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Abstract: Top-down CO2 emission estimates based on satellite observations are potentially of great importance for 15 

independently verifying the accuracy of reported emissions and emission inventories. Difficulties in verifying these satellite-

derived emissions arise from the fact that emission inventories often provide annual mean emissions while estimates from 

satellites are available only for a limited number of overpasses. Previous studies have derived CO2 emissions for power plants 

from OCO-2 and OCO-3 satellite observations of their exhaust plumes, but the accuracy and the factors affecting these 

emissions are uncertain. Here we advance monitoring and quantifying point source carbon emissions by focusing on how to 20 

improve the accuracy of carbon emission using different wind data estimates.  We have selected only isolated power plants 

for this study, to avoid complications linked to multiple sources in close proximity. We first compared the Gaussian plume 

model and cross-sectional flux methods for estimating CO2 emission of power plants. Then we examined the sensitivity of the 

emission estimates to possible choices for the wind field. For verification we have used power plant emissions that are reported 

on an hourly basis by the Environmental Protection Agency (EPA) in the United States. By using the OCO-2 and OCO-3 25 

observations over the past four years we identified emission signals of isolated power plants and arrived at a total of 50 

collocated cases involving 22 power plants. We correct for the time difference between the moment of the emission and the 

satellite observation. We found the wind field halfway the height of planetary boundary layer (PBL) yielded the best results. 

We also found that the instantaneous satellite estimated emissions of these 50 cases and reported emissions display a weak 

correlation (R2=0.12). The correlation improves with averaging over multiple observations of the 22 power plants (R2=0.40). 30 

The method was subsequently applied to 106 power plants cases worldwide yielded a total emission of 1522 ± 501 Mt CO2/year, 

estimated to be about 17% of the power sector emissions of our selected countries. The improved correlation highlights the 
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potential for future planned satellite missions with a greatly improved coverage to monitor a significant fraction of global 

power plant emissions.  

Keywords: CO2 emissions; Power plants; OCO-2; OCO-3; Gaussian plume model; XCO2 enhancement   35 

1. Introduction 

The burning of fossil fuels for energy production has been driving the increase of atmospheric CO2 concentrations from 

about 280 ppm to 410 ppm, which has dominated the observed planetary warming in the 20th and 21st centuries (IPCC, 2021). 

The Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) aims to keep global 

warming well within 2℃ above pre-industrial average temperatures by reducing global greenhouse gas (GHG) emissions. It 40 

has led to a strengthening of the reporting obligations of GHG emissions by the UNFCCC Parties (UNFCCC, 2018). These 

reports are based on national fossil fuel CO2 emission inventories that use, amongst others, input data about fossil fuel 

consumption, heating and carbon content of each fuel, type of combustion, and combustion efficiency. These reports are 

hampered by the difficulty to achieve accurate and detailed consumption data, especially for developing countries(Olivier et 

al., 2017; International Energy Agency, 2019; European Commission, 2019; Gilfillan and Marland, 2021). The reports are self-45 

declarations and although reviewed by expert teams within the UNFCCC process they lack independent verification. In order 

to address this issue, existing satellite retrievals of the column‐averaged dry air mole fraction of carbon dioxide CO2 (XCO2), 

mainly from NASA’s Orbiting Carbon Observatory 2 & 3 (OCO-2 & OCO-3) and Japan’s Greenhouse gases Observing 

SATellite (GOSAT), are increasingly explored for an independent verification of reported emissions (Nassar et al., 2017; Zheng 

et al., 2019; Shekhar et al., 2020; Kiel et al., 2021). Due to the promising first results of OCO-2 and GOSAT, new satellite 50 

instruments are being designed with a focus on a better sampling of the atmosphere (larger swath and / or constellation of 

satellites), providing an operational emission monitoring capacity in the future (Engelen, 2021; CEOS, 2022; NASA, 2022).           

    Satellite observations are increasingly used for top-down estimates of fossil fuel emissions (Hakkarainen et al., 2021; 

Kuhlmann et al., 2021; Lauvaux et al., 2022). Zheng et al. (2020) revealed China’s CO2 emission drops and recoveries during 

the COVID 19 period using TROPOspheric Monitoring Instrument (TROPOMI) NO2 data and bottom-up inventory data, and 55 

the GEOS-Chem model to compute the sensitivity of NO2 concentrations to emissions. Other studies used satellite 

observations of the total column dry‐air CO2 (XCO2), a Bayesian inversion system and high-resolution transport model to 

quantify fossil fuel CO2 (ffCO2) emissions in urban areas (Kunik et al., 2019; Shekhar et al., 2020; Ye et al., 2020). For point 

source emitters, Bovensmann et al. (2010) introduced a conceptual technique to quantify CO2 emissions of single power plants 

from XCO2 plume enhancements. Janardanan et al. (2016) later connected XCO2 enhancements observed by GOSAT with 60 

large emission sources through an atmospheric transport model in forward mode. Nassar et al. (2017, 2021, 2022) extended 

the approach and applied it in backward mode in order to quantify CO2 emissions from individual power plants using OCO-2 
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and OCO-3 XCO2 data. Reuter et al. (2019) used a few co-located regional enhancements of XCO2 and NO2 observed by 

OCO-2 and TROPOMI respectively to derive emission estimates for power plants, urban areas and wild fires. Zheng et al. 

