Authors response - EGUSPHERE-2022-1503

Current and future role of meltwater-groundwater dynamics in a proglacial Alpine outwash plain

General comments

We thank both reviewers and the editor for their careful and constructive comments on our manuscript. We attempted to address all discussed issues in a new version of the manuscript. Overall, the structure of the paper remains similar, but we added precisions in various parts of the manuscript as proposed by the reviewers. We also added some additional sentences in the conclusion regarding the model choices and how our results are applicable to other sites. Finally, a few short paragraphs of minor interests were removed to limit the length of the manuscript.

Point-by-point response: Anonymous Referee #1

Revisions

Reviewers' comments	Authors' response	Changes in manuscript
Additionally, during the winter period in the	We did not consider implementing any unsaturated flow	(same as previous point)
upstream portion of the domain, most of layer 1	package based on the assumption stated above. In addition,	
is unsaturated. It may be worthwhile for the	even though the processes in the superficial unsaturated layer	We added a similar justification in
authors to consider solving a Richard-based	may not be fully well represented, the focus of this study is on	the discussion (limitations) and
model for the first layer and using a simpler	the aquifer-scale groundwater flow and exchanges with the	made the absence of vadose zone
formulation for the other layers. Given the	stream. Due to the automatic calibration based on an extensive	clearer in the methods.
ample data available for the studied domain,	database of observations, we believe that the seasonal aquifer	
have the authors considered using UFZ	behavior is correctly modelled and the use of a more complex	We also mentioned other model
MODFLOW package or other models that allow	(unsaturated) model would not change the modelled behavior	types in the discussion.
for this type of modeling, such as ParFlow	and would not provide additional information regarding the	
(Maxwell et al., 2005) or OpenGeoSys (Kolditz et	research questions.	
<u>al., 2012</u>)?	We believe that unsaturated processes would only be required	
	for processes such as soil water - plant interactions such as root	
	water uptake or evaportranspiration, which can be safely	
	neglected in our case.	

Reviewers' comments	Authors' response	Changes in manuscript
Did the authors investigate whether water	As discussed above, evaporation from the top sediments is	We added a similar discussion in
evaporation, which may be more significant	highly limited by the coarse nature of the sediments and the	the discussion (limitation) section
during summer days when solar irradiation is	limited capillary effect. As such, we neglected this process.	of the new manuscript.
stronger, was negligible? Additionally, it is not	We also did not specify that we also neglected the direct	
clear to me if the authors evaluated the rain	recharge effect of rain falling on top of the aquifer. This	We made it clearer in the
runoff during raining events. It would be	simplification was made as we could never observe any	methods that rainfall on the
valuable to understand how rainfall was	groundwater response after a rain event in any groundwater	surface was not accounted for.
accounted for in the study and whether it was	wells.	
incorporated into the groundwater model.	Precipitation seemed indeed to only impact groundwater levels	
	for rain events larger than 10 to 20 mm/day (Fig. 6), but the	
	rapid recession of the groundwater head seems to indicate that	
	transmission of the rain water through vadose zone is fast and	
	water retention in the unsaturated sediments is strongly	
	limited after the day of the event. Moreover, in our model, we	
	only accounted for lateral recharge during such rain events but	
	model results show a similar groundwater response as	
	observed, suggesting that the additional input of rain water on	
	the surface did not influence much the groundwater levels (Fig.	
	6).	
	We nevertheless attempted to add a simple module to simulate	
	a delayed rain input to the aquifer but this resulted in an	
	overestimation of the water heads for all rain events. The	
	reason for this lack of response is likely due to the effect of the	
	dry unsaturated zone, which likely retains part of the rainwater	
	infiltration in the unsaturated zone or/and preferential	
	flowpaths in the sediments which limit diffuse surface recharge	
	and concentrate surface water infiltration to specific locations	
	within the outwash plain which are not monitored or rapidly	
	drain into the braided stream. Since the groundwater head did	
	not respond to most rain inputs, we believe that neglecting the	
	unsaturated zone, as well as the direct input of water from	
	precipitation falling on the sediments allows for an adequate	
	simplification of the model which aims at modelling the	
	seasonal groundwater behavior of such a system and not	
	specific processes in the vadose zone.	

