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Abstract.

We show that the distribution of anthropogenic carbon between the atmosphere, land surface and ocean differs with the

choice of projection scenario even for identical changes in mean global surface temperature. Warming thresholds occur later in

lower
:::::
carbon

:::::::
dioxide

:
(CO2)

:
emissions scenarios and with less carbon in the three main reservoirs than in higher CO2 emissions

scenarios. At 2 ◦C of warming, the mean carbon allocation differs by up to 62
::
63 PgC between scenarios and this is equivalent to5

approximately six years of our current global total emissions.
::
At

:::
the

::::
same

::::::::
warming

:::::
level,

:::::
higher

::::
CO2::::::::::::

concentration
::::::::
scenarios

::::
have

:
a
:::::
lower

:::::::::
combined

:::::
ocean

::::
and

::::
land

::::::
carbon

::::::::
allocation

:::::::
fraction

:::
of

:::
the

::::
total

::::::
carbon

:::::::::
compared

::
to

:::::
lower

::::
CO2::::::::::::

concentration

::::::::
scenarios.

The warming response to carbon dioxide, included via
::::
CO2,

:::::::::
quantified

::
as

:
the equilibrium climate sensitivity, ECS, directly

impacts the
:
a
:::::::
models global warming threshold exceedance year and

::::
hence

:
the carbon allocation. Low ECS models have10

more total carbon than high ECS models at a given warming level because the warming threshold occurs later, allowing more

emissions to accumulate.

At the same warming level, higher CO2 concentration scenarios have a lower combined ocean and land carbon allocation

fraction of the total carbon than lower CO2 concentration scenarios. These results are important for carbon budgets and miti-

gation strategies as they impact how much carbon the ocean and land surface could absorb
:
at
::
a
:::::
given

:::::::
warming

:::::
level. Carbon15

budgeting will be key for reducing the impacts of anthropogenic climate change
:
, and these findings could have critical conse-

quences for policies aimed at reaching net zero.

Keywords: Climate change, CMIP6, Earth System Models, Carbon Cycle, Carbon Allocation
:
,
:::::::
CMIP6,

::::
Earth

:::::::
System

::::::
Models

:
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report reported
:::::
found that the global mean surface20

air temperature was 1.1◦C warmer in the recent decade (2011-2020) than in the pre-industrial era. They found that human

activities have indisputably caused this warming (IPCC, 2021b), with anthropogenic greenhouse gases, particularly carbon

dioxide (CO2),
::::
being the primary cause.

Since the advent of the industrial revolution, carbon has been transferred gradually from fossil fuel reservoirs to the at-

mosphere,
::::::::
primarily

:
via combustion. Once in the atmosphere, some of the CO2 is absorbed by the ocean via gas transfer,25

some is absorbed by the land surface via terrestrial carbon fixation, while some CO2 remains in the atmosphere, as il-

lustrated in fig
:::
Fig. 1. While these fluxes also occur naturally, the additional anthropogenic carbon load has perturbed the

Earth system
::::::
System from its pre-industrial equilibrium. In the atmosphere, anthropogenic carbon causes additional warming

(Hansen et al., 1981). In the ocean, anthropogenic carbon can cause acidification (Caldeira and Wickett, 2003) or participate

in primary production or sequestration (Schlunegger et al., 2019). On the land surface, carbon can allow enhanced primary30

production and subsequent carbon sequestration. Once converted into biomass, this carbon may be a fuel source in fires

(Burton et al., 2022; Sullivan et al., 2022). Through its effect on transpiration rates, elevated atmospheric CO2 can increase

plant growth, impacting flood and drought risk (Ukkola et al., 2016), and
:::::
which

::::::
returns

::
a
::::::
portion

:::
of

:::
the

::::::::::
sequestered

::::::
carbon

::::
back

::
to

:::
the

:::::::::
atmosphere

::::::::::::::::::::::::::::::::::
(Burton et al., 2022; Sullivan et al., 2022)

:
.
:::::::
Elevated

::::::::::
atmospheric

:::::
CO2 :::

can worsen food quality and nu-

trient concentrations (Erda et al., 2005). ,
::::

and
:::::
affect

::::::::::::
water-balance

::::::::::::::::
evapotranspiration,

:::::::
reducing

::::::::::
streamflow

::
in

::::::::::::
water-stressed35

::::::
regions

:::::::::::::::::
(Ukkola et al., 2016).

:

The instantaneous distribution of anthropogenic carbon between the atmosphere, ocean and land surface is known as
:
“carbon

allocation in the Earth system which we define as carbon allocation
:::::::
System”

::::::
which

::
we

:::::::::
henceforth

::::
call

::::::
“carbon

::::::::::
allocation”. The

balance between these carbon sinks is hugely important to climate projections and policymakers (IPCC, 2021b), impacting

warming feedbacks, marine biogeochemistry and life on land (Macreadie et al., 2019; Hilmi et al., 2021). The physical and40

biogeochemical feedbacks could affect the future rates of greenhouse gas accumulation in the atmosphere, directly impacting

warming (Canadell et al., 2021). They also directly influence the remaining carbon budget, which policymakers may use to

limit fossil fuel consumption in order to keep warming in line with policy goals (Jiang et al., 2021). In addition, the balance

of carbon between the atmosphere, land and ocean has large-scale consequences on the future of climate engineering via CO2

removal and solar radiation modification (Lawrence et al., 2018). Changes to carbon allocation also impact several United45

Nations Development Programme Sustainable Development Goals, notably 13: Climate Action, 14: Life below Water and 15:

Life on Land (United Nations, 2015).

In observations, the atmospheric CO2 concentration is typically measured directly, while the ocean and terrestrial CO2 sinks

are estimated with global process models constrained by observations. For the decade 2008–2017, the Le Quéré et al. (2018)

synopsis of carbon cycle
::
the

::::::
global

::::::
carbon

::::::
budget

:
summarised that the fossil fuel emissions were 9.4 ± 0.5 PgC yr−1, and50

emissions from land use and land-use change was 1.5 ± 0.7 PgC yr−1, most of which was due to deforestation. The growth of

the atmospheric carbon was 4.7 ± 0.02 PgC yr−1, the ocean carbon sink was 2.4 ± 0.5 PgC yr−1, and the terrestrial carbon sink

