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Abstract. We use 2019 TROPOMI satellite observations of atmospheric methane in an 
analytical inversion to quantify methane emissions from the Middle East and North Africa at up 
to ~25 km × 25 km resolution, using spatially allocated national UNFCCC reports as prior 
estimates for the fuel sector. Our resulting best estimate of anthropogenic emissions for the 
region is 35% higher than the prior bottom-up estimate (+103% for gas, +53% for waste, +49% 20 
for livestock, -14% for oil) with large variability across countries. Oil and gas account for 38% 
of total anthropogenic emissions in the region. TROPOMI observations can effectively optimize 
and separate national emissions by sector for most of the 23 countries in the region, with 6 
countries accounting for most of total anthropogenic emissions including Iran (5.3 (5.0-5.5) Tg a-

1; best estimate and uncertainty range), Turkmenistan (4.4 (2.8-5.1) Tg a-1), Saudi Arabia (4.3 
(2.4-6.0) Tg a-1), Algeria (3.5 (2.4-4.4) Tg a-1), Egypt (3.4 (2.5-4.0) Tg a-1) , and Turkey (3.0 
(2.0-4.1) Tg a-1). Most oil/gas emissions are from the production (upstream) subsector, but Iran, 
Turkmenistan, and Saudi Arabia have large gas emissions from transmission and distribution 
subsectors. We identify a high number of annual oil/gas emission hotspots in Turkmenistan, 
Algeria, Oman, and offshore in the Persian Gulf. We show that oil/gas methane emissions for 30 
individual countries are not related to production, invalidating a basic premise in the construction 
of activity-based bottom-up inventories. Instead, local infrastructure and management practices 
appear to be key drivers of oil/gas emissions, emphasizing the need for including top-down 
information from atmospheric observations in the construction of oil/gas emission inventories. 
We examined the methane intensity, defined as the upstream oil/gas emission per unit of 
methane gas produced, as a measure of the potential for decreasing emissions from the oil/gas 
sector, and using as reference the 0.2% target set by industry. We find that the methane intensity 
in most countries is considerably higher than this target, reflecting leaky infrastructure combined 
with deliberate venting or incomplete flaring of gas. However, we also find that Kuwait, Saudi 
Arabia, and Qatar meet the industry target and thus show that the target is achievable through 40 
capture of associated gas, modern infrastructure, and concentration of operations. Decreasing 
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methane intensities across the Middle East and North Africa to 0.2% would achieve a 90% 
decrease in oil/gas upstream emissions and a 26% decrease of total anthropogenic methane 
emissions in the region, making a significant contribution toward the Global Methane Pledge. 

 

1. Introduction 

Methane (CH4) is a potent greenhouse gas with a relatively short atmospheric lifetime of 9.1 ± 
0.9 years (Prather et al., 2012; Naik et al., 2021) and is a precursor of tropospheric ozone (Fiore 
et al., 2002). Decreasing methane emissions is a powerful lever to mitigate near-term warming 
(Naik et al., 2021), and thereby give the world time to “bend the curve” on carbon dioxide (CO2) 50 
emissions and removal, as well as to adapt to climate change. Anthropogenic emissions of 
methane are from many sectors including the oil and gas supply chain, coal mining, livestock, 
rice cultivation, landfills, and wastewater treatment. Natural emissions are mainly from wetlands. 
Improving knowledge of methane emissions is urgently needed for enforcing the enhanced 
transparency framework of the Paris Agreement, and the 2023 objectives of the Global Methane 
Pledge (Climate and Clean air Coalition, 2021). The 194 Parties to the Paris Agreement 
(individual nations plus the European Union) of the United Nations Framework Convention on 
Climate Change (UNFCCC) have each submitted their periodic Nationally Determined 
Contributions (NDCs), indicating how much they expect to reduce their greenhouse gas 
emissions by specific years, most often by 2030. Emission inventories reported by Parties under 60 
the Paris Agreement typically rely on bottom-up estimates using activity data and emission 
factors that are extrapolated from limited information and may have large errors (Kirschke et al., 
2013; Saunois et al., 2020; Nisbet et al., 2020). Top-down methods involving inversion of 
atmospheric methane observations can reduce these uncertainties through Bayesian synthesis 
(Houweling et al., 2017). Here we use an inverse analysis of 2019 satellite observations of 
atmospheric methane to quantify emissions by sector over the Middle East and North Africa 
region including 23 individual countries. 

The Middle East and North Africa is a compelling target region for reducing methane emissions 
because of intense oil and gas production activity, contributing 32% to global oil production and 
24% to global gas production in 2019 (EIA, 2020). The oil/gas sector presents the largest low-70 
cost mitigation potential for methane emissions with technically feasible solutions (Nisbet et al., 
2020). National inventories reported to the UNFCCC give a total oil/gas methane emission from 
the Middle East and North Africa of 13.0 Tg a-1 for 2019, representing 27% of global emissions 
from that sector (Scarpelli et al., 2022). However, emission uncertainties are particularly high for 
the oil/gas sector because of the large number of point sources with widely variable operating 
conditions. Bottom-up estimates for individual countries may vary by more than an order of 
magnitude (Scarpelli et al., 2022). Satellite observations have detected exceedingly large point 
sources from oil and gas fields in the Middle East and North Africa (Varon et al., 2019, 2021; 
Guanter et al., 2021; Lauvaux et al., 2022; Irakulis-Loitxate et al., 2022a, 2022b; Sánchez-García 
et al., 2022; Ehret et al., 2022), revealing poor maintenance practices and equipment failures that 80 
would likely not be accounted for in the bottom-up inventories.  
 
Top-down emission estimates using atmospheric methane observations offer an independent 
check on bottom-up inventories. They generally involve inverse analysis in which an 
atmospheric transport model is used to relate emissions to atmospheric concentrations, equipped 
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with prior information from a spatially resolved emission inventory. Comparing the predicted 
atmospheric concentrations from the prior emission inventory to the observations enables 
correction of the inventory by Bayesian synthesis (Brasseur and Jacob, 2017). Satellite 
observations in the shortwave infrared (SWIR) are particularly attractive for top-down analyses 
due to their global coverage and sensitivity down to the surface (Jacob et al., 2016, 2022). 90 
Inversions with satellite observations from the Greenhouse Gases Observing Satellite (GOSAT) 
for 2009-present (Qu et al., 2021; Deng et al., 2022) have enabled an assessment of national 
emissions across the globe in support of the Paris Agreement’s Global Stocktake process 
(Worden et al., 2022), the first of which is to be completed in 2023. But the GOSAT 
observations are sparse, separated by about 250 km, which limits the spatial resolution that can 
be achieved and introduces errors in attributing emissions to countries and sectors. The 
TROPOspheric Monitoring Instrument (TROPOMI) satellite instrument (2018-present) provides 
global continuous daily mapping of atmospheric methane at 7 km × 5.5 km nadir resolution. It 
has unique capability for high-resolution quantification of national emissions and effectively 
attributing emissions to sectors. This capability has recently been demonstrated for North 100 
America (Zhang et al., 2020; Shen et al., 2021, 2022) and East Asia (Chen et al., 2022; Liang et 
al., 2022).  

Here we use TROPOMI observations for 2019 with the GEOS-Chem atmospheric transport 
model in an analytical inversion including closed-form error characterization to infer methane 
emissions from the Middle East and North Africa (-20o-70o E, 12o-44o N) at up to the native 
0.25o×0.3125o (~ 25 × 25 km2) resolution of GEOS-Chem. This allows us to quantify emissions 
by sector for 23 individual countries across the region and compare to the UNFCCC-reported 
inventories used as prior estimates in our inversion. We infer methane intensities (emissions per 
unit gas production) from the oil/gas sector in different countries and identify high-intensity 
countries with the potential to greatly reduce emissions.  110 

2. Data and Methods  

2.1 TROPOMI satellite observations 

TROPOMI is onboard the polar sun-synchronous Sentinel 5 Precursor satellite with a ~13:30 
local overpass time. Dry column methane mixing ratios (XCH4) are retrieved with a full-physics 
algorithm in the 2.3 µm absorption band with a global success rate of 3% over land limited by 
cloud cover and by dark or heterogeneous surfaces (Lorente et al., 2021). TROPOMI provides 
full global daily coverage with a spatial resolution of 7 km × 5.5 km in the nadir (7 km × 7 km 
before August 2019) (Hu et al., 2016). We use the TROPOMI methane product version 2.02 
from the Netherlands Institute for Space Research (Lorente et al., 2021) for 2019 excluding low-
quality retrievals (‘qa_value’<0.5) and snow-covered scenes identified with a blended albedo 120 
exceeding 0.8 (Chen et al., 2022).  

