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Abstract. Plastic is an emerging pollutant, and the quantities in rivers and oceans are expected to increase. Rivers are assumed

to transport land-based plastic into the ocean, and the fluvial and marine transport processes have been relatively well studied

to date. However, the processes controlling the transport in tidal rivers and estuaries, the interface between fluvial and marine

systems, remain largely unresolved. For this reason, current estimates of riverine plastic pollution and export into the ocean

remain highly uncertain. Hydrodynamics in tidal rivers and estuaries are influenced by tides and freshwater discharge. As a5

consequence, flow velocity direction and magnitude can change diurnally. In turn, this impacts the transport dynamics of solutes

and pollutants, including plastics. Plastic transport dynamics in tidal rivers and estuaries remain understudied, yet the available

observations suggest that plastics can be retained here for long time periods, especially during periods of low net discharge.

Additional factors such as riparian vegetation and riverbank characteristics, in combination with bidirectional flows and varying

water levels, can lead to even higher likelihood of long-term retention. Here, we provide a first observation-based estimate of net10

plastic transport on a daily time scale in tidal rivers. For this purpose, we developed a simple Eulerian approach using sub-hourly

observations of plastic transport and discharge during full tidal cycles. We applied our method to the highly polluted Saigon river,

Vietnam, throughout six full tidal cycles in May 2022. We show that the net plastic transport is about 20-33% of the total plastic

transport. We found that plastic transport and river discharge are positively and significantly correlated (Pearson’s R2 = 0.76).

The net transport of plastic is higher than the net discharge (20-33% and 16%, respectively), suggesting that plastic transport is15

governed by other factors than water flow. Such factors include wind, varying plastic concentrations in the water, and entrapment

of plastics downstream of the measurement site. The plastic net transport rates alternate between positive (seaward) net transport

and negative (landward) net transport, as a result of the diurnal inequality in the tidal cycles. We found that soft and neutrally

buoyant items had considerably lower net transport rates than rigid and highly buoyant items (10-16% vs 30-38%), suggesting

that transport dynamics strongly depends on item characteristics. Our results demonstrate the crucial role of tidal dynamics and20

bidirectional flows in plastic transport dynamics. With this paper we emphasize the importance of understanding fundamental

transport dynamics in tidal rivers and estuaries to ultimately reduce the uncertainties of plastic emission estimates into the ocean.

1

Text Replaced�
Text
[Old]: "Tidal dynamics limit river plastic transport Louise D.M." 
[New]: "River plastic transport affected by tidal dynamics Louise J."

Text Replaced�
Text
[Old]: "Khiet" 
[New]: "Thanh-Khiet L."

Text Inserted�
Text
", Nicholas Wallerstein 1 , Remko Uijlenhoet 1,4"

Text Replaced�
Text
[Old]: "Quantitative Water Management" 
[New]: "Environmental Hydraulics"

Text Inserted�
Text
"4 Department of Water Management, Delft University of Technology, Delft, The Netherlands"

Text Replaced�
Text
[Old]: "27-32%" 
[New]: "20-33%"

Text Replaced�
Text
[Old]: "r 15 = 0.87, R 2 = 0.75)." 
[New]: "R 2 = 0.76). 15"

Text Replaced�
Text
[Old]: "(27-32% and 18%," 
[New]: "(20-33% and 16%,"

Text Replaced�
Text
[Old]: "(11-17% 20 vs 31-39%), suggesting the retention time" 
[New]: "(10-16% vs 30-38%), suggesting 20 that transport dynamics"

Text Replaced�
Text
[Old]: "net plastic transport." 
[New]: "plastic transport dynamics."



1 Introduction

Exposure of terrestrial and aquatic ecosystems to plastic has gained considerable interest among the public and scientific

community, due to its potential negative effects on the environment (Rochman et al., 2016). While the environmental risks posed25

by plastics remain to date largely uncertain, its presence in the environment is widely perceived as undesirable from an economic,

aesthetic and ethical perspective (Borrelle et al., 2017; Koelmans et al., 2021; Beaumont et al., 2019). Effective and timely

reduction strategies require understanding of the transfer dynamics of plastics across ecosystems and within environmental

compartments (van Emmerik and Schwarz, 2020). Rivers are one of the main pathways for the delivery of plastics from land to

the sea (Meijer et al., 2021). Recently, efforts have been made to use concepts from hydraulics, hydrology, fluvial geomorphology,30

sedimentology, and debris transport to resolve the open questions of river plastic transport (Liro et al., 2020; Valero et al., 2022;

Waldschläger et al., 2022). In particular, river plastic transport processes have been increasingly investigated in recent years in

relation to hydrology. Observational studies have demonstrated the strong response of plastic transport to high river discharge

events (van Emmerik et al., 2022a, 2023). Extreme discharge events such as floods mobilize large quantities of plastic and

can lead to increased plastic emissions into the ocean (Roebroek et al., 2021a; van Emmerik et al., 2023; Hurley et al., 2018).35

Under normal hydrological conditions, the relation between plastic transport and discharge varies between catchments and is

non-trivial (Roebroek et al., 2022; van Emmerik et al., 2022a). Despite growing efforts to link plastic transport to hydrological

processes, the transfer dynamics from rivers to sea remain poorly understood (van Emmerik et al., 2022b). Ultimately, the

transfer processes in the lower reaches of rivers - in tidal rivers and estuaries - are the most crucial aspect for quantifying plastic

emissions into the ocean. Yet, these plastic transfer processes at the river-ocean interface are arguably the most understudied40

aspect of riverine plastic transport.

Tidal rivers and estuaries are key components of river systems, as they form the interface between rivers and coastal

environments (Hoitink and Jay, 2016). In tidal rivers, flows are affected by the combination of freshwater discharge and coastal

forcing processes, such as tides. The interactions between river discharge and tidal dynamics ultimately affects the water,

sediment and pollutant budgets (Healy et al., 2007; Tessler et al., 2018; Fernandes and Pillay, 2010). This can result in either net45

export towards the coastal water or net import landward, depending on the spatio-temporal scales considered. For example,

characterizing net sediment transport requires quantifying the balance between landward supply and retention mechanisms

within the estuarine zone. Various pollutants are similarly affected by bidirectional flows, with both net export and import being

observed depending on the tidal dynamics (Fernandes and Pillay, 2010).

Several plastic research studies have aimed to quantify global riverine emissions of plastic into the sea (Jambeck et al., 2015;50

Lebreton et al., 2017; Schmidt et al., 2017; Meijer et al., 2021). River transport models typically include freshwater discharge

as a determining variable for the total export into the sea, but do not consider tidal effects on net water discharge (Lebreton

et al., 2017; Schmidt et al., 2017; Meijer et al., 2021). To date, no plastic transport model accounts for the influence of tidal

dynamics on plastic emissions into the sea. Meijer et al. (2021) postulated that the probability of riverine plastic reaching the

oceans increases with proximity to the river mouth, because larger cross-sectional areas in downstream reaches will reduce55

the likelihood of plastic trapping along riverbanks. We argue that in tidal rivers and estuaries, bidirectional flows and other
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processes including turbulent mixing, entrapment in mudflats and vegetation could generate the opposite effect. With increasing

tidal influence towards the river mouth, higher retention times of plastic within the system can be expected. This can ultimately

result in lower net plastic transport rates in the downstream reaches than in the upstream reaches of the river system. Most

global models assume that river plastic emissions are equivalent to plastic transport estimated at the most downstream point of60

the river (Meijer et al., 2021). This neglects retention dynamics within tidal rivers and estuaries, as well as potential landward

transport. Acha et al. (2003) found that salinity fronts in estuaries act as a physical barrier that accumulates plastic. More recent

studies have also shown the limited nature of plastic export in estuaries (Fernandino et al., 2016; López et al., 2020; Tramoy

et al., 2020a; Van Emmerik et al., 2020). For instance, López et al. (2020) simulated plastic transport in the Chesapeake estuary

(USA) and found that only 5% of the annual microplastic transport was exported into coastal waters, whereas the overwhelming65

majority (94%) beached on the estuarine shores.

Both Eulerian and Lagrangian-based approaches have been used to study solutes transfer dynamics from rivers to the ocean,

notably in the field of sediment transport (Ballio et al., 2018). Lagrangian approaches follow the motion of particles, whereas

Eulerian approaches describe the motion of particles over a spatially fixed volume. Most observation-based studies on plastic

transport in tidal rivers and estuaries follow a Lagrangian approach, in that they study the transport and accumulation dynamics70

of a finite number of items (Ledieu et al., 2022; Ryan and Perold, 2021; Sutton et al.; Tramoy et al., 2020a, b). These studies all

show that plastic trajectories are affected by both non-uniform advection (longitudinal) and diffusive (multi-directional) transfer

processes. Mobile plastics travel limited distances, although a considerable share of plastics will deposit in various riverine

compartments and be retained for years to decades at a time (Tramoy et al., 2020b, a). Such transfer dynamics are the result of

both limited transport caused by bidirectional flows and (temporary) trapping in vegetation and along riverbanks. Despite the75

growing evidence that tidal and estuarine dynamics attenuate plastic emissions into the oceans, net plastic transport has never

been measured during full tidal cycles. The difficulty in conducting measurements at night (due to the lack of daylight) and the

resource intensive nature of continuous measurements likely explain why such measurements have not been done thus far.

For this study, we developed a simple and easily transferable approach to quantify net plastic transport over tidal cycles at a

river cross-section, in relation to total plastic transport. By using a Eulerian approach, we considered a fixed spatial domain in80

which we estimated plastic transport. This approach entails measuring plastic transport and water flow dynamics (river discharge,

flow velocity and water depths) at a sub-hourly frequency. We applied this method to the Saigon river, Vietnam, in May 2022,

and estimated net and total plastic transport over six full tidal cycles. For the first time, we were able to estimate net plastic

transport in a tidal river, based upon field observations and using an Eulerian approach. We collected data on floating plastic

transport for various plastic types and measured river discharge at a sub-hourly frequency. We estimate net transport of plastic85

and how it varies by plastic type and by tidal cycle. We aim to highlight the crucial role of tidal rivers in the transport of riverine

plastic into the ocean.
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2 Methods

2.1 Study site

The field measurements were conducted at one site on the Saigon river (Vietnam), in Ho Chi Minh City (HCMC), at 70 km90

from the river mouth (Fig.1). The Saigon river originates in Cambodia, passes through the Dau Tieng reservoir, progresses

through a diverse agricultural and industrial region and then crosses HCMC, which has a population of 9 million people, making

it Vietnam’s largest city. Approximately 20 km south of HCMC, the Saigon river meets the Dong Nai river where it forms

the Nha Be river. The latter passes through the Can Gio Mangrove forest where it branches into multiple channels and then

debouches into the East Sea (Nguyen et al., 2020) (Fig.1A). The Saigon river is affected by an asymmetric semi-diurnal tidal95

regime, usually resulting in a reversal of the flow direction twice a day. Tidal dynamics are registered up to the Dau Tieng

reservoir, 140 km from the river month (Nguyen et al., 2021), and this regulates net discharge in the Saigon river (Camenen

et al., 2021). In addition, river discharge in the Saigon river is affected by a strong seasonality between the wet and the dry

seasons, with monthly mean net discharge varying between −80 and 320 m3/s (Camenen et al., 2021).

2.2 Measurement setup100

This study focuses on the transport of floating macroplastics larger than 0.5 cm, hereafter referred to as plastic. We measured

plastic transport, water depth, and flow velocity at the Thu Thiem bridge (10.785984, 106.718332), located in the southern part

of HCMC. The field measurements were conducted continuously over 74 hours and 30 minutes, from 1 to 4 May, 2022. Five

observation points were monitored across the river width, to account for the spatial variability at the river cross-section in plastic

transport, water depth, and flow velocity (Fig.1B). The observation points were chosen in order to maximize coverage of the105

entire river cross-section on the one hand and to minimize the influence of the bridge piers that support the road from which

observations were made. Measurements were conducted on both sides of the bridge. During flood flow, the measurements took

place on the northern side of the bridge, while the southern side was used during ebb flow. This allowed surveyors to face the

flow direction during measurements and facilitated the handling of equipment in and out of the water. The bridge deck was

approximately 14 m above the average water surface elevation during measurements.110

At each measurement location three instantaneous measurements were taken: floating plastic transport (section 2.3), the

water depth (section 2.4), and the flow velocity (section 2.5). A minimum of two surveyors were present to conduct the

instantaneous measurements. This was necessary during peak plastic transport periods, when values of up to over 100 items/min

were registered. In such cases, one surveyor conducted the visual counting while another noted down the values. Up to four

surveyors could be present for instantaneous measurements, depending on availability. Each measurement round lasted on115

average 9 minutes. The measurement duration varied between 3 to 42 minutes, depending on the number of available surveyors,

the presence of boat traffic which could further delay the measurement, and potential challenges with handling equipment.

Measurements were conducted both during the day and at night. At night, a flashlight lamp (P18R Signature, Ledlenser, Germany,

https://ledlenser.com/en/) was used to illuminate the water surface, estimate plastic transport and take equipment in and out of

the water safely. The model used had a 4500 lumen luminous flux.120
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Figure 1. A. Measurement site within the Saigon - Dong Nai river system. B. Measurement site (Thu Thiem bridge, 10.785984, 106.718332)

and locations. The numbers 1, 2, 3... mark the observation points distributed across the bridge, with variations in their location depending on

the flow direction. For floating plastic, we considered observational track width wi (of 15 meters). For discharge calculations, we considered

widths represented as si at each observation point. Copyright: Bing Maps. Note the different north orientation for the two panels.

2.3 Plastic transport estimates

Plastic transport was estimated using the visual counting method, developed by González-Fernández and Hanke (2017). All

visible (> 0.5 cm) anthropogenic litter items floating at the water surface were counted and classified for a duration of 2 minutes

by trained observers who stand on a bridge. The following eight categories were used for classifying visible anthropogenic litter

items: EPS (expanded polystyrene), POhard (hard polyolefins), POsoft (soft polyolefins), PS (polystyrene), PET (polyethylene125

terephthalate), Multilayer plastics, Other plastic items and Other litter items (non-plastic). These plastic categories have been

used in previous studies (van Emmerik et al., 2022a; Schreyers et al., 2021) and are considered suitable for a first-order

identification of plastic types. In this study, we only consider plastic items and therefore do not report total litter transport

estimates. Plastic transport P [items/hour] was calculated using the following equation (van Emmerik et al., 2022a):

P =
W

5

5∑
i=1

pi
wi

(1)130

With mean plastic transport observation pi [items/hour] for observation point i at 5 observation points, observation track

width wi [m] and total river width W [m]. We considered an observation track width of 15 m, and a total river width of 298 m.
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Plastic transport is often expressed in terms of mass transport in current literature (Lebreton et al., 2017; Meijer et al., 2021;

Schmidt et al., 2017; van Emmerik et al., 2022a). Therefore, we also expressed plastic transport M in terms of mass transport

[kg/d], using the following equation (Vriend et al., 2020):135

M = P ·m · c (2)

With m expressing either the mean or median mass per plastic item [g] and c the conversion factor from g/hour to kg/d. To

convert item transport to mass transport, we used the mass statistics from van Emmerik et al. (2019). In this study, 3,022 items

collected over 45 days were weighted and categorized into the following plastic type categories: EPS, PS, POhard, POsoft and

PET. The items were collected using a net at the same monitoring location as in our study. The weighting and counting of140

individual items reported in (van Emmerik et al., 2019) allowed us to derive mean and median masses per item category. For the

categories ‘Multilayer’ and ‘Other plastic’ from our observations, we used the mean and median mass found for ‘POsoft’ items

and all items, respectively. In van Emmerik et al. (2019), ‘Multilayer’ items were categorized as soft items (POsoft). Median

and mean mass values per item category are reported in Table D3 (Appendix).