Detailed comments

Reviewers' comments	Authors' response	Changes in manuscript
Line 172: could the author report more detail on the coupling method between surface and subsurface model that the authors had employed among the possibilities offered by MODFLOW? This information could be possibly helpful in providing a deeper understanding of the results obtained.	We used the most state-of-the-art packages offered in MODFLOW to represent surface-groundwater interactions. The streamflow (SFR) package is the only package which allows to simulate the dynamic stream stages at every node based on a complex channel cross- section and on Manning's equation. Some issues in MODFLOW representations have previously been discussed in the literature (Brunner et al., 2010). One challenge is the inability to simulate negative pressures in the case of a perched stream. We believe this should be at least partially mitigated by the calibration procedure.	We provided more details about this module in the methods.
Could the author provide more detail on how the two objective functions described between lines 195 and 201 are used for calibration? In particular, the authors defined a single objective function that utilizes a weighted sum of the multi-objective function. How was the weight of the OBJ function selected? It would be helpful to provide a clear explanation of this process to ensure the reader understands how the calibration was performed.	Concerning the single objective function, we first weighted both objective functions (SWE and snow cover) equally, that is the total initial weighted sum of residuals for both objective function is equal. In this way, both the objective functions are optimized to a similar degree. Based on the initial calibration results, we then decided to increase the weight of the snow cover objective function to improve the representation of the snow cover fraction, which tended to decrease too quickly in the model during the late season. This iterative adjustment of the weighting resulted in a total weight of 1 and 2.4 for the SWE and snow cover objective functions. This final weighting allowed to better match the measured snow cover fraction over the whole season, while maintaining a root mean square error of about 100 mm for the estimation of the SWE.	We added this information in the methods.
is it possible to include section number 4 in Figure 2?	Yes	Added lateral recharge to Fig. 2

Reviewers' comments	Authors' response	Changes in manuscript
In line 381, you mention that exfiltration is also correlated with stream water infiltration, citing Figure 8c. However, it is not clear from this figure how these two variables are related. It seems that exfiltration has a similar hysteresis effect to upstream discharge, as you note. To gain a better understanding of the relationship between these two variables, it would be helpful to include a graph comparing upstream discharge and exfiltration, if possible.		We left the manuscript as is.
In line 411, could the authors provide more explanation about the selection of the porosity value?	Yes, we forgot to specify this in the methodology and added this to the methodology. Porosity was estimated by measuring the saturated water content using a Decagon 5TM at five locations in the upper sediment layer. Additionally, the sediment texture was analyzed by laser granulometry, resulting in a large dominance of the sand fraction (>90%). Such coarse sediment texture usually has a low porosity of 0.25 to 0.3.	Added this precision in the methodology

Point-by-point response: Anonymous Referee #2

Major revisions

Reviewers' comments	Authors' response	Changes in manuscript
Some of the description of the numerical model structure, as well as the forcing data applied under the future scenario (which seem to be missing).	Indeed, we corrected this in the document (see also pdf comments below)	 Added more details to the methods
In addition, I am unsure whether the 3 day model reinitialization period is sufficient (perhaps it is, since the aquifer system seems to form a kind of bedrock-dammed "bucket" in which groundwater levels near the surface are maintained). Several additional (generally minor) comments are provided in the attached PDF.	The 3 day reinitialization period seems indeed rather short but was verified before running the full calibration. The initial groundwater head was initialized 1m below the ground, which is not far from the measured groundwater stage. Due to the very conductive nature of the sediments, the aquifer rapidly reaches an equilibrium with the stream and 3 days was found to be sufficient to obtain such equilibrium.	• We detailed this in the Sect 3.2.3
More generally, in agreement with Reviewer 1, I also think it would have been interesting to apply a "fully-integrated" hydrological model code such as ParFlow, ATS, or HGS to the problem. Some studies applying these models at catchment scale in mountain settings have emerged (<u>ref1,ref2</u>); multi- scale work using nested integrated models could perhaps be proposed as a future research direction for such research, since this would enable many strong a prior assumptions made regarding relevant processes, channel locations, recharge locations etc. to be relaxed, whilst retaining detail in the aquifer of interest.	We thank the reviewer for this broader comment. As discussed before, we believe our approach also has some benefits compared to a more complex fully integrated model, as it allows us to focus more on one structure, with more control over the specific processes occurring in this aquifer. We also agree that future work proposing a more integrated modeling of the whole catchment would be interesting but would require more detailed geological data, especially regarding the nature of the bedrock fractures and groundwater flow within such aquifer. We finally believe that using different methods with different levels of complexity, as well as detailed analysis of field data of various sources are all required to provide a fully sound understanding of alpine catchments, as each method is limited by the choices of model structure and assumptions.	We added a section in the discussion part of the revised document to highlight our choices and the potential use of fully- integrated models.