The TROPOMI XCH4 data can be affected by retrieval artifacts correlated with SWIR surface 
albedo also retrieved by TROPOMI (Barré et al., 2021). Here we apply a bias correction to 
TROPOMI retrievals over the Middle East and North Africa by calibrating to GOSAT 
observations. GOSAT has higher spectral resolution than TROPOMI and retrieves XCH4 in the 
1.65 μm band using the CO2 proxy retrieval method, which is less subject to retrieval artifacts 
(Parker et al., 2019). We find that the differences between TROPOMI and GOSAT retrievals 
averaged on the 0.25o×0.3125o GEOS-Chem grid have a linear dependence on SWIR surface 
albedo (Fig. 1), and we apply the linear regression as a correction to the TROPOMI data. The 
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correction includes a non-zero intercept of 10.3 ppb but this is of no consequence because the 130 
same correction is applied to the initial and boundary conditions for the inversion. The mean 
TROPOMI-GOSAT difference on the 0.25o×0.3125o grid is -0.01 ± 9.3 ppb after this correction, 
where the standard deviation refers to the spatial variability of the annually averaged differences. 
This standard deviation, which is a measure of variable bias, is below the threshold requirement 
of 10 ppb by Buchwitz et al (2015) for satellite data to be effective in regional inversions.  

Fig. 2 shows the spatial distribution of the corrected TROPOMI observations and the number of 
successful retrievals for 2019. The total number of TROPOMI retrievals over our inversion 
domain for 2019 is 30366339, evenly distributed across seasons. We average the TROPOMI 
retrievals (including XCH4, prior vertical profiles, and averaging kernel vectors) over each GEOS-
Chem 0.25o×0.3125o grid cell and each hour to yield m = 3714062 super-observations for use in 140 
the inversion.  

2.2 Prior emissions 

Fig. 3 shows the distribution of prior emissions by sector over the inversion domain, Table 1 lists 
the domain-wide totals, and Table 2 lists totals for individual countries. Oil, gas, and coal 
emissions are from the Global Fuel Exploitation Inventory (GFEIv2), which uses detailed 
infrastructure data to spatially allocate on a 0.1o×0.1o grid the national inventories from 
individual countries reported to the UNFCCC including offshore emissions (Scarpelli et al., 
2022). Iraq, Algeria, and Oman have not reported their emissions to the UNFCCC since 2000, 
and for those countries GFEIv2 uses recommended emission factors from the IPCC (2006) Tier 1 
method and EIA production statistics (EIA, 2020) to infer national emissions. For other 150 
anthropogenic sectors (livestock, landfills, wastewater treatment, rice, and other minor sources), 
prior emissions are from the EDGARv6 inventory for 2018 (Crippa et al., 2021).  

Wetland emissions are 2019 monthly means at 0.5o×0.5o resolution from the nine high-
performance members of the WetCHARTS v1.3.1 inventory ensemble, so chosen because they 
fit best to a global GOSAT inversion (Ma et al., 2021). Other natural sources include open-fire 
emissions from the Global Fire Emissions Database version 4s (GFED4s) (van der Werf et al., 
2017), termite emissions from Fung et al., (1991), and geological seepage emissions from Etiope 
et al. (2019) with global scaling to 2 Tg a-1 (Hmiel et al., 2021). Termite emissions in the region 
are larger than wetlands (0.51 Tg a-1 versus 0.42 Tg a-1) and are mostly in Iran and Niger. 

2.3 GEOS-Chem forward model 160 

We use the nested version of the GEOS-Chem 13.0.0 chemical transport model 
(https://doi.org/10.5281/zenodo.4618180) as forward model for the inversion to relate methane 
emissions to atmospheric concentrations through atmospheric transport. GEOS-Chem is driven 
by meteorological fields from the GEOS-FP analyses (Lucchesi, 2018) at 0.25° × 0.3125° 
resolution. We use that native resolution in GEOS-Chem over the Middle East and North Africa 
domain (-20o -70° E, 12o - 44° N) with dynamic boundary conditions from a global model 
simulation using posterior methane emissions optimized from TROPOMI data following Shen et 
al (2022). We further optimize the boundary conditions for each quadrant (north, south, west, 
east) and for each season as part of the inversion. Initial conditions on 1 January 2019 are set to 
match the mean TROPOMI column mixing ratios in the region following Qu et al (2021). In this 170 
manner, differences between the forward model and observations can be attributed to errors in 
2019 emissions rather than to errors in initial conditions. 
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2.4 Analytical inversion procedure 

We perform the inversion analysis mostly following Chen et al (2022). We use the Gaussian 
mixture model (GMM) of Turner and Jacob (2015) to define the state vector x of the inversion as 
emission patterns that TROPOMI observations can effectively constrain, aiming to preserve 
native (0.25o× 0.3125o) resolution for strong localized sources while smoothing the solution in 
regions with weak uniform emissions as provided in the prior knowledge. In the GMM, 
similarity vectors defining proximity and commonality in sectoral emissions (as defined by the 
prior estimate) are used to construct Gaussian state vector elements characterized by location of 180 
maximum emission, spatial standard deviation, and emission amplitude. Here we add as 
similarity vector the list of ultra-emitters (>25 tons h-1) identified by Lauvaux et al (2022) from 
analysis of hotspots in the 2019-2020 TROPOMI data. This ensures that the ultra-emitters are 
resolved on the native 0.25o× 0.3125o grid of the inversion. We choose to use 600 Gaussian 
functions to optimize in the emission state vector, based on our previous experience with the 
information content of regional inversions. The inversion optimizes the amplitude of each 
Gaussian. We also optimize 16 boundary conditions (four boundaries × four seasons) for a total 
of n = 616 state vector elements.  

We perform the inversion with lognormal error probability density functions (pdfs) for prior 
emissions (Maasakkers et al., 2019; Lu et al., 2022a). This prevents unphysical negative 190 
emissions (Miller et al., 2014) and better captures the heavy tail of the emission distribution 
(Yuan et al., 2015; Zavala-Araiza et al., 2015; Duren et al.,2019; Cusworth et al., 2022) than a 
normal error assumption. Specifically, we optimize ln (𝒙𝒙) instead of 𝒙𝒙, such that the prior errors 
on ln (𝒙𝒙) (referred to hereafter as 𝒙𝒙′) follow a normal distribution. The boundary condition 
elements of the state vector are still optimized assuming normal error distributions. 
 
The inversion finds the optimal estimate of 𝒙𝒙′ assuming normal error distributions (lognormal in 
emission space) by minimizing the Bayesian cost function 𝐽𝐽(𝒙𝒙′) (Brasseur and Jacob, 2017): 

𝐽𝐽(𝒙𝒙′) = (𝒙𝒙′ − 𝒙𝒙′𝒂𝒂)T𝐒𝐒′𝐚𝐚−𝟏𝟏(𝒙𝒙′ − 𝒙𝒙′𝒂𝒂) + 𝛾𝛾(𝒚𝒚 − 𝐊𝐊′𝒙𝒙′)T𝐒𝐒𝐨𝐨−𝟏𝟏(𝒚𝒚 − 𝐊𝐊′𝒙𝒙′)                                    (1) 

where 𝒙𝒙′ = ln(𝒙𝒙) and 𝒙𝒙𝒂𝒂′ = ln(𝒙𝒙𝒂𝒂),  𝒙𝒙𝒂𝒂 (n × 1) is the prior emission estimate (n = 616), and y 200 
(m×1) is the ensemble of TROPOMI super-observations (m = 3714062). 𝐒𝐒𝐚𝐚′  (n × n) is the prior 
error covariance matrix and 𝐒𝐒𝐨𝐨 (m × m) is the observational error covariance matrix, both 
assumed to be diagonal in absence of better objective information. 𝐊𝐊′𝒙𝒙′ = 𝐊𝐊𝒙𝒙 is the GEOS-
Chem forward model simulation of XCH4. K = 𝜕𝜕𝒚𝒚 𝜕𝜕𝒙𝒙⁄  (m × n) is the Jacobian matrix that 
describes the linear sensitivity of 𝒚𝒚 to 𝒙𝒙, and is constructed column by column by perturbing 
individual elements of x in GEOS-Chem.  𝐊𝐊′ = 𝜕𝜕𝒚𝒚 𝜕𝜕𝒙𝒙⁄ ′ (m × n) describes the sensitivity of 𝒚𝒚 to 
𝒙𝒙′, which is nonlinear and readily derived from K following 𝐊𝐊′𝑖𝑖,𝑗𝑗 = 𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕ln (𝑥𝑥𝑗𝑗)
= 𝑥𝑥𝑗𝑗

𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝑥𝑥𝑗𝑗𝐊𝐊𝑖𝑖,𝑗𝑗, 

where i and j are indices of the observations and the state vector elements. The regularization 
factor 𝛾𝛾 is introduced in Eq. (1) to prevent overfitting to observations because of the missing 
covariant structure (off-diagonal terms) in 𝐒𝐒𝐨𝐨. We follow Lu et al (2021) and determine an 210 

optimal 𝛾𝛾 value of 0.01 such that �𝒙𝒙′� − 𝒙𝒙′𝒂𝒂�
T
𝐒𝐒𝐚𝐚′−𝟏𝟏�𝒙𝒙′� − 𝒙𝒙′𝒂𝒂�≈ 𝑛𝑛 ± √2𝑛𝑛, the expected value (±1 

standard deviation) of the Chi-square distribution with n degrees of freedom.  

