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Abstract. Polarimetric microphysical retrievals reveal a great potential for the evaluation of numerical models and data assim-

ilation. However, the accuracy of ice microphysical retrievals is still poorly explored. To evaluate these retrievals and assess

their accuracy, polarimetric radar measurements are spatially and temporally collocated with in situ aircraft measurements ob-

tained during the OLYMPEX campaign (Olympic Mountain Experiment). Retrievals for ice water content IWC, total number

concentration Nt, and mean volume diameter Dm of ice particles are assessed by comparing an in situ dataset obtained by5

the University of North Dakota (UND) Citation II aircraft with X-band Doppler on Wheels (DOW) measurements. Sector

averaged range height indicator (RHI) scans are used to derive vertical profiles of microphysical retrievals. The comparison

of these estimates with in situ data provides insights into strengths, weaknesses, and accuracy of the different retrievals, and

quantifies the improvements of polarimetry-informed retrievals compared to conventional, non-polarimetric ones. In particular,

the recently introduced hybrid ice water content retrieval exploiting reflectivity ZH, differential reflectivity ZDR and specific10

differential phase KDP outperforms other retrievals based on either (ZH, ZDR) or (ZH, KDP) or non-polarimetric retrievals in

terms of correlations with in situ measurements and the root mean square error.

1 Introduction

Polarimetric microphysical retrievals bear great potential for data assimilation and the evaluation of numerical models, how-

ever, their exploitation is still in its infancy. For instance, Trömel et al. (2021) demonstrated the potential of using polarimetric15

observations and retrievals to evaluate and improve microphysical parameterizations. Pioneering work by Carlin et al. (2016)

revealed the benefits of assimilating polarimetric microphysical retrievals. Similar work is currently underway in Germany.

Reimann et al. (2021) took a first step towards assimilating polarimetric variables into the ICOsahedral Nonhydrostatic (ICON)

model (Zängl et al., 2015) via adapting microphysical retrievals for their application to observations of the polarimetric C-band

radar network of the German national meteorological service.20

Ryzhkov et al. (1998) pointed to the limited database to identify the main reasons for the differences between individual in

situ measurements and polarimetric retrievals. In fact, the in-depth evaluation of retrievals requires extensive airborne in situ
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cloud particle measurements over polarimetric radar sites using, e.g., so-called Optical Array Probes (OAPs) collected during

field campaigns. However, these are substantial high budget and provide data only along flight trajectories. Hogan et al. (2006)

introduced an ice water content (IWC) based on radar reflectivity Z and atmospheric temperature T. Tian et al. (2016), evalu-25

ated its performance along with that of a mean volume diameter Dm retrieval with aircraft in situ data from the Bow Echo and

Mesoscale Convective Vortex Experiment (BAMEX; Davis et al., 2004). They observed an overestimation of the mean Hogan

IWC retrieval compared to in situ measurements (1.52 gm−3 vs. 1.25 gm−3) and a correlation of 0.55. Similarly the mean

retrieved Dm showed an overestimation (2.08 mm vs. 1.77 mm) and a low correlation of 0.27.

One reason for the bad performance of non-polarimetric retrievals is that the horizontal reflectivity ZH in snow is approximately30

proportional to the fourth moment of the particle size distribution (PSD) (Hu and Ryzhkov, 2022), hence ZH is insensitive to

small particles, whereas other moments, such as the IWC, are sensitive to the small particle contributions. In contrast, specific

differential phase KDP is proportional to the first moment of the PSD and thus the whole spectrum is considered. However, KDP

strongly depends on the aspect ratio and orientation of the particles, necessitating prior knowledge of these parameters. Aydin

and Tang (1997) proposed for IWC estimation the combination of KDP and differential reflectivity ZDR, because their ratio35

is not affected by the variability of orientation and particles aspect ratio (Ryzhkov et al., 2018). Another set of polarimetric

relations to quantify snow properties was derived by Bukovčić et al. (2018) exploiting ZH and KDP. More recently, Carlin et al.

(2021) suggested a hybrid application for estimating IWC by combining the complementary strengths and optimal ranges of

the IWC retrievals following Bukovčić et al. (2018) and Ryzhkov and Zrnić (2019). Apart from IWC retrievals, polarimetric

retrieval relations have been suggested for Dm and total number concentration of ice particles per unit volume Nt based on ap-40

proaches utilizing combinations of three or two polarimetric variables, always including KDP (Ryzhkov et al., 2018; Bukovčić

et al., 2020). To evaluate the quality of polarimetric retrievals, approaches based on in situ and/or ground-based measurements

were pursued.

Nguyen et al. (2019) proposed a methodology to retrieve IWC using ZDR and KDP from X-band dual-polarization airborne

radar data. This algorithm was found to be superior to power-law fits using Z against others, because ZDR minimizes the de-45

pendence of IWC on variations in ice particle shape and orientation. Evaluation with in situ data from the High Altitude Ice

Crystal – High Ice Water Content (HAIC-HIWC) field campaign revealed that the additional use of ZDR reduced the root mean

square difference by 6 % and the bias by 15 % on average compared to retrievals using KDP only.

Several noise reducing techniques for reconstructing average vertical profiles from radar data have been proposed and used in

literature (Table 1). They are based on plan position indicator (PPI) or range height indicator (RHI) scans using single or mul-50

tiple elevations. However, polarimetric and especially the phase-based radar measurements may be noisy in ice and snow and

even more near the cloud top. As a consequence, it is beneficial to reduce their statistical noise before the calculation of micro-

physical retrievals. For instance columnar vertical profiles (CVPs; Murphy et al., 2020) represent local average vertical profiles

that can be calculated at any distance from the radar using all elevation scans. Murphy et al. (2020) applied the microphysical

retrievals by Ryzhkov et al. (2018) to CVPs and tracked airborne in situ measurements to exploit them for evaluation. Overall,55

newly developed polarimetric retrievals show good promise in quantitatively estimating IWC, Nt and Dm. However, Murphy

et al. (2020) especially revealed deficiencies near the melting layer (ML), resulting in, e.g., a pronounced underestimation of
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Table 1. Overview of areal averaging techniques to derive quasi-vertical profiles of polarimetric radar variables.

Methodology Acronym Scan strategy Used azimuth Used elevations Citation

quasi-vertical profile QVP PPI 360° single high Ryzhkov et al. (2016)

range-defined QVP RD-QVP PPI 360° multiple Tobin and Kumjian (2017)

columnar vertical profile CVP PPI sector multiple Murphy et al. (2020)

enhanced vertical profile EVP PPI sector multiple Bukovčić et al. (2017)

slanted vertical profile SVP PPI sector single low Bukovčić et al. (2017)

range-height-indicator-QVP R-QVP RHI fixed multiple Allabakash et al. (2019)

Dm in these regions. Also using in situ measurements from aircraft, alternative retrieval methods were recently tested. Kedzuf

et al. (2021) validated the accuracy of statistical polarimetric retrieval methods designed for pristine ice and aggregates and

Dunnavan et al. (2022) evaluated aspect ratio retrievals (Matrosov et al., 2020).60

This study exploits measurements obtained during the Olympic Mountains Experiment (OLYMPEX) field campaign conducted

from November 2015 to February 2016 on the Olympic Peninsula of Washington State, USA (Houze Jr et al., 2017). During

OLYMPEX, the science aircraft University of North Dakota’s (UND) Cessna Citation II equipped with an advanced in situ

cloud payload performed overpasses over the National Science Foundation (NSF) funded Doppler On Wheels (DOW) radar.