2



Figure 1. A simplified version of the Earth system
:::::
System

:
carbon cycle. Interactive fluxes are shown as arrows, prescribed fluxes are shown

as box arrows, and derived fluxes are shown as chevrons. The arrows in gold are considered in this analysis, and the grey arrows are not

considered. The prescribed change in atmospheric carbon, ∆CO2, accounts for the anthropogenic fossil fuel exploitation and the subsequent

carbon emission. Note that while in nature there is a flux of land carbon into the ocean via rivers, and there may be a flux of fossil fuels

directly into the ocean or land surface via for instance fossil fuel extraction, these are not generally included in CMIP6 models.

was 3.2 ± 0.8 PgC yr−1. In that synthesis, the
:::
The

:
difference between the estimated total emissions and the estimated changes

in the atmosphere, ocean, and terrestrial biosphere was 0.5 PgC yr−1, which indicated that there were either overestimated

emissions or underestimated sinks or both. There is a also a flux of land carbon into the ocean via rivers between 0.45 ±55

0.18 PgC yr−1 and 0.78 ± 0.41 PgC yr−1(Jacobson et al., 2007; Resplandy et al., 2018; Hauck et al., 2020). ,
::::

but
:::
this

::::
flux

::
is

:::
not

::::::::
generally

:::::::
included

:::
in

::::::
CMIP6

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jacobson et al., 2007; Resplandy et al., 2018; Hauck et al., 2020).

:
There may also

be a
:::::
direct flux of fossil fuels directly

:::
fuel

:::::::::
extraction

:::
and

:::::
other

:::::
leaks

:
into the ocean or land surface via for instance fossil

fuel extraction and other leaks (Roser and Ritchie, 2023), but these are not generally included in Earth system models.
:::
also

::::::::
neglected

::
in

::::::
models.

:
60

It is widely accepted that atmospheric CO2 is correlated with the global mean atmospheric surface temperature. Figure
::::
long

:::::::::
established

:::
that

:::
the

::::::::::
relationship

:::::::
between

::::::::::
cumulative

::::::::
emissions

:::
and

::::
peak

::::::::
warming

::
is

:::::::::
insensitive

::
to

:::
the

:::::::
emission

::::::::
pathway,

:::::
either

::
in

:::
the

:::::
timing

:::
of

::::::::
emissions

::
or
::::

the
::::
peak

::::::::
emission

:::
rate

::::::::::::::::
(Allen et al., 2009).

:::::
More

::::::::
recently,

:::::
figure

:
5.31 of Canadell et al. (2021)

shows
:::
also

::::::
shows

::::::::
negligible

::::::::
pathway

::::::::::
dependence

::::::::
between the cumulative carbon emissions against

:::
and

:::
the

:
global mean

3



temperature change for
:
in

:
several projections. That figure shows a strong correspondence between emissions and warming65

which appears to be scenario independent.

The warming climate and rising atmospheric CO2 ::
and

::::::::
warming

:::::::
climate will cause major changes in vegetation structure

and function over large fractions of the global land surface. In Friend et al. (2014), an
:::
An increase in global land vegetation

carbon was
:::
has

::::
been

:
projected, but with substantial variation between vegetation models

::::::::::::::::
(Friend et al., 2014). Much of the

variability between ESMs
::::::
models in global land vegetation carbon stocks was explained by differences in land vegetation70

carbon residence time (Jiang et al., 2015). In the ocean, the mechanism is summarised by Katavouta and Williams (2021): an

increase in atmospheric CO2 enhances the ocean carbon storage while warming acts to decrease the ocean carbon storage .

::::::::::::::::::::::::::
(Katavouta and Williams, 2021).

:

Both the ocean and land carbon sinks are projected to continue to grow as the atmospheric concentration of CO2 rises

(Canadell et al., 2021). However, the combined fraction of emissions taken up by
::
the

:
land and ocean is projected to de-75

cline,
::::
and

:
a
:::::
larger

:::::::
fraction

::
of

:::
the

:::::::::
emissions

::::
will

::::::
remain

::
in

:::
the

::::::::::
atmosphere. The carbon allocation at the year 2100 is strongly

scenario dependent (IPCC, 2021a, fig. SPM7). For instance, in SSP1-1.9, 30% of the carbon remains in the atmosphere in the

:::::::::::::::::::::
(IPCC, 2021a, Fig. SPM7)

:
.
:::
The

::::::::
projected

::::::::::
atmospheric

::::::
carbon

:::::::::
allocation

::
in

:::
the year 2100 , but in SSP5-8.5, that value is

:::::
ranges

::::
from

::::
30%

::
in
:::::::::

SSP1-1.9
::
to 62% .

:
in
:::::::::

SSP5-8.5.
::::
The

::::::
Shared

:::::::::::::
Socioeconomic

::::::::
Pathways

::::::
(SSPs)

:::
are

:::::::::
described

:::::
below

::
in
::::

sec.
::::
1.1.

While the land and ocean carbon uptake are expected to remain approximately equal, the uncertainty is much larger for the80

land carbon sink than the ocean. In the land , some of the uncertainty
:::
The

::::::::::
uncertainty

::
in

:::
the

::::
land

::::
sink is due to the balance of

increased land carbon accumulation in the high latitudes and
::::::
against

:::
the loss of land carbon in the tropics(Canadell et al., 2021)

. Further uncertainty arises from ,
::::
and the challenges of forecasting the water cycle, including droughtsthat reduce

::::::::
especially

::::::::
droughts,

::::::
which

::::::::::
significantly

::::::
reduce

:::
the carbon absorption potential of the land surface

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ukkola et al., 2016; van der Molen et al., 2011; Canadell et al., 2021)

. On the other hand, the ocean CO2 sink is strongly dependent on the emissions-scenario. This
:::::::::
continuous

:
absorption of85

carbon into the ocean reduces the mean global buffering capacity and drives changes in the global ocean’
:
’s carbonate chem-

istry(Jiang et al., 2019; Katavouta and Williams, 2021). These projections are based on data from the Coupled Model Inter-comparison

Project (CMIP), and the most recent CMIP round, CMIP6, is described in sec. ??. ,
:::::::
building

:
a
::::::
strong

::::::::::
dependency

::
on

:::
the

::::::
choice

::
of

::::::::
scenarios

::::::::::::::::::::::::::::::::::::::::
(Jiang et al., 2019; Katavouta and Williams, 2021)

:
.

1.1
::::

Sixth
::::::::
Coupled

::::::
Model

:::::::::::::::
Inter-comparison

:::::::
Project

::::::::
(CMIP6)90

1.2 Sixth Coupled Model Inter-comparison Project (CMIP6)

Earth System models (ESMs) are one of the main tools to study the climatic impact of the combustion of fossil fuels, and

they are the
::
the

:
only tools capable of projecting the

:
a future coupled carbon-climate system. The Sixth Coupled Model

Inter-comparison Project (CMIP6) (Eyring et al., 2016) is the most recent in a series of global efforts
:::::
global

:::::
effort

:
to stan-

dardise, share and study ESM simulations . To
::::::::::::::::
(Eyring et al., 2016).