We solve the nonlinear optimization problem iteratively using the Levenberg-Marquardt method 
(Rodgers, 2000):  
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𝒙𝒙′𝑵𝑵+𝟏𝟏 = 𝒙𝒙′𝑵𝑵 + �𝛾𝛾𝐊𝐊𝑵𝑵
′ 𝐓𝐓𝐒𝐒𝐨𝐨−𝟏𝟏𝐊𝐊𝑵𝑵

′ + (1 + 𝜅𝜅)𝐒𝐒𝐚𝐚′−𝟏𝟏�
−𝟏𝟏

(𝛾𝛾𝐊𝐊𝑵𝑵
′ 𝐓𝐓𝐒𝐒𝐨𝐨−𝟏𝟏(𝒚𝒚 − 𝐊𝐊𝒙𝒙𝑵𝑵) − 𝐒𝐒𝐚𝐚′

−𝟏𝟏(𝒙𝒙′𝑵𝑵 − 𝒙𝒙𝒂𝒂′ ))   (2) 

where the coefficient 𝜅𝜅 is fixed at 10 following Chen et al (2022), N is the iteration number 
(𝒙𝒙′𝟎𝟎 = 𝒙𝒙′𝒂𝒂), and 𝐊𝐊𝑵𝑵

′  is evaluated for 𝒙𝒙′ = 𝒙𝒙′𝑵𝑵. We iterate on Eq. (2) until the differences of all 
state vector elements between two consecutive iterations (𝒙𝒙𝑵𝑵′  and 𝒙𝒙𝑵𝑵+𝟏𝟏′ ) are smaller than 0.5%. 
We then take 𝒙𝒙′� = 𝒙𝒙𝑵𝑵+𝟏𝟏′  as the optimal posterior estimate.  

The posterior error covariance matrix 𝐒𝐒′�  on the optimal posterior estimate is given by (Rodgers, 220 
2000): 

𝐒𝐒′� = (γ𝐊𝐊′𝐓𝐓𝐒𝐒𝐨𝐨−𝟏𝟏𝐊𝐊′ + 𝐒𝐒𝐚𝐚′−𝟏𝟏)−𝟏𝟏                        (3) 

where 𝐊𝐊′ =  𝐊𝐊𝑵𝑵+𝟏𝟏
′  is evaluated for the posterior estimate. The averaging kernel matrix A 

defining the sensitivity of the solution to the true value is given by  

𝐀𝐀 = 𝛛𝛛𝒙𝒙′�
𝛛𝛛𝒙𝒙′

= 𝐈𝐈𝒏𝒏 − 𝐒𝐒�′𝐒𝐒𝐚𝐚′−𝟏𝟏                                                  (4) 

where 𝐈𝐈𝒏𝒏 is the identity matrix. The trace of A quantifies the number of independent pieces of 
information on 𝒙𝒙′ obtained from the observations and is called the degrees of freedom for signal 
(DOFS).  

An implication of using log-normal error statistics for emissions is that the inversion optimizes 
the median (instead of the mean) of the lognormal emission pdf, but the mean can be inferred 230 
following 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠

′� /2, where 𝑠𝑠′�  is the diagonal element of the posterior error 
covariance matrix (Eq. 3) corresponding to that emission sate vector element (Lu et al., 2022a). 
This is necessary when summing inversion results geographically such as to report national 
emissions. 

2.5 Prior and observational error covariance matrices 

We assume a geometric standard deviation factor (𝜎𝜎𝑔𝑔= 2) to characterize the lognormal error pdf 
for the prior emission estimates (i.e., the prior emissions are uncertain by a factor of 2) such that 
𝐒𝐒𝐚𝐚′  (with diagonal elements 𝑠𝑠𝑎𝑎′ ) is constructed following �𝑠𝑠𝑎𝑎′ = ln (𝜎𝜎𝑔𝑔) (Kirkwood, 1979). A 
factor of 2 is typical of the uncertainties in emission factors given by the IPCC for oil/gas 
activities (Scarpelli et al., 2020). The prior error standard deviation on the boundary conditions is 240 
taken to be 10 ppb, which is typical of the root-mean-square error (RMSE) of GEOS-Chem 
simulations using posterior emission estimates (Chen et al., 2022). 

We use the residual error method (Heald et al., 2004) to estimate observational error variances 
including contributions from the TROPOMI instrument, the retrieval, and the forward model. 
Here we take into account the error reduction resulting from averaging individual TROPOMI 
retrievals 𝒚𝒚′ into the super-observations 𝒚𝒚. We first apply the residual error method to individual 
retrievals in each 0.25o× 0.3125o grid cell k over the course of 2019. The difference 𝒚𝒚′ − 𝐊𝐊𝒙𝒙𝒂𝒂 
between individual TROPOMI retrievals and the prior simulation is decomposed into an annual 
mean 𝒚𝒚′ − 𝐊𝐊𝒙𝒙𝒂𝒂������������ for that grid cell to be corrected in the inversion, and a residual (𝒚𝒚′ − 𝐊𝐊𝒙𝒙𝒂𝒂 −
(𝒚𝒚′ − 𝐊𝐊𝒙𝒙𝒂𝒂������������)) representing the observational error for 𝒚𝒚′. The variance sk of that observational 250 
error would populate the observational error covariance matrix if we ingested individual 
retrievals in the inversion, but in fact we ingest super-observations each representing an average 
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of P individual retrievals. If the observational error for individual retrievals averaged into a 
super-observation was uncorrelated, then the observational error variance would decrease as 1/P 
(central limit theorem), but the decrease is less if the errors are correlated. 

To estimate the observational error variance reduction associated with averaging P retrievals into 
one super-observation for a given 0.25o× 0.3125o grid cell and hour, we repeat the residual error 
method but now apply it to the super-observations y instead of the individual retrievals. Instead 
of computing error variances for individual grid cells, we sort the errors by the number P of 
individual retrievals that went into the super-observation and take statistics for the dependence of 260 
the observational error variance on P over the whole inversion domain. Results are shown in Fig. 
4 with comparison to the central limit theorem. We see that the decrease in the observational 
error variance with the number P of individual retrievals going into a super-observation is much 
weaker than would be expected for uncorrelated errors. This implies that the observational errors 
for the individual retrievals contributing to a super-observation for a given 0.25o× 0.3125o grid 
cell and hour are highly correlated. The forward model transport component of the observational 
error is in fact perfectly correlated because the model provides a single prediction for all 
individual retrievals. But most of the observational error is expected to be contributed by the 
satellite retrieval (Wecht et al., 2014), and it appears that this error component is also correlated 
between individual retrievals.  270 

To model the observational error correlation between individual retrievals contributing to a 
super-observation and thereby fit the results of Fig, 4, we adopt a two-component error variance 
equation following Miyazaki et al (2012) and Pendergrass et al. (2022) to separate the 
contributions from the forward model transport error variance (σ2

transport) and the satellite single-
retrieval error variance (σ2

retrieval) to the observational error variance of the super-observation 
(σ2

super): 

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 �1−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑃𝑃

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� + 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2                        (5) 

Here 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the error correlation coefficient for the individual retrievals averaged into the 
super-observation, with the transport error being perfectly correlated (rtransport = 1) by definition. 
Fitting Eq. (5) to the data in Fig. 4 we obtain error standard deviations 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 16.4 ppb 280 
(with 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.55)  and 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.5 ppb. Some error correlation in retrievals would 
indeed be expected based on similarity in surface types and aerosol optical depth. The 
observational error standard deviation decreases initially as the number P of averaged retrievals 
increases, and approaches an asymptotic value of 13.0 ppb for P > 10 including contributions 
from the transport error standard deviation and the super-observation retrieval error standard 
deviation (r1/2

retrievalσretrieval = 12.2 ppb) added in quadrature. Validation of TROPOMI retrievals 
with ground-based column observations from the TCCON network by Lorente et al (2021) yields 
a retrieval error standard deviation of 13.3 ppb (11.5 ppb if excluding two high-latitude TCCON 
stations) when averaging all concurrent retrievals within 300 km of a TCCON station 
corresponding to 90-400 individual retrievals. This is in close agreement with our asymptotic 290 
value of 12.2 ppb. Our derived transport error standard deviation of 4.5 ppb for XCH4 is consistent 
with the transport error standard deviation of 36 ppb for surface concentrations derived by Lu et 
al. (2021) from the residual error method at surface sites, considering that the amplitude of 
variability for column concentrations is about 10 times lower than for surface concentrations 
(Cusworth et al., 2018). 
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Using Eq. (5) for the dependence of the observational error variance on P with fitted parameters, 
we can now adjust the observational error variances sk derived previously for individual 
retrievals in 0.25o× 0.3125o grid cells k to apply to the super-observations actually ingested in the 
inversion. We define for this purpose a normalized scaling factor g(P) = σ2

super(P)/ σ2
super(1) . 