We focus on the evaluation of radar-derived IWC, Dm and Nt. Our accuracy assessments are based on two key aspects: 1) the65

matching of ground-based polarimetric radar data with airborne in situ cloud particle measurements in time and space, and 2) a

noise-reducing averaging of the polarimetric radar measurements in the ice phase. Throughout OLYMPEX, the DOW X-band

radar performed sequences of RHI scans in azimuthal sectors of 22°, which motivated us to introduce the RHI sector vertical

profile (RSVP) technique to determine vertical profiles of polarimetric variables within specified sectors in azimuth and range.

The major objective of this study is to exploit the OLYMPEX campaign data for the accuracy assessment of the most recent70

microphysical retrievals and emphasize at the same time the benefits of X-band radars for microphysical studies.

The paper is organized as follows. Sect. 2 introduces the polarimetric remote sensing observations and airborne in situ mea-

surements used. Sect. 3 summarizes the microphysical retrievals considered, while the RSVP methodology and the matching

with aircraft measurements is detailed in Sect. 4. Evaluation results are presented in Sect. 5 followed by a discrepancy analyses

in Sect. 6. A summary of key findings and a comprehensive discussion of all results are provided in Sect. 7.75

2 The OLYMPEX campaign data base

The OLYMPEX ground validation field campaign (Houze Jr et al., 2017), conducted in the Pacific Northwest, aimed at validat-

ing rain and snow measurements in midlatitude frontal systems and to further develop the Global Precipitation Measurement

(GPM) mission satellite algorithms for precipitation estimation. Of the broad variety of ground instruments, including sev-
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eral radars, and airborne instruments, the DOW in conjunction with the in situ aircraft measurements of the Citation II are80

appropriate for our evaluation purposes.

2.1 Polarimetric data from X-band radar DOW

The DOW radar (Wurman et al., 1997) placed within the Chehalis Valley at Lake Quinault (47.48° N, 123.86° W and at

64 m altitude), Washington, operated by the Center of Severe Weather Research (CSWR), is installed on a mobile truck.

The polarimetric dual-frequency X-band radar operated with a range of 59.96 km, a radial resolution of 75 m and used two85

independent transmitters at frequencies of ∼ 9.55 GHz and ∼ 9.40 GHz (Houze et al., 2018). In this study, we exclusively

utilize the latter frequency as only measurements of the lower frequency were available after 12 November 2015. More detailed

information on the DOW radar can be found in Houze et al. (2018).

The DOW’s 10-minute scanning schedule includes plan position indicator (PPI) scans for the azimuthal sector between 39.2◦

and 83.6◦ at six elevations between 2.8◦ to 11◦ and a series of 22 range-height indicators (RHIs) for the azimuthal sector90

between 50.4◦ and 71.4◦ in equidistant intervals of 1 degree and elevations ranging from 0◦ to 71◦. For the evaluation of

polarimetric ice microphysical retrievals, we focus in this study on the sector RHIs. All datasets utilized (Petersen et al.,

2018), including a new version of the DOW data with improved calibration (Houze et al., 2018; doi: http://dx.doi.org/10.5067/

GPMGV/OLYMPEX/DOW/DATA201), were downloaded from the Global Hydrology Resource Center (GHRC) Distributed

Active Archive Center (DAAC). As a cross-check, we followed Ryzhkov and Zrnić (2019) and verified whether the expected95

ZH-ZDR relationship for X-band in rain is fullfilled and made adjustments of ZDR if necessary. Accordingly, a ZDR correction

was applied to all data used, with a larger correction required for measurements in November than in December (on average

0.38 dB vs. 0.19 dB).

Specific differential phase KDP, defined as half the range derivative of differential propagation phase shift ΦDP, is estimated

following Vulpiani et al. (2012). For processing efficiency, the derivative of ΦDP is approximated using low-noise Lanczos100

differentiators (Holoborodko, 2008). Since KDP is inversely proportional to the radar wavelength more reliable estimates can

be expected at X-band compared to C- or S-band with according benefits also for microphysical retrievals. Only data with a

cross-correlation coefficient ρhv above 0.7 are used for the KDP estimation in order to reduce the impact of noisy and non-

meteorological contamination.

2.2 In situ sensors and observations105

The in situ microphysical cloud measurements during the OLYMPEX campaign have been acquired with the University of

North Dakota (UND) Cessna Citation II airplane, which was equipped with an enhanced instrumental payload, including the

2D Stereo Imaging Probe (2D-S, SPEC Inc, USA) and the High Volume Precipitation Spectrometer (HVPS, SPEC Inc, USA).

Both instruments provide shadowgraphs of cloud particles. Two-dimensional shadow images of hydrometeors are generated

as the particles penetrate through the sampling area of the particle imagers. A detailed description of the 2D-S and HVPS110

operating principles, uncertainties and limitations can be found in Lawson et al. (2006), Baumgardner et al. (2017) and Moser

et al. (2023). Note that the data recorded by the 2D-S and HVPS differ in sampling volume size and pixel resolution. The 2D-S
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is equipped with 128 pixels of 10 µm resolution each, which allows imaging particles from 10 µm to 1.28 mm in size. With the

larger pixel resolution provided by the HVPS of 150 µm, imaging of hydrometeors from 150 µm to 3.25cm is enabled. Here,

the dataset of the horizontally oriented HVPS and the horizontally oriented part of the 2D-S processed by Heymsfield et al.115

(2018) were combined with a switch-over size at 1000 µm, i.e. particles smaller 1000 µm are sized by the 2D-S and larger

particles by the HVPS. Standard processing and correction options with SODA (Software for OAP Data Analysis, provided

by A. Bansemer, National Center for Atmospheric Research/University Corporation for Atmospheric Research UCAR, 2013)

were applied including shattering and dead time corrections. For a better comparability of the in situ measurements with the

according radar-based retrievals of IWC, Dm and Nt, only particles larger than 100 µm are considered, because of the sen-120

sitivity of weather surveillance radars (Ryzhkov et al., 2020) and uncertainties in probe data (Poellot and Bansemer, 2017;

Baumgardner et al., 2017). With the particle size distribution (PSD) given by Heymsfield et al. (2018), Dm, IWC and Nt for

particles between 100 µm and 3 cm are calculated. In order to derive Nt, the number concentration for each particle size bin is

added up.

The different relations between measures of particle sizes used in the radar community and those derived from in situ mea-125

surements must be considered in their comparison. Radar-based retrievals mostly provide the mean volume diameter Dm as a

parameter for the size of the particles, which is defined as the ratio of the fourth to the third moment of the PSD:

Dm =

∫
D4N(D)dD∫
D3N(D)dD

, (1)

where D is the equivolume diameter. It should be noted that Dm is very close to the median volume diameter D0. Assuming

that the PSD follows a gamma distribution with shape parameter µ (Ulbrich, 1983), we obtain130

Dm =
4+µ

3.67+µ
D0. (2)

Instead of Dm, the aircraft microphysical probes usually measure either median mass diameter Dmm or median volume diam-

eter Dmv of the distribution of maximal particle dimension (Hu and Ryzhkov, 2022), which is given by

Dmax =Dφ−1/3, (3)

where φ is the particle aspect ratio. For a gamma size distribution and taking Eq. (3) into account, we yield:135

Dmm =
2.67+µ

4+µ

Dm

φ1/3
, (4a)

Dmv =
3.67+µ

4+µ

Dm

φ1/3
, (4b)

with Eq. (4a) assuming particle density being inversely proportional to its size. Assuming φ= 0.6 and an exponential distribu-

tion (µ= 0), the following two Dm relationships (Hu and Ryzhkov, 2022) are obtained:

Dm ≈ Dmm

0.79
, and (5a)140

Dm ≈ Dmv

1.09
. (5b)
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These relations enable the direct comparison between the in situ measurements with the radar-based Dm retrievals, with the

in situ derived median mass size Dmm utilized in our study to obtain Dm. The IWC is estimated by using a mass-dimension

relation between mass m and size given by

m= aDb
max (6)145

with a= 0.0121 kg/mb, b= 1.9 and Dmax the diameter of the minimum enclosing circle of the projected 2D image. We fol-

lowed Chase et al. (2018) by adopting Equation (6) and parameters a and b from Brown and Francis (1995) and modifying

them considering the particle size definition by Hogan et al. (2012). Even though parameters a and b of the mass-dimension

relationship vary with the environmental conditions and particle shapes (Baker and Lawson, 2006), constant standard parame-

ters are used in this study which reasonably represent the mean ice water content, especially for ice crystal aggregates. Tridon150

et al. (2019) confirmed that the aggregates observed during OLYMPEX can mostly be described by a quite narrow range of

mass-size relations. In single situations with large aggregates or intense riming processes, however, the fixed parametrization

may underestimate the ice water content (see also Heymsfield et al., 2023).