2.4 Water depth, flow velocity measurements and discharge estimates145

Water depth was measured using a single beam sonar with Compressed High Intensity Radiated Pulse (CHIRP) (Deeper

Smart Sonar Chirp 2, Lithuania, https://deepersonar.com/). The sonar was lowered from the bridge into the water using a rope.

Once the sonar reached the water surface, water depth values could be read on a previously paired mobile phone using the

Deeper Smart Sonar mobile application. The sonar was lost on 4 May, 2022 around 03:00 A.M. due to collision with a container

ship. As a result, water depths were not recorded for the last 13 hours of measurements.150

Near-surface flow velocities were measured using a propeller flow meter (Flowatch, JDC, Switzerland, https://www.jdc.ch/).

The flow meter was lowered from the bridge into the water, at approximately one meter of depth from the surface, using a cable.

The surface velocities were converted to depth-average velocity by multiplying the surface velocity by a coefficient of 0.85. This

coefficient assumes a logarithmic vertical velocity distribution and a typical bed roughness and is generally accepted in the

hydrological community (Muste et al., 2008; Hauet et al., 2018; Rantz, 1982; Boiten, 2003). Flow velocities for flood water155

flows were recorded as negative values, and as positive values for ebb water flows.

The cross-sectional area was estimated for each observation point, as follows:

ai = si · di (3)

With segment width si [m] and depth di [m] per observation point i. We established five segments, with an observation point

in the middle. The water depth was measured at each observation point i and was considered as the averaged depth per segment.160

We estimated water discharge [m3/s] at the river cross-section as follows:

Q=

5∑
j=1

ai · vi (4)
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With vi the depth-averaged flow velocity [m/s] at each measurement location i. Bathymetric data was not available, and

our estimates of water depths could have overlooked local bed variations and scour holes. We measured water depths at five

locations across the river width, taking into account contraction scour effects (Arneson, 2013). However, we did not directly165

measure water depths at the nose of the bridge piers, which could mean that we may have overlooked local scour holes. We

estimated the maximum local scour hole depths based on Arneson (2013) (Chapter 7, specifically detailed equations 7.3 and

7.4). We found scour depths reaching maximum values between 3.6-2.7 m, depending on the bridge pier considered (Fig. 1B).

We assumed the piers to be composed of a set of two columns on each side of the bridge. We found a maximum total scour area

across the entire cross-section of approximately 90 m2. Such increase in cross-sectional area would result in an increase in river170

discharge estimates by 2%. Thus, we can reasonably assume that under such worst-case scenario, factors such as local scour

holes have only a minimal impact on our discharge estimates.

Because of the lack of water depth observations during the last 13 hours of measurement, the resulting discharge estimates

only covered 5 out of the 6 tidal cycles. This data gap was filled by estimating river discharge based on the significant and strong

relation found with flow velocity for all observed values (Pearson’s R2 = 0.99, and p-value < 0.01) (Fig. A1 in Appendix A).175

The following equation was used to fill missing discharge estimates:

Q= v · 3325 (5)

In addition, it should be noted that precise quantification of discharge was outside the scope for our study. Because of the

uncertainties inherent to our discharge estimates, we prefer to report the relationship between plastic transport and water flow

based on flow velocity estimates (for instance for Fig.3 and 4).180

2.5 Temporal data harmonization

Plastic transport, water depths and flow velocities could not be measured at precisely regular time intervals, due to constraints

in handling equipment, varying number of available surveyors and varying distances between measurement locations. For this

reason, plastic transport, flow velocity and discharge values were interpolated to a regular time interval using two different

methods. Flow velocity and discharge values were interpolated using tidal characteristics. Tidal constituents were analyzed185

using the Unified Tidal Analysis and Prediction (UTide) package in Python 3.4 (Codiga, 2011). This enabled us to determine the

coefficients (phase and amplitude) for each tidal constituent, which were in turn used to interpolate our time-series. We present

the results of the tidal constituent analysis in Appendix B, as they are not considered novel findings but were nonetheless crucial

for flow velocity and discharge interpolation. The temporal interpolation was done to a 5-minute interval. Plastic transport was

also interpolated to 5-minute intervals, using a linear interpolation.190

2.6 Calculating net and total plastic transport and discharge

Here we define ebb and flood as the tidal phases in which the water current is flowing seaward and landward, respectively.

While usually seaward plastic transport dominates during the ebb phase and landward plastic transport during the flood phase,

short lags in time (of about a few minutes) were noted during slack periods (Fig.2). For instance, although the overall river cross-
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section were dominated by one flow direction, reverse flow could still be (temporally) observed at one or a few measurement195

locations. If at those measurement locations plastic densities out-weigh densities at the remaining measurement locations, a

discrepancy can be noted at the cross-section between water flow and plastic transport directions.

Based on the distinction between flood and ebb phases, we calculated the net plastic transport during ebb and flood, flow

velocities and river discharges. We introduce a relative measure of net transport, hereby called the delivery ratio (dr). Using

a relative metric allows for easier comparison across various spatio-temporal scales and within systems with varying plastic200

pollution levels. The dr expresses the ratio [-] between net and total transported amounts/volumes/distances, as follows:

dr =

Net transported amounts/
volumes/distances (Vn)︷ ︸︸ ︷

Ve +Vf

Ve −Vf︸ ︷︷ ︸
Total transported amounts/

volumes/distances (Vt)

(6)

We present two alternative ways of calculating the delivery ratio in Appendix D. The results based on the three ways of

calculating dr are also reported in Appendix D (Tables D1 and D2). For brevity, we only report in the main manuscript the

delivery ratio values as presented above.205

To estimate the delivery ratio (dr), we calculated the total transported amounts, volumes and distances of plastic, discharge

and flow velocity during ebb and flood, as follows:

Ve =

∫
Te

f(t)dt with v > 0 (7)

Vf =

∫
Tf

f(t)dt with v < 0 (8)210

Te and Tf indicate the ebb and flood tidal phase, respectively, f the values integrated over time t (plastic transport, flow velocity

and discharge) and v the flow velocity. The integral values for flow velocity and discharge correspond respectively to the total

river distance [m] and water volume [m3] that passed by the measurement location per tidal phase. The integral values for plastic

transport correspond to the total amount (number and mass) of plastic items passing by the measurement location. Figure 2

gives an example for the Ve and Vf calculation, using the flow velocity as the variable of reference for distinguishing between215

flood and ebb.

We also determined the net plastic transport, flow velocity and discharge (fn) in absolute values (respectively in items/hour,

m/s and m3/s) as follows:

fn =
Ve +Vf

Te +Tf
(9)
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In addition, we calculated the mean plastic transport, flow velocity and discharge for each ebb and flood cycle (fe and ff ,220

respectively), as follows:

fe =
Ve

Te
(10)

ff =
Vf

Tf
(11)

T0 T1 T2 T3

0f

VE =
T2

T1
f(t)dt

VF =
T1

T0
f(t)dt

VF =
T3

T2
f(t)dt

TF TE TF

f
Flow velocity

0

Fl
ow

 v
el

oc
ity

 ( v
) [

m
/s

]

Figure 2. Example of calculation of integral areas for the ebb and flood phases of the tidal cycle. The grey shaded areas correspond to the

integral during flood, the red shaded area to the integral during ebb. f represents the variable to be integrated, which could be plastic transport,

river discharge or flow velocity.

3 Results225

3.1 Net plastic transport less than one-third of total plastic transport

Over the six tidal cycles considered, we found a seaward mean net transport of approximately 2.7 · 103 items/hour, corre-

sponding to 350-470 plastic kg/d (Table 1). This represents only about 20-33% of total plastic transport. This ratio is lower
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for river discharge and flow velocity (16%) (Table 1). In the Discussion, we explored potential explanations for the observed

disparities between water and plastic delivery ratios. Plastic net mass transport rates vary by 34%, depending on whether the230

mean or median mass of items is considered (Table 1). Overall, the delivery ratio based on mean mass per item is lower (20%)

than that based on median mass per item (33%). We consider the delivery ratio for item transport (25%) to be the more robust

one, as it aligns more closely with our observational data (section 2.3).

Table 1. Summary of plastic transport, flow velocity, discharge, and associated metrics during ebb and flood phases.

fe ff fn Ve VF Vn dr

[-]

Mass transport (median mass) [kg/d] 1.4 · 103 −7.2 · 102 3.5 · 102 Mass (median mass per item) [kg] 2.2 · 103 −1.1 · 103 1.1 · 103 0.33

Mass transport (mean mass) [kg/d] 2.8 · 103 −1.9 · 103 4.7 · 102 Mass (mean mass per item) [kg] 4.4 · 103 −2.9· 103 1.5 · 103 0.20

Item transport [items/hour] 1.3 · 104 −8.0· 103 2.7 · 103 Number of items [items] 5.0 · 105 −3.0· 105 2.0 · 105 0.25

River discharge [m3/s] 1.1 · 103 −8.1· 102 1.6 · 102 Water volume [m3] 1.5 · 108 −1.1· 108 4.3 · 107 0.16

Flow velocity [m/s] 0.3 −0.2 > 0.0 Distance [m] 4.5 · 104 −3.2· 104 1.3 · 104 0.16

Water flow in the Saigon river follows a sinusoidal pattern, with clear alternations between ebb and flood phases determined

by the tidal cycle and its various phases in rising and falling limbs and slack water periods (Fig. 3). The maximum flow velocity235

during the ebb phase exceeds that observed during the flood phase (0.6 and −0.4 m/s, respectively). The flood phase is longer

than the ebb phase (38 hours and 20 minutes and 36 hours and 10 minutes, respectively). We found a seaward net discharge of

160 m3/s over the measurement period, corresponding to relative net water transport of approximately 16% of total water flow

(Table 1). Plastic transport follows a similar asymmetrical sinusoidal pattern to flow velocity (Fig. 3). Plastic transport was found

to be highly positively correlated with river discharge and flow velocity (Pearson’s R2 = 0.76, and p-value < 0.01 for plastic240

transport in relation to both discharge and flow velocity). Plastic transport can be expressed as a linear function in relation to

discharge for all items aggregated (Appendix C, Fig. C1), as well as by plastic types (Appendix C, Fig. C2). For the latter, the

R2 values could indicate the degree to which river discharge influences the transport of these different plastic types. With this

assumption, transport of PS and POsoft items are the most correlated river discharge (R2 of respectively 0.70 and 0.68).

Despite the strong and significant correlation found between river discharge and plastic transport, similar discharge values245

were observed for a wide range of plastic transport. For instance, for peak discharges of over 1,800 m3/s, plastic transport varied

by a factor of almost four, between 0.7-2.6 · 104 items/hour (Appendix C, Fig. C1). We hypothesize that varying contributions

of different plastic types to the overall plastic transport explain this discrepancy. In particular, a higher share of EPS and POsoft,

two types of items for which the relation between transport and river discharge is characterized by a steeper slope (Appendix

C, Fig. C2), might lead to higher transport during peak discharge periods. This hypothesis seems to be confirmed by our250

observations (Appendix C, Fig. C1), with EPS and POsoft items making up for more than 80% of the plastic composition

during peak plastic transport, much higher than on average (56%) (Appendix C, Fig. C1). In addition, a hysteresis pattern is

noticeable between plastic transport and river discharges, but was not found to be consistent between rising and falling limbs

of the tidal cycle, for both the entire time-series and across the different tidal cycles observed (Appendix C, Fig. C1 and C3).

Overall, estimating plastic transport based on a simple linear model from measured discharge would yield large uncertainties,255
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especially for peak transport values. There is no clear explanation for the wide range of plastic transport values during peak

discharge events. The observed hysteresis pattern could be related to the asymmetry in rising and falling limb and/or from other

sources of uncertainties, including varying concentrations of different plastic types.
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Figure 3. Plastic transport and flow velocity over the entire measurement period. The dotted yellow lines separate each tidal cycle.

3.2 Diurnal inequality results in alternating positive and negative delivery ratios

During the measurement period, water flow exhibited a mixed tidal cycle (i.e. two high and low tides each lunar day), resulting260

in diurnal inequality and an alternation between ebb and flood dominated tidal cycles. The first, third and fifth tidal cycles were

ebb dominated, as the total volume of water was larger during the ebb phase of the cycle than during the flood phase (Ve > Vf ).

The second, fourth and sixth tidal cycle exhibited, on the contrary, flood dominance (Vf > Ve) (Table D2, Appendix D).

Because of this diurnal alternation, we could therefore expect varying net discharge and plastic transport rates depending

on whether the tidal cycle was ebb or flood dominated. We found positive net plastic transport, flow velocity and discharge,265

for ebb dominated cycles (1, 3 and 5), for both mean values and delivery ratios (Table 2). Negative net plastic transport, flow

velocity and river discharge were measured for flood dominated cycles (2, 4 and 6). This indicates that diurnal variations in tidal

dynamics and freshwater discharge, resulting in asymmetry in peaks, are important components in explaining the variability in

net flow and transport. In line with this, the tidal constituent analysis showed that the main daily tidal component (K1) is the

second most important tidal component of our time-series (Appendix B, Tidal constituent analysis). As a result of the alternation270

between ebb and flood dominated cycles, the cycle-averaged net transport rates varied by a factor of nearly 4 between cycles

(9.7 · 103 items/hour for the first cycle and −2.7 · 103 items/hour for the sixth cycle).

We hypothesize that high plastic delivery ratios could be governed by either cycle-averaged high net river discharge, high

plastic concentrations in the water or a combination of both. For the first tidal cycle, the high plastic delivery ratio (57-63%)
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seems to be mainly driven by high plastic concentrations, as the flow velocity and river discharge delivery ratio was not275

particularly high (32%). The highest mean plastic transport during the ebb phase was found for this cycle (2.4 · 104 items/hour),

almost twice more than for the entire measurement period) (Table D1, Appendix D). For the third tidal cycle, the plastic delivery

ratio was closer to the flow velocity and river discharge delivery ratio (40-50% and 39%, respectively), and the net river discharge

was found to be quite high (430 m3/s); more than 16% higher in fact than on the first cycle (370 m3/s). This suggests that the

high delivery ratio of plastic transport found for the third tidal cycle was mainly governed by high net discharge. The highest280

plastic delivery ratio was registered during the fifth tidal cycle (59-66%). Net river discharge was also at its peak during this

tidal cycle (490 m3/s) and net plastic transport was double the average (6.7 · 103 items/hour for the fifth tidal cycle and 2.7 ·
103 items/hour on average for the entire measurement period, but lower than during the first tidal cycle (9.7 · 103 items/hour).