Thus a super-observation for grid cell k in a given hour that averages P retrievals has an 300 
observational error variance g(P)sk. We construct the diagonal observational error covariance 
matrix So in this manner. The resulting observational error variance averages (10.4 ppb)2 for the 
super-observations in the inversion domain. The error correlation between individual retrievals 
suggests that there should be in fact some error correlation between super-observations, even 
though these observations are for different grid cells and/or different hours. This would introduce 
off-diagonal structure in 𝐒𝐒𝐨𝐨 but we do not have sufficient information to construct this off-
diagonal structure objectively. The regularization factor γ in Eq. (1) is intended to account for 
this correlation and correct for the assumption of diagonality in 𝐒𝐒𝐨𝐨, as explained above.  

2.6 Attributing posterior emissions to individual countries and sectors   

The posterior GMM state vector (𝑛𝑛 × 1) can be readily mapped on the 𝑝𝑝 native 0.25o×0.3125o 310 
grid cells of the inversion domain using the GMM-generated weighting of each Gaussian on that 
grid as represented by a matrix 𝐖𝐖𝟏𝟏 (𝑝𝑝 × 𝑛𝑛). The contributions from each of q emission sectors 
(Table 1) to the emissions in individual grid cells are taken from the prior inventories to produce 
a matrix W2 (pq ×n).  We can then apply a summation matrix 𝐖𝐖𝟑𝟑 (𝑟𝑟 × 𝑝𝑝𝑝𝑝) to aggregate 
emissions over r countries and/or sectors of interest. The resulting matrix 𝐖𝐖 = 𝐖𝐖𝟑𝟑𝐖𝐖𝟐𝟐 (𝑟𝑟 × 𝑛𝑛) 
thus represents the linear transformation from the posterior GMM state vector (𝑛𝑛 × 1) to a 
reduced state vector (r ×1) of sectoral emissions from individual countries. The reduced state 
vector (𝒙𝒙𝒓𝒓𝒓𝒓𝒓𝒓), posterior error covariance (𝐒𝐒�𝐫𝐫𝐫𝐫𝐫𝐫), and averaging kernel matrix (𝐀𝐀𝐫𝐫𝐫𝐫𝐫𝐫) are 
computed as 

𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓 = 𝐖𝐖𝒙𝒙�                                                                                                                           (6) 320 
𝐒𝐒�𝐫𝐫𝐫𝐫𝐫𝐫 = 𝐖𝐖𝐒𝐒�𝐖𝐖𝐓𝐓                                                                                                                             (7) 

𝐀𝐀𝐫𝐫𝐫𝐫𝐫𝐫 = 𝐖𝐖𝐖𝐖𝐖𝐖∗                                               (8) 

where 𝐖𝐖∗ = (𝐖𝐖𝐓𝐓𝐖𝐖)−𝟏𝟏𝐖𝐖𝐓𝐓 is generalized pseudo-inverse of W (Calisesi et al., 2005). 

2.7 Inversion ensemble and uncertainty estimate   

Our base inversion described above makes assumptions on the values of inversion parameters 
including a factor of 2 uncertainty on the prior emissions (geometric error standard deviation σg 
= 2), an error standard deviation σb = 10 ppb for boundary conditions, and a regularization factor 
𝛾𝛾 = 0.01. The posterior error matrix of Eq. (3) is a fair representation of the uncertainty on the 
analytical solution (𝒙𝒙′� , 𝐒𝐒′� ) given this choice of inversion parameters, but it does not account for 
uncertainties in the parameters. We therefore generate a 36-member ensemble of sensitivity 330 
inversions varying the parameters. The inversion ensemble includes (1) using σg = 1.5 or 2.5, (2) 
using σb = 5 or 20 ppb, (3) using γ = 0.005 or 0.02, and (4) assuming normal prior error 
distributions for emissions with an error standard deviation of 50% following Lu et al (2021). 
Similar to Chen et al. (2022), we find that the uncertainty range defined by the optimal estimates 
of this 36-member ensemble is larger than the posterior error from the base inversion. We thus 
report the uncertainty in posterior estimates as the range of solutions given by the inversion 
ensemble.   
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3. Results and Discussion  

3.1 Evaluation of posterior emission estimates 

Fig. 2 shows the posterior emissions and Fig. 5 shows the posterior/prior emission ratios on the 340 
0.25o ×0.3125o grid. Also shown are the averaging kernel sensitivities (diagonal elements of the 
averaging kernel matrix 𝐀𝐀) that identify where the TROPOMI observations are most effective at 
quantifying emissions. We achieve 123 independent pieces of information (DOFS) to quantify 
emissions over the inversion domain. The GMM aggregates weak prior emissions mainly 
following spatial proximity (dictated by the similarity factors longitude and latitude). The 
rectilinear latitude-longitude patterns in low-emitting regions reflect this aggregation. Thin lines 
between some of the rectilinear patterns reflect the superimposition of corrections from 
individual Gaussians onto the 0.25o ×0.3125o grid.  

We implemented the posterior emissions in GEOS-chem to check that the posterior simulation 
provides an improved fit to the TROPOMI observations as compared to the prior simulation 350 
(Fig. 5). The mean model bias over the inversion domain decreases from -10.4 to -0.31 ppb. The 
root-mean-square error (RMSE) decreases from 18.6 to 14.7 ppb, with improvement limited by 
the observational error (Fig. 4).  

We also find an improved ability of the posterior estimate to fit to independent in situ surface 
flask measurements (Fig. 6). These in situ observations are collected from the 
GLOBALVIEWplus CH4 ObsPack v4.0 database compiled by the National Oceanic and 
Atmospheric Administration (NOAA) Global Monitoring Laboratory (Schuldt et al., 2021). 
There are five sites in the region, most of them remote (Table S1). The overall mean bias across 
the five sites is reduced from -8.9 to -1.9 ppb. The RMSE decreases only slightly from 27.0 to 
24.5 ppb, limited by the forward model transport error in simulating surface concentrations (Lu 360 
et al., 2021).  

3.2 Emissions from individual countries and sectors 

Table 1 gives the region-wide emissions over the Middle East and North Africa for 2019 
including a total of 23 individual countries. Our best estimate of the posterior anthropogenic and 
natural emissions over this region are 38.6 and 1.6 Tg a-1, respectively, as compared to 28.5 and 
1.0 Tg a-1 in the prior estimate. Oil/gas is the largest source (8.5 Tg a-1 for oil and 6.3 Tg a-1 for 
gas), followed by waste (13.2 Tg a-1) and livestock (8.2 Tg a-1). Waste includes emissions from 
landfills and wastewater, which are combined in the inversion because of their spatial overlap. 
Coal and rice emissions are minimal. Our best estimate of the total anthropogenic emissions in 
the region is 35% higher than the prior estimate, which can be mainly attributed to upward 370 
corrections for gas (+3.2 Tg a-1, +103%), waste (+4.6 Tg a-1, +53%), and livestock (+2.7 Tg a-1, 
+49%). We find a downward correction for oil (-1.4 Tg a-1, -14%).  

Table 2 gives the total and sectoral anthropogenic emissions for each of the 23 countries in the 
region. Also shown are averaging kernel sensitivities, which measure to what degree TROPOMI 
observations can quantify national emissions independently of the prior estimate (0 = not at all; 1 
= fully). All countries have averaging kernel sensitivities greater than 0.65 except four with very 
low emissions. Our ability to separate emissions from individual countries in the inversion is 
shown in Fig.7 using error correlations between posterior national emission estimates (0 = 
perfect separation; ±1 = no separation). We find that most of the error correlations are smaller 
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than 0.2, indicating successful separation. Exceptions are between Palestine, Jordan, and Israel; 380 
between Syria and Iraq; and between the United Arab Emirates (UAE) and Oman, where our 
inversion shows limited confidence in separating the emission estimates by country (flagged in 
Table 2).  

Our region-wide estimate of oil emissions is lower than in the UNFCCC-based estimate from 
GFEIv2 but individual countries may be either higher or lower. We find large downward 
corrections in Iran (-1.8 Tg a-1), Iraq (-1.4 Tg a-1), and Libya (-0.4 Tg a-1), which we will see 
later are likely due to overestimate of emission factors used in the UNFCCC reports or from the 
IPCC (2006) Tier 1 method (Sect. 3.3). We find upward corrections in other major oil-producing 
countries, mainly in Oman (+1.4 Tg a-1) and Turkmenistan (+1.0 Tg a-1), likely due to the large 
number of super-emitting point sources not accounted for in the UNFCCC estimates (Varon et 390 
al., 2019, 2021; Guanter et al., 2021; Lauvaux et al., 2022a, b; Ikakulis-Loixalte et al., 2022; 
Ehret et al., 2022).  