(2020) used five year-worth of OCO-2 XCO2 data to estimate emissions from urban and industrial areas in China, and 65 

compared these local emissions with MEIC (Multi-resolution Emission Inventory for China; Zheng et al., 2018), EDGAR 

(Emissions Database for Global Atmospheric Research; Crippa et al., 2020) and ODIAC (Open-Data Inventory for 

Anthropogenic Carbon dioxide; Oda et al., 2018) inventory estimations. The approach was extended to the entire globe and to 

OCO-3 by Chevallier et al. (2020, 2022).                            

   Satellite instruments that directly detect CO2 concentrations, such as OCO-2 and OCO-3, can be used for CO2 emission 70 

estimates for power plants and other point sources. However, the limited track width, low revisit rate, and clouds mean these 

instruments only incidentally provide useful snapshot observations over a point source (see section 2.1 for details). Even fewer 

observations are located in the downwind direction of the point source (in the plume), which are optimal to estimate emissions 

(Reuter et al., 2019; Zheng et al., 2019). Hence the demonstration of the use of satellite-observed XCO2 to quantify point 

source CO2 emissions comes from only limited cases or from Observing System Simulation Experiments (OSSEs; 75 

Bovensmann et al., 2010; O'Brien et al., 2016; Broquet et al., 2018; Kuhlmann et al., 2019; Wang et al., 2020; Wu et al., 2020).  

For example, Nassar et al. (2017, 2021) manually-selected a few OCO-2 tracks that captured the emission plume of large coal 

plants for quantitative analysis. Other studies tried to be more systematic and iterated through the multi-year XCO2 data and 

detected some of the space-time variations of anthropogenic emissions from locally-aggregated signals of emitters (Chevallier 

et al., 2020, 2022; Zheng et al., 2020), but it is difficult to attribute these signals to specific emission sources. Velazco et al. 80 

(2011) quantified errors of power plant annual emission estimates by a hypothetical CarbonSat constellation. Hill and Nassar 

(2019) assessed pixel size and revisit rate requirements for monitoring power plant CO2 emissions from space. In addition, 

instantaneous emissions at satellite overpass times are difficult to compare with an inventory of annual emissions, because of 

the intermittence and variability of power production and CO2 emissions. This is why previous studies had to use either 

instantaneous emission reports or temporally disaggregated inventories. 85 

In this study, we advance the research of monitoring and quantifying point source carbon emissions by focusing on how 

to improve the accuracy of carbon emission using different wind data estimates, assess these emission estimates by comparing 

with USA EPA emission data, and identify and explore suitable cases elsewhere in the world. We compare the Gaussian plume 

model method with the cross-sectional flux method to estimate emission of power plants, in order to select the best method. 

We analyze the impact of different wind field choices on the emission accuracy by comparing with hourly-reported emissions 90 

of selected power plants. Using the selected method we extend the estimation of power plant emissions to the global scale.  

This paper is organized as follows. Section 2 describes data sources for this study. In section 3, we describe XCO2 

enhancement extraction, quantification and validation method as well as uncertainty calculation. The estimated CO2 emissions 

for US and global power plants are presented in Section 4. Section 5 gives summary and conclusions.  
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2. Data 95 

2.1. Satellite data 

The Orbiting Carbon Observatory–2 (OCO-2) launched in July 2014 collects high-resolution spectra of reflected sunlight 

in the bands centered near 0.765 μm, 1.61 μm, and 2.06 μm (Crisp et al., 2017). OCO-2 flies on a near-polar sun-synchronous 

orbit and crosses the equator at a fixed local time (LT) near 13:36 with a repeat cycle of 16 days. About 10% of the 

approximately 1 million daily CO2 observations are cloudless and can be used to retrieve the column-averaged dry air mole 100 

fraction of carbon dioxide (XCO2) with the Atmospheric CO2 Observations from Space (ACOS) algorithm at a spatial 

resolution of about 1.29 × 2.25 km2 across swaths which are up to 10-km wide (O'Dell et al., 2018). The Orbiting Carbon 

Observatory-3 (OCO-3) launched in May 2019 is mounted on the Japanese Experimental Module Exposed Facility (JEM-EF) 

of the International Space Station (ISS) and views the Earth at all latitudes less than about 52 degrees with a footprint size of 

about 1.6 × 2.2 km2. In addition to the same three observation modes (nadir, glint and target) as OCO-2, OCO-3 also collects 105 

nearly adjacent swaths of data using a new pointing mirror assembly (PMA), resulting in a snapshot area map (SAM) scan of 

approximately 80 × 80 km2. Since all the power plants in this study are located on land, we only exploit OCO-2 and OCO-3 

measurements over land surfaces (i.e. surface type =1 in the OCO data). For the observations of OCO-3 SAM mode, we only 

analyse data on the same scan line (i.e. similar PMA elevation angles). We use good quality retrievals  (xco2_quality_flag = 

0) of version 10r of the OCO-2 bias-corrected XCO2 retrievals from January 2018 to December 2021 and version 10.4r of the 110 

OCO-3 bias-corrected XCO2 retrievals from August 2019 to November 2021 provided by the NASA Goddard Earth Sciences 

Data and Information Services Center 

(https://oco2.gesdisc.eosdis.nasa.gov/data/s4pa/OCO2_DATA/OCO2_L2_Lite_FP.10r/, 

https://oco2.gesdisc.eosdis.nasa.gov/data/s4pa/OCO3_DATA/OCO3_L2_Lite_FP.10.4r/ ).  