During the fifth tidal cycle, a combination of high net discharge and high plastic concentrations likely explains the high plastic

delivery ratio found.285

Plastic delivery ratios calculated based on items transport and mass transport show variable agreement. For ebb dominated

cycles, the spread in plastic delivery ratios was comprised between ±1% and ±6%, showing a relatively narrow spread between

the calculated values (item transport, mass transport based on median, and mean mass per item). During flood dominated

cycles, the spread widens, ranging from ±13% to ±17% (Table 2). This disparity is primarily attributed to lower delivery ratios

observed during flood-dominated cycles when considering mass transport based on the median mass per item. The mean mass290

per item was very similar among items compared to the mean mass of all items: with the exception of PET (mean mass: 20.0

g) all items have a mass comprised between 7.0 and 12.3 g, with an overall average of 10.1 g per item. The median mass was

more variable among items, ranging between 1.9 and 7.7 g (with the exception of PET, median mass = 20.8 g) (Table D3). As a

result, peaks in transport of items heavier or lighter than others can alter the cycle-averaged net transport rates and delivery

ratios. Anticipating on section 3.3, the peak in polystyrene items (PS) observed during the ebb phase of the tidal cycle, can295

explain the lower delivery ratio registered for the median mass transport. Indeed, the median mass for PS items was higher than

the averaged median mass for all items (6.0 g vs 4.3 g, 28% difference), whereas this difference was less pronounced for the

mean mass (10.7 g vs 10.1 g, difference of less than 6%).

Table 2. Plastic transport, flow velocity, discharge, and associated metrics during ebb and flood phases, per tidal cycle.

Cycle 1 2 3 4 5 6

Item transport 9.7 · 103 −1.8 · 103 5.3 · 103 −9.7 · 102 6.7 · 103 −2.7 · 103

Mass transport (median mass) [kg/d] 1.2 · 103 −5.0 · 101 5.1 · 102 −5.6 · 101 6.6 · 102 −2.0 · 102

fn Mass transport (mean mass) [kg/d] 2.3 · 103 −5.6 · 102 8.6 · 102 −3.3 · 101 1.3 · 103 −7.0 · 102

River discharge [m3/s] 3.7 · 102 −1.9 · 102 4.3 · 102 −1.2 · 102 4.9 · 102 −3.3 · 101

Flow velocity [m/s] 0.1 −0.1 0.1 < 0.0 0.2 < 0.0

Item transport 0.57 −0.15 0.49 −0.15 0.66 −0.34

dr Mass transport (median mass) 0.63 −0.05 0.50 −0.09 0.62 −0.27

Mass transport (mean mass) 0.57 −0.22 0.40 −0.22 0.59 −0.40

Flow velocity/river discharge 0.32 −0.25 0.39 −0.15 0.44 −0.04
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3.3 Net plastic transport varies with plastic type

We determined the transport and delivery ratio per plastic type (Fig. 4). Plastic items differ in their shape, size, buoyancy300

and rigidity, characteristics that could influence their transport processes. We found that the amplitude in plastic transport

varies significantly depending on both the tidal cycle and the type of items considered. Net transport vary by two orders of

magnitude depending on the plastic type considered (from 1.3 · 103 items/hour for EPS items to −3.5 · 101 items/hour for Other

plastic items) (Table 3). We calculated a positive net transport in relation to total transport (dr > 0) for all plastic types, with the

exception of POhard and Other plastic. These two categories correspond to the least commonly found items (respectively 3 and305

2% of the total plastic items). The delivery ratio varied between 62% and −16% depending on the plastic type. Large items such

as PET (e.g.: plastic bottles) and rigid and highly buoyant items such as EPS (e.g. expanded polystyrene such as foam) and

PS (polystyrene, such as plates) registered the highest net export (62%, 38% and 30%, respectively). On the contrary, soft and

neutrally buoyant items such as POsoft (e.g.: bags and foils) and Multilayer (food packaging) had lower delivery ratios (16%

and 10%, respectively).310

Moreover, large fluctuations in plastic transport were noted depending on the tidal cycle. For instance, transport in EPS,

POsoft and PS were particularly high during the first tidal cycle during its ebb phase. Transport of Multilayer items was high

during the second tidal cycle, similarly to transport of PS items, also during the ebb phase. Our results suggest that the relative

contribution of item types is highly variable, with varying concentrations per plastic type at the water surface, probably resulting

from varying inputs of plastics into the river.315
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Table 3. Net plastic transport and delivery ratios per item category. The discrepancy in sign for certain values between net transport and

delivery ratios is due to the fact that the latter was calculated based on the integral values for ebb and flood phases, whereas net transport

resulted from the difference between mean ebb and flood transport rates.

Plastic type Variables fe ff fn dr

[-]

EPS Item transport [items/hour] 4.8 · 103 −2.2 · 103 1.3 · 103 0.38

Mass transport (median mass) [kg/d] 2.2 · 102 −1.0 · 102 6.1 · 101

Mass transport (mean mass) [kg/d] 8.1 · 102 −3.7 · 102 2.2 · 102

POsoft Item transport [items/hour] 3.3 · 103 −2.4 · 103 4.6 · 102 0.16

Mass transport (median mass) [kg/d] 2.3 · 102 −1.6 · 102 3.2 · 101

Mass transport (mean mass) [kg/d] 8.3 · 102 −6.0 · 102 1.2 · 102

Multilayer Item transport [items/hour] 1.9 · 103 −1.6 · 103 1.7 · 102 0.10

Mass transport (median mass) [kg/d] 1.3 · 102 −1.1 · 102 1.2 · 101

Mass transport (mean mass) [kg/d] 4.8 · 102 −4.0 · 102 4.3 · 101

PS Item transport [items/hour] 1.9 · 103 −1.0 · 103 4.3 · 102 0.30

Mass transport (median mass) [kg/d] 2.7 · 102 −1.5 · 102 6.2 · 101

Mass transport (mean mass) [kg/d] 4.8 · 102 −2.6 · 102 1.1 · 102

PET Item transport [items/hour] 1.0 · 103 −2.4 · 102 3.8 · 102 0.62

Mass transport (median mass) [kg/d] 5.0 · 102 −1.2 · 102 1.9 · 102

Mass transport (mean mass) [kg/d] 4.7 · 102 −1.1 · 102 1.8 · 102

POhard Item transport [items/hour] 2.7 · 102 −3.1 · 102 −1.9 · 101 −0.07

Mass transport (median mass) [kg/d] 4.9 · 101 −5.6 · 101 −3.5 · 100

Mass transport (mean mass) [kg/d] 7.9 · 101 −9.0 · 101 −5.5 · 100

Other plastic Item transport [items/hour] 1.8 · 102 −2.7 · 102 −3.5 · 101 −0.16

Mass transport (median mass) [kg/d] 1.9 · 101 −2.6 · 101 −3.6 · 100

Mass transport (mean mass) [kg/d] 4.4 · 101 −6.1 · 101 −8.5 · 100
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Figure 4. Plastic transport by item category and flow velocity over the entire measurement period (A-G). The dotted yellow lines separate

each tidal cycle. The y-axis differ depending on the subplot for plastic transport, to better visualize the value distributions. Items are ranked

from the most frequently found on average (EPS) to the least frequently found on average (Other plastic).
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4 Discussion

4.1 Increased plastic travel distance and retention probability in tidal systems

The results of this study demonstrate that tidal dynamics strongly affect plastic transport dynamics. We found that net plastic

transport corresponds to less than a third the total transport, as a result of bidirectional flows and semi-diurnal and diurnal tidal

dynamics. In contrast, in non-tidal systems, without bidirectional flows, the net distance travelled by water and floating plastic320

equals the total traveled distance. In tidal systems however, the total distance can be much larger for the same net distance due to

bidirectional flows. This is in line with previous studies that demonstrated that plastic is transported over longer total distances

in estuaries compared to the freshwater reaches of rivers (Tramoy et al., 2020a).

The likelihood of plastic retention within rivers is a function of total travel distance. In tidal systems, the total travel distance

per day is higher than compared to non-tidal systems, given the same net transport. Therefore, plastics have a larger probability325

of retention in tidal systems, for instance through deposition on riverbank and retention at hydraulic infrastructures. Various

observations-based studies have highlighted the high probability of plastic retention within tidal systems (Lotcheris et al., 2023;

Ledieu et al., 2022; Tramoy et al., 2020a).

In tidal systems, plastics can be retained over long periods of time, in certain cases surpassing decades as shown for the

Seine river (France) (Tramoy et al., 2020b). Long retention times likely lead to high plastic concentrations, if we consider the330

additional inputs of plastic in and around the river. In the Saigon river, a clear seasonality in net discharge is observed. Peak

net discharges (typically exceeding 200 m3/s) only occur for a couple of months, usually between June and August (Camenen

et al., 2021). Plastic concentrations likely only decrease significantly during these high discharge periods, due to an increase

in net plastic transport and export. In this study, we only considered macroplastic (> 0.5 cm), but long macroplastic retention

times would likely impact microplastic concentrations as well. Increased plastic break-down and degradation due to a prolonged335

presence of macroplastics in the river system probably leads to increased microplastic concentrations as well (Delorme et al.,

2010; Lahens et al., 2018).

4.2 Neglecting tidal dynamics leads to overestimating global river plastic emission into the sea

To date, global river plastic transport and emission models do not consider tidal influence, which likely results in an

overestimation of global plastic emissions into the oceans. Models that use discharge as a predictor for riverine plastic transport340

should be considered as export models from the non-tidal part of the river to its tidal zone, but not yet into the ocean. We found

that plastic transport was strongly correlated to instantaneous discharge, which could then be used to estimate net discharge

and net plastic transport. Thus, transport and emission in the tidal zone could be based on measured instantaneous discharge,

instead of only using freshwater discharge estimates. Using rainfall-runoff models to estimate freshwater discharge rates entirely

neglects the tidal influence on net plastic transport and emissions into the ocean. Such approaches however have been used345

broadly to estimate global plastic emissions (Lebreton et al., 2017; Meijer et al., 2021). Measuring discharge in tidal systems

however remains very challenging and as a result, most gauging stations are located upstream of the tidal region of rivers

(Gisen and Savenije, 2015; Nguyen and Nguyen, 2018). Furthermore, considering measured discharge as a more reliable
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predictor of plastic transport in tidal rivers remains problematic. Establishing a fixed relation between river discharge (and other

environmental drivers) and plastic transport is ultimately challenging because it cannot take into account temporal variations in350

plastic concentrations in the water, due to human behaviors (littering and cleaning) (Roebroek et al., 2021b).

By drawing an analogy with sediment rating curves, we can hypothesize that the rating parameters indicating availability and

concentrations of plastics probably change more rapidly compared to sediment supply. The time-scales governing variability in

plastic inputs into the water are likely to be shorter compared to those of sediment loads. In line with this hypothesis, Tasseron

et al. (2023) observed large temporal (daily and monthly) fluctuations in plastic transport in urban waterways, a likely result355

of higher inputs of plastics during peak hours and seasons of outdoor human activity. The inherent difficulties in obtaining

discharge estimates for tidal regions worldwide on the one hand and the limitations of using discharge as a reliable predictor

of plastic transport, on the other hand, call for alternative approaches to estimating plastic emissions. Probabilistic methods

that introduce a corrective factor for decreasing downstream plastic transport with decreasing distance to the river mouth could

improve global transport estimates.360

4.3 Short-term plastic transport variability driven by tidal dynamics

Our analysis has shown that plastic transport rates are highly variable over time. This temporal variability in plastic transport

rates is two-fold: (i) between peak and semidiurnal-averaged net transport rates, and (ii) between the different semidiurnal-

averaged net transport rates. Peak transport values ranged from −2.1 · 104 to 3.7 · 104 items/hour over the studied period. As a

consequence, field measurements that would be undertaken at the peak of either the flood and ebb flow of the tide or during a365

slack water phase would likely result in an overestimation or underestimation of net plastic transport. For instance, the highest

mean plastic transport found during the ebb and flood phases (2.4 · 104 items/hour and −1.1 · 104 items/hour, respectively)

are approximately one order of magnitude higher than the mean net plastic transport (2.7 · 103 items/hour) for the entire

measurement period. Similarly, studies on sediment transport in tidal rivers found that instantaneous peak transport values are at

least one order of magnitude higher than the net (residual) sediment transport (Gatto et al., 2017). The large discrepancy between370

instantaneous and net plastic transport highlights the need to estimate transport rates based on longer observation periods than

usually done in riverine transport studies. For example, González-Fernández et al. (2021) quantified plastic transport over 42

rivers, including five influenced by tides. Similarly, van Emmerik et al. (2022a) estimated plastic transport in Dutch rivers,

encompassing 26 locations, seven of which were influenced by tides. In both studies, data collection was limited to the ebb

phase, which may have led to potential overestimations of plastic transport. Furthermore, we have shown that net estimates of375

plastic transport vary greatly depending on whether measurements are conducted during ebb or flood dominated cycles, resulting

in either positive (seaward) or negative (landward) net plastic transport, and values vary by a factor of nearly −4 between the

highest and lowest net transport per cycle. Overall, the high variability between peak and cycle averaged net plastic transport,

coupled with the variability within net plastic transport per tidal cycle highlight both the uncertainty in quantifying net plastic

transport and the dependency on the temporal scale considered.380

This study was the first to quantify plastic transport during full tidal cycles using a Eulerian approach. We only considered

short-term tidal dynamics, namely the alternation between flood and ebb tidal phases and the diurnal cycles. Longer-term
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patterns, such as the cycle in neap and spring tides, the seasonality in net discharge or peaks in freshwater discharge could all

influence flow dynamics and thus significantly alter plastic transport processes. Fernandino et al. (2016) for instance observed

higher floating litter densities during the spring ebb tides. This suggests that co-occurrences in hydrological conditions are also385

of interest when trying to understand long-term plastic transport dynamics in tidal rivers. Additional measurements of plastic

transport throughout full tidal cycles of varying tidal and hydrological conditions are therefore needed for this. We therefore

suggest repeating similar observations during specific conditions, such as spring/neap and high discharge/storm surge conditions.

Such measurements would enable researchers to widen the range of tidal and hydrological conditions investigated in relation to

plastic transport.390

4.4 Delivery ratio of plastic is higher than water

We found that, in relative terms, plastic net transport is higher when compared with net discharge rates (dr of 16% for water

flow and 20-33% for all plastic items). Two main explanations can be hypothesized for this difference in delivery ratios. The first

postulates that fundamental differences exist between plastic and water transport processes. Factors not directly accounted for in

this study, such as wind and different flow mobilization thresholds could impact differently water and plastics, and ultimately395

result in significantly higher delivery ratios for plastic compared to water. The second hypothesis relates to the site- specific

dynamics. High temporary entrapment rates of plastics downstream of the measurement site could lead to lower landward

transport rates compared to water, because a significant portion of items become temporarily stuck.