We find upward corrections of gas emissions in all countries compared to the UNFCCC-based 
national bottom-up inventories as given by GFEIv2, mainly in Algeria (+1.0 Tg a-1), 
Turkmenistan (+0.8 Tg a-1), Saudi Arabia (+0.7 Tg a-1), and Iran (+0.5 Tg a-1). Again, this is 
likely due to super-emitting point sources not included in the reports. We further analyze gas 
emission by subsector (upstream, midstream, downstream) using gridded information from 
GFEIv2, and Table 3 shows results for the top emitting countries. The dominant subsector in 
Algeria is upstream (76%), while the dominant subsector in Iran is downstream (67%), 
consistent with all of Iran’s gas production being consumed domestically (EIA-Iran, 2021). 400 
Turkmenistan and Saudi Arabia also show high shares of downstream emissions (42 and 44%, 
respectively), reflecting their heavy domestic consumption. Saudi Arabia relies largely on its 
offshore production for domestic gas use (EIA, 2020), and transmission from offshore platforms 
to population centers likely explains the large contribution from midstream emissions (53%). 
The large difference in sub-sectoral contributions between countries stresses the importance of 
setting country-specific emission control strategies.    

Figure 8 shows the hotspot 0.25o×0.3125o grid cells in our posterior estimate, defined by 
emissions greater than 2.0 tons h-1 averaged over the year (18 Gg a-1).  Turkmenistan, Algeria, 
and Oman have a large number of hotspot grid cells, and for these countries we also estimate 
exceedingly high national emissions from oil/gas activity (Table 2). The hotspots identified in 410 
our inversion have the same general geographical distribution as the ultra-emitting facilities (>25 
tons h-1) previously identified by Lauvaux et al (2022) from single-pass TROPOMI observations, 
as shown in Fig. 8, though the precise locations are often at odds. The Lauvaux et al. (2022) 
threshold for ultra-emitters is much higher than our threshold for hotspot grid cells because theirs 
is based on single-pass detection of emissions that may be single or intermittent events, whereas 
ours is based on annual mean emissions. This may also explain some of the differences in 
hotspot locations. We identify more hotspots in Saudi Arabia and Oman, where the single-point 
source detection method of Lauvaux et al (2022) is hindered by large regional enhancements. We 
also find a number of hotspots from offshore emissions in the Persian Gulf that they would not 
have been able to detect with their method. Conversely, we detect no hotspots over Syria but 420 
Lauvaux et al (2022) detect several, likely reflecting poor prior information for Syria in our 
inversion.    

3.3 Major emitting countries and comparison to previous studies 
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Fig. 9 compares our posterior emissions from the top six emitting countries in the Middle East 
and North Africa (Iran, Turkmenistan, Saudi Arabia, Algeria, Egypt, and Turkey, accounting for 
62% of region-wide anthropogenic emissions) to the prior emission estimate and to previous 
inversion results from Worden et al (2022), Deng et al (2022), and Western et al (2021) that all 
used the much sparser GOSAT data. Worden et al. (2022) presented national results by mapping 
the global 2019 inversion results of Qu et al. (2021) at 2o×2.5o resolution, with prior estimate of 
fuel emissions from GFEIv1 (Scarpelli et al., 2020) and other sectors from EDGARv6. Deng et 430 
al (2022) collected a total of 11 independent inversions from different groups contributing to the 
Global Methane Budget initiative (Saunois et al., 2020) for 2010-2017. Western et al (2021) 
estimated total 2010-2017 emissions from North Africa at monthly 0.35o×0.23o resolution with 
prior emissions from GFEIv1 for fuel and the 2012 EDGARv4.3.2 inventory for other 
anthropogenic sources, but they did not separate their results by sectors.     

Our estimate of total anthropogenic emissions in Iran is consistent with the prior estimate but 
with a shift in sectoral attribution from oil to livestock and waste (Table 2).  Our oil/gas estimate 
(1.8 Tg a-1) is within the large uncertainty range of Deng et al (2022) (1.0-6.2 Tg a-1), but lower 
than Worden et al (2022) (3.1-4.3 Tg a-1) and the UNFCCC-based GFEIv2 (3.1 Tg a-1, our prior 
estimate). GFEIv2 uses emission factors obtained from the Iranian government report in 2000, 440 
likely unsuitable for 2019. The prior estimate of oil/gas emissions of Worden et al (2022) is from 
2016 GFEI v1, higher than that in the updated 2019 GFEIv2, because of intensified economic 
sanctions beginning in 2018 (EIA-Iran, 2021). The 2o ×2.5o resolution of Worden et al (2022) 
may also limit the inversion’s ability to effectively separate emissions between Iran and Iraq, 
which are close to the border (Fig. 2).  

Our estimate for Turkmenistan is higher than the prior emissions and on the high end of the 
uncertainty ranges from Worden et al (2022), and Deng et al (2022). We estimate higher oil/gas 
emissions (3.2 Tg a-1) than GFEIv2 (1.4 Tg a-1), pointing to dense super-emitting point sources 
that are not properly accounted for in the bottom-up estimates (Varon et al., 2019, 2021; Guanter 
et al., 2021; Lauvaux et al., 2022; Irakulis-Loitxate et al., 2022a; Ehret et al., 2022). Our oil/gas 450 
estimate is also at the high end of 0.9-2.8 Tg a-1 of Deng et al (2022) and 2.0-3.2 Tg a-1 of 
Worden et al (2022), which we explain by the better ability of TROPOMI than sparse GOSAT to 
capture point sources (Fig. 8).  

Our estimate for Saudi Arabia is at the high end of the large Deng et al (2022) uncertainty range 
and is higher than the prior estimate and Worden et al (2022).  We find that most of the 
emissions in Saudi Arabia are from waste. Our higher estimate than Deng et al. (2022) and 
Worden et al. (2022) likely reflects the low observational density of GOSAT over Saudi Arabia, 
as evidenced in in Worden et al. (2022) by very low averaging kernel sensitivities.  

Our estimate of gas emissions in Algeria is smaller than Worden et al (2022), but our larger 
estimate of livestock and waste offsets gas and yields good agreement on the total national 460 
emission. We find a low error correlation (<0.2) between posterior gas and waste emissions in 
Algeria, implying that TROPOMI can effectively separate these two sectors. Both studies show 
much higher gas emissions than the prior estimate, reflecting point sources that are not accounted 
for in the UNFCCC-based inventory. Varon et al. (2021) found from repeated point-source 
sampling with the Sentinel-2 satellite instrument over a 10-month period that a single super-
emitting oil well in Algeria amounted to 6% of the UNFCCC-reported oil/gas emissions.  
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Our estimate and Worden et al (2022) are in close agreement on the total and sectoral emissions 
for Egypt, featuring in our work a large increase of waste emissions over the prior estimate 
(Table 2). Western et al (2021) only reported a total emission for Egypt but stressed the 470 
underestimate of agricultural emissions (livestock + rice) in the national government report, 
consistent with our finding (Table 2) and Worden et al (2022). Both our work and Worden et al. 
(2022) show higher national total emissions than Western et al (2021) over Egypt and Algeria, 
which may reflect smoothing errors in the inability of GOSAT data to effectively inform their 
high-resolution inversion.  

We attribute posterior emissions over Turkey largely to the livestock and waste sectors with little 
contribution from oil/gas, in contrast to the other five countries. Our estimate of total and 
sectoral emissions is lower than our prior estimate and consistent with Worden et al (2022). 

3.4 Oil/gas emission factors, activity metrics, and methane intensities   

IPCC (2006) recommends the use of emission factors and activity data to construct bottom-up 480 
emission inventories. For the upstream, midstream, and downstream oil/gas subsectors it 
recommends that emission factors be defined per unit of oil/gas produced, transported/stored, 
and consumed, respectively. For oil the emission is almost exclusively from the upstream 
subsector, while for gas all three subsectors can contribute (Table 3).  Fig. 10 shows national 
upstream emission factors from major producers in the Middle East and North Africa, comparing 
our inversion results to GFEIv2, and using EIA oil and gas production statistics as activity metric 
(EIA, 2020). Also shown are the ranges from the IPCC (2006) Tier 1 guidelines. Scarpelli et al. 
(2022) pointed out that emission factors computed in this manner for the national inventories 
reported to the UNFCCC span several orders of magnitude, and our inversion finds the same. 
The IPCC (2006) Tier 1 emission factors themselves span two orders of magnitude (Fig. 10). 490 
Such a range means that the emission factors cannot be reliable, and further implies that 
production is not the appropriate activity metric for estimating methane emissions.  

Fig. 11 further illustrates the unsuitability of predicting methane emissions from oil and gas 
production rates by showing the ranked production rates from the top-producing countries along 
with the corresponding posterior methane emissions. There is no significant relationship between 
the two. The largest emitters are not the largest producers. Recent studies in the US suggested 
that the number of wells and the drilling of new wells may be a better predictor of methane 
emission than production rates (Allen et al., 2022; Lu et al., 2022b; Varon et al., 2022). Enverus 
(2021) provides well counts in the Middle East and North Africa though the data are incomplete, 
particularly for new wells which could be the largest emitters (Allen et al., 2022). As shown in 500 
Table 4, we find that national emissions correlate weakly with well counts (r = 0.25 for oil and r 
=0.19 for gas), and the correlation increases only slightly when combined with production rates 
(r = 0.26-0.28).  
 