::::
The

:::::::
CMIP6

:::::::
standard

:::::::::
simulation

:::::::::
protocols,

::::::
called

:::
the95

:::::::::
Diagnostic,

::::::::::
Evaluation

:::
and

::::::::::::::
Characterization

::
of
::::::

Klima
:::::
(The

:::::::
DECK),

:::
are

::::::::
required

::::::::::
simulations

:::
for

:
a
::::::
model

::
to

:
participate in

CMIP6, models must meet certain model quality and data standards. These quality requirements include a drift .
::::
The

::::::
DECK
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:::::::
includes

:
a
:::::::::::
pre-industrial

:::::::
control,

::
at
:::::
least

:::
one

::::::::
historical

::::::::::
simulation,

:
a
:::::::
gradual

:::
1%

::::
CO2::::::

growth
::::::::::
experiment

:::
and

::
a
::::
rapid

:::::::
4xCO2

:::::::::
experiment.

::::
For

::::::
quality

:::::::::
assurance,

::::
only

::::::
models

::::
with

:
a
::::::
global

::::
drift

:::
per

::::::
century

:::::
lower

::::
than

:::
10

::::
PgC in the air-sea flux of CO2 of

less than 10 PgC per century, and a drift in the global
:::
flux

:::
and

:::::
lower

::::
than

:::
0.1

:

◦
::
C

::
in

:::
the volume mean ocean temperature of less100

than 0.1 degrees per century
:::
are

:::::::
accepted

:
(Jones et al., 2011; Eyring et al., 2016; Yool et al., 2020).

In order to make projections of the future anthropogenic climate drivers, multiple scenarios were proposed in the Scenari-

oMIP project to cover a wide range of potential futures .
:::::::::::::::::
(O’Neill et al., 2016).

:
ScenarioMIP expands upon the CMIP6 core

simulations and multiple scenarios are available for modellers to use to generate simulations (O’Neill et al., 2016). We include

the scenarios: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 (O’Neill et al., 2016; Riahi et al., 2017)
:::
with

::::::::
multiple105

:::::::
scenarios

:::
of

:::
the

:::::
future

::::::::::::
anthropogenic

::::::
climate

::::::
drivers

:::
that

:::::
cover

::
a
::::
wide

:::::
range

::
of

::::::::
potential

:::::
future

::::::
climate

::::
and

::::::
human

:::::::::
behaviours

:::::::::::::::::
(O’Neill et al., 2016). Scenario names in CMIP6 are comprised of a general future

:::::::::
correspond

::::
with

::::
one

::
of

:::
the

::::
five

::::::
shared

::::::::::::
socioeconomic

:
pathway (SSP1-SSP5) followed by an estimate of the radiative forcing at the year 2100 in units of

:::::::
between

:::
1.9

:::
and

:::
8.5

:
Wm−2. These scenarios cover a wide range of possible futures, including sustainable development in the

::::::
SSP1-5

::
are

:::::::::
narratives

::::
that

:::::::
describe

:::::
broad

:::::::::::::
socioeconomic

:::::
trends

::::
that

:::
are

::::::::
expected

::
to

:::::
shape

:::
the

:::::
future

:::
of

::::::::
humanity,

::::
and

:::
are

:::::
based

:::
on110

:::::
trends

::
in

::::::::::
population,

:::::::::::
urbanisation,

:::
and

:::::::::::
technological

::::
and

::::::::
economic

::::::
growth

::::::::::::::::
(Riahi et al., 2017).

:::
In

:::
this

:::::
work,

:::
we

:::::::
include:

::::
two

:::::::::
sustainable

:::::::::::
development

::::::::
scenarios SSP1-1.9 and SSP1-2.6scenarios. The “middle of the road” pathway in ;

:::
the

:::::::::::
intermediate

::::::::
emissions

::::::::
scenario, SSP2-4.5extrapolates historic and current global development into the future with ,

::::::
which

:::
has

:
a medium

radiative forcing by the end of the century. The
:
;
:::
the regional rivalry scenario, SSP3-7.0, revives nationalism and regional

conflicts, pushing
:::::
which

::::::
pushes

:
global issues into the backgroundand resulting in higher emissions. Then finally,

:
;
::::
and the115

enhanced fossil fuel developmentin
:
,
:
SSP5-8.5is a scenario with the highest feasible ,

::::::
which

:::
has

:::::::::
extremely

::::
high

:
fossil fuel

deployment and atmospheric CO2 concentration (Riahi et al., 2017)
::::::::::::::::::::::::::::::::
(O’Neill et al., 2016; Riahi et al., 2017).

1.2 Climate Sensitivity

Given the same rise in atmospheric CO2 concentration, each ESM will warm by a different amount
::
to

:
a
::::::::
different

::::::::::
temperature

due to the significant structural and parametric differences between models. The Equilibrium Climate Sensitivity (ECS) is a120

measure of this sensitivity to CO2. The ECS is given in Celsius and represents the long-term
::::::
defined

::
as

:::
the

:::::
global

:::::
mean

:
near-

surface air temperature rise that is expected to result from
:
in

:

◦
:
C

::
in

:::::::
response

::
to
:
a doubling of the atmospheric CO2 concentration

once the model has reached equilibrium. In effect, the ECS is an indicator for how much warming occurs in a model with a

doubling of CO2. The most recent
:::
The

:
5-95% assessed natural ECS range was

::::::::
confidence

:::::
range

::
of

::::
ECS

::
is
:
between 2 ◦C and

5 ◦C, the likely ECS range was
:
is
:
2.5 - 4 ◦C, and the most likely value was

::
is 3 ◦C (Arias et al., 2021, TS6).125

The wide spread of ECS values in climate
::::::::::::::::::::
(Arias et al., 2021, TS6).

:::
In

::::::
ESMs,

:::
the

:::::
spread

::
in
:::
the

:::::::::
sensitivity

::
to

:::::
CO2 :::::::

between

models is one of the causes of uncertainty for
:
in

:
the timing of when forecasts

:::::::::
projections reach certain warming levels. The

::::::::
Similarly,

:::
the

::::::::::
uncertainty

::
in

::::
the “allowable emissions” that

:::::
would

:
keep global temperature rise within policy targets are

equally
:::
also impacted (United Nations Treaty Collection, 2015). This has been exacerbated in the latest round of CMIP, as

the
:::::::::
uncertainty

::
is

::::::::::
exacerbated

::
in CMIP6 generation of ESMs

:
as
::
it has a broader range of sensitivities

::::
ECS

::::::
values than previous130

generations . Several
:::
and

::::::
several

:
CMIP6 models have a stronger response to atmospheric carbon than any CMIP5 model, and

5



many sit above
:::
are

::::::
outside

:
the likely ECS range (Arias et al., 2021, TS6.).