Hydraulic and mechanical factors, such as different motion thresholds, the influence of wind and lateral flows and sink-

ing/resuspension mechanisms along the water columns might explain the higher delivery ratios of plastic compared to water.400

Our analysis has shown that during the flood phase of the tide, less plastic items were transported in the landward direction

compared to water. This is somewhat surprising given that the flood phase of the tidal cycle generally corresponds to rising water

levels, which could potentially mobilize items that were deposited during falling water levels (ebb phase). However, the lower

flow velocities measured during the flood phase compared to the ebb phase of the tidal cycle (−0.2 vs 0.3 m/s) could explain that

a lower share of plastic items reaches their critical threshold of motion, in contrast with water. This could be particularly relevant405

considering that in most rivers, including the Saigon river, plastic items are often temporarily trapped in floating vegetation, on

the banks or within fluvial structures (Ledieu et al., 2022; Schreyers et al., 2021; van Emmerik et al., 2022b). Quantification of

mobilization thresholds of plastics in various trapping conditions is required to further investigate this mechanism.

Besides flow velocity and discharge, other factors could influence the velocity of plastics, such as wind, waves and lateral

flows (Laxague et al., 2017; van der Mheen et al., 2020). These factors could generate accelerating or decelerating effects in the410

propagation of plastic in the river. In addition, our study only measured floating plastic transport and therefore the influence

of tidal dynamics on sub-surface plastic and the transfer of plastics between the surface and the deeper layers (sinking and

re-suspension) were ignored. This is mainly due to the lack of measurement methods that are easy to deploy to quantify the

distribution of plastic throughout the water column in rivers at a high temporal frequency. Tidal dynamics could also affect the

vertical distribution of plastic items, due to variations in water depths and vertical mixing of fresh and salt water (Vermeiren et al.,415

2016). Ultimately, sinking and re-suspension mechanisms could also contribute to the higher downstream transport rate found for
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plastic in comparison to water. Finally, changes in the lateral distribution of floating plastics between the ebb and flood phases

could could potentially lead to higher net transport rates of plastics downstream compared to water. Specifically, if plastics are

hypothesized to be more concentrated mid-stream during the ebb phase and more widely dispersed over the river width during

the flood phase, this could increase the likelihood of entrapment along the riverbanks during upstream transport. This could420

contribute to higher net plastic transport in the downstream direction. However, this specific scenario was not supported by our

findings (Schreyers et al., 2023).

Another hypothesis pertains to the local characteristics of our case-study area. High rates of plastic entrapment/deposition

downstream of the measurement site, compared to upstream could explain the relative lower landward transport rates compared

to water. High concentrations of items were often found downstream of the measurement site, due to the presence of docks, piers425

and jetties which temporarily trap items (Lotcheris et al., 2023). Similar trapping elements were not found directly upstream of

the measurement site. Other factors such as the vegetation, wood jams and meandering might also influence plastic accumulation

rates on riverbanks, as already evidenced by recent research (Ledieu et al., 2022; Liro et al., 2020)). The two hypotheses

presented for higher delivery ratios of plastics compared to water could be tested using Lagrangian approaches, in combination

with high frequency hydrometeorological measurements throughout tidal cycles. Lagrangian studies on plastic transport could430

provide insights into the (re)mobilization and entrapment thresholds in relation to flow and other hydrometeorological factors

such as wind. To the best of our knowledge, no Lagragian-based approaches have so far quantified thresholds for the mobilization

and stopping of mobile plastics. In addition, Lagrangian approaches are also useful in mapping entrapment/accumulation zones

along a river course (Ledieu et al., 2022).

4.5 Plastic transport processes are affected by the geometry, size and buoyancy of items435

Our results show that different plastic categories have highly variable net transport rates, depending on items type characteris-

tics, such as size, rigidity and buoyancy. Large and highly buoyant plastics were found to have higher downstream net transport

rates than smaller and more neutrally buoyant items. PET items (mainly bottles) were the largest category of plastics by size

(average size: 20 cm vs 11 cm for all item categories) and had the highest delivery ratio found (62%). Highly buoyant items such

as EPS and PS items (food containers, isolation foam, cups and plates), with densities comprised between 0.016 and 0.640 g440

cm3 for EPS and between 1.01 and 1.04 g cm3 for PS (van Emmerik and Schwarz, 2020) were found to have high downstream

net transport rates (38% and 30%, respectively). Such items are also more prone to wind influence (Jackson, 1998; Schwarz

et al., 2019). This could cause both deposition effects on the sides of the river or on the riverbanks, or longer travel distances

over the same duration than other items, depending on the wind direction and magnitude. Ryan (2021); López et al. (2020)

found that highly buoyant plastics travel longer distances between the coast and the marine environment. In addition, because of445

their high buoyancy, these items do not sink easily in the water column (Schwarz et al., 2019). All these factors could explain

the higher net export ratios found for highly buoyant plastics. In comparison, more neutrally buoyant and soft items such as

POsoft (bags and foils) and Multilayer items (food wrapping) (van Emmerik et al., 2019) had lower net transport rates than

average (between 10% and 16% vs 25% for all plastics). Because of their lower buoyancy, such items are more prone to vertical

mixing and the influence of changes in turbulence and density fronts, such as salt concentrations (Acha et al., 2003; Ballent450
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et al., 2012). This is particularly relevant for tidal rivers and estuaries, due to changes in the relative balance between fresh and

salt water and higher turbulence resulting from the changes in density distribution, compared to the freshwater reaches of a river.

These findings confirm that, similarly to sediment, plastic transport processes should be studied in relation to items character-

istics, instead of considering plastics as a single uniform type of material (Kooi et al., 2018; Schwarz et al., 2019). The wide

range of sizes, geometry, densities, buoyancy and masses of plastics strongly impacts their transport dynamics (both vertically455

and horizontally), as already pointed out by several studies (Ryan, 2021; Waldschläger and Schüttrumpf, 2019; Kuizenga et al.,

2021). Comparably, sediment grain size distribution and density strongly influence settling and advection velocities of particles

in the water. Recent sediment transport models that incorporated a broader distribution range of grain sizes and densities led to

improved estimates of suspended sediment loads compared to models which used more uniform distributions (Lepesqueur et al.,

2019).460

5 Conclusions

For the first time, we quantified net plastic transport over full tidal cycles in a tidal river using a Eulerian approach. Over this

time-period, we conducted sub-hourly measurements of flow velocity, water depth and plastic transport. Time-series of flow

velocity and discharge estimates were extrapolated by fitting the tidal constituents of our observations, for which we found that

the semi-diurnal and diurnal components were the most significant. We introduced a simple Eulerian approach, which expresses465

net transport by establishing a balance between the flood (landward) and ebb (seaward) water flows and plastic transport. This

approach could easily be transferred to other river systems as it requires limited and affordable equipment.

Four main findings on plastic transport in tidal regions are highlighted from our study. First, net plastic transport is lower

compared to total transport, due to estuarine dynamics. In our case-study, we found that net transport amounted to only 20-33%

of the total plastic transport. This likely leads to longer travel distances of plastics in tidal systems compared to non-tidal470

ones, facilitating plastic retention along the river course. Secondly, estimates of river plastic transport show high short-term

variability due to tidal dynamics. Diurnal inequality in the tides causes an alternation between cycles with positive net transport

(seaward plastic transport) and cycles with negative net transport (i.e.: landward plastic transport). We also found that peak and

semidiurnal averaged net transport rates varied by as much as one order of magnitude. Thirdly, net plastic transport shows higher

net downstream transport compared to water. We found that net water discharge amounted to 16% of the total river discharge,475

whereas net plastic transport corresponds to 20-33% of the total plastic transport. This suggests that either plastic travel longer

distances than water, possibly due to the influence of other environmental drivers such as wind, or that plastics are get often

trapped downstream from the measurement site, limiting their transport upstream during the flood tidal phase. Lastly, plastics

are not uniformly affected by tidal dynamics. Larger and highly buoyant items, such as plastic foams and polystyrene have larger

net transport ratios compared to neutrally buoyant and more flexible items, such as bags, foils and food packaging.480

In this paper, we show that tidal dynamics play a crucial role in total and net plastic transport in tidal rivers. Bidirectional

flows resulting from the semi-diurnal tidal component lead to a large discrepancy between net and total plastic transport rates.

With each river that flows into the ocean being affected by tidal dynamics, such effects cannot be neglected anymore in studies
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that quantify (global) plastic emissions into the ocean. Efforts to both conceptualize and integrate tidal dynamics in river plastic

transport and emissions models are therefore required.485
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Appendix A: Relationship between river discharge and flow velocity
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Figure A1. Relationship between river discharge and flow velocity. p-value <0.01.

Appendix B: Tidal constituent analysis

We found M2 (principal lunar semi-diurnal) and K1 (lunar diurnal) to be the dominating tidal constituents over our flow

velocity time-series (Table B1). However, the distortions of the sinusoidal symmetry (Fig.3) could be attributed to shallow water

override components (M4 and M6), which were also found to be significant and/or the interactions between the M2 and K1490

components (Hoitink et al., 2003; Gatto et al., 2017).

Table B1. Tidal constituent coefficients (amplitude and frequency) and signal-to-noise ratio.

Tidal constituent Symbol Amplitude [m/s] Frequency [cycles/hour] Signal-to-Noise ratio [-]

Principal lunar semi-diurnal M2 0.43 0.08 972

Lunar diurnal K1 0.14 0.04 8987

Fifth diurnal 2MK5 0.05 0.20 27

Shallow water overtide of principal lunar M4 0.04 0.16 7

Shallow water overtide of principal lunar M6 0.03 0.24 96

Seventh diurnal 3MK7 0.02 0.28 4

Lunar terdiurnal M3 0.01 0.12 1

Shallow water eight diurnal M8 < 0.01 0.32 < 1
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Appendix C: Relationship between river discharge and plastic transport
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Figure C1. Relationship between plastic transport and river discharge. p-value < 0.01.
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Figure C2. Relationship between plastic transport and river discharge by plastic types (A-G). All p-values were found to be below <0.01.
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Figure C3. Relationship between plastic transport and flow velocity per tidal cycle (A-F). The arrows indicate the direction of the hysteresis

(clockwise or anticlockwise) between rising and falling limbs of the tidal cycle.
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Appendix D: Plastic transport, flow velocity, discharge, and associated metrics: extended data

Alternative calculation methods to estimate delivery ratios

We propose two alternative methods for calculating delivery ratios (dr). In Eq. 6, the denominator corresponds to the total495

transported amounts/volumes or distances (Vt) for the variable f considered. A potential issue with using Vt as our denominator

in Eq.6 could be that Ve and Vf can be seen as not being independent of each other, because part of Ve is likely to be circulated

in Vf and vice-versa. To address this, we introduce an alternative delivery ratio, dr,2:

dr,2 =

Net transported amounts/
volumes/distances (Vn)︷ ︸︸ ︷

Ve +Vf

(Ve −Vf ) ·
1

2︸ ︷︷ ︸
Mean transported amounts/

volumes/distances (Vm)

(D1)

Here, we consider the mean transported amounts/volumes/distances as the denominator. However, the delivery ratios can exceed500

unity for plastics (see Table D2). We aimed at constraining the delivery values between −1 and 1, to ease the interpretation, with

a value of zero indicating no net transport over the tidal cycle and a value of 1 or −1 indicates that the total volume of plastic

has been transported downstream or upstream, respectively. We therefore suggest the following equation as another alternative

to calculate delivery ratio, dr,3:

dr,3 =

Net transported amounts/
volumes/distances (Vn)︷ ︸︸ ︷

Ve +Vf

max(Ve, |Vf |)︸ ︷︷ ︸
Maximum transported amounts/

volumes/distances between ebb and flood

(D2)505

By taking the maximum value between the plastic volume during ebb and the absolute amounts/volumes/distances during flood,

we constraint our delivery values between -1 and 1, because the denominator cannot be smaller than the numerator in such a

case.

We report results based on dr,1, dr,2, and dr,3 in Tables D1 and D2. Regardless of the selected delivery ratio calculation

method, our main conclusions are supported. Plastics delivery is higher than that of water for all dr,1, dr,2, and dr,3 values510

(Tables D1 and D2). Ebb-dominated cycles have positive delivery values (net downstream transport), whereas flood-dominated

cycles are characterized by negative delivery values (net upstream transport) (Table D2). Our finding that net plastic transport is

limited by tidal dynamics remains correct, as delivery values over the entire monitored period were all found to be below unity

(Table D1). The extent of the reduction in transport is, however, variable depending on the calculation method chosen. As we

want to constrain delivery values to be between +1/−1 and 0, we consider dr,2 not to be a suitable option. We reported dr,1515

values in the main manuscript.
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Table D1. Summary of plastic transport, flow velocity, discharge, and associated metrics during ebb and flood phases. dr,1, dr,2 and dr,3

correspond to the three calculation methods for the delivery ratio, as presented in Appendix D. In the main manuscript we only report dr,1, for

brevity.

fe ff fn

Mass transport (median mass) [kg/d] 1.4 · 103 −7.2 · 102 3.5 · 102

Mass transport (mean mass) [kg/d] 2.8 · 103 −1.9 · 103 4.7 · 102

Item transport [items/hour] 1.3 · 104 −8.0 · 103 2.7 · 103

River discharge [m3/s] 1.1 · 103 −8.1 · 102 1.6 · 102

Flow velocity [m/s] 0.3 −0.2 > 0.0

Ve VF Vn dr,1 dr,2 dr,3

[-] [-] [-]

Mass (median mass per item) [kg] 2.2 · 103 −1.1 · 103 1.1 · 103 0.33 0.51 0.36

Mass (mean mass per item) [kg] 4.4 · 103 −2.9 · 103 1.5 · 103 0.20 0.65 0.46

Number of items [items] 5.0 · 105 −3.0 · 105 2.0 · 105 0.25 0.40 0.28

Water volume [m3] 1.5 · 108 −1.1 · 108 4.3 · 107 0.16 0.32 0.25

Distance [m] 4.5 · 104 −3.2 · 104 1.3 · 104 0.16 0.32 0.25
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Table D2. Plastic transport, flow velocity, discharge, and associated metrics during ebb and flood phases, per tidal cycle. dr,1, dr,2 and dr,3

correspond to the three calculation methods for the delivery ratio, as presented in Appendix D. In the main manuscript we only report dr,1, for

brevity.