It appears that the ability to relate oil/gas methane emissions to simple activity metrics is 
compromised by the importance of infrastructure type and management practices in driving 
oil/gas emissions. For example, national oil/gas emissions are largest in Algeria and 
Turkmenistan, due to the exceedingly leaky infrastructure previously documented by 
observations of dense point sources from space (Guanter et al., 2021; Varon et al., 2021; 
Lauvaux et al., 2022; Ehret et al., 2022). These dense point sources imply poor regulations and 510 
insufficient infrastructure (Lwaszczuk et al., 2021; Lauvaux et al., 2022; Irakulis-Loitxate et al., 
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2022a). Long-lasting venting and leaks detected in Turkmenistan may be related to old and 
inefficient equipment (Carbon Limits, 2013; Varon et al., 2019; Irakulis-Loitxate et al., 2022a). 
Lack of infrastructure in Algeria to transport and process gas (Ouki., 2019) from remote 
production fields challenges the country’s gas takeaway capacity, as illustrated by the 
exceedingly high volume of flared gas (Fig. 12) derived from flare radiances detected by the 
Visible Infrared Imaging Radiometer Suite (VIIRS) instrument (Elvidge et al., 2016). Studies in 
the US (Deighton et al., 2020; Omara et al., 2016, 2022) also found that equipment negligence 
and disrepair are the primary drivers of methane emissions for low production wells. The impact 
of these stochastic processes (equipment maintenance, local management practices) on emissions 520 
is however difficult to quantify, and might vary largely from basin to basin, and from country to 
country. Construction of bottom-up inventories relies on activity metrics and is thus unable to 
accurately quantify oil/gas emissions. This finding hence stresses the critical importance of top-
down emission estimates from atmospheric observations in the Global Stocktake and UNFCCC 
reporting in support of climate policy.  
  
A useful metric for assessing the potential for emission reductions from the oil/gas industry is the 
methane intensity, defined by the industry-based Oil and Gas Climate Initiative (OGCI, 2021) as 
the upstream oil/gas emissions per unit of gas production. This measures the methane lost to the 
atmosphere rather than taken to market. OGCI (2021) recently announced its 2025 upstream 530 
intensity target of 0.2%. Fig. 13 shows the methane intensities for major energy producing 
countries, assuming average methane gas content of 92% by volume (Scarpelli et al., 2022). We 
find a wide range of methane intensities across countries, spanning from 17.6% for Iraq to 0.06% 
for Qatar. The mean for the region is 1.8%, which can be compared to a mean value of 2.5% for 
the US in 2019 (Lu et al., 2022b). High methane intensities reflect leaky infrastructure combined 
with deliberate venting or flaring of gas. For example, emissions and production in 2019 are high 
in both Iraq and Iran, with the difference that gas is taken to market in Iran but vented/flared in 
Iraq, as indicated by the much higher ratio of VIIRS flared gas volume to gas production in Iraq 
(Fig. 12). This explains the higher methane intensity of Iraq compared to 0.61% for Iran. The 
ratio of flared gas to production in Turkmenistan is even smaller than in Iran, but the methane 540 
intensity of Turkmenistan is much higher. This can be explained by prolonged venting and leaks 
(Varon et al., 2019; Irakulis-Loitxate et al., 2022a) related to poor infrastructure and 
management practices.  
 
The OGCI (2021) methane intensity target of 0.2% is based on bottom-up emission models of 
methane emission from oil/gas infrastructure, and is vastly exceeded in all countries except three: 
Kuwait (0.15%), Saudi Arabia (0.14%), and Qatar (0.06%). There are likely one or more of the 
following reasons for their small intensities: (1) widespread associated gas capture. Saudi Arabia 
aims to capture most of its associated gas produced (EIA, 2020) and eliminate flaring by 2030 as 
a part of the World Bank’s Zero Routine Flaring Initiative; (2) modern infrastructure. More than 550 
half of Qatar’s Liquefied Natural Gas (LNG) compressor mega trains, used to convert offshore 
gas to LNG, were built after 2009 (Qatargas, 2022). Also, Saudi Arabia has continuously 
invested in infrastructure to maintain its oil and gas production capacity (EIA, 2020); and (3) a 
small number of high-producing wells with centralized infrastructure. The majority of Qatar’s 
gas is produced in ~200 wells in the offshore North Field, and processed in 14 compressor trains 
and two condensate refineries in Ras Laffan Industrial City (Qatargas, 2022). This finding 
suggests that infrastructure developments on improving associated gas capture, modernizing 

https://doi.org/10.5194/egusphere-2022-1504
Preprint. Discussion started: 9 January 2023
c© Author(s) 2023. CC BY 4.0 License.



14 
 

equipment, and improving management practices are effective avenues to reducing the methane 
intensities and achieving the OGCI (2021) target of 0.2% methane intensity. Decreasing the 
methane intensities in all countries in the Middle East and North Africa to 0.2% would reduce 560 
total oil/gas upstream emissions in the region to 1.1 Tg a-1 and represent a 26% reduction of total 
anthropogenic emissions in the region (Table 1). This would make a major contribution toward 
the collective goal of the Global Methane Pledge to decrease methane emissions by 30% by 2030 
(Climate and Clean Air Coalition, 2021). 
 
4. Conclusions  
 
We used 2019 TROPOMI satellite observations in a high-resolution inversion to infer methane 
emissions from the Middle East and North Africa region at up to 25 ×25 km2 resolution with 
emphasis on the contributions from individual countries and from the oil and gas sector. Our 570 
purpose was to evaluate the national inventories submitted to the United Nations Framework 
Convention on Climate Change (UNFCCC) under the Paris Agreement, and to identify avenues 
for climate action toward meeting the Global Methane Pledge. 

Our inversion used as prior estimate a gridded version of the national fuel inventories reported 
by individual countries to the UNFCCC, thus enabling direct evaluation of these inventories. It 
applied Bayesian synthesis of the prior inventories with the TROPOMI observations to 
analytically obtain optimal emission estimates, thus providing closed-form characterization of 
information content and facilitating the creation of an inversion ensemble for conservative 
uncertainty estimates on posterior emissions. Innovations in our inversion methodology include 
specific resolution of ultra-emitters in the Gaussian mixture model (GMM) used as state vector 580 
for the inversion, and accounting for observational error correlation in the assimilation of 
TROPOMI observations.    

We report optimized sector-resolved emissions for the 23 individual countries in the region. We 
find that TROPOMI observations can effectively constrain and individually separate emissions 
for most of the countries (19 out of 23). The others have small emissions. Total anthropogenic 
emissions in the region are 35% higher than in the prior estimate, reflecting increases in 
emissions from gas (+103%), waste (+53%), and livestock (+49%), but decrease for oil (-14%).  

We find that the top six emitting countries, including Iran (5.3 (5.0-5.5) Tg a-1, where numbers in 
parentheses are the range from our 36-member inversion ensemble), Turkmenistan (4.4 (2.8-5.1) 
Tg a-1), Saudi Arabia (4.3 (2.4-6.0) Tg a-1), Algeria (3.5 (2.4-4.4) Tg a-1), Egypt (3.4 (2.5-4.0) Tg 590 
a-1), and Turkey (3.0 (2.0-4.1) Tg a-1) together make up 62% of the total anthropogenic emissions 
in the region. Oil and gas are major contributors to these emissions except for Turkey. 
Comparison of our results for these countries to previous inversions using GOSAT satellite data 
show some disagreements that may be related to the sparsity of GOSAT sampling. Most oil/gas 
emissions are from the upstream (production) subsector, but some countries including 
Turkmenistan, Saudi Arabia, and Iran have large gas emissions from midstream (transmission) 
and downstream (distribution) subsectors. We identify a number of emission hotspots (>18 Gg a-

1 on the 25×25 km2 grid) particularly in Turkmenistan, Algeria, Oman, and offshore in the 
Persian Gulf. These hotspots are related to underestimates of oil/gas emissions in the national 
UNFCCC reports, indicating that they are not properly accounted for in the bottom-up 600 
inventories compiled for these reports. 
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The IPCC (2006) recommends the use of emission factors per unit oil or gas produced in the 
construction of bottom-up emission inventories, but these emission factors vary by orders of 
magnitude between countries and we find that there is in fact no significant relationship between 
emissions and production rates at the country level. Well counts are a better activity metric to 
predict emissions but national-scale correlations to emissions are still weak (r = 0.19-25), even in 
combination with production rates (r = 0.26-0.28). The importance and stochastic nature of local 
operating conditions and management practices in determining oil/gas emissions may stifle 
attempts to relate these emissions to simple activity metrics. This implies that top-down emission 
estimates from atmospheric observations are essential for the oil/gas sector and need to be 610 
considered as part of the Global Stocktake and UNFCCC reporting.  