Supplementary comments in the pdf

In the following, we review comments directly inserted in the pdf. We highlight here only major comments, while minor suggestions such as wording were directly corrected in the new version.

Reviewers' comments	Authors' response	Changes in manuscript
Line 2: I'm not sure that I necessarily agree with this. such interactions may have previously been occurring at glacier beds. Also what, more precisely, do you mean by "significant"? Certainly they become more "visible".	Yes, we were here mostly referring to the appearances of some superficial landforms due to sediment release (such as the outwash plain) and the thawing of frozen soils.	 We added some precision regarding the processes.
Line 6: Please rephrase this sentence as the meaning is unclear at present. A "focal point" is also rather vague.	Indeed, this sentence was vague.	We rephrased this sentence to make it more specific
Line 9 : This is a little confusing. Was it only the comparison of the model with the observations that revealed the strong interactions? I would rather have expected that, for example, the observations show this to a certain extent and the model allows the processes to be further elucidated, and/or various hydraulic parameter values assigned and/or predictions made (at unmeasured locations or for the future). Perhaps consider rephrasing this sentence to better capture what the respective insights from the observation and model are.	This is indeed confusing	 We simply removed the confusing reference to model and data, as it is already described in the previous sentence.
Line 12: Presumably only when there is still a glacier melt fed stream to provide the recharge?	Not necessarily. Since they are bedrock dammed, their hydraulic gradient decreases rapidly when recharge is limited so that the groundwater levels drop especially in their upper part, while the lower part (near the bedrock dam) remains saturated.	We rephrased to be more specific.

Reviewers' comments	Authors' response	Changes in manuscript
Line 19 : It is unclear from just the abstract whether the statistics in these last few paragraphs are referring to a generic outwash plain, or the specific one studied. If the former, then surely there would be quite considerable variability between types of catchments, for instance the geometries of the bedrock, the size of the glacier, the characteristics of the alluvial aquifer, and also the permeability of the bedrock? It could be useful to clarify this for readers of the abstract, and if necessary expand on it later in the manuscript.	Indeed we are talking about this specific case study	We rephrased to make this point clearer
Line 46 : It could be interesting to reflect on the proportion of deglaciating catchment in which outwash plains form. Presumably in some settings, e.g. where the downstream gradient is very steep or there are few bedrock overdeepenings / constrictons, there is not the opportunity for them to form? Any such statistics, estimates or comments could further contextualise the work.	Thank you for this comment. We provided some rough statistics of post-LIA fluvial systems (<u>Carrivick et. al, 2018</u>) to better contextualize this work. Nevertheless, an exact mapping of current and future outwash plains has not been proposed yet. This work may encourage more research to fill this knowledge gap.	• Added two sentences in the introduction
Consider adding the locations of the electrodes to Figure 1. Also, specify that the inversions were 2D (I assume?), not 3D?	Yes	 Added electrodes to Fig. 1. We specified that inversion were in 2D
Line 133: Did you delineate this interface on the profiles (and if so, was it spatially "coherent")? Did it define the lower boundary of your numerical model?	Yes, this is described in section 3.1.2. Profiles were coherent.	No change
Line 134 : Perhaps explain a little further why so many were done. I assume this was to get good spatial coverage of the entire system, rather than for example to look at any changes (e.g. in moisture conditions) on a given transect via repeat surveys, since ERT may generally struggle to pick up such variations?	Indeed, some lines were repeated over 3 years to assess changes in buried ice, but only one was used for the bedrock dealination. In total 12 were used.	• Corrected the number of lines and added them on figure 1.