Plastic transport

Item transport / amount Mass transport / mass (median mass per item) Mass transport / mass (mean mass per item) Flow velocity / distance River discharge / water volume

Cycles Variables [items/hour] or [items] [kg/d] or [kg] [kg/d] or [kg] [m/s] or [m] [m3 /s] or [m3 ]

1 fe 2.4 · 104 2.8 · 103 5.6 · 103 0.4 1.3 · 103

ff −8.3 · 103 −8.1 · 102 −2.0 · 103 −0.3 −8.8 · 102

fn 9.7 · 103 1.2 · 103 2.3 · 103 0.1 3.7 · 102

Ve 1.7 · 105 8.6 · 102 1.6 · 103 1.0 · 104 3.4 · 107

Vf −4.5 · 104 −1.8 · 102 −4.5 · 102 −5.2 · 103 −1.7 · 107

Vn 1.2 · 105 6.3 · 102 1.2 · 103 4.9 · 103 1.6 · 107

dr,1 [-] 0.57 0.63 0.57 0.32 0.32

dr,2 [-] 1.15 1.27 1.13 0.65 0.65

dr,3 [-] 0.73 0.78 0.72 0.49 0.49

2 fe 1.3 · 104 1.2 · 103 2.5 · 103 0.2 7.3 · 102

ff −1.1 · 104 −9.1 · 102 −2.6 · 103 −0.3 −8.1 · 102

fn −1.8 · 103 −5.0 · 101 −5.6 · 102 −0.1 −1.9 · 102

Ve 6.2 · 104 2.6 · 102 5.1 · 102 3.9 · 103 1.3 · 107

Vf −8.4 · 104 −2.8 · 102 −8.0 · 102 −6.5 · 103 −2.2 · 107

Vn −2.2 · 104 −2.6 · 101 −2.9 · 102 −2.6 · 103 −8.7 · 106

dr,1 [-] −0.15 −0.05 −0.22 −0.25 −0.25

dr,2 [-] −0.30 −0.10 −0.44 −0.50 −0.50

dr,3 [-] −0.26 −0.09 −0.36 −0.40 −0.40

3 fe 1.4 · 104 1.3 · 103 2.7 · 103 0.4 1.4 · 103

ff −6.4 · 103 −5.9 · 102 −1.5 · 103 −0.2 −8.1 · 102

fn 5.3 · 103 5.1 · 102 8.6 · 102 0.1 4.3 · 102

Ve 1.0 · 105 3.9 · 102 7.9 · 102 1.0 · 104 3.5 · 107

Vf −3.4 · 104 −1.3 · 102 −3.4 · 102 −4.7 · 103 −1.5 · 107

Vn 6.6 · 104 2.6 · 102 4.5 · 102 5.8 · 103 1.9 · 107

dr,1 [-] 0.49 0.50 0.40 0.39 0.39

dr,2 [-] 0.98 1.00 0.79 0.77 0.77

dr,3 [-] 0.66 0.67 0.57 0.56 0.56

4 fe 6.3 · 103 6.8 · 102 1.4 · 103 0.2 7.8 · 102

ff −6.5 · 103 −6.1 · 102 −1.6 · 103 −0.2 −8.0 · 102

fn −9.7 · 102 −5.6 · 101 −3.3 · 102 <0.0 −1.2 · 102

Ve 3.4 · 104 1.5 · 102 3.0 · 102 4.5 · 103 1.5 · 107

Vf −4.6 · 104 −1.8 · 102 −4.7 · 102 −6.2 · 103 −2.0 · 107

Vn −1.2 · 104 −2.9 · 101 −1.7 · 102 −1.6 · 103 −5.4 · 106

dr,1 [-] −0.15 −0.09 −0.22 −0.15 −0.15

dr,2 [-] −0.30 −0.18 −0.44 −0.31 −0.31

dr,3 [-] −0.26 −0.16 −0.36 −0.27 −0.27

5 fe 1.4 · 104 1.5 · 103 3.0 · 103 0.4 1.4 · 103

ff −4.2 · 103 −4.9 · 102 −1.1 · 103 −0.2 −7.5 · 102

fn 6.7 · 103 6.7 · 102 1.3 · 103 0.2 4.9 · 102

Ve 1.0 · 105 4.5 · 102 9.0 · 102 1.1 · 104 3.6 · 107

Vf −2.2 · 104 −1.1 · 102 −2.3 · 102 −4.2 · 103 −1.4 · 107

Vn 8.3 · 104 3.4 · 102 6.6 · 102 6.5 · 103 2.2 · 107

dr,1 [-] 0.66 0.62 0.59 0.44 0.44

dr,2 [-] 1.32 1.24 1.17 0.87 0.87

dr,3 [-] 0.79 0.76 0.74 0.61 0.61

6 fe 5.6 · 103 5.7 · 102 1.1 · 103 0.3 8.5 · 102

ff −9.8 · 103 −8.6 · 102 −2.3 · 103 −0.2 −8.0 · 102

fn −2.7 · 103 −2.0 · 102 −7.0 · 102 < 0.0 −3.4 · 101

Ve 3.2 · 104 1.4 · 102 2.7 · 102 5.3 · 103 1.8 · 107

Vf −6.5 · 104 −2.4 · 102 −6.4 · 102 −5.7 · 103 −1.9 · 107

Vn −3.3 · 104 −1.0 · 102 −3.6 · 102 −4.5 · 102 −1.5 · 106

dr,1 [-] −0.34 −0.27 −0.40 −0.04 −0.04

dr,2 [-] −0.68 −0.54 −0.80 −0.08 −0.08

dr,3 [-] −0.51 −0.43 −0.57 −0.08 −0.08
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Table D3. Mean and median mass per item. The mass statistics were taken from van Emmerik et al. (2019). The reported values for Multilayer

and Other plastic correspond to the mean and median for all items, since mass was not measured for a sufficient number of items for these two

categories.

Plastic type EPS POsoft Multilayer PS PET POhard Other plastic

Mean mass per item [g] 7.0 10.6 10.6 10.7 20.0 12.3 10.1

Median mass per item [g] 1.9 2.9 2.9 6.0 20.8 7.7 4.3
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Abstract. Plastic is an emerging pollutant, and the quantities in rivers and oceans are expected to increase. Rivers are assumed


to transport land-based plastic into the ocean, and the fluvial and marine transport processes have been relatively well studied


to date. However, the processes controlling the transport in tidal rivers and estuaries, the interface between fluvial and marine


systems, remain largely unresolved. For this reason, current estimates of riverine plastic pollution and export into the ocean


remain highly uncertain. Hydrodynamics in tidal rivers and estuaries are influenced by tides and freshwater discharge. As a5


consequence, flow velocity direction and magnitude can change diurnally. In turn, this impacts the transport dynamics of solutes


and pollutants, including plastics. Plastic transport dynamics in tidal rivers and estuaries remain understudied, yet the available


observations suggest that plastics can be retained here for long time periods, especially during periods of low net discharge.


Additional factors such as riparian vegetation and riverbank characteristics, in combination with bidirectional flows and varying


water levels, can lead to even higher likelihood of long-term retention. Here, we provide a first observation-based estimate of10


net plastic transport on a daily time scale in tidal rivers. For this purpose, we developed a simple Eulerian approach using sub-


hourly observations of plastic transport and discharge during full tidal cycles. We applied our method to the highly polluted


Saigon river, Vietnam, throughout six full tidal cycles in May 2022. We show that the net plastic transport is about 27-32% of the


total plastic transport. We found that plastic transport and river discharge are positively and significantly correlated (Pearson’s r


= 0.87, R2 = 0.75). The net transport of plastic is higher than the net discharge (27-32% and 18%, respectively), suggesting that15


plastic transport is governed by other factors than water flow. Such factors include wind, varying plastic concentrations in the


water, and entrapment of plastics downstream of the measurement site. The plastic net transport rates alternate between positive


(seaward) net transport and negative (landward) net transport, as a result of the diurnal inequality in the tidal cycles. We found


that soft and neutrally buoyant items had considerably lower net transport rates than rigid and highly buoyant items (11-17%


vs 31-39%), suggesting the retention time strongly depends on item characteristics. Our results demonstrate the crucial role of20


tidal dynamics and bidirectional flows in net plastic transport. With this paper we emphasize the importance of understanding


fundamental transport dynamics in tidal rivers and estuaries to ultimately reduce the uncertainties of plastic emission estimates


into the ocean.
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1 Introduction


Exposure of terrestrial and aquatic ecosystems to plastic has gained considerable interest among the public and scientific25


community, due to its potential negative effects on the environment (Rochman et al., 2016). While the environmental risks


posed by plastics remain to date largely uncertain, its presence in the environment is widely perceived as undesirable from an


economic, aesthetic and ethical perspective (Borrelle et al., 2017; Koelmans et al., 2021; Beaumont et al., 2019). Effective and


timely reduction strategies require understanding of the transfer dynamics of plastics across ecosystems and within environ-


mental compartments (van Emmerik and Schwarz, 2020). Rivers are one of the main pathways of plastics from land to the30


sea (Meijer et al., 2021). Recently, efforts have been made to use concepts from hydraulics, hydrology, fluvial geomorphology,


sedimentology, and debris transport to resolve the open questions of river plastic transport (Liro et al., 2020; Valero et al., 2022;


Waldschläger et al., 2022). In particular, river plastic transport processes have been increasingly investigated in recent years in


relation to hydrology. Observational studies have demonstrated the strong response of plastic transport to high river discharge


events (van Emmerik et al., 2022a, b). Extreme discharge events such as floods mobilize large quantities of plastic and can35


lead to increased plastic emissions into the ocean (Roebroek et al., 2021a; van Emmerik et al., 2022b; Hurley et al., 2018).


Under normal hydrological conditions, the relation between plastic transport and discharge varies between catchments and is


non-trivial (Roebroek et al., 2022; van Emmerik et al., 2022a). Despite growing efforts to link plastic transport to hydrologi-


cal processes, the transfer dynamics from rivers to sea remain poorly understood (van Emmerik et al., 2022c). Ultimately, the


transfer processes in the lower reaches of rivers - in tidal rivers and estuaries - are the most crucial aspect for quantifying plastic40


emissions into the ocean. Yet, these plastic transfer processes at the river-ocean interface are arguably the most understudied


aspect of riverine plastic transport.


Tidal rivers and estuaries are key components of river systems, as they form the interface between rivers and coastal environ-


ments (Hoitink and Jay, 2016). In tidal rivers, flows are affected by the combination of freshwater discharge and coastal forcing


processes, such as tides. The interactions between river discharge and tidal dynamics ultimately affects the water, sediment and45


pollutant budgets (Healy et al., 2007; Tessler et al., 2018; Fernandes and Pillay, 2010). This can result in either net export


towards the coastal water or net import landward, depending on the spatio-temporal scales considered. For example, character-


izing net sediment transport requires quantifying the balance between landward supply and retention mechanisms within the


estuarine zone. Various pollutants are similarly affected by bidirectional flows, with both net export and import being observed


depending on the tidal dynamics (Fernandes and Pillay, 2010).50


Several plastic research studies have aimed to quantify global riverine emissions of plastic into the sea (Jambeck et al.,


2015; Lebreton et al., 2017; Schmidt et al., 2017; Meijer et al., 2021). River transport models typically include freshwater


discharge as a determining variable for the total export into the sea, but do not consider tidal effects on net water discharge


(Lebreton et al., 2017; Schmidt et al., 2017; Meijer et al., 2021). To date, no plastic transport model accounts for the influence


of tidal dynamics on plastic emissions into the sea. Meijer et al. (2021) postulated that the probability that riverine plastic55


reaching the ocean increase with proximity to the river mouth, because larger cross-sectional areas in downstream reaches will


reduce the likelihood of plastic trapping along riverbanks. We argue that in tidal rivers and estuaries, bidirectional flows and
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other processes including turbulent mixing, entrapment in mudflats and vegetation could generate the opposite effect. With


increasing tidal influence towards the river mouth, higher retention times of plastic within the system can be expected. This can


ultimately result in lower plastic net transport rates downstream than upstream of the river system. Overall, current literature60


assumes that river plastic emissions are equivalent to plastic transport estimated most downstream (Meijer et al., 2021). This


neglects retention dynamics within tidal rivers and estuaries, as well as potential landward transport. Acha et al. (2003) found


that salinity fronts in estuaries act as a physical barrier that accumulates plastic. More recent studies have also shown the limited


nature of plastic export in estuaries (Fernandino et al., 2016; A.G.López et al., 2020; Ledieu et al., 2022; Sutton et al.; Tramoy


et al., 2020b, a). For instance, A.G.López et al. (2020) simulated plastic transport in the Chesapeake estuary (USA) and found65


that only 5% of the annual microplastic transport was exported into coastal waters, whereas the overwhelming majority (94%)


beached on the estuarine shores.


Both Eulerian and Lagrangian-based approaches have been used to study solutes transfer dynamics from rivers to the ocean,


notably in the field of sediment transport (Ballio et al., 2018). Lagrangian approaches follow the motion of particles, whereas


Eulerian approaches describe the motion of particles over a spatially fixed volume. Most observation-based studies on plastic70


transport in tidal rivers and estuaries follow a Lagrangian approach, in that they study the transport and accumulation dynamics


of a finite number of items Ledieu et al. (2022); Ryan and Perold (2021); Sutton et al.; Tramoy et al. (2020a, b). These studies


all show that plastic trajectories are affected by both non-uniform advection (longitudinal) and diffusive (multi-directional)


transfer processes. Mobile plastics travel limited distances, although a considerable share of plastics will deposit in various


riverine compartments and be retained for years to decades (Tramoy et al., 2020b, a). Such transfer dynamics are the result of75


both limited transport caused by bidirectional flows and (temporary) trapping in vegetation and along riverbanks. Despite the


growing evidence that tidal and estuarine dynamics attenuate plastic emissions into the oceans, net plastic transport has never


been measured during full tidal cycles. The difficulty in conducting measurements at night (due to the lack of daylight) and the


resource intensive nature of continuous measurements likely explain why such measurements have not been done thus far.