The potential to decrease methane emissions from the dominant upstream component of the 
oil/gas sector can be quantified by the methane intensity, defined by the Oil and Gas Climate 
Initiative (OGCI) industry consortium as the upstream oil/gas emissions per unit of gas 
production. The methane intensity measures the fraction of methane lost to the atmosphere rather 
than taken to market. OGCI has a target of reducing the methane intensity to 0.2% worldwide by 
2025. We find that the methane intensities in almost all countries of the Middle East and North 
Africa are much larger, with highest values in Iraq (17.6 (7.5-30.6) %), followed by Oman (8.9 
(4.5-13.4) %), Turkmenistan (4.6 (3.1-5.4) %), Libya (4.2 (2.6-8.2) %), UAE (3.3 (2.3-4.2) %), 
and Algeria (2.9 (1.8-4.4) %). These high values reflect leaky infrastructure combined with 620 
deliberate venting or flaring of gas. By contrast, we find that methane intensities in Kuwait 
(0.15%), Saudi Arabia (0.14%), and Qatar (0.06%) are lower than the OGCI target, 
demonstrating that this target is achievable. These three countries appear to achieve their low 
methane intensities through a combination of associated gas capture, modern infrastructure, and 
small number of high-producing wells with centralized processing. This suggests that 
modernization of infrastructure combined with associated gas capture and improved management 
practices can effectively reduce methane intensities elsewhere. Meeting the OGCI target of 0.2% 
methane intensity throughout the Middle East and North Africa would decrease oil/gas upstream 
emissions in the region by 90% and decrease total anthropogenic methane emissions in the 
region by 26%, making a significant contribution toward the Global Methane Pledge.  630 
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Figure 1. TROPOMI- GOSAT difference in retrieved dry column methane mixing ratio (XCH4) 
as a function of the shortwave infrared (SWIR) surface albedo in the 2305-2385 nm range also 
retrieved by TROPOMI. Individual data points represent daily differences in collocated 
observations averaged on the GEOS-Chem 0.25o×0.3125o grid over the Middle East and North 
Africa (-20o-70o E, 12o-44o N) in 2019. The black solid line is the ordinary linear regression with 
coefficients given inset. The dashed line indicates zero difference between TROPOMI and 
GOSAT XCH4. 
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Figure 2. Atmospheric methane concentrations and emissions for the Middle East and North 
Africa. The top panels show the mean 2019 TROPOMI observations of dry column methane 
mixing ratio (XCH4) and the total number of retrievals for that year on the 0.25o×0.3125o native 1010 
grid of the inversion. The bottom panels show the prior and posterior emissions. Prior emissions 
are separated by sector in Fig. 3. Areas in blank have emissions lower than 1x10-12 kg m-2 s-1. 
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Figure 3. Prior estimates of methane emissions used for the inversion. Oil, gas, and coal 1020 
emissions are from the GFEIv2 gridded version of the national inventories from individual 
countries reported to the UNFCCC (Scarpelli et al., 2022). Some countries do not report to the 
UNFCCC and their emissions are inferred by Scarpelli et al. (2022) from EIA production 
statistics. Other anthropogenic emissions are from EDGARv6 (Crippa et al., 2021). Wetland 
emissions are 2019 monthly means of the nine-member high-performance subset of the 
WetCHARTs inventory ensemble (Ma et al., 2021), and are shown here as the annual means. 
Emissions lower than 1x10-12 kg m-2 s-1 are shown as blank. The total prior emission is shown in 
Fig. 2 and includes smaller sectors listed in Table 1.  
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Figure 4. Reduction of the observational error variance (σ2
super) from the averaging of individual 

TROPOMI retrievals into super-observations for ingestion in the inversion. The symbols show 
the error variances computed with the residual error method from individual super-observations 
over the Middle East and North Africa inversion domain as a function of the number P of 
individual retrievals averaged into the super-observations. Each symbol represents the statistics 
for at least 100000 super-observations. The data are fitted to a two-component representation of 
the observational error variance σ2

super (P) as given by Eq. (5). Also shown in the Figure is the 1040 
error variance reduction function 1/P if there was no error correlation between individual 
retrievals, as given by the central limit theorem. 
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Figure 5. Optimization of methane emissions over the Middle East and North Africa in 2019 by 
inversion of TROPOMI observations. Results are from the base inversion and are shown on the 
0.25o×0.3125o native grid of the inversion. (a) Ratios between posterior and prior emissions. (b) 
Averaging kernel sensitivities (dimensionless). The averaging kernel sensitivities are the 
diagonal elements of the averaging kernel matrix, indicating the ability of the observations to 
quantify emissions independently from the prior emissions (1 = fully, 0 = not at all). The number 1050 
of degrees of freedom (DOFS, defined as the trace of the averaging kernel matrix) is given inset. 
(c) Mean differences between the GEOS-Chem simulation with prior emissions and 
observations. The mean bias (MB) and root-mean-square error (RMSE) over the study domain 
are given inset. (d) Same as (c) but for the GEOS-Chem simulation with posterior emissions.  
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Figure 6. Evaluation of inversion results with independent in situ observations. The Figure 
compares GEOS-Chem simulations using prior or posterior emissions to in situ flask 1060 
measurements from five surface sites in 2019 compiled by the NOAA GLOBALVIEWplus CH4 
ObsPack v4.0 database. The five sites are listed in Table S1. The annual mean biases and root-
mean-square errors (RMSEs) for each site are shown. The spatial mean biases  and the overall 
RMSEs for the ensemble of sites are given inset.  
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Figure 7. Error correlation coefficients (r) between posterior estimates of total anthropogenic 
emissions from different countries in the inversion domain, measuring the ability of the inversion 
to separate emissions in one country from another (±1= not at all; 0 = fully).  
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Figure 8. Methane emission hotspots from oil/gas activity in the Middle East and North Africa. 
Top panel shows the hotspot 0.25o × 0.3125o grid cells from our inversion in 2019, defined as 
emissions greater than 2.0 tons h-1 averaged over the year (18 Gg a-1).  Bottom panel shows ultra-
emitters (>25 tons h-1) identified from 2019-2020 single-pass TROPOMI data by Lauvaux et al 
(2022).  1080 
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Figure 9. National methane emissions from the top six emitting countries in the Middle East and 
North Africa. Results from our work are compared to our prior estimates and to GOSAT 
inversions reported by Worden et al (2022), Deng et al (2022) (not for all countries), and 
Western et al (2021) (for North Africa only, without separation by sectors). Fossil fuel includes 
emissions from oil, gas, and coal; agriculture includes emissions from livestock and rice; and 
waste includes emissions from landfills and wastewater treatment. Vertical bars are reported 
uncertainty ranges for total national emissions. Sectors are aggregated to enable comparison with 
previous studies.  More detailed sectoral breakdown for our work is in Table 2. 
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 1090 

Figure 10. Country-level emission factors for oil and gas upstream activity in 2019. The 
emission factors represent the amount of methane emitted per unit of oil or gas produced, 
following the definition of IPCC (2006). Values are shown for our posterior estimates and for the 
UNFCCC reports as implemented in GFEIv2 and used as our prior estimate. Also shown is the 
range of values from the IPCC Tier 1 methods (IPCC, 2006), from the lowest value for 
developed countries to the highest value for developing countries and countries with economies 
in transition. GFEIv2 estimates of emission factors for Iraq, Oman, and Libya are from IPCC 
(2006) Tier 1 methods because these countries do not report to the UNFCCC. Horizontal bars 
indicate the uncertainty range inferred from our inversion ensemble.  
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Figure 11. Ranked oil and gas production rates in 2019 from the top-producing countries in the 
Middle East and North Africa, with corresponding posterior estimates of methane emissions 
from that sector. Production statistics are from EIA (2020).  
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Figure 12. Flared gas volume in 2019 from major oil/gas producing countries. Top panel shows 
flared volume derived from flare radiances detected by the Visible Infrared Imaging Radiometer 
Suite (VIIRS) instrument. Bottom panel shows ratios of flared gas volume to gas production in 
2019 normalized by a value of 264 m3 flared gas per barrel of oil equivalent produced for Iraq.     
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Figure 13. Methane intensities in 2019 for major oil/gas producing countries in the Middle East 
and North Africa. The methane intensity is defined as the amount of methane emitted from 
oil/gas upstream activities per unit of methane gas produced. Values are computed from our 
posterior emission estimates and EIA gas energy production statistics (EIA, 2020), assuming an 
average methane content of 92% by volume. Vertical bars indicate the uncertainty range inferred 
from our inversion ensemble. Dashed horizonal line indicates the OGCI (2021) industry target of 1130 
0.2% for 2025. Also shown is the mean and range of methane intensities from US oil/gas fields 
(Lu et al., 2022b). 
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Table 1. Methane emissions for 2019 in the Middle East and North Africa. a 

  Prior estimate (Tg a-1)b Posterior estimate (Tg a-1)c 

Total emission 29.5 39.7 (33.7-45.1) 

Anthropogenic 28.5 38.6 (32.5-43.2) 

Oil 9.9 8.5 (8.3-9.5) 