:::::::::::::::::::
(Hausfather et al., 2022)

:
.
:::::::::::
Uncertainties

:::
in

:::::
cloud

::::::::
feedbacks

::::
have

::::
been

:::::::::
identified

::
as

:::
the

::::
main

:::::
cause

::
of

:::
the

:::::
large

::::
ECS

:::::
range

::
in

::::::
CMIP6

::::::::::::::::::::::
(Ceppi and Nowack, 2021)

:
.

1.3 Global Warming Levels

Climate change policy can often
:::
has

::
a

:::::::
tendency

:::
to focus on the climate at specific target years, like

::::
such

::
as

:
2050 or 2100135

(United Nations Treaty Collection, 2015; IPCC, 2021a). However, due to the wide range
:::::::
diversity

:
of ECS values in ESMs,

this can mean that ensembles at the year 2100 are composed of a set of models with significantly different behaviours. This

wide range in the temperatures and warming rates
::::::
CMIP6,

:::
the

::::::::
ensemble

::::
will

::::::
project

:
a
::::
wide

:::::
range

::
of

::::::::
warming

::::
rates

::::
and

::::::
surface

::::::::::
temperatures

:
at a given point in time.

::::
This

:::::
wide

:::::
range

::
of

:::::::::
behaviours has knock-on effects on

:::::
climate

:
feedbacks and may inhibit

the realism and representativitity
:::::::::::::::
representativeness of the ensemble

:
’s multi-model mean (Hausfather et al., 2022; Swaminathan140

et al., 2022).
:::
On

:::
the

::::
other

:::::
hand,

::::
this

::::
more

:::::::::::::
comprehensive

:::::
range

::
of

::::::::
responses

::
is

:::::::
valuable

::
in

::::::::
exploring

:::::::::::::
carbon-climate

::::::::
processes

:::
that

:::
are

::
of

:::::
direct

::::::::
relevance

::
to

::::::
policy. Instead of specific target years, we can alternatively focus on model behaviour at

::::
focus

:::
on

::::
three

:
specific Global Warming Levels (GWL), such as .

::::::
These

:::
are 2 ◦C, 3 ◦C or 4 ◦C of warming relative to the pre-industrial

period. By investigating the system’s behaviour at specific warming levels instead of target years, we can account for the impact

of climate sensitivity and make
::::
They

:::::
allow

::
us

::
to

:::::::
generate

:
policy relevant assessments while still exploiting the full ensemble145

of CMIP6 models. This allows us to maintain model democracy, even in a so-called “hot model” ensemble .

The
:::
Not

::::
only

:::::
does

:::
the

:::::
GWL

:::::::::::
methodology

::::::
mirror

::::
the

:::::
policy

:::::::::
discourse

::::::::::
surrounding

:::
the

::::::
policy

::::::
targets,

::
it
::

is
::::

also
:::::::

largely

::::::::::
independent

::
of

:::
the

::::::
choice

::
of

:::::
future

:::::::::
emissions

:::::::
scenario

::
as

:::
the

:::::
world

::::::
largely

:::::
looks

:::
the

:::::
same

::
at 2 , 3 and 4 ◦C

::
C,

::
no

::::::
matter

::::
how

::
we

:::
get

:::::
there

::::::::::::::::::::
(Hausfather et al., 2022).

:::
In

:::::::
addition,

:::::
GWL

::::::::
bypasses

:::
the

::::
need

:::
to

:::::
select

::
or

::::::
weight

::::::
CMIP6

:::::::
models

::
as

::::
each

::::::
model

:::::::
provides

::::::
distinct

::::
and

::::::
relevant

:::::::::::
information,

::
so

:::
the

:::
full

:::::::
CMIP6

::::::::
ensemble

:::
can

::
be

::::
used

::::::::::::::::::::
(Hausfather et al., 2022)

:
.
:::
The

:::::
three GWLs150

were chosen because the 2 ◦C GWL is a key target set in the 2015 Paris Agreement (United Nations Treaty Collection, 2015)

and thought to be a threshold for potentially dangerous climate change
:::::::::::::::::::::::::::::::::
(United Nations Treaty Collection, 2015). The 3 ◦C

GWL is the warming level that current nationally determined emission policies will realise for the year 2100 assuming a

median climate sensitivity (United Nations Environment Programme, 2019). Finally, the 4 ◦C GWL is a low likelihood but

high impact outcome if climate sensitivity is higher than median values or emission reductions and climate policy break down155

::::::::::::::::
(World Bank, 2012).

This is the first work that presents the carbon allocation using this
:::
the GWL framework. Previous analyses project carbon

allocation at an arbitrary point in time using the mean of a set of models with widely different warming rates and sensitivi-

ties (IPCC, 2021a; Canadell et al., 2021). When compared against projections at specific points in time, our results are less

influenced by the overall
::::::
climate

:
sensitivity of the ensemble and may be more relevant to policymakers.160
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2 Methods

2.1 Carbon allocation calculation

We calculate the carbon allocation for the land, ocean and atmospheric reservoirs separately. On the land surface, the land
:::
The

:::
land

:
carbon sink, SLand, is derived from the global total

:::
two

:::::
other

:::::
fields:

:::
the

:
net biome production(NBP ) and the

:
,
::::
NBP,

::::
and

global total land use emissions(LUE). As NBP is defined as the difference between land sink and emissions from land use165

(NBP = SLand −LUE), then:

SLand =NBP +LUE

The NBP is an prognostic ,
:::::
LUE.

::::
The

::::
NBP

:
is

::
a

::::::::
diagnostic

:
variable calculated by the models and it is defined as positive

for fluxes into the land carbon store in CMIP6 (Jones et al., 2016). We calculated the
:::::
SLand ::

is
:::
the

::::::
activity

::
of

:::
the

::::::::::
vegetation,

:::::
which

::
is

:::
the

::::::::
combined

:::::::
carbon

:::
flux

:::
of

::
all

::::::
natural

:::::::
sources,

:::::::::
including

:::::::::::::
photosynthesis,

:::::::::
respiration,

:::::::
wildfire

::::
and

::::
other

:::::
sinks

::::
and170

::::::
sources.