Reviewers' comments	Authors' response	Changes in manuscript
Line 136 : with what results / outcome? What did	Mostly to check for data quality and check which method was	 We rephrased this
you do in case of any differences?	most suited. Most profiles agree well and we used dipole-	
	dipole results for the bedrock profiles	
Line 166 : It is very unclear whether the the	Yes, we fixed this. The last layer is indeed variable. 4 layers	 We rephrased this. We also
domain was of uniform vertical thickness or not.	were used as a trade-off between allowing substantial	pointed to figure 9 were the
Figure 2b suggests not. This means that the lines	parameter variation with depth and limiting the number of	layers cross-section can be
drawn (L162) were not of equal depth. Was the	calibration layers (and parameters) which increased	viewed.
third layer from the surface 4 m thick, and then	computational costs.	
the final layer of variable thickness spanning the		
distance to the top of the bedrock? At the moment, the text suggests that you have two 4		
m layers, and hence a total model domain of		
constant thickness. Please clarify.		
Also, was there any geophysical support or		
physical reasoning for the choice of 4 (spatially		
continuous) layers, with interfaces at the		
specified depths?		
Line 170: How reasonable is this assumption,	This is indeed one limitation of MODFLOW. We attempted to	We added a precision
given the previous statements about the	address this issue in the discussion already. We further	concerning mudflow limitations
dynamism of these environments? Taking a fully-	detailed this point in the limitation section.	in the method (Sect. 3.1.3) and
integrated simulation approach using a code such as ATS or HGS would have at least allowed	Concerning MOFLOW limits the only improvement in	further in the discussion.
smaller channels to be also represented	Concerning MOFLOW limits, the only improvement in modflow is the definition of irregular cross-sections which	
(assuming they are represented in the terrain	allows a better estimation of the wetted area of the stream,	
model). Such an approach may have also refined	but otherwise the points from Brunner et al., 2010 are still	
the representation of surface-subsurface	valid.	
feedbacks more generally. Indeed, some issues	In our model, the grid size is small and dry cells are allowed	
in MODFLOW representations have previously	so that errors in the water table is limited.	
been discussed in the literature (e.g. ref1),	The major challenge is the inability to simulate negative	
though I have not followed developments	pressures in case of perched stream. We believe this should	
regarding the extent to which the latest	be at least partially mitigated by the calibration procedure.	
MODFLOW versions mitigate such limitations.		

Reviewers' comments	Authors' response	Changes in manuscript
Line 195 : But how does this transfer the precipitation from those steep slopes to the corresponding downhill slopes?	We neglected snow redistribution and snow was simply not accumulating on steep slope. This is definitely a simplification, but we assume that the redistribution of snow to other flatter parts is compensated in the model calibration by other parameters. For instance, we use a factor to correct winter precipitation based on the measured winter precipitation at the nearby weather station. This factor may be somewhat increased to account for snow redistribution on flat parts. In any case, SWE in the flatter part was better constrained due to the SWE observations in this part which are part of the calibration objective function.	 We left this as is to not increase the manuscript length to much.
Figure 2 : Why would you expect lateral recharge to be point based? Do these locations correspond to gullies? Would one not expect at least some recharge across the 2D lateral domain of the aquifer model? Also, why should there be no recharge from the slope on the south side?	In this study, we mostly included surface water flow from the hillslope resulting from snow melt and rain. Those inputs were defined as point recharge as observed in the field. No surface flow was observed in the south side of the hillslope, likely due to less solar input and less melt. A diffuse subsurface recharge from the hillslope was not included due to a lack of data regarding this process. We however assume that diffuse recharge is likely not a dominant process in summer due to the coarse and steep nature of the hillslope and crystalline bedrock as discussed in previous work. In winter lateral subsurface recharge may play a more important role when melt is assumed to be very limited. This process is however difficult to measure in the field. From our previous work in this catchment in general, we have highlighted a winter baseflow of about 0.3 mm / day, potentially due to bedrock exfiltration. If we assume such a diffuse recharge from the bedrock below the outwash plain sediments over its entire surface, this corresponds to a recharge of 0.5 L/s. This flux appears to be a hundred times lower than the winter stream infiltration estimated for winter.	 We added a precision concerning recharge in the methods (Sect 3.1.4). We added a discussion regarding lateral recharge and potential infiltration in Sect 5.2.