Gas 3.1 6.3 (4.1-8.3) 

Livestockd 5.5 8.2 (6.4-10.0) 

Coal 0.28 0.20 (0.10-0.27) 

Wastee 8.6 13.2 (10.6-14.2) 

Rice 0.38 0.72 (0.58-0.72)    

Otherf 0.81 1.4 (1.0-1.6) 

Natural  1.0 1.6 (1.2-1.9) 

Open fires 0.02 0.03 (0.03-0.04) 

Wetlands 0.42 0.53 (0.49-0.54) 

Seeps 0.08 0.14 (0.10-0.18) 

Termites  0.51 0.87 (0.61-1.2) 

 
aSumming emissions over the 23 individual countries listed in Table 2. 
b Prior estimates of oil, gas, and coal emissions are from the GFEIv2 gridded version of the 
national inventories from individual countries reported to the UNFCCC or inferred from EIA 
production data (Scarpelli et al., 2022). Other anthropogenic emissions are from EDGARv6. 
Wetland emissions are the mean of the high-performance subset of the WetCHARTs v1.3.1 
inventory ensemble for 2019 (Ma et al, 2021). Open-fire emissions are from GFED4s (van der 
Werf et al., 2017). Termite emissions are from Fung et al (1991), and geological seepage 
emissions are from Etiope et al (2019) with scaling from Hmiel et al. (2020).  1150 
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cResults are from the base inversion of TROPOMI observations, with the uncertainty range in 
parentheses obtained from the 36-member inversion ensemble. 
dLivestock sector includes contributions from enteric fermentation and manure management. 
eWaste sector includes emissions from landfills and wastewater treatment, which are 5.2 and 3.4 
Tg a-1 in the prior estimate and are not separable in the inversion. 
fIncluding industry, stationary combustion, mobile combustion, aircraft, composting, and field 
burning of agricultural residues. 
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Table 2. National anthropogenic methane emissions in 2019.a 

Country   Oil Gas Livestock Coal Waste Rice Other Anthropogenic total 
(Tg a-1) 

Sensitivity to 
observationsb 

Algeria Posterior 0.08 2.0 0.43 0 0.95 0 0.01 3.5 (2.4-4.4) 0.84 
Prior 0.04 1.0 0.29 0 0.65 0 0.01 2.0  

Bahrain Posterior 0.14 0.07 0 0 0.19 0 0.02 0.42 (0.39-0.43) 0.91 
Prior 0.17 0.03 0 0 0.06 0 0.01 0.27  

Egypt Posterior 0.35 0.15 0.78 0 1.6 0.35 0.12 3.4 (2.5-4.0) 0.96 
Prior 0.24 0.07 0.41 0 0.71 0.15 0.06 1.7  

Iran Posterior 0.78 1.0 1.20 0.04 1.7 0.22 0.32 5.3 (5.0-5.5) 0.97 
Prior 2.6 0.52 0.65 0.02 0.81 0.13 0.14 4.9  

Iraqc Posterior 1.2 0.04 0.17 0 0.73 0.02 0.05 2.2 (1.8-3.1) 0.98 
Prior 2.9 0.03 0.14 0 0.54 0.01 0.04 3.7  

Israelc Posterior 0 0.03 0.11 0 0.26 0 0.01 0.41 (0.31-0.41) 0.81 
Prior 0 0.02 0.06 0 0.13 0 0 0.21  

Jordanc Posterior 0 0.11 0.06 0 0.42 0 0.03 0.62 (0.45-0.68) 0.91 
Prior 0 0.06 0.03 0 0.19 0 0.01 0.29  

Kuwait Posterior 0.02 0.01 0.01 0 0.83 0 0.08 0.95 (0.58-0.98) 0.85 
Prior 0.04 0 0.01 0 0.27 0 0.03 0.35  

Lebanon Posterior 0 0.02 0.03 0 0.09 0 0 0.15 (0.09-0.18) 0.76 
Prior 0 0.01 0.01 0 0.04 0 0 0.07  

Libya Posterior 0.37 0.02 0.10 0 0.11 0 0.01 0.61 (0.56-0.85) 0.76 
Prior 0.76 0.02 0.09 0 0.09 0 0.01 0.97  

Mauritania Posterior 0 0.01 0.18 0 0.03 0 0.02 0.23 (0.20-0.28) 0.20 
Prior 0 0.01 0.21 0 0.04 0.01 0.02 0.29  

Morocco Posterior 0 0.04 0.61 0 0.67 0 0.02 1.3 (1.1-1.7) 0.89 
Prior 0 0.03 0.38 0 0.71 0 0.02 1.2  

Niger Posterior 0.01 0 1.1 0 0.18 0.01 0.08 1.3 (0.95-1.8) 0.65 
Prior 0.01 0 0.69 0 0.12 0.01 0.05 0.86  

Omanc Posterior 2.0 0.10 0.06 0 0.15 0 0.03 2.4 (1.2-3.4) 0.75 
Prior 0.62 0.06 0.04 0 0.10 0 0.02 0.83  

Palestinec Posterior 0 0.01 0.02 0 0.16 0 0 0.19 (0.14-0.19) 0.89 
Prior 0 0.01 0.01 0 0.08 0 0 0.09  

Qatar Posterior 0.07 0.01 0.01 0 0.23 0 0.04 0.37 (0.31-0.38) 0.78 
Prior 0.05 0.01 0.01 0 0.19 0 0.03 0.28  

Saudi Arabia Posterior 0.09 1.1 0.31 0 2.5 0 0.34 4.3 (2.4-6.0) 0.80 
Prior 0.03 0.43 0.16 0 0.88 0 0.15 1.6  

Syriac Posterior 0.06 0.03 0.41 0 0.39 0 0.01 0.90 (0.54-1.4) 0.68 
Prior 0.05 0.01 0.16 0 0.19 0 0 0.42  

Tunisia Posterior 0.03 0.01 0.15 0 0.17 0 0.04 0.40 (0.27-0.50) 0.61 
Prior 0.02 0.01 0.08 0 0.1 0 0.02 0.23  

Turkey Posterior 0.03 0.08 1.4 0.16 1.2 0.02 0.13 3.0 (2.0-4.1) 0.93 
Prior 0.02 0.09 1.5 0.26 2.1 0.04 0.16 4.2  

Turkmenistan Posterior 1.8 1.4 0.86 0 0.17 0.09 0.02 4.4 (2.8-5.1) 0.85 
Prior 0.84 0.58 0.34 0 0.06 0.03 0.01 1.9  

UAEc Posterior 1.4 0.07 0.05 0 0.31 0 0.01 1.8 (1.4-2.2) 0.97 
Prior 1.4 0.06 0.04 0 0.27 0 0.01 1.8  

Yemen Posterior 0.03 0 0.19 0 0.21 0 0.01 0.44 (0.44-0.47) 0.65 
Prior 0.02 0 0.18 0 0.22 0 0.01 0.44  
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aPrior estimates are from national bottom-up inventories. Posterior estimates are optimized by 
inversion of TROPOMI observations with uncertainty ranges on total national anthropogenic 
emissions given in parentheses.  See footnotes in Table 1 for more information on prior and 
posterior estimates.  
bSensitivity of posterior emissions to the TROPOMI satellite observations as determined from 
the diagonal elements of the reduced averaging kernel matrix (averaging kernel sensitivity). The 1190 
sensitivity measures the ability of TROPOMI observations to determine the posterior solution 
independently of the prior estimate, ranging from 0 (not at all) to 1 (fully). 
cWe have limited confidence in separating national emissions between Palestine, Jordan, and 
Israel; Syria and Iraq; and UAE and Oman in the inversion due to high posterior error 
correlations. See more details in Sect. 3.2 and Fig. 7. 
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Table 3. Sub-sectoral gas emissions from top emitting countries.a  

 Upstream (Tg a-1) Midstream (Tg a-1) Downstream (Tg a-1) 
Algeria 1.6 0.29 0.20 
Turkmenistan 0.67 0.23 0.64 
Saudi Arabia 0.02 0.46 0.38 
Iran 0.18 0.15 0.68 

aPosterior gas emission estimates from inversion of TROPOMI data, separated by subsector 
using gridded information from the UNFCCC-based GFEIv2 inventory. Upstream includes 
exploration, production, and processing. Midstream includes transmission and storage. 1220 
Downstream includes distribution to consumers. The sum of upstream, midstream, and 
downstream emissions adds up to the posterior total gas emissions listed in Table 2 for each 
country. 

 

 

 

 

Table 4. Correlation coefficients (r) between upstream emissions and activity metrics. a 
 

Oil Gas Oil + gas 
Production rates -0.16 0.14 -0.23 
Well counts 0.25 0.19 0.32 
Production rates + well 
countsb 

0.26 0.28 0.28 

 
aThe correlation is calculated using posterior oil/gas upstream emissions and activity data for 12 1230 
individual countries listed in Fig. 11. 
bA multiple linear regression using two explanatory variables (production rates, well counts) to 
fit the posterior oil/gas emissions.  
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