::::::
These

::::::
natural

:::::
fluxes

:::
and

::::::::
therefore

:::
the

:::::
carbon

:::::
sinks

:::
are

::::::
altered

::
by

::::::::::::
anthropogenic

::::::
carbon

::::::::
emissions

::::
into

:::
the

::::::::::
atmosphere,

::
for

::::::::
example

::::
from

:::::
fossil

::::
fuel

::::::::::
combustion.

::::::
SLand::

is
:::::::
positive

::
in

:::
the

::::::::
direction

::
of

::
a
::::
sink

:::
into

::::
the

::::
land

::::
from

:::
the

:::::::::::
atmosphere,

:::
but

:
it
:::::
does

:::
not

:::
the

::::::
effects

::
of

:::::::::::::
anthropogenic

:::::::
land-use

:::::::
change.

::::
The

::::
LUE

::
are

:::::::::::::
anthropogenic

::::::
carbon

:::::
sinks

:::
and

:::::::
sources,

:::::::::
including

:::::::::::
deforestation,

::::
land

:::::::::::
management,

:::::::::::
reforestation

:::
and

:::::
others

::::::::::::::::::::
(Lawrence et al., 2016).

::::
LUE

:
is

:::::::
positive

:::
into

:::
the

:::::::::::
atmosphere.

::::
NBP

::
is

:
a
:::::::::
diagnostic

:::
that

::::::::
combines

::::
both

::::::
Sland :::

and
::::
LUE

:
.
::::
NBP

:
is

:::::::
positive

:::
into

:::
the

:::::
land,

::
so

:::
for

:::::
these

::::
sign

::::::::::
conventions,

:::::
NBP

:::::::::
= SLand−175

::::
LUE,

::::
and

:::::::::
represents

:::
the

:::
net

::::::::
exchange

:::::::
between

::::
land

::::
and

::::::::::
atmosphere

::::::::
including

::::::::::::
anthropogenic

::::::::
emissions

:::::::
relating

::
to

::::
land

::::
use

::::::
change.

::::
The

::::::::
directions

:::
for

::::
these

::::::
fluxes

:::
that

:::
are

:::::
taken

::
as

::::::
positive

:::
are

::::::::
indicated

::
in

::::
Fig.

:
1.
:::
To

::::::::
diagnose

:::
only

:::
the

::::::
SLand::::::::::

component,

:
it
::
is

::::::::
therefore

::::::::
necessary

::
to

::::
add

::::
back

::
in

:::
the

:::::
LUE

::
to

::::
NBP

:
.
:::
As

::::
such,

::::::
SLand::

is
::::
here

::::::::
computed

:::
as

:::
the

::::
sum

::
of

:::
the

:
global total net

biome production as the cumulative sum over the entire global land surface of the NBP multiplied by the cell surface area.

From CMIP6 simulations, it
:::
and

:::
the

:::::
global

::::
total

::::
land

::::
use

:::::::::
emissions:180

SLand =NBP +LUE
:::::::::::::::::::

(1)

:::::
ESMs

:::::::
produce

::::
NBP

::
as

:
a
:::::::::
diagnostic

::::
field

::
in
:::
the

::::
nbp

::::::
dataset,

:::
but

:::
this

::
is
:::::::
actually

:::::
their

::::
total

::::::
carbon

::::::
change

::
in

:::
the

:::::
land.

::
It is

not possible to directly isolate the LUE and so these are taken from
:::
LUE

::
for

:::::
each

:::::
model

::::
and

::::::::
ensemble

:::::::
member

::
in

:::::::
CMIP6

::::::::::
simulations,

:::
and

:::
the

::::
LUE

::::
value

:::
are

::::::::
calculated

:::::
from

::::::::
prescribed

:
land use scenarios

:::
and

::
are

:
common across all models and all en-

semble members following Liddicoat et al. (2021). As described in Pongratz et al. (2014) and Liddicoat et al. (2021), a
:
A

:
more185

accurate method of determining the LUE is
:::
LUE

:::::
would

::
be to calculate the difference in net biosphere production between a pair

of simulations, one with land use changing over time, and the other with fixed land use
::::::::::::::::::::::::::::::::::::
(Pongratz et al., 2014; Liddicoat et al., 2021)

. However, these simulation pairs exist only for a limited subset of models and scenarios . CMIP6 experiments express the LUE

in units positive into the atmosphere, which is the opposite direction of the carbon flux in NBP .
:
as

::::
part

::
of

:::
the

:::::
Land

:::
Use

::::::
Model

::::::::::::::
Inter-comparison

::::::
Project,

:::::::
LUMIP

:::::::::::::::::::
(Lawrence et al., 2016)

:
.
::
In

:::::::
practice,

:::
we

:::::::::
calculated

:::
the

::::::
global

::::
total

:::
net

:::::
biome

:::::::::
production

:::
as190

::
the

::::::::::
cumulative

::::
sum

:::::
along

:::
the

::::
time

::::
axis

:::
of

:::
the

::::
land

::::::
surface

:::::
NBP

::::::::
multiplied

:::
by

:::
the

:::
cell

:::::::
surface

::::
area

::::
then

:::::::
summed

:::::
with

:::
the

:::::
annual

:::::
LUE

::::
value

:::::
from

::::::::::::::::::
Liddicoat et al. (2021)

:
.
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The ocean component of the carbon allocation, SOcean, is the total global sum of the air sea flux of CO2. We calculated this

as the sum of the air-sea flux of CO2 multiplied by the ocean area of each cell, expressed as a cumulative sum of the annual

totals.
::::
Like

:::
the

::::
land

:::::::
surface,

:::
the

:::::
ocean

:::
can

::
be

::::
both

::
a
::::
sink

:::
and

:
a
::::::
source

::
of

:::::
CO2.

