctic sea ice dynamics in an effort to support SDG 13: climate action.

Furthermore, our investigation suggests that the TIS has high sensitivity to surface temperature changes, yielding great

temperature contrasts to distinguish anomalies. The three infrared bands of the TIS present different sensitivities, thus

allowing surface radiation detection and underpinning the surface temperature retrieval applying three thermal infrared bands.675
Encouragingly, the sensor should also have great potentials on supporting research related to other SDG indicators., Ffor

instance, it could aid SDG 7 in investigating the urban heat island effect to promote green cities,, monitoring wildfire and

heatwave events to understand impacts of climate change (SDG 13), and SDG 14 in monitoring industrial wastewater

discharges in coastal zone to protect marine ecosystem (SDG 14), and SDG 13 for monitoring wildfire and heatwave events

to understand impacts of climate change. The TIS, together with the other two sensors onboard SDGSAT-1, are is expected680
to provide more valuable data to facilitate a global approach to the SDGs.
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The SDGSAT-1 TIS data can be acquired from the International Research Center of Big Data for Substantial Development

Goals (www.sdgsat.ac.cn/, last access: 20 December 2022). The S2 data are available on the United States Geological

Survey website (https://www.usgs.gov/, last access: 20 December 2022). The S1 data are accessed from the Copernicus685
Open Access Hub (https://scihub.copernicus.eu/dhus/#/home/, last access: 20 December 2022). The MOD29P1D product

can be acquired from the National Snow and Ice Data Center (https://nsidc.org/, last access: 20 1 December March 20222023;

Hall and Riggs, 2021). The ERA5 datasets are available on European Centre for Medium-Range Weather Forecasts

(https://cds.climate.copernicus.eu/, last access: 20 December 2022; Hersbach et al., 2018). The OMTO3 products can be

acquired from the NASA Earth Observation Data web (https://disc.gsfc.nasa.gov/, last access: 20 December 2022; Bhartia,690
2012). The sea ice lead dataset published by Hoffman et al. (2022b) are available from

https://doi.org/10.5061/dryad.79cnp5hz2 (last access: 20 December 2022).
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