The passive-sensing hyperspectral nadir-viewing instrument TROPOMI on the Copernicus Sentinel-5 Precursor satellite 115 

provides daily global coverage of tropospheric NO2 vertical column densities (NO2 TVCDs) with a spatial resolution of 3.5 × 

7 km2 initially and 3.5 × 5.5 km2 since 6 August 2019. TROPOMI flies on a sun-synchronous orbit with an overpass time of 

13:30 LT, same as OCO-2. Global daily NO2 TVCDs maps were gridded to a regular longitude-latitude grid with 0.025° 

resolution using pixels with a cloud fraction less than 30%. In order to keep as many pixels as possible to observe as much of 

the plume as possible, data quality (i.e. “qa value”) filtering is not used. The NO2 data we obtained is consistent with the OCO-120 

2 and OCO-3 data of the same day in this study (https://s5phub.copernicus.eu/). 

2.2. Power plant database 

We collected reported hourly CO2 emission data for U.S. power plants from the U.S. Environmental Protection Agency 

(EPA) from 2018 to 2021 (https://www.epa.gov/airmarkets/power-sector-emissions-data) as truth to validate the satellite 

estimated emission. We sorted out the list from EPA for all 1631 power plants operated during this period.   125 

https://oco2.gesdisc.eosdis.nasa.gov/data/s4pa/OCO2_DATA/OCO2_L2_Lite_FP.10r/
https://oco2.gesdisc.eosdis.nasa.gov/data/s4pa/OCO3_DATA/OCO3_L2_Lite_FP.10.4r/
https://s5phub.copernicus.eu/
https://www.epa.gov/airmarkets/power-sector-emissions-data
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The publicly available Global Power Plant Database (GPPD, v 1.3.0) from the World Resources Institute was used to 

automatically identify CO2 emission signals from power plants upwind of satellite tracks (Yin et al., 2021). The GPPD includes 

34936 power plants (https://datasets.wri.org/dataset/globalpowerplantdatabase) with 15 fuel types, such as biomass, 

geothermal, hydro, nuclear and solar. In this study, we selected power plants using gas, coal, oil and pet coke as primary fuel 

to a subset. The resulting subset of GPPD comprises 8660 power plants of which 3998, 2330, 2320 and 12 use gas, coal, oil 130 

and pet coke as primary fuel, respectively. In order to see emission signals from as many power plants as possible, we did not 

delete power plants with a low generation capacity as done in other studies (Nassar et al., 2017; Beirle et al., 2021). The reason 

is that if a power plant with a small capacity is located in an area with less background interference - such as an area far away 

from cities and with low vegetation coverage - its emissions may still be detectable by satellites. 

2.3. Wind fields 135 

We used three types of wind field data in the CO2 emission estimation procedures described in Sect. 3. Hourly horizontal 

wind fields u and v at 10 m are taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) next-

generation reanalysis ERA5 dataset (0.25° × 0.25°) and the Modern-Era Retrospective analysis for Research and Applications 

version 2 MERRA-2 dataset (0.5° × 0.625°). The effective wind speed proposed by Varon et al.(2018) and used by Reuter et 

al. (2019) and Hakkarainen et al. (2021) was calculated from the 10 m wind by applying the empirical scaling factor 1.4. Varon 140 

et al.(2018) derived this scaling factor from a linear fit between effective wind speed and 10 m wind speed. The effective wind 

speed from ERA5 (WERA) and MERRA2 (WMERRA) are derived using factor 1.4 for this study. In addition, the wind field 

(0.25° × 0.25°) at half the height of the PBL (WPBL) is derived from the 3D hourly wind fields and PBL heights derived from 

the twice daily (0 and-12 hour) operational high-resolution forecasts of ECMWF. We use the wind vector of the model layer 

which contains the altitude equal to the PBL height divide by 2. These three wind field choices are used to explore the 145 

robustness of the emission estimates.  

3. Methods  

3.1.  Extract CO2 enhancement from isolated power plant point sources 

The first step towards estimating CO2 emissions from power plants is to extract plume XCO2 anomalies, i.e. XCO2 local 

enhancement. We use power plants with hourly reported emissions from the USA EPA as research objects, and search for all 150 

adjacent XCO2 observations as candidate cases, and choose XCO2 enhancement cases linked to isolated power plant emission 

plumes by the wind direction. The search range is limited to a 0.25˚ radius around each power plant. The selection is based on 

the visual identification of a plume in the downwind direction of the power plant. Power plants located in urban areas are 

excluded because their emission plumes are compounded by urban emissions. This selection of cases for isolated U.S. power 

plants allows us to verify the accuracy of estimated emissions using hourly reported emission data from EPA. For global XCO2 155 

https://datasets.wri.org/dataset/globalpowerplantdatabase
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data, we provide a semi-automatic detection algorithm described in Sect. 3.3. 

3.2.  Gaussian plume model and Cross-sectional flux method 

(1) Gaussian plume model method 

We use a Gaussian plume model and cross-sectional flux method for inferring power plant CO2 emissions from XCO2 

measurements. In the Gaussian plume model (GPM) method (Bovensmann et al., 2010), the posteriori emission is obtained 160 

by a linear least squares fit between observed and simulated enhancements weighted by the reciprocal of the XCO2 uncertainty. 