In addition to the quantitative information provided by the 2D-S and HVPS, high-resolution in situ particle imagery data from

the Cloud Particle Imager (CPI; SPEC Inc, USA) can be used to accurately identify particle types and characteristics. Only155

with the CPI it is possible to directly monitor supercooled liquid water (SLW) droplets of micron-size attached to ice particles

and thus diagnose riming unambiguously and estimate the degree of riming.

The Rosemount Icing Detector (RICE; Baumgardner and Rodi, 1989) mounted on the Citation II is used as a supporting probe

to detect the presence of SLW mandatory for riming (Vogel and Fabry, 2018). The RICE oscillates at a constant frequency, but

when supercooled droplets freeze on its surface, the frequency of vibration decreases. Once accumulated ice exceeds a certain160

threshold, the probe tip is briefly heated to remove accreted ice. Data is available again as soon as the probe temperature has

stabilized (Heymsfield and Miloshevich, 1989).

3 Radar-based microphysical retrievals

This section summarizes the most recent polarimetric and a suite of conventional non-polarimetric ice microphysical retrievals

for IWC, Nt and Dm considered and assessed in this study. Two conventional Dm retrievals derived from statistical relations165

between particle sizes and reflectivity expressed in linear scale (Zh = 100.1ZH ; in units of mm6m−3) are used in our analysis.

The first relation introduced by Skofronick-Jackson et al. (2019) is based on a power-law between Dm (mm) and Ku-band

Zh fitted to data from the GPM Cold Season Precipitation Experiment (GCPEx) campaign (Skofronick-Jackson et al., 2015)

conducted in Canada:

Dm
I(Zh) = 1.45Zh

0.25. (7)170

Matrosov et al. (2019) introduced another power-law relation derived from Zh data of ground-based S-band radar and aircraft

in situ calculated Dmv obtained during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska (Maahn et al.,
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2015). Assuming φ= 0.6 and using Eq. (5b), it follows

Dm
II(Zh) =

1

1.09
· (1.15Zh

0.271). (8)

This equation differs from Eq. (5) in Murphy et al. (2020) showing, due to a typo, the reciprocal multiplier when converting175

Dmm to Dm.

Since ZH-based Dm retrievals are disproportionally weighted by a few large particles, polarimetric KDP-based retrievals have a

great potential to provide more accurate estimates. Additionally, such estimators use the key advantage that KDP is not affected

by attenuation and not biased by noise and radar miscalibration. To retrieve a polarimetric Dm from KDP and Zdp, where Zdp =

Zh - Zv is the reflectivity difference at horizontal and vertical polarization in linear scale, as proposed in Ryzhkov et al. (2018)180

and Ryzhkov and Zrnić (2019) we use

Dm(Zdp,KDP) =−0.1+2.0

(
Zdp

KDPλ

)1/2

, (9)

where KDP is in ◦km−1, Zdp is in mm6m−3 and the radar wavelength λ in mm. This estimator is largely immune to variations

in ice particle orientation and shape but has the inherent deficiency of being impacted by the degree of riming, therefore it is

supposed to be more appropriate for lower temperature regions where riming is less likely. As an alternative, Bukovčić et al.185

(2018, 2020) uses Zh and KDP to retrieve

Dm(Zh,KDP) = 0.67

(
Zh

KDPλ

)1/3

. (10)

Unlike Dm(Zdp,KDP), however, this retrieval is not immune to the variability in particle orientation and shape, a strength of

this Dm(Zh,KDP) estimate is that it does not depend on density and is therefore not affected by the degree of riming.

Similarly to the aforementioned Dm retrievals, IWC retrievals can also be derived in a purely empirical fashion, through190

utilization of power-laws. Hogan et al. (2006) introduced an expression which related in situ measured IWC (in g m−3)

to reflectivity (in dBZ) at various frequencies (e.g., 3 GHz) and temperature T (in ◦C) in the European Cloud Radiation

Experiment (EUCREX) derived in the Rayleigh approximation:

log10
(
IWC I(ZH,T )

)
= 0.06ZH − 0.0197T − 1.7. (11)

They also exploited the IWCI(ZH,T ) to evaluate the mesoscale version of the Met Office Unified Model. However, the IWC195

relationship implicit in the models parameterization (see Hogan et al. (2006) for details) is

log10
(
IWC II(ZH,T )

)
= 0.06ZH − 0.0212T − 1.92. (12)

Nguyen et al. (2019) proposed two more empirical, but polarimetric IWC retrievals via optimal fitting parameters, exploiting

aircraft measurements from a polarimetric side pointing X-band radar and measured IWC by in situ probes obtained during

HAIC-HIWC. The two retrievals utilize either KDP only or include additionally the differential reflectivity Zdr expressed in200
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linear scale (Zdr = 100.1ZDR ):

IWC(KDP) = 0.903KDP +0.319, and (13)

IWC I(Zdr,KDP) =
0.136KDP +0.037

1−Zdr
−1 . (14)

Zdr is set to 1.15 (Ryzhkov et al., 1998) when Zdr falls below this threshold. Ryzhkov et al. (1998) also demonstrated that KDP

is sensitive to the aspect ratio φ and orientation of the particles, whereas IWC is not, requiring additional knowledge about the205

particles. Accordingly, the estimator IWC(KDP) is highly affected by variations in φ and/or orientation, whereas the inclusion

of Zdr in IWCI(Zdr,KDP) reduces these dependences. The observational study by Nguyen et al. (2019) demonstrated that their

empirical relation IWCI(Zdr,KDP) is very close to the theoretical IWC relation by Ryzhkov et al. (2018):

IWC II(Zdr,KDP) = 4× 10−3

(
KDPλ

1−Zdr
−1

)
. (15)

The latter exploits the inherent information of Zdr about shape and orientation of particles. Similar to Eq. (9), IWCII(Zdr,KDP)210

is practically insensitive to the shape and orientations of the ice particles, because the numerator and denominator are propor-

tionally impacted and thus the ratio is not affected.

In absence of a birdbath scan in the scan schedule (as it is e.g. the case for the operational radar networks in the United States),

ensuring high Zdr accuracy is often difficult. Bukovčić et al. (2018, 2020) introduced a generalized relation for IWC

IWC(Zh,KDP) =
10.2× 10−3

(F0FS)0.66
(KDPλ)

0.66Zh
0.28, (16)215

which is immune to Zdr miscalibrations and where F0 is the orientation factor as function of the width of the canting angle

distribution σ and FS the shape factor determined by φ. The relation in (16) produces

IWC(Zh,KDP)≈ 0.31K0.66
DP Zh

0.28, (17)

for σ = 0°, φ= 0.65, and λ= 32 mm. In contrast to Eq. (10), however, the IWC(Zh,KDP) retrieval is sensitive to the density

of the particles and thus, the degree of riming.220

The combined application of Eq.(15) in regions where ZDR>0.4 dB and Eq.(17) elsewhere, as suggested by Carlin et al. (2021),

leverages the strengths of both formulas and denoted as IWCCarlin estimator in the following.