For this study, we developed a simple and easily transferable approach to quantify net plastic transport over tidal cycles at80


a river cross-section, in relation to total plastic transport. By using a Eulerian approach, we considered a fixed spatial domain


in which we estimated plastic transport. This approach entails measuring plastic transport and water flow dynamics (river


discharge, flow velocity and water levels) at a sub-hourly frequency. We applied this method to the Saigon river, Vietnam, in


May 2022, and estimated net and total plastic transport over six full tidal cycles. For the first time, we were able to estimate net


plastic transport in a tidal river, based upon field observations and using an Eulerian approach. We collected data on floating85


plastic transport for various plastic types and measured river discharge at a sub-hourly frequency. In this paper we demonstrate


the limited net transport of plastic due to the tidal effects and how it varies by plastic type and by tidal cycle. With this paper


we aim to highlight the crucial role of tidal rivers in the transport of riverine plastic into the ocean.
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2 Methods


2.1 Study site90


The field measurements were conducted at one site on the Saigon river (Vietnam), in Ho Chi Minh City (HCMC), at 70 km


from the river mouth (Fig.1). The Saigon river originates in Cambodia, passes through the Dau Tieng reservoir, then progresses


through a diverse agricultural and industrial region and then crosses HCMC, with a population of 9 million Vietnam’s largest


city. Approximately 20 km south of HCMC, the Saigon river meets the Dong Nai river where it forms the Nha Be river. The


latter passes through the Can Gio Mangrove forest where it branches in multiple channels and then debouches in the East Sea95


(Nguyen et al., 2020) (Fig.1A). The Saigon river is affected by an asymmetric semi-diurnal tidal regime, usually resulting in


a reversal of the flow direction twice a day. Tidal dynamics are registered up to the Dau Tieng reservoir, 140 km from the


river month (Nguyen et al., 2021), and regulates net discharge in the Saigon river (Camenen et al., 2021). In addition, river


discharge in the Saigon river is affected by both a strong seasonality between the wet and the dry seasons, with monthly mean


net discharge varying between -80 and 320 m3s−1 (Camenen et al., 2021).100


2.2 Measurement setup


This study focuses on the transport of floating macroplastics larger than 0.5 cm, hereafter referred to as plastic. We measured


plastic transport, water depth, and flow velocity at the Thu Thiem bridge (10.785984, 106.718332), located in the southern part


of HCMC. The field measurements were conducted continuously over 74 hours and 30 minutes, from 1 to 4 May, 2022. Five


observation points were monitored across the river width, to account for the spatial variability at the river cross-section in plastic105


transport, water depth, and flow velocity (Fig.1B). The observation points were chosen in order to maximize coverage of the


entire river cross-section on the one hand and to minimize the influence of the bridge piers. Measurements were conducted


on both sides of the bridge: during flood flow, the measurements took place on the northern side of the bridge, while the


southern side was used during ebb flow. This allowed surveyors to face the flow direction during measurements and facilitated


the handling of equipment in and out of the water. The bridge is approximately 14 m above the average water depth during110


measurements.


At each measurement location three instantaneous measurements were taken: floating plastic transport (section 2.3), the


water depth (section 2.4), and the flow velocity (section 2.5). A minimum of two surveyors were present to conduct the


instantaneous measurements. This was necessary during peak plastic transport periods, when values up to over 100 items


min−1 were registered. In such cases, one surveyor conducted the visual counting while another noted down the values. Up115


to four surveyors could be present for instantaneous measurements, depending on availability. Each measurement round lasted


on average 9 minutes. The measurement duration varied between 3 to 42 minutes, depending on the number of available


surveyors, the presence of boat traffic which could further delay the measurement, and potential challenges with handling


equipment. Measurements were conducted both during the day and at night. At night, a flashlight lamp (P18R Signature,


Ledlenser, Germany, https://ledlenser.com/en/) was used to illuminate the water surface, estimate plastic transport and take120


equipment in and out of the water safely. The model used had 4500 lumen luminous flux.
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Figure 1. A. Measurement site within the Saigon - Dong Nai river system. B. Measurement site (Thu Thiem bridge, 10.785984, 106.718332)


and locations. s1, s2, ... indicate the segment corresponding to each observation point. Copyright: Bing Maps. Note the different north


orientation for the two panels


2.3 Plastic transport estimates


Plastic transport was estimated using the visual counting method, developed by González-Fernández and Hanke (2017). All


visible (> 0.5 cm) anthropogenic litter items floating at the water surface were counted for a duration of 2 minutes and classified


according to various type of materials. The following eight categories were used: EPS (expanded polystyrene), POhard (hard125


polyolefins), POsoft (soft polyolefins), PS (polystyrene), PET (polyethylene terephthalate), Multilayer plastics, Other plastic


items and Other litter items (non-plastic). These plastic categories have been used in previous studies (van Emmerik et al.,


2022a; Schreyers et al., 2021) and are considered suitable for a first-order identification of plastic types. In this study, we only


consider plastic items and therefore do not report litter transport estimates. Plastic transport F [items h−1] was calculated using


the following equation (van Emmerik et al., 2022a):130


F =


5∑
i=1


fi
wi


W


5
(1)


With mean plastic transport observation f [items h−1] for observation point i at 5 observation points, observation track


width wi [m] and total river width W [m]. We considered an observation track width of 15 m, and a total river width of 298 m.


Plastic transport is often expressed in terms of mass transport in current literature (Lebreton et al., 2017; Meijer et al., 2021;


Schmidt et al., 2017; van Emmerik et al., 2022a). Therefore, we also expressed plastic transport M in terms of mass transport135
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[kg day−1], using the following equation (Vriend et al., 2020):


M = F ·m · c (2)


With m expressing either the mean and median mass per plastic item [g] and c the conversion factor from g hour−1 to kg


day−1.


We used the mass statistics from van Emmerik et al. (2019). In this study, 3,022 items collected over 45 days at the same140


measurement location in the Saigon river were weighted and categorized into the following plastic type categories: EPS, PS,


POhard, POsoft and PET. For the categories ’Multilayer’ and ’Other plastic’ from our observations, we used the mean and


median mass found for all items (respectively 10 g and 4.3 g). Median and mean mass values per item category are reported in


Table D2 (Appendix D).


2.4 Water depth, flow velocity measurements and discharge estimates145


Water depth was measured using a single beam sonar with Compressed High Intensity Radiated Pulse (CHIRP) (Deeper


Smart Sonar Chirp 2, Lithuania, https://deepersonar.com/). The sonar was lowered from the bridge into the water using a


rope. Once the sonar reached the water surface, water depth values could be read on a previously paired mobile phone using


the Deeper Smart Sonar mobile application. The sonar was lost on 4 May, 2022 around 03:00 A.M. due to collision with a


container ship. As a result, water depths were not recorded for the last 13 hours of measurements.150


Near-surface flow velocities were measured using a propeller flow meter (Flowatch, JDC, Switzerland, https://www.jdc.ch/).


The flow meter was lowered from the bridge into the water, at approximately one meter of depth from the surface, using a


cable. The surface velocities were converted to depth-average velocity by multiplying the surface velocity by a coefficient of


0.85, typically used in natural channels (Rantz). Flow velocities for flood water flows were recorded as negative values, and as


positive values for ebb water flows.155


The cross-sectional area was estimated for each observation point, as follows:


ai = wi · di (3)


With width wi [m] and depth di [m] per segment si. There are five segments, with an observation point in the middle. The


water depth was measured at each observation point i and was considered as the averaged depth per segment. We estimated


water discharge [m3 s−1] at the river cross-section as follows:160


Q=


5∑
j=1


ai · vi (4)


With v the depth averaged flow velocity [m s−1] at each measurement location i. Because of the lack of water depth


observations during the last 13 hours of measurement, the resulting discharge estimates only covered 5 out of the 6 tidal cycles.


This data gap was filled by estimating river discharge based on the significant and strong relation found with flow velocity for
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all observed values (Pearson’s r = 0.99, R2 = 0.99, and p-value < 0.01) (Fig. A in Appendix A). The following equation was165


used to fill missing discharge estimates:


Q= v · 3393 (5)


Because of the data gap in water depths, we prefer to report the relation between plastic transport and water flow based on


flow velocity estimates (for instance for Fig.3 and 4), as there is less uncertainty on those values compared with river discharge


estimates.170


2.5 Temporal data harmonization


Plastic transport, water depths and flow velocities could not be measured at precisely regular time intervals, due to constraints


in handling equipment, varying number of available surveyors and varying distances between measurement locations. For this


reason, plastic transport, flow velocity and discharge values were interpolated to a regular time interval using two different


methods. Flow velocity and discharge values were interpolated using tidal characteristics. Tidal constituents were analyzed175


using the Unified Tidal Analysis and Prediction (UTide) package in Python 3.4 (Codiga, 2011). This enabled us to determine


the coefficients (phase and amplitude) for each tidal constituent, which were in turn used to interpolate our time-series. We


present the results of the tidal constituent analysis in Appendix B, as they are not considered novel findings but were nonetheless


crucial for flow velocity and discharge interpolation. The temporal interpolation was done to a 10-minute interval, because it


is close to the time interval between observations (9 minutes on average). Plastic transport was also interpolated to 10-minute180


intervals, using a linear interpolation.


2.6 Calculating net and total plastic transport and discharge


Here we define ebb and flood as the tidal phases in which the water current is flowing seaward and landward, respectively.


While usually seaward plastic transport dominates during the ebb phase and landward plastic transport during the flood phase,


short lags in time (of about a few minutes) were noted during slack periods (Fig.2). For instance, although the overall river cross-185


section are dominated by one flow direction, reverse flow could still be (temporally) observed at one or a few measurement


locations. If at those measurement locations plastic densities out-weights densities at the remaining measurement locations, a


discrepancy can be noted at the cross-section between water flow and plastic transport directions.


Based on the distinction between flood and ebb phases, we calculated the net plastic transport during ebb and flood, flow


velocities and river discharges. We introduce a relative measure of net transport, hereby called delivery ratio (dr). Using a190


relative metric allows for easier comparison across various spatio-temporal scale and within systems with varying plastic


pollution levels. The dr expresses the ratio [%] between net and total transported volumes, as follows:


dr =
Vebb −Vflood


Vebb +Vflood
· 100% (6)
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To this scope, we calculated the total transported volumes of plastic, flow velocity and discharge during ebb and flood, as


follows:195


Vebb =


∫
Tebb


y(t)dt with v > 0 (7)


Vflood =


∫
Tflood


y(t)dt with v < 0 (8)


Tebb and Tflood indicate the ebb and flood tidal phase, respectively, y the values integrated over time t (plastic transport, flow


velocity and discharge) and v the flow velocity. The integral values for flow velocity and discharge correspond respectively to


the total river surface length [m] and river volume [m3] that passed by the measurement location per tidal phase. The integral200


values for plastic transport corresponds to the total volume of plastic items passing by the measurement location. Figure 2 gives


an example for the Vebb and Vflood calculation, using the flow velocity as the variable of reference for distinguishing between


flood and ebb.


We also determined the net plastic transport, flow velocity and discharge (fnet) in absolute values (respectively in items


hour−1, m s−1 and m3 s−1) as follows:205


fnet =
Vebb +Vflood


Tebb +Tflood
(9)


In addition, we calculated the mean plastic transport, flow velocity and discharge for each ebb and flood cycle (febb and


fflood, respectively), as follows:


febb =
Vebb


Tebb
(10)


210


fflood =
Vflood


Tflood
(11)
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Figure 2. Example of calculation of integral areas for the ebb and flood phases of the tidal cycle. The grey shaded areas correspond to


the integral during flood, the red shaded area to the integral during ebb. Y represents the variable to be integrated, which could be plastic


transport, river discharge or flow velocity.


3 Results


3.1 Net plastic transport less than one-third of total plastic transport


Over the six tidal cycles considered, we found a seaward mean net transport of approximately 3.1 · 103 items hour−1,


corresponding to 400-760 plastic kg day−1 (Table 1). This represents only about 27-32% of total plastic transport. This ratio215


is lower for river discharge and flow velocity (18%) (Table 1). Overall, these findings suggest that although plastic transport


is mainly governed by net discharge and flow velocity (R2 = 0.75 between plastic transport and river discharge), other factors


lead to higher net transport of plastics (see Discussion). The plastic mass transport estimates vary by a factor of almost two,


depending on whether the mean or median mass of items is considered (Table 1). This does not significantly alter the delivery


ratios found for plastic mass transport, which in agreement with the delivery ratio found for items transport (27% for mass220


transport based on the mean mass, 32% based on median mass and 27% for items transport).
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Table 1. Summary statistics for plastic transport, flow velocity and discharge


Ebb (febb) Flood (fflood) Net (fnet) Delivery ratio (dr) [%]


Plastic items transport


[items hour−1]
1.5 · 104 -8.6 · 103 3.1 · 103 27


Plastic mass transport (median mass)


[kg day−1]
1.7 · 103 -8.3 · 102 4.0 · 102 32


Plastic mass transport (mean mass)


[kg day−1]
3.6 · 103 -2.0 · 103 7.6 · 102 27


Flow velocity


[m s−1]
0.34 -0.23 0.051 18


River discharge


[m3 s−1]
1100 -790 170 18


Water flow in the Saigon river follows a sinusoidal pattern, with clear alternations between ebb and flood phases determined


by the tidal cycle and its various phases in rising and falling limbs and slack water periods (Fig. 3). The tidal variation in flow


velocity shows positive residuals, with both higher peaks in flow velocity during the ebb than flood phase of the tidal cycles


(maximum and minimum flow velocity: 0.56 and -0.41 m s−1, respectively). The flood phase is longer than the ebb phase225


(38 hours and 20 minutes and 36 hours and 10 minutes, respectively). We found a seaward net discharge of 172 m3 s−1 over


the measurement period, corresponding to relative net water transport of approximately 18% of total water flow (Table 1).


Plastic transport follows a similar asymmetrical sinusoidal pattern to flow velocity (Fig.3). Plastic transport was found to be


highly positively correlated with river discharge and flow velocity (Pearson’s r = 0.87, R2 = 0.75, and p-value < 0.01 for plastic


transport in relation to both discharge and flow velocity). Plastic transport can be expressed as a linear function in relation to230


discharge for all items aggregated (Appendix C, Fig. C1), as well as by plastic types (Appendix C, Fig. C2). For the latter, the


R2 values could indicate the degree to which river discharge influences the transport of these different plastic types. With this


assumption, transport of PS and POsoft items are the most linearly influenced by river discharge (R2 of respectively 0.71 and


0.68). It is likely, however, that the lower R2 values are also an indicator of the stochastic component of plastic concentrations


in the river system.235


Despite the strong and significant correlation found between river discharge and plastic transport, similar discharge values


were observed for a wide range of plastic transport. For instance, for peak discharges of over 2,000 m3s−1, plastic transport


varied by a factor of almost four, between 0.72-2.8 · 104 items hour−1 (Appendix C, Fig. C1). We hypothesize that varying


contributions of different plastic types to the overall plastic transport explain this discrepancy. In particular, a higher share


of EPS and POsoft, two types of items for which the relation between transport and river discharge is characterized by a240


steeper slope (Appendix C, Fig. C2), might lead to higher transport during peak discharge periods. This hypothesis seems to


be confirmed by our observations (Appendix C, Fig. C1), with EPS and POsoft items making up for more than 80% of the


plastic composition during peak plastic transport, much higher than on average (56%) (Appendix C, Fig. C1). In addition, a


hysteresis pattern is noticeable between plastic transport and river discharges, but was not found to be consistent between rising


and falling limbs of the tidal cycle, for both the entire time-series and across the different tidal cycles observed (Appendix C,245


Fig. C1 and C3). Overall, estimating plastic transport based on a simple linear model from measured discharge would yield
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large uncertainties, especially for peak transport values. There is no clear explanation for the wide range of plastic transport


values during peak discharge events. The observed hysteresis pattern could be related to the asymmetry in rising and falling


limb and/or from other sources of uncertainties, including varying concentrations of different plastic types.


Figure 3. Plastic transport and flow velocity over the entire measurement period. The dotted yellow lines separate each tidal cycle.