:
195

In the atmosphere, the
:::::
global

:::::
mean

:
CO2 concentration is provided in the scenario forcing from ScenarioMIP in units of

parts per million (ppm). The total mass of the carbon in atmospheric CO2, CAtmos,
:
is calculated by multiplying the change

in concentration relative to the 1850 value in ppm by a constant factor. This conversion factor is 1 ppm of
:::
2.13

::::
PgC

::::
per

::::
ppm

::::::
change

::
in

:
CO2 is equivalent to 2.13 PgC

:::::::::::
concentration (Myers, 1983). No matter how much carbon the land and ocean

components absorb from the atmosphere, the atmospheric concentration of CO2 will always strictly follow the prescribed200

atmospheric CO2 concentrations of the forcing scenario. This means that anthropogenic emissions can be estimated for each

model (Jones et al., 2013). The total anthropogenic carbon, CTotal, is the sum of the total carbon in the atmospheric CO2:
,

::::::
CAtmos:

and the cumulative global total CO2 flux into the seaand the true land sink.
:
,
:::::::
SOcean,

:::
and

:::
the

::::
land

::::
sink,

::::::
SLand:

:

CTotal = CAtmos +SOcean +SLand (2)

2.2 Included Models205

This analysis used all CMIP6 ESMs for which the following three variables were available as monthly averages over the time

period 1850-2100: the near-surface atmospheric temperature (tas
::
tas), the net biome productivity (nbp

:::
nbp) and the air to sea

flux of CO2 (fgco2
::::
fgco2). We limited each model to only the first ten ensemble members for each scenario, and required at

least one historical and future scenario pair for each ensemble member. The grid cell area was also required for the ocean

(areacell
:::::::
areacello), and for land and atmosphere (areacella

:::::::
areacella) grids. We excluded the entire ensemble member if any210

variables were absent, the time series was incomplete, or the data could not be made compliant with CMIP6 standards.

In CMIP6, modelling centres may contribute more than one ensemble member for each scenario to the Earth System Grid

Federation (ESGF). For instance, the UKESM1
:::::::::::::
UKESM1-0-LL

:
model produced 19 different variants for the historical experi-

ment, each using slightly different initial conditions drawn from the pre-industrial control (piControl) simulation (Sellar et al.,

2020). This generates an ensemble of variants which samples a wide range of the unforced variability simulated by the model.215

By spanning the range of internal variabilitysimulated by the model, the mean of a single model ensemble can give a more

robust estimate of the
::
its forced climate change .

::::::::
response.

Each modelling centre may choose
:::
has

::::::::
flexibility

::
on

:
which scenarios they simulate and how many ensemble members are

generated for each scenario. This means that there is wide variation in the number of ensemble members between models.

To balance models with large ensembles against models with small ensembles, we used a “one model - one vote” weighting220

scheme. This ensured that each model was given equal weight in the final multi-model mean. In practice, each ensemble

member of a given model was weighted inverse proportionally
:::::::
inversely

:::::::::::
proportional to the number of ensemble members that

the model contributed. No effort was made to weigh
:::
For

::::::
reasons

::::::::
described

::
in

:::::
Sect.

:::
1.3,

:::
we

:::
did

:::
not

::::::
weight the results regarding

the model quality,
:::::::::
sensitivity

:
or historical performance.

Table 1 lists the contributing models, the number of ensemble members for each scenario, and each model’s equilibrium225

climate sensitivity (ECS). The ECS plays a first order role in how rapidly a given model reaches a given GWL for a given CO2
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pathway. For most models, we took the ECS value from Zelinka et al. (2020). For the models whose ECS was not included

in Zelinka et al. (2020), we use the following ECS values: ACCESS-ESM1-5 from Ziehn et al. (2020), CMCC-ESM2 from

Lovato et al. (2022), EC-Earth3-CC from Hausfather et al. (2022), GFDL-ESM4 from Dunne et al. (2020), and MPI-ESM1-

2-LR from Mauritsen et al. (2019). No ECS value was available for the CanESM5-CanOE model as it did not provide the230

abrupt 4xCO2 experiment required to calculate ECS using the Gregory method (Gregory et al., 2004; Christian et al., 2022).

However, it only differs from CanESM5 by the addition of a marine BGC
:::::::::::::
biogeochemistry

:
component model (Swart et al.,

2019; Christian et al., 2022). We follow the method used elsewhere (Hausfather et al., 2022; Scafetta, 2022), and substitute

CanESM5’s ECS value for CanESM5-CanOE. Other ECS datasets also exist, see for instance: Flynn and Mauritsen (2020);

Meehl et al. (2020); Weijer et al. (2020); Hausfather et al. (2022), and only have small differences in their values .
::::
differ

::::::
within235

:::
0.1 ◦

:
C
:::::
from

:::
the

::::::
values

::::
used

::
in

::::
this

:::::
study.

:
All ECS values included here use the Gregory et al. (2004) method, however, the

value of ECS for any given model is sensitive to the method that was used to derive it. See for instance tab.
:::::
Table 4 of Boucher

et al. (2020), where ECS for the same model varies
::::
may

::::
vary by more than a degree

:
1 ◦

:
C
:
depending on the methodology.

This table also
:
In

:::
its

:::
last

::::
row,

:::::
Table

::
1
:
shows the ensemble mean ECS of the contributing models for each scenarioin the

last row. The weighted ECSis only weighted by
:
.
::::::::
Following

:::
the

::::::::::
“one-model

:::::::::
one-vote”

:::::::
scheme,

::
the

:::::::::
“weighted

:::::
ECS”

::::
only

:::::
takes240

:::
into

:::::::
account the presence or absence of models, not the number of contributing ensemble members, reflecting the “one-model

one-vote” weighting scheme described above.
:
. The spread of weighted ECS values between scenarios is small, ranging from

3.96 for SSP1-1.9 to 4.17 for SSP5-8.5. Five out of six of these ensemble means sit above the likely ECS range of 2.5 C - 4 ◦C,

and four of the individual models are outside the 5-95% confidence band, 2 C and
:
- 5◦C (Sherwood et al., 2020; Arias et al.,

2021).245

As in other CMIP ensemble studies, we attempt to maximise the number of models in this work (Flynn and Mauritsen, 2020; Meehl et al., 2020; Weijer et al., 2020; Hausfather et al., 2022)

, so
::
in

::::
order

::
to

:::::::
improve

:::::::::
robustness

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Flynn and Mauritsen, 2020; Meehl et al., 2020; Weijer et al., 2020; Hausfather et al., 2022)

:
.
::::
This

::::::
means

:::
that

:
we allow all available candidates, even pairs of sibling models: there are two CESM2 models and two

CanESM5 models in the ensemble. CESM2-WACCM6 is configured identically to CESM2, except that it
::
has

:::::::::
expanded

::::::
aerosol

::::::::
chemistry

:::
and

:
uses 70 vertical levels and its model top is at 4.5 × 10−6 hPa (approximately 130 km), instead of CESM2’s 32250

vertical levels and a model top at 2.26 hPa (approximately 40 km) (Danabasoglu et al., 2020). The CanESM5-CanOE model

differs from CanESM5 by the addition of a more complex marine biogeochemistry component (Christian et al., 2022).