Estimating snow concentration Nt is a challenging task and it is almost impossible to derive it with acceptable accuracy from

single-polarization radar measurements, because of the wide variety of ice and snow habits and their microphysical properties.

A polarimatric retrieval for the logarithm of the total number concentration of ice particles Nt (in L−1) following Ryzhkov et225

al. (2018, 2019) is estimated by

log10 (Nt(ZH,Zdp,KDP)) = 0.1ZH − 2log10γ− 1.33 with (18a)

γ ≈ 0.78

(
Zdp

KDPλ

)
. (18b)
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Table 2. Table of retrieval equations used in this work. Dm is in units of mm, IWC is in units of gm−3 and Nt is in units of L−1; T is in

units of ◦C.

Retrieval Formula Type Reference

Dm
I(Zh) 1.45Zh

0.25 empirical Skofronick-Jackson et al. (2019)

Dm
II(Zh) 1.06Zh

0.271 empirical Matrosov et al. (2019)

Dm(Zdp,KDP) −0.1+2.0(
Zdp

KDPλ
)1/2 empirical Ryzhkov and Zrnić (2019)

Dm(Zh,KDP) 0.67( Zh
KDPλ

)1/3 empirical Bukovčić et al. (2020)

log10(IWC I(ZH,T )) 0.06ZH − 0.0197T − 1.7 empirical Hogan et al. (2006)

log10(IWC II(ZH,T )) 0.06ZH − 0.0212T − 1.92 model Hogan et al. (2006)

IWC(KDP) 0.903KDP +0.319 empirical Nguyen et al. (2019)

IWC I(Zdr,KDP) (0.136KDP +0.037)( 1
1−Zdr

−1 ) empirical Nguyen et al. (2019)

IWC II(Zdr,KDP) 4× 10−3( KDPλ
1−Zdr

−1 ) theoretical Ryzhkov and Zrnić (2019)

IWC(Zh,KDP) 0.31K0.66
DP Zh

0.28 empirical Bukovčić et al. (2020)

IWCCarlin

 IWC II(Zdr,KDP) if ZDR > 0.4 dB,

IWC(Zh,KDP) otherwise
theoretical and empirical Carlin et al. (2021)

log10(Nt(ZH,Zdp,KDP)) 0.1ZH − 2log10γ− 1.33 theoretical Ryzhkov and Zrnić (2019)

log10(Nt(ZH, IWC)) 6.69+2log10(IWC)− 0.1ZH theoretical and empirical Carlin et al. (2021)

Again, using the ratio of Zdp/KDP in this retrieval cancels out the effects of orientation and shape. Another relation for Nt

included in our accuracy assessment is given by Carlin et al. (2021):230

log10 (Nt(ZH, IWC)) = 6.69+2log10(IWC)− 0.1ZH . (19)

Combined with IWCCarlin, Eq. (19) is hereafter referred to as Nt(ZH, IWCCarlin). Note that polarimetric retrieval equations

(Eq.(9), Eq.(10) and Eq.(15)–(18a)) were derived in the Rayleigh approximation assuming that the density ρs of Rayleigh

scatterers (ice particles, snowflakes) is inversely proportional to D, according formula following Brandes et al. (2007):

ρs(D) = α0frimD
−1 = αpD

−1, (20)235

where ρs is expressed in g cm−3, α0 is a constant, and the prefactor αp varies with the degree of riming frim, which ranges from

1 for unrimed ice to 5 for heavily rimed ice. For larger non-Rayleigh scatterers like graupel or hail, these polarimetric retrieval

equations are not valid (Ryzhkov et al., 2020). Reliable retrievals are only obtainable in areas where ZDR and KDP are not very

close to zero, which represents a weakness of polarimetric retrievals. In addition, a recent study showed that polarimetric ice

microphysical retrievals following Ryzhkov and Zrnić (2019) provide best results at cold temperatures, i.e. lower than -10°C240

to -15°C (Murphy et al., 2020). Around this temperature interval the dendritic growth layer (DGL) is located and ZDR and KDP

exhibit pronounced signals. For this reason, our analysis is restricted to temperatures below -10°C. Table 2 summarizes the

retrieval equations used in this study.
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4 Methodology

RHI scans obtain vertically high-resolved measurements and thus are well suited for microphysical studies and our accuracy245

assessment. Furthermore, the sequences of successive RHIs performed during the OLYMPEX campaign in azimuthal sectors

of 22 degrees provide high-resolution 3D measurements in this predefined region. Our newly introduced RHI sector vertical

x

y

z

R

Figure 1. RSVP column (outline in red), covering an arbitrary volume in range in azimuth.

profile (RSVP) technique provides noise-reduced quasi-vertical profiles of polarimetric variables obtained by azimuthal aver-

aging of RHI sector scans in a convenient height versus time format. This method was inspired by both, the QVP methodology

and the ability of CVPs to follow flight segments of research aircraft, and on top takes advantage of the RHI scan mode. Figure250

1 illustrates the RSVP technique introduced here for the matching with airborne in situ measurements.

To create a RSVP, a series of RHIs is first averaged within the azimuthal range α. The range of elevation angles θ considered

can be adapted, e.g. to minimize ground clutter effects.

In the second step, windows of the desired size and position are selected along the range axis of the already azimuthally aver-

aged RHI (marked in red in Fig. 1), and averaged along the chosen range interval as well. Based on the selected and averaged255

volume, a mean profile is computed representing the vertical columns that are combined and displayed in the RSVP. In this

way, RSVPs enable both the joint analysis with fixed ground-based measurements provided by vertically pointing devices like

e.g., Micro Rain Radars (MRRs), and the tracking of research aircraft within the sector covered by the RHIs for the matching

with airborne measurements. In the latter case, the selected volume taken into account in the averaging process changes with

time. Additionally, vertical averaging is applied, with 75 m bins to match the aircraft track and account for aircraft altitude260
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fluctuations. Four columns with a length on the range axis of 4.5 km each, starting at 2 km distance of the radar are used

for tracking the aircraft. The first 2 km were omitted, because of known inconsistencies in the transmitters and reduced po-

larimetric information content. Also, the maximum range considered in this analysis was 20 km from the radar in order to

reduce partial beam blockage by surrounding mountains. The temporal resolution of the RSVP technique depends for sure on

the scan schedule. During the OLYMPEX campaign, the 22 RHI measured in the azimuthal sector were available every 4 min265

interspersed with a 2 min PPI scan after each two RHI sector scans.

Figure 2 shows as an example RSVPs of ZH, ZDR, ρhv and KDP for a complex occluded front observed on 18 December 2015.

Similar RSVPs have been generated for all 20 flights during OLYMPEX totaling approximately 60 flight hours (not shown

here). The event displayed in Fig. 2 exhibits throughout clearly visible ML signatures in ZH, ZDR and ρHV, roughly following

the temporal evolution of the 0°C isotherm. Within the DGL, located at temperatures between -10°C and -15°C, also bands of270

enhanced ZDR and KDP are visible.

For the accuracy assessment, the microphysical retrievals introduced in Sect. 3 are calculated based on the RSVPs and dis-

played in a similar manner, considering only data above the ML. For this purpose, only radar data with ZDR> 0.1 dB, ZH> 0

dBZ, KDP > 0.01◦km−1 and ρhv> 0.7 are used.