The model is based on the following equations:   

      𝑉𝑉(𝑥𝑥, 𝑦𝑦) = 𝐹𝐹
√2𝜋𝜋∙𝛽𝛽∙( 𝑥𝑥

1000)0.894∙𝑢𝑢
𝑒𝑒−

1
2( 𝑦𝑦
𝛽𝛽∙(𝑥𝑥/1000)0.894)2  ,                   (1) 

       𝑋𝑋𝑋𝑋𝑋𝑋2 = 𝑉𝑉 ∙ 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎
𝑚𝑚𝐶𝐶𝐶𝐶2

∙ 𝑔𝑔
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝜔𝜔∙𝑔𝑔

∙ 1000 ,                          (2) 

where V is the CO2 vertical column at the location (x, y) downwind of the power plant (g m-2), x and y are the along-wind 165 

distance and across-wind distance (m), respectively. F is the emission rate (g s-1), β is the atmospheric stability parameter 

depending on Pasquill stability classes, which can be determined from the 10 meter wind speed and solar radiation obtained 

from ERA5 reanalysis data (Pasquill, 1961; Nassar et al., 2021) and u is wind speed (m s-1). Formula (2) is used to convert V 

in g m-2 to XCO2 in ppm, in which g is the gravitational acceleration (m s-2), m is the molecular weight (kg mol-1), Psurf is the 

surface pressure (Pa), and ω is the total column water vapor (kg m-2) obtained from XCO2 data files.  170 

The wind direction is allowed to rotate within a range of ± 60° to account for errors in the wind data. The optimal wind 

direction is derived by maximizing the correlation coefficient between the simulated and the observed XCO2 enhancement. 

We rejected the case if the maximum correlation coefficient is less than 0.5, similar as in Nassar et al. (2021). The outline and 

direction of the plume can be clearly seen in NO2 images (Figure S8, S9), showing that the optimal wind direction is reliable 

in those cases. 175 

(2) Cross-sectional flux method 

In the cross-sectional flux method, the emission is inferred by integrating the plume enhancement over the background. 

An interval of 200 km along the track, centered on the maximum XCO2 point, is taken as the analysis window. The following 

function is fitted to XCO2 data in the analysis window (Figure S1a):  

             𝑓𝑓(𝑙𝑙) = 𝑘𝑘 ∙ 𝑙𝑙 + 𝑏𝑏 + 𝐴𝐴
𝜎𝜎√2𝜋𝜋

𝑒𝑒[−(𝑙𝑙)2/2𝜎𝜎2] ,                (3) 180 

where f(𝑙𝑙) is parameterized representation of XCO2 (ppm); l is the distance along the OCO-2 or OCO-3 tracks (km); k, b, A, 

and σ are parameters estimated by a nonlinear least-squares fit weighted by the reciprocal of the XCO2 uncertainty (Zheng et 

al., 2020). 𝑘𝑘 ∙ 𝑙𝑙 + 𝑏𝑏 represents the background XCO2, while the other part of Eq. (3) represents a single Gaussian shaped 

XCO2 peak (Nassar et al., 2017; Reuter et al., 2019). After removing the background, the CO2 line density is derived from 



7 
 

calculating the area under the fitted curve (Figure S1b). The cross-sectional CO2 flux is estimated by multiplying the CO2 line 185 

density by the wind component perpendicular to the OCO-2 or OCO-3 orbit direction at the peak position of the plume in m 

s-1. Similarly, we allow the wind direction to rotate slightly to optimize the correlation between observations and the model 

simulation from Figure S1d to Figure S1c. 

3.3.  Detection of global power plant emission signals 

In this study, we use the following steps to extract XCO2 anomalies of global power plants for the estimation of their CO2 190 

emissions:  

(1) Detect all satellite overpass data within a 0.25° radius around each power plant, and intercept all observations within 

the latitude range of ± 0.5° around the nearest observation from the power plant as potential cases; 

(2) Extract the maximum value point of XCO2 within the latitude range of ± 0.1° around the nearest observation point 

from the power plant, and take this maximum point as the center to retain the data within the latitude range of ± 0.04°, as the 195 

Gaussian peak of the plume, and only retain the cases where the number of observations with sufficient quality in this range is 

more than 10 to minimize the effect of missing data in the plume.  

(3) Calculate the angle between the vector from the power plant location to the maximum XCO2 point and the wind 

direction vector, and only retain the cases where the angle is less than 60°, to ensure that the XCO2 enhancement is located in 

the downwind direction of the power plant.  200 

(4) Retain the cases where the XCO2 value of at least 5 observations in the Gaussian distribution are greater than the 

average value of the data extracted in step (1) plus 2 times the standard deviation of the data to ensure that the XCO2 

enhancement is significant.  

(5) Extract the case where the net enhancement of XCO2 of at least 5 observations is greater than 1.5 ppm. Here the 

background is defined as 90th percentile of the data extracted in step (1).  205 

(6) Finally, the automatically identified cases of power plant plumes were further screened visually. Four examples of 

cases which were rejected after visual inspection is shown in Figure S10. The identification of enhanced signals seen in the 

OCO data as resulting from a power plant outside the swath of OCO is further validated by using TROPOMI NO2 images for 

cases where a clear TROPOMI plume is available. The entire plumes observed by TROPOMI shown in Figure S8 and S9 

shows that the association of the enhancement observed by OCO with the power plant was done correctly by the procedure. 210 

For the SAM data of OCO-3, only data in the same scan line are considered. 