In addition to sibling models, the same individual component models are used by several modelling centres. For instance, the

NEMO ocean circulation model forms the marine circulation component model of six of the earth system models
:::::
ESMs used

here (Heuzé, 2021). While the ESMs use differing versions of NEMO with different configurations and settings, these models255

can not be treated as statistically independent. However, it is beyond the scope of this work to develop or apply a method to

weight models such that the multi-model mean is statistically robust, for instance in Brunner et al. (2020).

2.3 Global warming level calculation

We calculated the global warming level following the methods of Swaminathan et al. (2022). The global mean atmospheric

surface temperature is calculated for each model, scenario and ensemble member. The anomaly is the difference from the260
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Table 1. A list of the models, the number of contributing ensemble members for each scenario, the model ECS, and the weighted mean ECS

of the contributing models. The weighted ECS row shows how the model occupancy affects the mean ECS of the ensemble for each scenario.

The presence or absence of models impacts the weighted ECS, but not the number of contributing ensemble members.

Model Historical SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 ECS

ACCESS-ESM1-5 3 2 3 2 1 3.87

CESM2 3 3 3 3 3 5.15

CESM2-WACCM 3 1 3 1 3 4.68

CMCC-ESM2 1 1 3.57

CanESM5 10 10 10 10 10 10 5.64

CanESM5-CanOE 2 2 2 2 5.64

EC-Earth3-CC 8 8 1 4.23

GFDL-ESM4 1 1 1 1 1 1 2.7

IPSL-CM6A-LR 12 5 3 6 10 5 4.56

MIROC-ES2L 5 5 5 5 5 5 2.66

MPI-ESM1-2-LR 5 5 5 5 5 5 2.83

NorESM2-LM 2 1 2 1 2.56

UKESM1-0-LL 10 5 10 10 10 5 5.36

Total number of Ensembles 65 31 43 59 50 39

Total number of Models 13 6 11 13 11 10

Weighted ECS 4.11 3.96 4.15 4.11 4.15 4.17

mean of the period 1850-1900 from the relevant historical ensemble member. This temperature time series is then smoothed

by taking the mean of a window with a width of 21 years, i.e. 10 years either side of the central year. The first year that the

smoothed global mean surface temperature anomaly exceeds the global warming level is the GWL exceedance year (see Fig. 1

of Swaminathan et al. (2022)). Note that due
:::
Due

:
to the 21 year window

:::
and

:::::::::
simulations

:::::::
ending

::
in

::::
2100, the last possible

GWL
:::::::::
exceedance

:
year is 2090.265

We calculate the multi-model mean for each of the variables using the “one model - one vote” scheme described above. We

also determine the multi-model mean GWLs and their timings from the multi-model mean temperature, instead of taking the

weighted mean of the individual ensemble members GWLs timings. This method ensures that the multi-model mean is more

representative of the overall ensemble, instead of
::::
being

:
biased towards only those models that reach the GWL.

We used the ESMValTool toolkit to perform the analysis. ESMValTool is a software toolkit that was built to facilitate the270

evaluation and inter-comparison of CMIP datasets by providing a set of modular and flexible tools (Righi et al., 2020). These

tools include quick ways to standardise, slice, re-grid, and apply statistical operators to datasets. In our case, we used the

annual_statistics preprocessor to calculate the annual mean, the mask_landsea preprocessor to mask the land or
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ocean areas, and the area_statistics preprocessor to calculate the area weighted global mean. ESMValTool is hosted on

GitHuband all ,
::::
and

:::
we

::::
have

:::::
made

:::::::
available

:::
all

::
of

:::
the

::::
code

::::
used

::
in

:
the code we used here is available as described in the

:::::
study275

:::
(see

:::::
Code

:::
and

:
data availability section.

:
).

3 Results

3.1 Multi-model mean carbon allocation

The total multi-model mean carbon allocation for each scenario at the year 2100 and for each of the three warming levels
::::::
GWLs

is shown in fig
::
Fig. 2. The left side shows the percentage allocation, and the right side shows the totals in PgC. In the top panes280

showing the
:::
The

::::
top

::::
pane

:::::
shows

::::
the carbon allocation at the year

::::
2100.

:::
At 2100, the higher emission scenarios have greater

total carbon allocations with
:::
and

:
more of that carbon is allocated to the atmosphere, relative to the lower emission scenarios.

At the year 2100, more carbon is allocation
:::::::
allocated

:
to the ocean than the land in SSP5-8.5, SSP3-7.0 and SSP2-4.5, while

more carbon is allocation
:::::::
allocated to the land than the ocean in SSP1-2.6, SSP1-1.9

::
and

::::::::
SSP1-2.6. This reproduces the results

discussed earlier from (IPCC, 2021b, fig. SPM7).
::::::::::::
IPCC (2021b)

:::
Fig.

::::::
SPM7.

:
285

The lower three rows of this figure
:::::
panes

::
of

::::
Fig.

::
2 show the carbon allocation at each GWL. In all cases, the variability

between scenarios within a single GWL is significantly less that
:::
than

:
the variability between scenarios at the year 2100 in the

top pane. However, the variability within the same GWL is still significant in absolute terms. For instance, the multi-model

mean
:::
total

::::::
carbon

:::::::::
allocation

::
for

:::
the

:
2 ◦C GWL ranges from 909 PgC in SSP2-4.5 to 972 PgC in SSP3-7.0 (a range of 63 PgC).

At the 3 ◦C GWL, the range is 56 PgC and at 4 ◦C GWL, the range is 15 PgC. When compared against the annual total290

emissions estimate, 9.4 ± 0.5 PgC yr−1 (Le Quéré et al., 2018), these differences between scenarios represent several years
:
’

worth of the global total anthropogenic emissions.

In the land surface, the multi-model mean 2 C GWL has
:::::
means

::::
have

:
a range of 46 PgC, 35 PgCat the 3

:
,
:::
and

:::
52

::::
PgC

:::::::
between

:::::::
scenarios

:::
for

:::
the

::
2 ◦CGWL, and at 4

:
,
:
3 ◦CGWL, the range is 52 PgC between scenarios. ,

::
4 ◦

::
C

:::::
GWLs

:::::::::::
respectively. The recent

annual terrestrial carbon sink was 3.2 ± 0.8 PgC yr−1 (Le Quéré et al., 2018), so the difference between scenarios is equivalent295

to at least a decade
:
’s
:
worth of current carbon absorption by the land surface.

In the ocean , the 2 C GWL carbon allocation has
::::
The

::::::::::
multi-model

::::::
means

::
of

:::
the

::::::
ocean

:::
flux

:::::
have a range of 28 PgC, the

3 C GWL has a range of 34 PgC, and at 4 C GWL has a range of 21 PgC between scenarios .
::
for

:::
the

:
2
:

◦
::
C,

:
3
:

◦
::
C,

:
4
:

◦
:
C

::::::
GWLs

::::::::::
respectively.