3.2 Diurnal inequality results in alternating positive and negative delivery ratios250


During the measurement period, water flow exhibits a mixed tidal cycle (i.e. two high and low tides each lunar day), resulting


in diurnal inequality and an alternation between ebb and flood dominated tidal cycles. The first, third and fifth tidal cycles are


ebb dominated, as the total volume of water is larger during the ebb phase of the cycle than during the flood phase (Vebb >


Vflood for river discharge values). The second, fourth and sixth tidal cycle exhibit, on the contrary, flood dominance Vflood >


Vebb for river discharge values).255


Because of this diurnal alternation, we could therefore expect varying net discharge and plastic transport rates depending


on whether the tidal cycle was ebb or flood dominated. We found positive net plastic transport, flow velocity and discharge,


for ebb dominated cycles (1,3 and 5), for both mean values and delivery ratios (Table 2). Negative net plastic transport, flow


velocity and river discharge were measured for flood dominated cycles (2, 4 and 6). This indicates that diurnal variations


in tidal dynamics and freshwater discharge, resulting in asymmetry in peaks, are an important component in explaining the260


variability in net flow and transport. In line with this, the tidal constituent analysis showed that the main daily tidal component


(K1) is the second most important tidal component of our time-series (Appendix B, Tidal constituent analysis). As a result of


the alternation between ebb and flood dominated cycles, the tidal cycle averaged net transport rates varied by a factor of nearly


-4 between cycles (1.1 · 104 items hour−1 for the first cycle and -2.8 · 103 items hour−1 for the sixth cycle).
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We hypothesize that high plastic delivery ratios could be governed by either averaged-cycle high net river discharge, high265


plastic concentrations in the water or a combination of both. For the first tidal cycle, the high plastic delivery ratio (58-


63%) seems to be mainly driven by high plastic concentrations, as the flow velocity and river discharge delivery ratio is not


particularly high (33%). The highest mean plastic transport during the ebb phase was found for this cycle (2.6 · 104 items


hour−1), almost 3.5 times more than for the entire measurement period) (Appendix D, Table D1). For the third tidal cycle, the


plastic delivery ratio was closer to the flow velocity and river discharge delivery ratio (50-51% and 41%, respectively), and the270


net river discharge was found to be quite high (470 m3 s−1); more than 20% higher in fact than on the first cycle (380 m3 s−1).


This suggests that the high delivery ratio of plastic transport found for the third tidal cycle was mainly governed by high net


discharge. The highest plastic delivery ratio was registered during the fifth tidal cycle (66-69%). Net river discharge was also at


its highest during this tidal cycle (520 m3.s−1) and net plastic transport was double than average (7.7 · 103 items hour−1 for the


fifth tidal cycle and 3.1 · 103 items hour−1 on average for the entire measurement period), but lower than during the first tidal275


cycle (1.1 · 104 items hour−1). During the fifth tidal cycle, a combination of high net discharge and high plastic concentrations


likely explains the high plastic delivery ratio found.


Overall, plastic delivery ratios calculated based on items transport and mass transport are in good agreement, with no more


than ±5% of difference between the three values. One notable exception was found for the second tidal cycle, during which the


delivery ratio of plastic mass transport, based on the median mass of items, is considerably higher than both the mass transport280


based on mean mass of items, and the items transport (-1% compared to -11% and -15%, respectively). The mean mass per


item is very similar among items compared to the mean mass of all items: with the exception of PET (mean mass: 20 g) all


items have a mass comprised between 7.0 and 12 g, with an overall average of 10 g per item. The median mass is more variable


among items, ranging between 1.9 and 7.7 g (with the exception of PET, median mass = 21 g) (Table C2). As a result, peaks in


transport of items heavier or lighter than others can alter the averaged cycle net transport rates. Anticipating on section 3.3, the285


peak in polystyrene items (PS) observed during the ebb phase of the tidal cycle, can explain the lower delivery ratio registered


for the median mass transport. Indeed, the median mass for PS items is higher than the averaged median mass for all items (6.0


g vs 4.3 g, 33% difference), whereas this difference is less pronounced for the mean mass (11 g vs 10 g, difference of less than


10%).
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Table 2. Net plastic transport, flow velocity and river discharge and associated delivery ratios by tidal cycle. Each tidal cycle lasts 12 hours


25 minutes


Cycle 1 2 3 4 5 6


Items transport Net (fnet) [items hour−1] 1.1 · 104 -1.9 · 103 6.1 · 103 -1.0 · 103 7.7 · 103 -2.9 · 103


Delivery ratio (dr) [%] 58 -15 51 -14 69 -33


Mass transport (median mass) Net (fnet) [kg day−1] 1.4 · 103 -1.7 · 101 6.0 · 102 -6.4 · 101 7.9 · 102 -2.3 · 102


Delivery ratio (dr) [%] 63 -1 51 -8 64 -26


Mass transport (mean mass) Net (fnet) [kg day−1] 2.6 · 103 -3.4 · 102 1.4 · 103 -2.3 · 102 1.7 · 103 -6.3 · 102


Delivery ratio (dr) [%] 58 -11 50 -13 66 -31


Flow velocity Net (fnet) [m s−1] 0.11 -0.056 0.14 -0.034 0.15 -0.0075


Delivery ratio (dr) [%] 33 -24 41 -14 46 -3


River discharge Net (fnet) [m3 s−1] 380 -190 470 -120 520 -30


Delivery ratio (dr) [%] 33 -24 41 -14 46 -3


3.3 Net plastic transport varies with plastic type290


We determined the transport and delivery ratio per plastic type (Fig. 4). Plastic items differ in their shape, size, buoyancy and


rigidity, characteristics that could influence their transport processes. We found that the amplitude in plastic transport varies


significantly depending on both the tidal cycle and the type of items considered. Net transport vary by two orders of magnitude


depending on the plastic type considered (from 1.5 · 103 for EPS items to -3.6 · 101 items hour−1 for Other plastic items)


(Table 3). We calculated a positive net transport in relation to total transport (dr > 0) for all plastic types, with the exception295


of POhard and Other plastic. These two categories correspond to the least commonly found items (respectively 3 and 2% of


the total plastic items). The delivery ratio varied between 62% and -15% depending on the plastic type. Large items such as


PET (e.g.: plastic bottles) and rigid and highly buoyant items such as EPS (e.g.: expanded polystyrene such as foam) and PS


(polystyrene, such as plates) registered the highest net export (62%, 39% and 31%, respectively). On the contrary, soft and


neutrally buoyant items such as POsoft (e.g.: bags and foils) and Multilayer (food packaging) had lower net transport rates300


(17% and 11%, respectively).


Moreover, large fluctuations in plastic transport were noted depending on the tidal cycle. For instance, transport in EPS,


POsoft and PS are particularly high during the first tidal cycle during its ebb phase. Transport of Multilayer items is high


during the second tidal cycle, similarly to transport of PS items, also during the ebb phase. Our results suggest that the relative


contribution of item types is highly variable, with varying concentrations per plastic type at the water surface, probably resulting305


from varying inputs of plastics into the river.
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Figure 4. Plastic transport by category type and flow velocity over the entire measurement period (A-G). The dotted yellow lines separate


each tidal cycle. The y-axis differ depending on the subplot for plastic transport, to better visualize the value distributions. Items are ranked


from the most frequently found on average (EPS) to the least frequently found on average (Other plastic)
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Table 3. Summary statistics for plastic transport, flow velocity and discharge by material type. The discrepancy in sign for certain values


between net transport and delivery ratios is due to the fact that the latter was calculated based on the integral values for input and output


phases, whereas net transport resulted from the difference between mean output and input transport.


Plastic type Variables Ebb (febb) Flood (fflood) Net (fnet) Delivery ratio (dr) [%]


EPS Items transport [items hour−1] 5.4 · 103 -2.4 · 103 1.5 · 103 39


Mass transport (median mass) [kg day−1] 2.5 · 102 -1.1 · 102 7.0 · 101


Mass transport (mean mass) [kg day−1] 9.1 · 102 -4.0 · 102 2.5 · 102


POsoft Items transport [items hour−1] 3.7 · 103 -2.6 · 103 5.4 · 102 17


Mass transport (median mass) [kg day−1] 2.6 · 102 -1.8 · 102 3.8 · 101


Mass transport (mean mass) [kg day−1] 9.3 · 102 -6.5 · 102 1.4 · 102


Multilayer Items transport [items hour−1] 2.1 · 103 -1.7 · 103 2.1 · 102 11


Mass transport (median mass) [kg day−1] 2.2 · 102 -1.7 · 102 2.1 · 101


Mass transport (mean mass) [kg day−1] 5.2 · 102 -4.1 · 102 5.0 · 101


PS Items transport [items hour−1] 2.1 · 103 -1.1 · 103 4.9 · 102 31


Mass transport (median mass) [kg day−1] 3.0 · 102 -1.6 · 102 7.0 · 101


Mass transport (mean mass) [kg day−1] 5.3 · 102 -2.8 · 102 1.2 · 102


PET Items transport [items hour−1] 1.1 · 103 -2.5 · 102 4.2 · 102 62


Mass transport (median mass) [kg day−1] 5.5 · 102 -1.3 · 102 2.1 · 102


Mass transport (mean mass) [kg day−1] 5.3 · 102 -1.2 · 102 2.0 · 102


POhard Items transport [items hour−1] 3.0 · 102 -3.3 · 102 -1.7 · 101 -5


Mass transport (median mass) [kg day−1] 5.5 · 101 -6.1 · 101 -3.1 · 100


Mass transport (mean mass) [kg day−1] 8.8 · 101 -9.7 · 101 -5.0 · 100


Other plastic Items transport [items hour−1] 2.1 · 102 -2.8 · 102 -3.6 · 101 -15


Mass transport (median mass) [kg day−1] 2.1 · 101 -2.9 · 101 -3.8 · 100


Mass transport (mean mass) [kg day−1] 4.9 · 101 -6.7 · 101 -8.8 · 100


4 Discussion


4.1 Limited net plastic transport in tidal rivers


With this study, we demonstrated that tidal dynamics can strongly limit plastic transport in downstream direction. We found


that net plastic transport corresponds to less than 30% of the total transport, as a result of bidirectional flows and semi-diurnal310


and diurnal tidal dynamics. These findings are in line with other studies that demonstrated that plastic is transported over shorter


distances in estuaries compared to the freshwater reaches of rivers (Ledieu et al., 2022; Tramoy et al., 2020a, b). Due to limited


export out of the system, plastics can be retained over long periods of time, in certain cases surpassing decades as shown for


the Seine river (France) (Tramoy et al., 2020b) . Long retention times likely lead to high plastic concentrations, if we consider


the additional inputs of plastic into the water. In the Saigon river, a clear seasonality in net discharge is observed. Peak net315


discharge (typically exceeding 200 m3 s−1) only occur for a couple of months, usually between the months of June and August


(Camenen et al., 2021). Plastic concentrations likely only decrease significantly during these high discharge periods, due to an


increase in net plastic transport and export. In this study, we only considered macroplastic (> 0.5 cm), but long macroplastic


residence times would likely impact microplastic concentrations as well. Increased plastic break-down and degradation due to
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a long presence of macroplastics in the river system probably leads to increased microplastic concentrations as well (Delorme320


et al., 2010; Lahens et al., 2018).


To date, global river plastic transport and emission models do not consider tidal influence, which likely results in an overesti-


mation of global plastic emissions into the oceans. Models that use discharge as a predictor for riverine plastic transport should


be considered as export models from the non-tidal part of the river to its tidal zone, but not yet into the ocean. We found that


plastic transport was strongly correlated to instantaneous discharge, which could be then used to estimate net discharge and net325


plastic transport. Thus, estimating transport and emission in the tidal zone could rely on measured instantaneous discharge, in-


stead of only using freshwater discharge estimates. Using rainfall-runoff models to estimate freshwater discharge rates entirely


neglects tidal influence on net plastic transport and emissions into the ocean. Such approaches however have been used broadly


to estimate global plastic emissions (Lebreton et al., 2017; Meijer et al., 2021). Measuring discharge in tidal systems however


remains very challenging and as a result, most gauging stations are located upstream of the tidal region (Gisen and Savenije,330


2015; Nguyen and Nguyen, 2018). Furthermore, considering measured discharge as a more reliable predictor for plastic trans-


port in tidal rivers remains problematic. Establishing a fixed relation between river discharge (and other environmental drivers)


and plastic transport is ultimately challenging because it cannot take into account temporal variations in plastic concentrations


in the water, due to human behaviors (littering and cleaning) (Roebroek et al., 2021b). By drawing an analogy with sediment


rating curves, we can hypothesize that the rating parameters indicating availability and concentrations of plastics probably335


change more rapidly compared to sediment supply. The time-scales governing variability in plastic inputs into the water are


likely to be shorter compared to those of sediment loads. In line with this hypothesis, Tasseron et al. (3001under review) ob-


served large temporal (daily and monthly) fluctuations in plastic transport in urban waterways, a likely result of higher inputs


of plastics during peak hours and seasons of outdoor human activity. The inherent difficulties in obtaining discharge estimates


for tidal regions worldwide on the one hand and the limitations of using discharge as a reliable predictor of plastic transport, on340


the other hand, call for alternative approaches in estimating plastic emissions. Probabilistic methods that introduce a corrective


factor for decreasing downstream plastic transport with decreasing distance to the river mouth could improve global transport


estimates.


4.2 River plastic transport is highly variable depending on the tidal dynamics


In addition to the limited downstream transport of plastic, our analysis showed that plastic transport rates are highly variable345


in time. This temporal variability in plastic transport rates is two-fold: (i) between peak and averaged semidiurnal net transport


rates, and (ii) between the different averaged semidiurnal net transport rates. Peak transport values ranged from -2.4 · 104


and 4.1 · 104 items hour−1 over the studied period. As a consequence, field measurements that would be undertaken at the


peak of either the flood and ebb flow of the tide or during a slack water phase would likely result in an overestimation or


underestimation of net plastic transport. For instance, the highest mean plastic transport found during the ebb and flood phases350


(2.6 · 104 and -1.2 · 104 items hour−1, respectively) are approximately one order of magnitude higher than the mean net plastic


transport (3.1 · 103 items hour−1) for the entire measurement period. Similarly, studies on sediment transport in tidal rivers


found that instantaneous peak transport values are at least one order of magnitude higher than the net (residual) sediment
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transport (Gatto et al., 2017). The large discrepancy between instantaneous and net plastic transport highlights the need to


estimate transport rates based on longer observation periods than usually done in current riverine transport studies. For example,355


González-Fernández et al. (2021) quantified plastic transport over 42 rivers, over 410 hours of measurement, amounting to only


25 minutes of observation per river. Furthermore, we showed that net estimates of plastic transport vary greatly depending on


whether measurements are conducted during an ebb or flood dominated cycles, resulting in either positive (seaward) or negative


(landward) net plastic transport, and values ranging by a factor of nearly -4 between the highest and lowest net transport per


cycle. Overall, the high variability between peak and averaged cycle net plastic transport, coupled with the variability within360


net plastic transport per tidal cycle highlight both the uncertainty in quantifying net plastic transport and the dependency on


the temporal scale considered.