Reviewers' comments	Authors' response	Changes in manuscript
Line 228: Could perhaps be mentioned more clearly that the pilot points remain in the same location for each layer. In theory this need not be the case, for example of one expects a different pattern of parameter variability per layer.	Although the pilot points are at the same location, they are allowed to vary independently from each layer leading to different patterns after extrapolation.	 We left the sentence as is
Line 245 : Does the model state reequilibrate so quickly as this following changes in the parameter values? I would have expected it to take (potentially much) longer, especially during periods of recession.	Yes, the model stated in the summer and equilibrated very fast (1 to 2 days)	We added a sentence
Line 286 : Specifically, what forcings were applied to these "future" scenarios. What this basically a resampling / selection from the recent historical observations, or derived from downscaled climate change projects (e.g. delta change method or similar). Please consider adding further details here.	For the future scenario, the goal was only to assess the cascading effect of multiple outwash plain on discharge. We did not create scenario of future discharge, but rather used a synthetic example of discharge, composed of a high discharge period and a recession period, to assess how outwash plain react to such inflow rather than providing a catchment-scale prediction.	• We added a sentence to clarify this
Figure 3 : Was this buried ice reflected in the MODFLOW structure / zonation and hence hydraulic parameter values applied? I expect the interpolations from the pilot points / use of a few horizontal model layers in the grid may not be able to fully "capture" these features (similarly to potential preferential pathways, as stated). If this is the case, it could be worth mentioning briefly.	Indeed, most buried ice structures were small (<10 m ³) and are not captured by the pilot point extrapolation method. Since their size is small their impact on groundwater is only very local. Only the large buried ice blocks shown in Fig 3b were directly included in the model as a no flow zone as they cover a large part of this cross-section.	• We detailed this better in Section 4.1
Line 439 : You mean vertically constant within each layer (I think)? I would clarify this as it can be confusing for readers to follow.	Yes indeed !	We rephrased the sentence

Reviewers' comments	Authors' response	Changes in manuscript
Line 479 : Developing a nested distributed	Indeed, and this is what we attempted to due for the northern	We added a sentence in the
modelling strategy could have helped here,	hillslope part where we estimated discharge from side	conclusion as you suggested
whereby the detailed aquifer model is nested	tributaries. However, for the southern side, water is mainly	
within, and recieves its boundary conditions	provided by a small hanging glaciers and we lacked data for	
from, a coarser but broader model. This could	calibration there. Although providing a rough estimation of	
perhaps be suggested as a direction for future	discharge may have been possible, we doubt that is would	
modelling studies at this local aquifer scale.	have significantly impacted the results from our outwash	
	plain model as already discussed	
Line 527 : Based on this indicative information I	While the transit time of water in the outwash plain is a few	 A sentence was added in the
would again question the suitability of only a 3	weeks long, the water table reacts much faster to pressure	method section.
day reinitiaisation period for each PEST	variation (as shown by the groundwater well fluctuation). This	
iteration.é	also means that the watertable equilibrate very rapidly with	
	the river stage during the model initialisation.	
Line 597 : I would suggest to emphasise that this	Yes we detailed better this statement	 We changed the sentence
is active / dynamic GW storage that contributes		
to streamflow.		

Reviewers' comments	Authors' response	Changes in manuscript
	More generally, in this study, we used a rather unconventional approach where we did not model the entire catchment functioning, but rather focused on a specific hydro-geomorphological structure within it and attempted to include all major processes that influence the groundwater storage of this structure. As highlighted by the reviewers, the use of a more complex modelling framework such as HydroGeoSphere, could have provided a more integrated understanding of the processes. We however lack much information about the subsurface geological structure and subglacial processes in other parts of the catchment and believe that the development of a more complex model may be very challenging and may introduce other sources of uncertainties, even more difficult to interpret.	•
	With the use of this rather hybrid model (highly detailed 3D aquifer modelling coupled with a rather simple lateral recharge routine), we have more control and understanding of the key processes which occur in the outwash plain aquifer specifically. Since our goal was to focus on the outwash plain and not the whole catchment, we believe this approach is well suited to our research questions. This will be made much clearer in the revised version.	

Point-by-point response: Editor comments

Here we review comments provided by the editor privately, which we deemed important to address.