3.4. Uncertainty analysis and validation 
(1) Emission uncertainties 

The uncertainty estimates of this study are determined by three variables which are assumed to be uncorrelated. The total 

uncertainty is calculated by error propagation as  215 
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    𝜀𝜀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋22 + 𝜀𝜀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤2 + 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2  ,      (4) 

where each uncertainty is derived from the standard deviation of an ensemble approach. The XCO2 uncertainty 𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋2 on the 

derived emission is computed by perturbing the original XCO2 data with the uncertainty of the retrieval as provided in the 

OCO-2 and OCO-3 data products. The uncertainty related to the wind 𝜀𝜀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is calculated from an ensemble of emission 

estimates based on WERA, WMERRA and WPBL. There are several possible approaches to determine the background. 220 

Hakkarainen et al. (2019) used the daily median of all XCO2 within the latitude range 10° band as the background to extract 

the XCO2 anomalies. Nassar et al. (2017) determined background region from manual selection of observations outside the 

plume. Zheng et al. (2020) fitted the along-track observations by the sum of a Gaussian function and a linear function, where 

the linear part defined the background. We use a simple and automated way by calculating the percentile of the area defined 

in Sect. 3.3, step (1) and determining the background by taking the average value of all data below the percentile level. Here 225 

the background uncertainty 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is computed from the spread in emission estimates using the 75th, 80th, 85th, 90th 

percentile to define the background values. This range of percentiles leads to the smallest difference with the reported emissions, 

as shown in Figure S2.  The XCO2 uncertainty 𝜀𝜀𝑋𝑋𝑋𝑋𝑋𝑋2 on the derived emission is computed by perturbing the original XCO2 

data with the uncertainty of the retrieval as provided in the OCO-2 and OCO-3 data products. 

(2) Time-corrected hourly EPA reported values 230 

The CO2 emissions released by the power plant are transported to the satellite overpass location by the wind, and are 

detected as XCO2 enhancement. EPA reports the emission value of the power plant on an hourly basis. When comparing 

emission estimates and hourly reported values, we need to consider the time lag between the moment when the emission is 

released at the stack and the moment it is detected downwind by the satellite. This time can be calculated from the distance 

between the power plant and the satellite crossing point and the wind speed. However, unlike the time-weighted reported 235 

emission used in Nassar et al. (2021), we report the release time at the stack of power plant that the detected plume is only 

affected by the moment when it is generated. Therefore, we produce time-corrected hourly reported values at the time of the 

emissions seen by the satellite overpass instead of reporting the hourly emission values closest to the overpass time. 

4. Results 

4.1. Comparison of estimated emissions using hourly monitoring values 240 

Figure 1a shows an example of a power plant emission plume in the satellite observations. The Jeffrey Energy Center 

power plant in Kansas was in operation at about 1:30 local time on October 30, 2020, and its CO2 plume was captured by the 

downwind track of OCO-2. The local enhancement appears as a peak in latitude direction which cross-section is well 

approximated by a Gaussian (Fig. 1b). For the entire U.S., we analyzed the 1,284 plants reported by the EPA, of which 347 

were excluded because of nearby city emissions. A total of 9,950 OCO-2 and 13,427 OCO-3 tracks were recorded within a 245 
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0.25° radius of these power plants. We used observations in the latitude range of ± 0.5° around the XCO2 maximum for all 

tracks (the range shown in Figure 1a) and performed a visual selection to identify cases of enhancement from plumes of isolated 

power plants like in Figure 1. The screening criterion is able to select a clear plume profile in the XCO2 observations downwind 

of the power plant, such as in Figures 1e-1h, while other cases are rejected due to insignificant XCO2 enhancement, missing 

data and emission source cluster interference, such as in Figure S10. In the end, we arrived at 50 cases where the power plant 250 

was operating and the emission plume crossed the satellite-track, including 30 cases from OCO-2 and 20 cases from OCO-3. 

When the distance between two adjacent power plants does not exceed the range of 1 pixel of the satellite, it was considered 

as a single isolated emission source, and their names are connected with commas (Table 1). 

  

 255 
Figure 1. Estimation process of power plant emissions (a-d). (a) CO2 plume of Jeffrey Energy Center power plant on October 30, 2020. (b) 

Change of XCO2 in latitude direction from (a). The background value determined from the average of the observations below the 90th 

percentile (green line), background points (blue), and plume points (red). (c) Zoom-in of Figure (a) to the area of our simulation. (d) The 

simulated normalized XCO2 enhancement for the same region by the GPM. (e-h) show cases of other power plant emission signals. The 

blue arrow represents the wind vector halfway the height of the PBL. The wind speeds in a, e, f, g and h are 2.9, 1.8, 6.1, 2.6 and 3.4 m s-1, 260 
respectively. 