Figure 2. RSVPs of ZH (top left), ZDR (top right), ρhv (bottom left), and KDP (bottom right) using measurements from the DOW on 18

December 2015 between 00:40 and 04:30 UTC. The time interval shown is equal to the flight mission length, to nearest 15 min. Data in the

RSVPs are at ranges from 6.5 km to 11 km away from the radar and 22° in azimuth. The overlaid dashed lines (in all panels) display the 0°C,

-5°C, -10°C and -15°C isotherms from European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5, Hersbach et al., 2020)

at the DOW location.
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A direct comparison of airborne in situ measurements with ground-based retrievals requires a careful matching in both space275

and time. Research aircraft measure along flight trajectories, while the RSVP technique uses stationary ground-based radars

monitoring a volume at flight altitude. The aircraft measurements of IWC, Dm, and Nt are averaged along the respective flight

path sections and compared to the radar retrievals in the according columns and at the corresponding aircraft altitude. Similarly,

the flight altitude and measured environmental parameters (e.g., temperature) are averaged for the time intervals within each

column. The temperature information enables us to exclude bright band effects. Herein, the averaged in situ observations are280

assumed to be characteristic of the entire collocated radar volume. Figure 3 illustrates the matching of microphysical retrievals

Figure 3. A schematic illustration from the collocation of RSVP columns with in situ measurements. Each colored column can be created

according to the RSVP procedure depicted in Fig. 1. Gray shaded areas represent omitted data very close to the radar. The left panel shows

the side view and the right panel the top view of the aircraft flying through the columns.

based on RSVP data with airborne in situ measurements. During OLYMPEX, the UND Citation II research aircraft performed

148 transects over DOW at different altitudes. In our study, only the aircraft measurements between 3 km and 7 km height are

used. The use of RSVP columns allows analysis of multiple collocated data points within a single overpass. Here, the selected

length of 4.5 km along the range for the RSVP columns ensures an aircraft flying at approximately 100 m s−1 is sufficiently285

long within the column (t≥30 s). Flight intercepts of less than 30 s in duration were discarded from the analysis as they may

not adequately represent the respective RSVP columns and to ensure statistical reliability. Too short flight intercepts occurred,

e.g., when the aircraft shortly flew along the edge of a column and then left the sector again (e.g., yellow column in right panel

of Fig. 3) or did not pass the RHI sector at all. Note that limited temporal resolution of RSVPs (here 4 min) and comparatively

short flight segments can lead to a temporal mismatch between the two datasets of up to 3 min in this study.290
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5 Accuracy assessment of the ice microphysical retrievals

This section presents the resulting accuracies for all polarimetric and non-polarimetric retrievals outlined in Sect. 3 exploiting

the collocated in situ measurements available during the OLYMPEX campaign. The in situ measurements are assumed to be

the truth in this study despite similar existing uncertainties, e.g., with the assumed mass–dimension relationship. As statistical

measures for the agreement between the in situ measurements and the different radar-derived retrievals, the mean and median295

retrieved-to-measured ratio (RMR), the mean difference (bias), the root mean square error (RMSE), and Pearson’s correlation

coefficient r are considered. Results for all ice microphysical retrievals introduced in Sect. 3 are shown in Table 3. The retrieval

analysis identifies in terms of RMSE IWCCarlin, Nt(ZH,IWCCarlin) and Dm(Zdp,KDP) as the best performing set for the three

quantities considered. It can be seen that the use of polarimetry clearly improves the estimates of IWC and Dm compared to

the conventional, non-polarimetric retrievals. In particular, IWCCarlin can improve r by 7 % over IWCI(ZH,T ) and reduces300

RMSE by 37 %. An even greater improvement occurs for the estimation of Dm, where the use of Dm(Zdp,KDP) over both

non-polarimetric Dm retrievals increases r by 15 % compared to both non-polarimetric Dm retrievals. Dm(Zdp,KDP) also

brings a reduction of RMSE by 47 % compared to Dm
I(Zh). Analysis of IWCI(Zdr,KDP) in the ice regions of tropical clouds

during 7 flights of the HAIC-HIWC field campaign in Cayenne, French Guiana, showed an overall correlation between in

situ and estimated IWCs of 0.72 and a mean RMSE of 0.52 gm−3 (Nguyen et al., 2019). In our case, a lower RMSE of 0.26305

gm−3 can be observed for their IWCI(Zdr,KDP) and a systematically higher correlation of 0.97. Again, the advantages of using

polarimetry over non-polarimetry are evident in this retrieval. It is interesting that IWC(KDP) shows the highest correlation

with 0.98, although Zdr is not included. Nevertheless, both polarimetric estimators based on optimal fitting parameters exhibit

higher RMSE compared to all other polarimetric IWC retrievals, manifested in a systematic overestimation. A possible ex-

planation for the overestimation may be, that they were optimized for the tropical climate region characterized by an average310

higher IWC.

For a more detailed look at the evaluation procedure to obtain information about quantitative statistics and accuracies, we con-

sider an example (Fig. 4) for the best performing IWC retrieval. Out of 20 campaign flights, 10 flight missions were selected

and listed in Table 4 that have good data quality (in situ and radar) and met all filter criteria. With the thresholds applied, the

correlation of IWCCarlin improves from r=0.91 to r=0.96. The slope of the filtered regression is 1.03, which is closer to the 1 to315

1 line than the unfiltered green regression line. The important information here is that the filtering via thresholds provides us a

more reliable database for the analysis.

The repeated analysis without temperature threshold applied showed a significant decrease in the correlations for all retrievals

(not shown). Figure 5 shows this best performing set of ice microphysical retrievals together with the in situ data. Overall, we

see a tendency towards a slight overestimation of IWC at warmer (T ⪆ -14°C) and an underestimation at colder temperatures320

(T ⪅ -27°C), with largest in situ standard deviation at colder temperatures. IWCCarlin yields a high correlation of r = 0.96, the

lowest RMSE of 0.19 gm−3 and a near-zero bias of -0.04 gm−3. Carlin et al. (2021) found some evidence that using IWCCarlin

for the initialization of a 1D spectral bin model results in a more constrained forecast with respect to the snowfall start time

compared to using the IWC(ZH, KDP) retrieval only. The outstanding performance of IWCCarlin within this accuracy assessment
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Table 3. Correlations (r), slopes and intercepts from least-squares fits, root-mean-square error (RMSE), biases, and mean and median

retrieved-to-measured ratio (RMR) for each microphysical property and for all retrievals. Best values of each statistical measure across every

microphysical retrieval type are highlighted in boldface font.

IWC (gm−3) r Slope Intercept RMSE Bias RMR Mean RMR Median Publication

IWCI(ZH,T ) 0.90 0.88 -0.04 0.30 -0.11 1.23 1.59 Hogan et al. (2006)

IWCII(ZH,T ) 0.91 1.40 -0.05 0.30 0.10 0.79 1.00 Met Office Model

IWCComb(ZH,T ) 0.95 1.18 -0.06 0.20 0.02 0.95 1.11 IWCI(ZH,T ) & IWCII(ZH,T )

IWC(KDP) 0.98 1.29 -0.42 0.28 -0.22 1.46 2.02 Nguyen et al. (2019)

IWC I(Zdr,KDP) 0.97 1.20 -0.34 0.26 -0.21 1.43 1.97 Nguyen et al. (2019)

IWC II(Zdr,KDP) 0.94 0.87 -0.02 0.24 -0.10 1.21 1.25 Ryzhkov et al. (2018)

IWC(ZH,KDP) 0.94 1.00 -0.10 0.23 -0.10 1.22 1.76 Bukovčić et al. (2018)

IWCCarlin 0.96 1.03 -0.05 0.19 -0.04 1.08 1.13 Carlin et al. (2021)

Nt log10(L−1)

Nt(ZH,Zdp,KDP) 0.88 1.13 -0.33 0.46 -0.18 1.17 1.33 Ryzhkov et al. (2018)

Nt(ZH, IWCCarlin) 0.91 1.38 -0.52 0.43 -0.09 1.08 1.27 Carlin et al. (2021)

Dm (mm)

Dm
I(Zh) 0.79 0.55 0.04 2.12 -1.82 1.78 1.86 Skofronick-Jackson et al. (2019)

Dm
II(Zh) 0.79 0.64 0.19 1.40 -0.99 1.42 1.48 Matrosov et al. (2019)

Dm(Zh,KDP) 0.94 2.60 -0.85 1.38 1.10 0.53 0.54 Bukovčić et al. (2018)

Dm(Zdp,KDP) 0.91 1.59 0.01 1.13 0.87 0.63 0.74 Ryzhkov et al. (2018)

Table 4. List of selected Citation II flight missions after applying filter criteria with resulting collocated data points.