Reviewers' comments	Authors' response	Changes in manuscript
The recharge of the aquifer (from the top soil) is	We attempted to add a delayed rain module to the model to	We added a paragraph in the
neglected since "we could never observe any	account for the precipitation input. The rain input was	discussion to address this issue.
groundwater response after a rain event in any	redistributed following a Gamma distribution and we tested	
groundwater wells". This observation is	different delays. However, since most groundwater heads	
somehow controversial. I agree with the authors	showed no response, any additional water input led to an	
that the lack of response is probably due to the	overestimation of the observed heads. During large rain	
unsaturated area, somehow delaying the	events, long delays led to an overestimation the days after the	
groundwater (GW) recharge. Therefore GW	event, while a short delay led to an overestimation of the	
recharge cannot be applied at the time when	peak water head. Since sediments are coarse, it is likely that	
rain occurs. Nevertheless, it would be	water transmission through the unsaturated zone is fast, but	
appropriate to incorporate groundwater	water may infiltrate in preferential flow paths so that	
recharge into the groundwater model,	recharge is not diffuse and is therefore not recorded by our	
accounting for a lag time to allow water to pass	wells. In any case, compared to total stream water infiltration	
through the unsaturated area	during the summer (1e ⁶ m3), the amount of water input from	
	direct precipitation is low (~3e ⁴ m3) which should not impact	
	the seasonal groundwater behavior much.	
Calibration. As detailed in table 1, some	Specific storage was not calibrated as this value is much	We did not make any change in the
parameters are set to constant (not calibrated)	smaller than porosity and the small variations in water	manuscript regarding this
values. In particular the specific storage, Ss, is set	pressure lead to negligible changes in water storage for such	comment as this seems like a minor
at e-5 and is constant across all layers. Note that	a small, unconfined aquifer. We tested this statement by	issue and we would like to avoid a
: (i) Ss is a dimensional quantity, I guess the units	varying Ss from 1e ⁻³ to 1e ⁻⁷ in the model, which resulted in	longer manuscript.
used here are 1/m (2) Ss should vary according	very little difference in modelled heads and water exfiltration	
to the geomaterial, i.e. it cannot remain	(less than 0.1%). For this reason, Ss is assumed constant as a	
constant across each layer.	spatially varying value would not lead to any changes in the	
	results.	
Line 186. The authors should provide an	These points were used as they represent the main observed	This was added after line 186.
explanation for the selection of the 4 points of	ephemeral surface streams which drain the entire north side	
GW recharge shown in Fig. 2b.	of the hillslope above the aquifer.	

Reviewers' comments	Authors' response	Changes in manuscript
- K_gw and S_y were estimated at 25 pilot points	It is indeed correct that Sy cannot be estimated below the	We edited section 3.2.3 (Objective
for each of the 4 layers (i.e. a 200 parameters, +	lowest point of the water table in winter. Note that the	function and model calibration)
8 pilot points for K_b, for a total of 208	aquifer model has four layers but they all represent one	since this is an important point for
parameters). Ground water measurements	unconfined aquifer, which is simply separated into four parts	the calibration.
(used to calibrate K_gw and S_y) were obtained	to allow parameters to vary with depth.	
using 8 fully-screened piezometers reaching a	Concerning Kgw, based on the work of Magnusson et al. (
depth of about 2 m below the ground surface.	2014) or Montalto et al. (2007), diel groundwater fluctuations	
Therefore they can provide hydraulic head (or	are due to a "tidal effect" or the propagation of a diffuse wave	
pressure) measurements only for the top layer.	in the aquifer from the stream. Based on some simplification,	
Therefore it is not clear how the GW	when the aquifer thickness (B) is much larger than the	
measurements can be used to estimate K_gw	fluctuation, the magnitude of the diffusion depends on the	
and S_y for all layers. This aspect is discussed in	aquifer transmissivity (T). Since T = Kgw/B, the amplitude and	
section 5.1 (and in particular at line 445).	delay of the diffuse wave is proportional to the mean Kgw	
However, it is not evident how the authors have	value in the aquifer. Therefore, using the groundwater	
include the diel groundwater variation in the	fluctuations as an objective function forces the model	
estimate of "depth averaged values of K_gw".	calibration to better represent the average Kgw in the whole	
Furthermore, since only the first layer is	aquifer, that is at a depth lower than the piezometers.	
unconfined, values of S_y in the remaining layers		
do not affect the GW flow system.		
Line 228. The authors should specify the	Indeed, we can specify this better. In general, we followed the	We added a sentence in section
meaning of "automatic kriging". Additionally,	directions provided in the PEST documentation.	3.2.1.
since each kriging technique requires a		
variogram (including its shape and related		
parameters), the authors should provide details		
about the variogram used and how its		
parameters were evaluated.		
The manuscript is focused on an application to a	Yes.	We provided an additional
specific study area. The authors should clarify		discussion in the conclusion to
how their findings can be transferred to other		better contextualize the findings.
areas, so that their work can be of general		
interest for HESS readers		