Previous studies used various choices of wind information to approximately account for the plume spreading, such as the 

wind speed at the assumed average height of the chimney (250m, Nassar et al., 2017; Chevallier et al., 2022), or the assumed 

height of the chimney plus an assumed 250 m for typical plume rise above the stack height (Nassar et al., 2021), or at 31 m 

(Chevallier et al., 2020), or the average wind speed of the pressure layer near the ground as an approximation (Zheng et al., 265 

2020; Hakkarainen et al., 2021), or calculate an effective wind (Varon et al., 2018; Reuter et al., 2019; Hakkarainen et al., 

2021). In this study, we compared the estimated CO2 emission results driven by WERA5 (Figure S3), WMERRA (Figure S4) 

and WPBL used for the GPM method. The correlation coefficient R of the estimated emission and time-corrected reported US 
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EPA emission of the 50 cases of isolated power plants are 0.35, 0.28, and 0.14, for WPBL, WERA and WMERRA respectively 

(Figure 2a, Figure S3a, Figure S4a). The results show that the emission estimates obtained using WPBL gives better results 270 

than the other two wind options. , which suggests that it represents the spreading of CO2 plumes in the vertical direction more 

accurately (Fig. 2, Fig. S3, Fig. S4). The reason why the results using MERRA2 were the worset (Fig. S4) is due to its low 

resolution, which cannot provide precise wind information for emission sources. These 50 cases contain multiple observations 

of 22 isolated power plants. For some power plants, we have multiple observation days. For these cases we have averaged the 

results. As shown in Figure 2b, the correlation coefficient R of the averaged estimated emission and the reported emission are 275 

0.63, 0.44, and 0.22, respectively, corresponding to WPBL, WERA and WMERRA (Figure 2b, Figure. S3b, Figure S4b). We 

also tested the weighted average considering the uncertainty of the estimates and reachget the same conclusion that WPBL has 

the best performance. The improved correlation illustrates the large fraction of randomness in the emission retrieval uncertainty 

(Chevallier et al. 2022). For the sum of the estimates of the repetitive cases of each power plant, we obtained a better correlation 

of 0.93, 0.89, 0.73, respectively, corresponding to WPBL, WERA and WMERRA respectively (Figure 2c, Figure S3c, Figure 280 

S4c). Therefore, we decided to use WPBL for the estimation of power plant emissions. In this study, the background for the 

cross-sectional flux method is determined by fitting of Eq. (3), while the background for the Gaussian plume model method 

(GPM) is determined by the 90th percentile. Tthe difference in background obtained by these two methods is very small (Fig. 

S11a), with a maximum difference of 0.86 ppm and a minimum of 0.004 ppm (Fig. S11b). Under the two background 

calculation methods, the GPM method has good consistency in the estimation results driven by three wind field (Fig. S11c-e). 285 

With the background computing by Eq. (3), the conclusion that estimated emissions have better accuracy usingunder the WPBL 

is still valid (Fig. S12).  

 
Figure 2. The emission estimation results by the GPM of all cases with WPBL are compared with the time-corrected hourly reported value 

from EPA (a), the average value of emission estimation results of each power plant is compared with the reported value (b), and the sum of 290 
emission estimation results of each power plant is compared with the reported value (c). The vertical error line is the total uncertainty of 

estimated emissions. The yellow and blue dashed lines are the fitted lines with the x-axis and y-axis swapped.  

In Figure 3, we compare the GPM method and the cross-sectional flux method driven by WPBL. Among them were two 

cases without a result from the cross-sectional flux method because of invalid fitting. It shows that the estimates from the 
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cross-sectional flux method fluctuate much more than the estimates from the GPM method. This is mainly because the orbits 295 

of the OCO-2 and OCO3 satellites are not perpendicular to the plume, and the final step of the cross-sectional flux method 

uses the wind field component normal to the orbit multiplied by the line density to estimate the flux, while the GPM method 

derives the posteriori emission by a linear least squares fit between observed and simulated enhancements. Moreover, the 

OCO-2 and OCO-3 observations do not sample the entire emission plume, as shown in Figure 1f, but just the part of the plume 

cross section within the narrow width along the orbit. Hakkarainen et al. (2021) also found that the estimates from the cross-300 

sectional flux method fluctuated greatly. Therefore, we decided to use the GPM method for the estimation of global power 

plant emissions. When compare plant level estimated emission with reported emission by the U.S. Energy Information 

Administration (EIA) from fuel consumption records (https://www.eia.gov/electricity/data/emissions/), Figure S6 shows that 

the correlation between estimated emission and reported annual emission from EIA (R = 0.39) is lower than that from EPA, 

although the reported annual emissions from EPA and EIA reveal a good correlation (R = 0.80). Figure 4 shows that, due to 305 

strongly hourly variations in the power plant emission, the satellite overpass time is not always representative for the annual 

emission of a power plant. Note that EIA reports the yearly-mean emission based on the annual fuel consumption of the power 

plant which will differ from the emission at the satellite overpass time. 

 
Figure 3. Emission values of U.S. power plants estimated with the GPM (blue circles) and cross-sectional flux (black crosses) methods 310 
compared to the time-corrected reported values (orange diamonds). The x-axis is labelled with YYMMDD. 
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Figure 4. Hourly emission variation of 7 randomly selected power plants and dates from hourly US EPA data. The name of each curve 

consists of the name of the state, the name of the power plant and the YYYYMMDD day. 