Dates Flight times (UTC; to nearest 15 min) data points

12 November 19:30-22:30 0-1

13 November 15:00-17:45 2-3

01 December 22:45-01:45 4-8

04 December 13:00-16:00 9-11

05 December 14:45-18:00 12-14

10 December 14:45-17:00 15-22

12 December 17:00-20:15 23-26

13 December 15:45-19:15, 20:00-23:15 27-34

18 December 01:15-04:30 35-37
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Figure 4. Scatter plots and linear regressions of IWC from OLYMPEX in situ data vs. IWCCarlin. Temperature-dependent colouring of each

data point indicates temperatures colder than or equal to -10°C, while the gray dots, represent data masked via filter criteria for temperature

(T≥-10°C) and intersection time (t≤30 s). The r statistics are reported in green for all data points and in black for filtered ones.
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Figure 5. Collocated aircraft in situ data in chronological order (colored dots) and the best performing set of ice microphysical retrievals based

on RSVP data (solid blue lines) for 10 flight missions. Plots represent from top to bottom IWCCarlin, Nt(ZH,IWCCarlin), and Dm(Zdp,KDP).

Shadings show ±1σ (gray) and standard error of the mean (blue) calculated via Gaussian error propagation. Colours following the colour

bar indicate the respective temperatures in ◦C. Vertical bars represent in situ standard deviations.

is in line with these findings.325

The polarimetric retrieval for Nt(ZH,IWCCarlin) poses a greater challenge (Fig. 5, middle panel). It shows a high variability
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and more pronounced deviations from the in situ measurements, but still reaches a convincing correlation of r=0.91. Similar

to IWCCarlin, Nt(ZH,IWCCarlin) shows an overestimation at warmer (T ⪆ -14°C) and underestimation at colder temperatures

(T ⪅ -27°C). Pronounced Nt deviations at warmer temperatures are visible for the collocated data points 29 and 31, with the

former also revealing large standard deviations on the in situ side. The outlier at data point 9 exhibits KDP values below 0.1330
◦km−1, which may indicate deficiencies of this retrieval for very low KDP values, but the in situ values show relatively high

variability as well. The Dm(Zdp,KDP) retrieval (Fig. 5, bottom panel) estimates particle size especially well at colder temper-

atures. Mixtures of aggregates with different sizes coexisting near the ML (solid region) may explain the high in situ standard

deviations at warmer temperatures (e.g., data point 29 where Dm is in excess of 5 mm). Furthermore, the occurrence of an

increased number of aggregates reducing the information content of KDP can result in an underestimation of Dm(Zdp,KDP),335

which makes Dm estimation via polarimetric retrievals close to the freezing level challenging. In line with our analyses, Mur-

phy et al. (2020) indicated larger errors with polarimetric Nt and Dm retrievals in the immediate vicinity of the ML. Despite

this underestimation, a convincing correlation of r=0.91 is obtained.

Direct comparisons of both IWC(Z,T) retrievals with the IWCCarlin retrieval reveals that both non-polarimetric retrievals show
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Figure 6. Collocated aircraft in situ data in chronological order (colored dots), the IWCI(ZH,T) (green), IWCII(ZH,T) (gray), and IWCCarlin

(blue) of RSVP data (solid lines) for 10 flight missions. Vertical bars have the same meaning as in Fig. 5.

a worse performance in terms of lower correlation and higher RMSE (see Table 3). Note that the use of temperature informa-340

tion from soundings or models would further reduce the performance of IWC(Z,T) retrievals due to increased uncertainties

compared to in situ temperature data recorded during the flights. Figure 6 indicates that each IWC(Z,T ) shows a better per-

formance in a certain temperature range. Accordingly, we combined them using Eq. 11 for T <= -15◦C and Eq. 12 elsewhere.

I.e. the DGL located between approximately -10◦C to -15◦C providing the optimal conditions for depositional growth of ice,

serves here as the boundary for the two retrievals. This combination, hereafter referred to as IWCComb(ZH,T ), shows promise345

in estimating IWC with non-polarimetric data more precisely, as it reduces the RMSE to 0.20 and increases the correlation

to 0.95 (Table. 3). The bias of the combined method with a value of 0.02 gm−3 is slightly closer to 0 compared to IWCCarlin.

However, a more extensive dataset is needed to corroborate this finding.

Heymsfield et al. (2008) also evaluated non-polarimetric IWC retrieval methods, including the IWCI(ZH,T ) variant for 95
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GHz, using test datasets derived from in situ microphysical measurements. The retrieved-to-measured ratio (RMR) was cal-350

culated via dividing the mean or median of the retrieved quantity by the measured quantity, with a selected range of 0.75 <

RMR < 1.25 indicating "good" agreement between retrievals and measurements. Their IWCI(ZH,T ) showed a tendency to

underestimate IWC at low temperatures and overestimate it at warm temperatures, consistent with our results. Overall, their

non-polarimetric radar-only approach and radar-temperature retrievals yielded a mean (median) RMR of 1.29 (1.20). Our anal-

ysis shows a similar mean RMR of 1.23 for IWCI(ZH,T ), but a slightly higher median RMR value of 1.59. It is noteworthy355

that the polarimetric IWCCarlin outperforms IWCI(ZH,T ) and their radar-only and radar-temperature retrievals, with a mean

RMR close to unity (see Table 3).

Figure (7) also demonstrates the pronounced biases associated with the Dm
I(Zh) and Dm

II(Zh) retrievals, with especially large
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Figure 7. Collocated aircraft in situ data in chronological order (colored dots), the Dm power-laws (yellow and green), and the Dm(Zdp,KDP)

retrieval (gray) of RSVP data (solid lines) for 10 flight missions. Vertical bars have the same meaning as in Fig. 5.

deviations (strong overestimation) at colder temperatures. This result underlines again the importance of the key variable KDP

in ice and reveals the notorious inaccuracies of conventional Dm retrievals. However, these power-laws could potentially be360

used in combination with polarimetric Dm retrieval in areas near the ML in a hybrid fashion to obtain a more accurate estimate

of Dm.

Our analysis of Nt(ZH,IWCCarlin) shows good agreement in terms of mean RMR (1.08), whereas none of the Dm retrievals

in this evaluation fall within the chosen RMR range, with the best performing Dm(Zdp,KDP) exhibiting a RMR median value

close to the lower limit with a value of 0.74. Overall, our analysis is consistent with findings by Murphy et al. (2020), who365

found a strong underestimation of the Dm(Zdp,KDP) retrieval near the ML. Similarly, our analysis shows the best results in

regions with high ZDR and KDP, such as in the DGL, and the worst just above the freezing level, where ZDR and KDP signatures

nearly vanish as a result of aggregation processes (Ryzhkov et al., 1998).