This study was the first to quantify plastic transport during full tidal cycles using a Eulerian approach. We only considered


short-term tidal dynamics, namely the alternation between flood and ebb tidal phases and the diurnal cycles. Longer-term


patterns, such as the cycle in neap and spring tides, the seasonality in net discharge or peaks in freshwater discharge could all365


influence flow dynamics and thus significantly alter plastic transport processes. Fernandino et al. (2016) for instance observed


higher floating litter densities during the spring ebb tides. This suggests that co-occurrences in hydrological conditions are


also of interest to understand long-term plastic transport dynamics in tidal rivers. Additional measurements of plastic transport


throughout full tidal cycles of varying tidal and hydrological conditions are therefore needed for this. We therefore suggest


repeating similar observations during specific conditions, such as spring/neap and high discharge/storm surge conditions. Such370


measurements would enable to widen the range of tidal and hydrological conditions investigated in relation to plastic transport.


4.3 Delivery ratio of plastic is higher than water


We found that, in relative terms, plastic net transport is higher when compared with net discharge rates (dr of 18% for water


flow and 27-32% for all plastic items). Two main explanations can be hypothesized for this difference in delivery ratios. The


first postulates that fundamental differences exist between plastic and water transport processes. Factors not directly accounted375


for in this study, such as wind and different flow mobilization thresholds could impact differently water particles and plastics,


and ultimately result in significantly higher delivery ratios of plastic compared to water. The second hypothesis relates to the


site- specific dynamics. High temporary entrapment rates of plastics downstream of the measurement site could lead to lower


landward transport rates compared to water particles, because a significant portion of items is temporarily stuck.


Hydrometeorological factors, such as different mobilization thresholds, the influence of wind and later flows and sink-380


ing/resuspension mechanisms along the water columns might explain the higher delivery ratios of plastic compared to water


particles. Our analysis showed that during the flood phase of the tide, less plastic items were transported in the landward


direction compared to water particles. This is somewhat surprising given that the flood phase of the tidal cycle generally cor-


responds to rising water levels, which could potentially mobilize items that were deposited during falling water levels (ebb


phase). However, the lower flow velocities measured during the flood phase compared to the ebb phase of the tidal cycle (-0.23385


vs 0.34 m s−1) could explain that a lower share of plastic items reaches their critical threshold of motion, in contrast with water


particles. This could be particularly relevant considering that in most rivers, including the Saigon river, plastic items are often
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temporarily trapped in floating vegetation, banks or within fluvial structures (Ledieu et al., 2022; Schreyers et al., 2021; van


Emmerik et al., 2022c). Quantification of mobilization thresholds of plastics in various entrapment conditions is required to


further investigate this mechanism. Besides flow velocity and discharge, wind, waves and lateral flows could influence the drift390


current speed of plastic items (Laxague et al., 2017; van der Mheen et al., 2020). These factors could generate accelerating


or decelerating effects in the propagation of plastic in the river. It is possible that accelerating forces dominated during the


ebb phase and decelerating forces during the flood phase. Ultimately, this would result in higher transport distances of plastic


items and higher net export rates during the ebb phase. In addition, our study only measured floating plastic transport and


therefore tidal dynamics on sub-surface plastic and transfer of plastics between the surface and the deeper layers (sinking and395


re-suspension) were ignored. This is mainly due to the lack of measurement methods easy to deploy to quantify the distribution


of plastic throughout the water column in rivers at a high temporal frequency. Tidal dynamics could also affect the vertical


distribution of plastic items, due to variations in water depths and vertical mixing of fresh and salt water (Vermeiren et al.,


2016). Ultimately, sinking and re-suspension mechanisms could also contribute to the higher downstream transport rate found


for plastic in comparison to water.400


Another hypothesis pertains to the local characteristics of our case-study area. High rates of plastic entrapment/deposition


downstream of the measurement site, compared to upstream could explain the relative lower landward transport rates compared


to water particles. High concentrations of items were often found downstream of the measurement site, due to the presence of


docks, piers and jetties which temporarily trap items (Lotcheris et al., 3001in preparation). Similar trapping elements were not


found directly upstream of the measurement site. Other factors such as the vegetation, wood jams and meandering might also405


influence plastic accumulation rates on riverbanks, as already evidenced by recent research (Ledieu et al., 2022; Liro et al.,


2020)). The two hypotheses presented for higher delivery ratios of plastics compared to water could be tested using Lagrangian


approaches, in combination with high frequency hydrometeorological measurements throughout tidal cycles. Lagrangian stud-


ies on plastic transport could provide insights on the (re)mobilization and entrapment thresholds in relation to flow and other


hydrometeorological factors such as wind. To the best of our knowledge, no Lagragian-based approaches have so far quantified410


thresholds of mobilization and stopping of mobile plastics. In addition, Lagrangian approaches are also useful in mapping


entrapment/accumulation zones along a river course (Ledieu et al., 2022).


4.4 Plastic transport processes are affected by the geometry, size and buoyancy of items


Our results show that different plastic categories have highly variable net transport rates, depending on items type charac-


teristics, such as size, rigidity and buoyancy. Large and highly buoyant plastics were found to have higher downstream net415


transport rates than smaller and more neutrally buoyant items. PET items (mainly bottles) were the largest category of plastics


by size (average size: 20 cm vs 11 for all item categories) and had the highest delivery ratio found (62%). Highly buoyant items


such as EPS and PS items (food containers, isolation foam, cups and plates), with densities comprised between 0.016 to 0.640


g cm3 for EPS and 1.01 and 1.04 g cm3 for PS (van Emmerik and Schwarz, 2020) were found to have high downstream net


transport rates (39% and 31%, respectively). Such items are also more prone to wind influence (Jackson, 1998; Schwarz et al.,420


2019). This could cause both deposition effects on the sides of the river or on the riverbanks, or longer travel distances over the
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same duration than other items, depending on the wind direction and magnitude. Ryan (2021); A.G.López et al. (2020) found


that highly buoyant plastics travel longer distances between the coast and the marine environment. In addition, because of their


high buoyancy, these items do not sink easily in the water column (Schwarz et al., 2019). All these factors could explain the


higher net export ratios found for highly buoyant plastics. In comparison, more neutrally buoyant and soft items such as POsoft425


(bags and foils) and Multilayer items (food wrapping) (van Emmerik et al., 2019) had lower net transport rates than average


(between 11% and 17% vs 27% for all plastics). Because of their lower buoyancy, such items are more prone to vertical mixing


and the influence of changes in turbulence and density fronts, such as salt concentrations (Acha et al., 2003; Ballent et al.,


2012). This is particularly relevant for tidal rivers and estuaries, due to changes in the relative balance between fresh and salt


water and higher turbulence resulting from the changes in density distribution, compared to the freshwater reaches of the river.430


These findings confirm that, similarly to sediment, plastic transport processes should be studied in relation to items charac-


teristics, instead of considering plastics as a single material (Kooi et al., 2018; Schwarz et al., 2019). The wide range of sizes,


geometry, densities, buoyancy and masses of plastics strongly impacts their transport dynamics (both vertically and horizon-


tally), as already pointed out by several studies (Ryan, 2021; Waldschläger and Schüttrumpf, 2019; Kuizenga et al., 2021).


Comparably, sediment grain size distribution and density strongly influence settling and advection velocities of particles in the435


water. Recent sediment transport models that incorporated a broader distribution range of grain sizes and densities led to im-


proved estimates of suspended sediment loads compared to models which used more uniform distributions (Lepesqueur et al.,


2019).


5 Conclusions


For the first time, we quantified net plastic transport over full tidal cycles in a tidal river using a Eulerian approach. Over this440


time-period, we conducted sub-hourly measurements of flow velocity, water depth and plastic transport. Time-series of flow


velocity and discharge estimates were extrapolated by fitting the tidal constituents of our observations, for which we found that


the semi-diurnal and diurnal components were the most significant. We introduced a simple Eulerian approach, which expresses


net transport by establishing a balance between the flood (landward) and ebb (seaward) water flows and plastic transport. This


approach could easily be transferred to other river systems as it requires limited and affordable equipment.445


Four main findings on plastic transport in tidal regions are highlighted from our study. First, net plastic transport is limited


compared to total transport, due to changes in flow velocity and direction mainly governed by semi-diurnal tidal cycles. In our


case-study, we found that net transport amounted to only 27-32% of the total plastic transport. Secondly, estimates of river


plastic transport are highly variable, depending on the tidal dynamics. Diurnal inequality in the tides causes an alternation


between cycles with positive net transport (seaward plastic transport) and cycles with negative net transport (i.e.: landward450


plastic transport). We also found that peak and averaged semidiurnal net transport rates varied by as much as one order of


magnitude. Thirdly, net plastic transport shows higher net downstream transport compared to water. We found that net water


discharge amounted to 18% of the total river discharge, whereas net plastic transport corresponds to 27-32% of the total plastic


transport. This suggests that either plastic travel longer distances than water particles, possibly due to the influence of other
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environmental drivers such as wind, or that plastics are get often entrapped downstream from the measurement site, limiting455


their transport upstream during the flood tidal phase. Lastly, plastics are not uniformly affected by tidal dynamics. Larger and


highly buoyant items, such as plastic foams and polystyrene have larger net transport ratios compared to neutrally buoyant and


more flexible items, such as bags, foils and food packaging.


With our paper, we show that tidal dynamics play a crucial role in total and net plastic transport in tidal rivers. Bidirectional


flows resulting from the semi-diurnal tidal component lead to a large discrepancy between net and total plastic transport rates.460


With each river that flows into the ocean being affected by tidal dynamics, such effects cannot be neglected anymore in studies


that quantify (global) plastic emissions into the ocean. Efforts to both conceptualize and integrate tidal dynamics in river plastic


transport and emissions models are therefore required.


Appendix A: Relation between river discharge and flow velocity


Figure A1. Relation between river discharge and flow velocity. p-value was found to be below <0.01.


Appendix B: Tidal constituent analysis465


We found M2 (principal lunar semi-diurnal) and K1 (lunar diurnal) to be the dominating tidal constituents over our flow


velocity time-series (Table B1). However, the distortions of the sinusoidal symmetry (Fig.3) could be attributed to shallow


water override components (M4 and M6), which were also found to be significant and/or the interactions between the M2 and


K1 components (Hoitink et al., 2003; Gatto et al., 2017).
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Table B1. Tidal constituent coefficients (amplitude and frequency) and signal-to-noise ratio


Tidal constituent Symbol Amplitude [m s−1] Frequency [cycles hour−1] Signal-to-Noise ratio [-]


Principal lunar semi-diurnal M2 0.43 0.081 690


Lunar diurnal K1 0.14 0.042 11000


Fifth diurnal 2MK5 0.050 0.20 27


Shallow water overtide of principal lunar M4 0.041 0.16 6.6


Shallow water overtide of principal lunar M6 0.034 0.24 78


Seventh diurnal 3MK7 0.020 0.28 4.5


Lunar terdiurnal M3 0.011 0.12 1.2


Shallow water eight diurnal M8 0.0015 0.32 0.15


Appendix C: Relation between river discharge and plastic transport470


Figure C1. Relation between plastic transport and river discharge. p-value < 0.01.
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Figure C2. Relation between plastic transport and river discharge by plastic types (A-G). All p-values were found to be below <0.01.
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Figure C3. Relation between plastic transport and flow velocity per tidal cycle (A-F). The arrows indicate the direction of the hysteresis


between rising and falling limbs of the tidal cycle
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Appendix D: Additional statistics for plastic transport


Table D1. Plastic transport, flow velocity and discharge per tidal cycle. Plastic transport are reported in both items transport and mass


transport.


Plastic transport Flow velocity River discharge


Cycle Variables
Items transport
[items hours−1]


Mass transport (median mass)
[kg day−1]


Mass transport (mean mass)
[kg day−1]


[m.s−1] [m3.s−1]


1 Ebb (febb) 2.6 · 104 3.1 · 103 6.3 · 103 0.40 1400


Flood (fflood) -8.9 · 103 -9.2 x 102 -2.1 · 103 -0.26 -870


Net (fnet) 1.1 x 104 1.4 · 103 2.6 · 103 0.11 380


Delivery ratio (dr) [%] 58 63 58 33 33


2 Ebb (febb) 1.4 · 104 1.5 · 103 3.4 · 103 0.22 740


Flood (fflood) -1.2 · 104 -1.1 · 103 -2.8 · 103 -0.24 -810


Net (fnet) -1.9 · 103 -1.7 · 101 -3.4 · 102 -0.0056 -190


Delivery ratio (dr) [%] -15 -1 -11 -24 -24


3 Ebb (febb) 1.6 · 104 1.6 x 103 3.8 · 103 0.42 1400


Flood (fflood) -6.7 · 103 -6.6 · 102 -1.6 · 103 -0.23 -770


Net (fnet) 6.1 · 103 6.0 · 102 1.4 · 103 0.14 470


Delivery ratio (dr) [%] 51 51 50 41 41


4 Ebb (febb) 7.1 · 103 8.3 · 102 1.8 · 103 0.24 800


Flood (fflood) -7.0 · 103 -7.3 · 102 -1.7 · 103 -0.23 -790


Net (fnet) -1.0 · 103 -6.4 · 101 -2.3 · 102 -0.0034 -120


Delivery ratio (dr) [%] -14 -8 -13 -14 -14


5 Ebb (febb) 1.6 · 104 1.7 · 103 3.8 · 103 0.42 1400


Flood (fflood) -4.2 · 103 -5.3 · 102 -1.1 · 103 -0.21 -710


Net (fnet) 7.7 · 103 7.9 · 102 1.7 · 103 0.15 520


Delivery ratio (dr) [%] 69 64 66 46 46


6 Ebb (febb) 6.4 · 103 7.0 · 102 1.5 · 103 0.26 880


Flood (fflood) -1.1 · 104 -1.0 · 103 -2.4 · 103 -0.23 -780


Net (fnet) -2.9 · 103 -2.3 · 102 -6.3 · 102 -0.075 -25.6


Delivery ratio (dr) [%] -33 -26 -31 -3 -3


All cycles Ebb (febb) 1.5 · 104 1.7 · 103 3.6 · 103 0.34 1100


Flood (fflood) -8.6 · 103 -8.3 · 102 -2.0 · 103 -0.23 -790


Net (fnet) 3.1 · 103 4.0 · 102 7.6 · 102 0.051 170


Delivery ratio (dr) [%] 27 32 27 18 18


Table D2. Mean and median mass per item. The mass statistics were taken from van Emmerik et al. (2019). The reported values for Multilayer


and Other plastic correspond to the mean and median for all items, since mass was not measured for a sufficient number of items for these


two categories


Plastic type EPS POsoft Multilayer PS PET POhard Other plastic


Mean mass per item [g] 7.0 11 10 11 20 12 10


Median mass per item [g] 1.9 2.9 4.3 6.0 21 7.7 4.3
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