Table 1 lists the average estimated emissions for 22 power plants and the estimated uncertainty caused by the background, 315 

XCO2 and wind field. The deviation of the estimated emissions and reported emissions varies between 0.47 and 22.11 kt/day, 

and the total uncertainty varies between 1.65 and 28.32 kt/day. The total uncertainty is comparable to the uncertainty of power 

plant emissions in previous studies, which ranged from 3.42 to 19.2 (Nassar et al., 2017; 2022). The uncertainty of wind speed 

is between 0.08 and 1.4 m s-1, and the uncertainty of background varies between 0.03 and 0.1 ppm (Table S1). Among the three 

uncertainty components, the uncertainty caused by the wind field is the highest. From 2018 to 2021, for the XCO2 archived 320 

data, there are 6 cases found for the Jeffrey Energy Center power plant (KS) and 4 cases for the Prairie State Generating Station 

power plant (IL), Colstrip (MT), Cumberland power plant (TN) and Oak Grove (TX). For a few power plants, we found that 

the time variability of estimated and time-corrected hourly EPA reported emissions from multiple observation cases of power 

plant display a good consistency (Figure S5), such as Gibson (IN) and Labadie power plants (MO). Excluding the two power 

plants whose uncertainties are greater than the estimated emissions, the uncertainties of the other cases are within 8 % to 51 % 325 

of the reported emissions. 

Table 1. The average estimated emissions, reported emissions, uncertainty components, and number of observations from US power plants.   

Name 

Reported 

emission 

(kt/d) 

Estimated 

emission 

(kt/d) 

Uncertainty 

of 

background 

(kt/d) 

Uncertainty 

of XCO2 

(kt/d) 

Uncertainty 

of wind 

(kt/d) 

Total 

uncertainty 

(kt/d) 

 Number of 

observations 

James H Miller Jr (AL) 63.8  41.7  1.7  1.0  8.1  8.3  1  

Apache Station (AZ) 3.8  24.2  2.4  2.4  3.4  4.8  2  

Arlington, Mesquite, Redhawk Facility (AZ) 13.3  12.4  0.8  0.3  1.7  1.9  1  

Prairie State Generating Station (IL) 25.6  28.2  1.8  0.2  2.9  3.5  4  

Gibson (IN) 36.7  36.0  1.6  1.2  10.3  10.6  3  

Jeffrey Energy Center (KS) 44.2  31.4  1.5  0.4  5.1  5.5  6  

Iatan (MO) 28.9  21.6  3.2  1.5  2.9  5.5  3  

Labadie (MO) 41.0  26.7  1.9  0.8  4.5  5.1  3  
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Colstrip (MT) 35.0  28.7  1.2  0.5  13.9  14.1  4  

Gerald Gentleman Station (NE) 29.7  18.3  1.3  0.4  8.9  9.0  1  

Four Corners Steam Elec Station (NM) 16.6  23.6  2.3  0.5  2.5  3.4  2  

Cardinal (OH) 37.1  16.6  0.9  0.6  2.9  3.1  2  

Conemaugh, Seward (PA) 46.2  41.5  2.9  1.5  5.2  6.2  1  

Cumberland (TN) 33.9  34.3  2.2  0.4  4.4  5.0  4  

Harrington, Nichols station (TX) 28.0  43.7  2.2  0.6  14.0  14.2  1  

Oak Grove (TX) 39.6  30.7  2.2  1.2  6.5  7.1  4  

Parish, Carbon-Capture, Brazos Energy (TX) 36.1  17.1  1.1  0.8  3.1  3.4  2  

Sam Seymour (TX) 32.6  23.6  1.3  0.0  5.9  6.1  1  

Hunter (UT) 19.7  9.3  0.5  0.3  28.3  28.3  1  

Intermountain (UT) 13.8  18.8  1.1  0.7  1.9  2.3  1  

Dry Fork Station (WY) 9.5  6.3  0.6  0.1  1.5  1.6  1  

Laramie River (WY) 32.3  31.7  1.5  0.2  15.9  16.1  2  

 

4.2. Detection and estimation of global power plant emission signals 

Figure 5 shows the number of cases retained for each processing step of automatic detection of global power plant 330 

emission signals using the GPPD. We obtained 1387 days of XCO2 observation data from OCO-2 from January 2018 to 

December 2021 and 766 days of XCO2 observation data from OCO-3 from August 2019 to November 2021. For 8660 power 

plants in the world, all tracks from OCO-2 and OCO-3 were scanned near the power plants. The number of cases with more 

than 10 observations (step 2 in Sect. 3.3) near the gaussian peak is 39365 and 42932 for OCO-2 and OCO-3. 40.71% of the 

XCO2 cases are located in the downwind direction of the power plant. Among them, 24.94% of cases contain at least 5 335 

observations that are significantly enhanced relative to the background. Among those 518 and 804 plume observations with at 

least 5 observation points from OCO-2 and OCO-3 have net enhancement exceeding 1.5 ppm. Finally, through visual selection 

(step 6 in section 3.3), 83 and 23 cases from OCO-2 and OCO-3 were considered as plumes from isolated power plants, 

respectively. 
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 340 
Figure 5. Statistics of the number of OCO-2/3 XCO2 observations respectively in each processing step. The red line represents the proportion 

of the selected observations in the previous step.  

Figure 6 shows the estimated CO2 emissions of 106 global power plant cases calculated by the GPM method using WPBL. 