6 Discrepancy analyses

For a more detailed analysis and improved understanding, examples of most pronounced discrepancies encountered between370

in situ and retrieved quantities are spotlighted and presented together with CPI imagery, HVPS samples and/or RSVPs.
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On 10 December 2015 at 15:58 UTC (data point 22, see top panel in Fig.5), the aircraft entered the RSVP column at a

distance of 15.5 to 20 km from the DOW. In this flight segment, a mean temperature of -31◦C was measured by the Citation

II at a mean altitude of 5.7 km. The discrepancy between in situ observed IWC and retrieved IWCCarlin is striking here, with

an underestimation of 0.61 gm−3 by the radar-based retrieval. This is the only data point where the IWC discrepancy is as375

pronounced that even the uncertainty estimates via the standard deviations from both, in situ and retrieval side, do not show

any overlap. One possible reason for the underestimation by IWCCarlin is the temporal mismatch displayed in Fig. 8. Since the

Figure 8. RSVPs of IWCCarlin at ranges between 15.5 km–20 km from the DOW on 10 December 2015 between 14:30 and 16:54 UTC.

Overlaid dashed lines display the -5°C, -10°C, -15°C and -20°C isotherms from ERA5 at the DOW location. The collocated data point is

indicated by the black cross.

aircraft entered at 15:58 UTC and left at 15:59 UTC, the collocation was assigned to the RHI sector scan that began at 15:54

UTC. Thus, it is temporally at the very end of this sector scan. However, the subsequent one might contain signatures that were

already started to be measured at the end of the previous sector scan. For instance, a higher IWC due to advection at the end380

of the scan could be present. Note that two RHI sector scans are always followed by a PPI scan of 2 min. The following RHI

sector scan starting at 16:00 UTC is also close in time to the in situ measurements and shows a higher IWC of 1.39 gm−3,

reducing the discrepancy to 0.39 gm−3. Moreover, choosing this scan leads to overlapping standard deviations, with a retrieval

σ of 0.45gm−3. However, this data point also shows the slight underestimation of IWCCarlin at colder temperatures.

The most pronounced discrepancy in terms of Dm emerges on 13 December 2015 at 16:17 UTC (data point 29, see lower385

panel in Fig.5) when the aircraft entered the RSVP column at a distance of 6.5 to 11 km from the DOW. Here, the Citation II

measured a mean temperature of -13◦C at a mean altitude of 2.95 km. Retrieved Dm(Zdp,KDP) strongly underestimates the in

situ observed Dm peak exceeding 5 mm, with an underestimation of almost 3 mm. Note that in this case there is no temporal

mismatch. Figure 9 illustrates sampled particles captured along the relatively narrow flight path of the aircraft. It seems the

smaller in situ sample is dominated by larger particles, while the larger RSVP volume also accounts for the immediate vicinity390

where more smaller particles may be present. These possibly affect Dm(Zdp,KDP) significantly due to averaging and may not
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properly resolve the regions with enhanced in situ Dm peaks. In addition, the DOW sector scan started at 16:14 UTC and thus

the RSVP volume also contains particles not monitored by the aircraft entering the sector later. The particles may be smaller

and could explain the discrepancy between in situ observed Dm and retrieved Dm(Zdp,KDP). It is also worth mentioning that

an in situ σ of 1.78 mm is observed along the trajectory, indicating high variability in this region.395

In agreement with the RICE measurements, indicating the presence of SLW with a sudden decrease in frequency (Fig. 10),

Figure 9. HVPS sample images of hydrometeor shadows on 13 December 2015 at 16:18 UTC. The images correspond to the trajectory

within the DOW sector scan starting at 16:17 UTC. The height of each panel represents 19.2 mm.

the CPI example particle images in Fig. 11 also indicate ongoing riming in the flight segment under discussion. Moreover,

a clear sagging of the ML in terms of ZDR and ρhv (not shown) in the RSVPs supports the riming hypothesis, since rimed

ice particles fall with increased velocities and therefore melt at lower altitudes. Such a sagging signature in radar images

can be associated with riming processes (Kumjian et al., 2016). And since riming, most likely present in this case, results400

in both higher φ and frim values than assumed in the derivation of the Dm(Zdp,KDP) retrieval, the observed underestimation

is in line with the known shortcomings of the retrieval for such conditions. Additionally, for riming conditions present the

mass-dimension relation assumed for in situ measured IWC, is also not valid anymore. In general, the precise effect of riming

on mass-dimension relations is poorly understood (Tridon et al., 2019), but these processes considerably modify inherent

parameters. With increasing degree of riming, higher values of the prefactor a and the exponent b in Eq. (6) are expected. The405

latter can reach a maximum b close to three (sphere-like geometry) when graupel-like particles filled with rime are present.
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Figure 10. RICE oscillation frequency (blue) and temperature at Citation II level (magenta). Icing periods are indicated by a sharp drop in

RICE frequency due to ice accumulation at the sensor tip. The shaded area represents the associated flight interval on 13 December 2015.

Thus, the observed overestimation of IWCCarlin could at least partly be explained by assumed inappropriate parameters in the

mass-dimension relationship following Brown and Francis (1995). Using a relation that accounts for more knowledge of ice

particle masses (e.g., Heymsfield et al., 2010), that is valid for higher degrees of riming (e.g. Leinonen and Szyrmer, 2015), or

that uses multiple mass-dimension relations for different Dmm ranges, as proposed in Ding et al. (2020) may reduce deviations410

between in situ and retrieved IWC in this case. Only directly measured in situ IWC can provide IWC without the need for any

assumptions. However, such measurements were not available during the OLYMPEX campaign (Tridon et al., 2019).

Figure 11. Examples of CPI images where rimed crystals were observed. The images were taken on 13 December 2015 between 16:14–16:18

UTC.
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7 Conclusions

Data collected during the OLYMPEX campaign (Houze Jr et al., 2017) conducted in late 2015 provided a comprehensive

database including ground-based polarimetric X-band radar measurements and airborne in situ cloud measurements to evaluate415

radar-based ice microphysical retrievals. In this study, the accuracy of conventional non-polarimetric retrievals is assessed

together with a series of state-of-the-art polarimetric retrievals to quantify the benefits of additional polarimetric information

and identify the strengths and weaknesses of all of them. RHIs within an azimuthal sector of 22◦ provide vertically high-

resolved polarimetric measurements and the RSVP matching methodology introduced adds a moderate degree of averaging in

order to reduce the noisiness of especially phased-based radar measurements like KDP. The matching of the achieved robust420

radar-based retrievals with the airborne cloud measurements enables the accuracy assessment of retrievals for ice water content

IWC, ice particle number concentration Nt and mean volume diameter Dm, which are of great value for model evaluation and

data assimilation. The key results of the study are as follows:

1. State-of-the-art microphysical retrievals exploiting polarimetric radar measurements to estimate IWC (RMSE = 0.19

gm−3), Nt (RMSE = 0.43 L−1), and Dm (RMSE = 1.13 mm) achieve quite high agreement with airborne in situ mea-425

surements, especially at cold temperatures.

2. Overall, polarimetric retrievals are superior to conventional Z-based retrievals, but combinations with non-polarimetric

retrievals have potential to improve deficiencies directly above the ML.

3. The hybrid polarimetric IWCCarlin retrieval outperforms all other IWC estimates in terms of RMSE and shows a high r

of 0.96.430

4. Compared to IWC retrievals, the Nt and Dm retrievals show larger uncertainties and should be further improved in the

future.

This study clearly demonstrates the added value of multiparameter retrievals as proposed by Carlin et al. (2021) for the IWC.

Combining the strengths of retrievals can be applied to other ice microphysical properties and ultimately also hints at the

potential for developing combinations of polarimetric and non-polarimetric retrievals. Further independent evaluation studies435

particularly focusing on such hybrid retrievals are required.