The estimated emissions of these power plants range from 3.2 to 109.0 kt/day. The percentiles of the estimated emissions of 

25th, 50th and 75th are 19.9, 32.1 and 52.6 kt/day respectively, . and tThe uncertaintiesy range is from 1.2 to~ 62.6 kt/day, and 345 

the 25th, 50th and 75th percentile of uncertainty in estimated emissions are 18%, 29%, 50% (Table S2). Figure 6a shows the 

location of these power plants and their emissions indicated by circle size and color. Figure 6b shows the sum of estimated 

emissions for all found observations at each power plant. The gray vertical lines are an indication of the uncertainty of the 

estimated emissions. Furthermore, we calculated the correlation between the integral of the observed and simulated XCO2 

enhancement from equation (1) and (2) in the latitude direction. Figure S7 shows a correlation coefficient of 0.56 for observed 350 

and simulated enhancements of global power plant cases. 
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Figure 6. The detected global power plants with emission estimation results (a), and the sum of emission estimation results of all found 

observations at each power plant (b). The gray vertical lines are an indication of the uncertainty of the estimated emissions. The color and 355 
size of the circles indicate the estimated emission. 

The detection algorithm reduces four-year global XCO2 data to only 106 cases of 78 unique power plants. A large number 

of power plant emission cases have been discarded due to insignificant XCO2 enhancements of less than 1.5 ppm, not enough 

valid observations in the plume and also by the visual check. We compare the estimated emissions with the carbon emission 

inventory EDGAR V6.0 for the power sector in order to understand the magnitude of the emission of detected cases. The 360 

estimated emissions of detected power plants are counted by year and country (Figure 7). When assuming constant emissions 

of power plants, the sum of estimated emissions of all power plants would be extrapolated to 1522 ± 501 Mt/year. According 

to EDGAR, this value accounts for about 17% of the power sector 2018 emissions of the countries in Figure 7b. The estimated 

emissions from the few observations in 2018, 2019, 2020 and 2021 account for only 2%, 5%, 6% and 4% respectively of all 

power sector emissions of countries showed in Figure 7a in 2018. The top three countries in terms of detected estimated 365 

emissions of power plants are China, United States and India. This illustrates the fact that OCO-2 and OCO-3 are only capable 

to see a fraction of the emitted CO2 emissions due to the limited spatial coverage of the instrument and the often cloudy 
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conditions during observation.  

 
Figure 7. Estimated annual emissions of the detected global power plants, also shown as percentage of the total reported emissions of global 370 
power plants. (a) The red curve shows the proportion of annual estimated emissions to the total emissions of all countries with observations 

in 2018 (from EDGAR2018 V6.0 1A1a). (b) The red curve in the right figure shows the percentage of estimated emissions in comparison to 

the country total power plant emissions according to the inventory.  

5. Summary and Conclusions 

In this study, we compared two widely used methods for estimating point source emissions of power plants: the Gaussian 375 

plume model method and cross-sectional flux method. We applied the two methods to carefully selected power plant plumes 

in the United States observed by OCO-2 and OCO-3. The accuracy of the two methods is validated with time-corrected hourly 

reported emissions from EPA. We found that the cross-sectional flux method has a larger variability than the GPM method 

because it makes use of the wind field component normal to the orbit. This is because the emission rate from the cross-sectional 

flux method is equal to the cross-sectional flux area multiplied by the component of wind perpendicular to the orbit. The 380 

maximum error in the instability of this method comes from the component of wind perpendicular to the orbit. However, the 

GPM method directly simulates XCO2 enhancements at any downwind position using the wind direction of the emission 

source, avoiding this issue and obtaining more stable results. We used the Gaussian plume model method to evaluate the impact 

of three kinds of wind field data sets (WPBL, WERA and WMERRA) on the accuracy of emission estimates of isolated power 

plants. The results show that, for a single case, the correlation between reported emission and estimated emission driven by 385 

WPBL is the highest. When there are multiple observations of the same power plant, the correlation between the average and 

total estimated emissions of the power plant and the reported emissions is significantly improved, from R2 = 0.40 to 0.87. No 

matter what kind of wind field data is used, the Gaussian plume model has a high correlation R2 of the total emissions from 

power plants from multiple observations, which is above 0.5. In general, obtaining more observation data from more 

instruments can significantly reduce the uncertainty of estimated emissions of power plants. 390 

Once having selected the best emission estimation method for isolated power plants, we applied this simple and fast 

method globally. We developed a procedure to automatically detect the emission signals of power plants, and, after a visual 

selection, obtained 106 global power plant emission observations of 78 power plants.  

Unlike continuous imaging satellites, OCO-2 and OCO-3 scans cover a very limited part of the Earth’s surface on a daily 
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basis. By removing the cloud impact and only extracting the downwind emission plumes of power plants, the available 395 

observations are further reduced. The extremely limited number of cases from the existing satellites make it impossible to 

capture the time variability of power plants, whether diurnal or seasonal. In addition, only isolated emission hotspots are 

estimated here to avoid the impact of adjacent emission sources.   

This study has only considered three sources of uncertainty. Future research shouldmay investigate additional sources, 

such as the assumption of steady state conditions and the plume rise, to better understand their impact on the results. With the 400 

future increase of observation sensors with improved spatial-temporal resolution, such as the planned European Carbon 

Dioxide Monitoring Mission (CO2M) and the Japanese Global Observing Satellite for Greenhouse gases and Water cycle 

(GOSAT-GW), the probability of observing a CO2 plume will greatly increase. The abundant observation data obtained by the 

new generation of satellites will contribute to the monitoring of power plant emissions worldwide. The emissions of power 

plants in a background of other emission signals may also be monitored due to high-resolution observations and increased 405 

swath width, and the uncertainty of the estimated emissions of power plants will further decrease. 
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