Future work using an additional particle classifier (e.g. Praz et al., 2018; Przybylo et al., 2022) capable of identifying and

classifying each particle along flight transects with high-resolution image data sampled by particle imagers will provide an

even more in-depth evaluation. Specifically, extended classifiers that possibly allow riming degree estimation, as proposed in

Przybylo et al. (2022), may provide an avenue for studying riming cases and relating these observations to retrieval assump-440

tions. These classifiers hold the potential to be utilized for the refinement and development of future ice microphysical retrieval

methods.

The exploitation of the OLYMPEX data represents another piece of the mosaic towards a comprehensive evaluation of (po-

larimetric) microphysical retrievals. While previous evaluation studies focused on C- and S-band radar data, this study also
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emphasizes the added value of X-band radars for the exploitation of microphysical retrievals and related process studies. How-445

ever, in light of potential applications in model evaluation and data assimilation, C- and S-band radars are of great interest

because of their national operational availability. Recently, even more field campaigns have been exploited or their analysis is

currently underway. Examples are the Federal Aviation Administration-led In-Cloud ICing and Large-drop Experiment (ICI-

CLE; Bernstein et al., 2021) or the NASA-led Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening

Snowstorms (IMPACTS; McMurdie et al., 2019). Two flight legs of a winter storm case from the latter campaign have already450

been used by Dunnavan et al. (2022) for a radar retrieval evaluation. With respect to previous experimental evaluation studies,

the more convincing accuracy of the best performing polarimetric retrievals identified in this study gives us further confidence

in their application. The benefit of using a shorter wavelength than of S-band radars, as suggested in Ryzhkov et al. (1998)

for the verification of their proposed IWCI(Zdr,KDP), indeed exhibited a noticeably lower RMSE in our study (0.24 gm−3

vs. 0.4 gm−3). Using the same IWCI(Zdr,KDP) retrieval as Nguyen et al. (2019), we were further able to achieve half the455

RMSE and a systematically higher correlation with our method based on RHI-sector scans, even though both studies used

an X-band radar. More recent retrievals were able to achieve even smaller RMSEs. The almost consistent underestimation of

Dm(Zdp,KDP) shown in Murphy et al. (2020) is in line with our results. However, in contrast to their study, we could not only

attribute the deficits to warmer temperature regimes, but also demonstrated the accurate estimation at cold temperatures. As a

result, an important open question for future research concerns the deficient performance of retrievals directly above the ML460

and requires new approaches to obtain accurate estimators in this region.
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Ryzhkov, A. V. and Zrnić, D. S.: Radar Polarimetry for Weather Observations, vol. 486, Springer, 2019.

Ryzhkov, A. V., Zrnic, D. S., and Gordon, B.: Polarimetric method for ice water content determination, Journal of Applied Meteorology, 37,

125–134, https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2, 1998.605

Ryzhkov, A. V., Snyder, J., Carlin, J. T., Khain, A., and Pinsky, M.: What polarimetric weather radars offer to cloud modelers: forward radar

operators and microphysical/thermodynamic retrievals, Atmosphere, 11, 362, https://doi.org/10.3390/atmos11040362, 2020.

Skofronick-Jackson, G., Hudak, D., Petersen, W., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G.-J., Joe, P., Kollias,

P., et al.: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): for measurement’s sake, let it snow, Bulletin

of the American Meteorological Society, 96, 1719–1741, https://doi.org/10.1175/BAMS-D-13-00262.1, 2015.610

Skofronick-Jackson, G., Kulie, M., Milani, L., Munchak, S. J., Wood, N. B., and Levizzani, V.: Satellite estimation of falling snow: A

global precipitation measurement (GPM) core observatory perspective, Journal of applied meteorology and climatology, 58, 1429–1448,

https://doi.org/10.1175/JAMC-D-18-0124.1, 2019.

Tian, J., Dong, X., Xi, B., Wang, J., Homeyer, C. R., McFarquhar, G. M., and Fan, J.: Retrievals of ice cloud microphysical

properties of deep convective systems using radar measurements, Journal of Geophysical Research: Atmospheres, 121, 10–820,615

https://doi.org/10.1002/2015JD024686, 2016.

Tobin, D. M. and Kumjian, M. R.: Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transi-

tions, Weather and Forecasting, 32, 2065–2082, https://doi.org/10.1175/WAF-D-17-0054.1, 2017.

Tridon, F., Battaglia, A., Chase, R. J., Turk, F. J., Leinonen, J., Kneifel, S., Mroz, K., Finlon, J., Bansemer, A., Tanelli, S., et al.: The mi-

crophysics of stratiform precipitation during OLYMPEX: Compatibility between triple-frequency radar and airborne in situ observations,620

Journal of Geophysical Research: Atmospheres, 124, 8764–8792, https://doi.org/10.1029/2018JD029858, 2019.

Trömel, S., Simmer, C., Blahak, U., Blanke, A., Doktorowski, S., Ewald, F., Frech, M., Gergely, M., Hagen, M., Janjic, T., et al.: Overview:

Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation pro-

cesses, Atmospheric Chemistry and Physics, 21, 17 291–17 314, https://doi.org/10.5194/acp-21-17291-2021, 2021.

27

https://doi.org/10.5067/GPMGV/OLYMPEX/MULTIPLE/DATA201
https://doi.org/10.1029/2018JD029163
https://doi.org/10.1175/JTECH-D-21-0094.1
https://doi.org/10.1127/metz/2021/1072
https://doi.org/10.1175/JTECH-D-15-0020.1
https://doi.org/10.1175/1520-0450(1998)037%3C0125:PMFIWC%3E2.0.CO;2
https://doi.org/10.3390/atmos11040362
https://doi.org/10.1175/BAMS-D-13-00262.1
https://doi.org/10.1175/JAMC-D-18-0124.1
https://doi.org/10.1002/2015JD024686
https://doi.org/10.1175/WAF-D-17-0054.1
https://doi.org/10.1029/2018JD029858
https://doi.org/10.5194/acp-21-17291-2021


Ulbrich, C. W.: Natural variations in the analytical form of the raindrop size distribution, Journal of climate and applied meteorology, 22,625

1764–1775, 1983.

Vogel, J. M. and Fabry, F.: Contrasting polarimetric observations of stratiform riming and nonriming events, Journal of Applied Meteorology

and Climatology, 57, 457–476, https://doi.org/10.1175/JAMC-D-16-0370.1, 2018.

Vulpiani, G., Montopoli, M., Passeri, L. D., Gioia, A. G., Giordano, P., and Marzano, F. S.: On the use of dual-polarized C-

band radar for operational rainfall retrieval in mountainous areas, Journal of Applied Meteorology and Climatology, 51, 405–425,630

https://doi.org/10.1175/JAMC-D-10-05024.1, 2012.

Wurman, J., Straka, J., Rasmussen, E., Randall, M., and Zahrai, A.: Design and deployment of a portable, pencil-beam,

pulsed, 3-cm Doppler radar, Journal of Atmospheric and Oceanic Technology, 14, 1502–1512, https://doi.org/10.1175/1520-

0426(1997)014<1502:DADOAP>2.0.CO;2, 1997.

Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and635

MPI-M: Description of the non-hydrostatic dynamical core, Quarterly Journal of the Royal Meteorological Society, 141, 563–579,

https://doi.org/10.1002/qj.2378, 2015.

28

https://doi.org/10.1175/JAMC-D-16-0370.1
https://doi.org/10.1175/JAMC-D-10-05024.1
https://doi.org/10.1175/1520-0426(1997)014%3C1502:DADOAP%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1997)014%3C1502:DADOAP%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1997)014%3C1502:DADOAP%3E2.0.CO;2
https://doi.org/10.1002/qj.2378