:
This reflects the previous result that the carbon allocation to the land surface is more variable than the ocean,

as the land values have a wider range
:::::
wider

::::::
ranges. The recent annual ocean carbon sink was 2.4 ± 0.5 PgC yr−1 (Le Quéré300

et al., 2018). Similarly to the land case described above, the difference between scenarios is equivalent to approximately a
:::
one

decade worth of
:::
the current ocean carbon absorption.

In the left hand side of fig
::
Fig.2, the higher CO2 concentration scenarios have a larger atmospheric fraction than lower CO2

concentration scenarios at the same GWL. For instance, the atmospheric fraction is 46% in SSP5-8.5 and 42% SSP1-2.6 at the

2 ◦C GWL, and the atmospheric fraction is 51.2% in SSP5-8.5 and 47.4% SSP2-4.5 at the 3 ◦C GWL.305
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Figure 2. Carbon allocation for the multi-model mean for each scenario for the year 2100 and the three GWLs. The green, blue and grey

areas represent the land, ocean and atmospheric carbon allocations. On the
:::
The left hand side , the x-axis shows the carbon allocation as a

percentage
:::::::
allocation, and the right hand side shows the cumulative total

::::
totals

::
in
::::
PgC. The total values are shown in bold to the right of the

bars. Note that these
::::
These values are rounded to the nearest

::::
0.1%

::
or

:::
the

:::::
nearest

:
integer

:::
PgC, so the three values may not add exactly to

::::
100%

::
or

:
the total.

Figure 2 only shows the multi-model means, not single models. This means that ;
:::
so

:::
the multi-model means that do not

reach the GWL are not included in this figure. Table 1 shows that there are six models contributing to the SSP1-1.9 scenario in

this analysis, yet the multi-model mean does not reach the 2 ◦C GWL here. Similarly, there are 11 SSP1-2.6 models, but the
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multi-model mean does not reach the 3 ◦C GWLs before the year 2100, nor does the mean of
:::
the 13 SSP2-4.5 models reach

the 4 ◦C of warming.310

3.2 Carbon allocation time series

The CMIP6 multi-model mean carbon allocation time series is shown in fig
:::
Fig. 3. This figure includes a pair of panes for each

scenario. For each pair, the top pane is the cumulative carbon in PgC and the bottom pane shows the percentage. The sum of

the three sinks estimates the total anthropogenic emissions. The
:::
The top left pair shows the development over the historical

period and the other five pairs show the future scenarios
:::::::::
projections. We include all data cumulatively from the year 1850, and315

all the cumulative carbon panes share the same y-axis range. The timing of each of the multi-model mean GWLs are marked

as vertical lines.

In the historical pane of fig
:::
Fig. 3, the fractional atmospheric carbon starts to grow in the second half of the 20th century,

as the land fraction declines and the ocean fraction increases. However, all three reservoirs increase in absolute terms over the

entire historical period. By the end of the historical period, the land and ocean match the observational records of Raupach et al.320

(2014) and Watson et al. (2020) reasonably well, shown as dashed horizontal lines. In future scenarios, the global warming level

:::::
GWL threshold year occurs sooner in higher concentration scenarios than in lower concentrations scenarios. In all scenarios,

the total anthropogenic carbon rises until at least the year 2050. In the two SSP1 scenarios, the total carbon starts to fall after

this point, while it continues to grow in the other projections.

The fraction of carbon that is absorbed by the combined land and ocean reservoirs rises in the two SSP1 scenarios, re-325

mains approximately constant in SSP2-4.5 after 2050, and declines in the SSP3-7.0 and SSP5-8.5 scenarios. The time se-

ries at the year 2100 closely match the IPCC atmospheric fraction projections for the year 2100 (IPCC, 2021b, fig. SPM7)

:::::::::::::::::::::
(IPCC, 2021b, Fig. SPM7), shown in fig

:::
Fig. 3 as a

::::
short horizontal line at the end of the period. This corroboration of existing

results allows an increased confidence that our methodology is correct.
::::::::::
appropriate.

3.3 Multi-model ensemble carbon allocation330

Figure 4 shows the carbon allocation at each GWL as a percentage and the total value
::::
(left)

:::
and

::
in

:::::
terms

::
of
::::

the
::::
total

::::::
carbon

for each model
:::::
(right). For each scenario and each GWL, the models are ordered by their ECS as shown in tab.

::::
Table 1. The

lower ECS models are at the top and higher ECS models on
::
are

::
at

:
the bottom of each section. The lower sensitivity models

take longer to reach the same warming level and have more total emissions than the higher sensitivity models. This results in

the saw-tooth pattern on the right of this figure. However, this saw-tooth pattern does not appear on the left side of the figure,335

as the ratios of carbon allocation between land, ocean and atmosphere at a given GWL are not dependent on ECS.

There is a significant variability between individual models in the total carbon
::::::::
cumulative

::::::
carbon

::::::::
allocated between scenarios

at each GWL. For instance, the total carbon
::::::
change at 2 ◦C ranges from 615 PgC (CanESM5-CanOE , SSP3-7.0) to 1521 PgC

(NorESM2-LM at SSP3-7.0). This range of behaviours between models is very large and the difference between these two ex-

tremes is equivalent to a century’s worth of current global emissions(
:
, ie 100 years of 9.4 ± 0.5 PgC yr−1 Le Quéré et al. (2018)340

)
::::::::::::::::::
(Le Quéré et al., 2018).
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Figure 3. Multi-model mean carbon allocation time series for the historical period and each scenario. The
:::

Each
:::::::
scenario

::::::
includes

:
a
::::

pair
::
of

:::::
panes:

::
the

:
top pane of each pair shows the total allocation in PgC, and the bottom pane shows the allocation as a percentage. The historical

pane includes the historical observations
:::::::::
observational

::::::
records

:::
for

::
the

::::
land

:::
and

:::::
ocean

:::::::
fractions, from Raupach et al. (2014) & Watson et al.

(2020), and the length of the lines represent the time over which the data was collected for these two observational datasets. The future

pane shows the atmospheric fraction projection for 2100 from IPCC (2021b). The grey area is the cumulative anthropogenic carbon in the

atmosphere, and the blue and green represent the fraction in the ocean and in the land, respectively. The SPM7 lines at the year 2100 indicate

the atmospheric fraction projections from the IPCC AR6 WG1 summary for policymakers figure 7, IPCC (2021b).

Proportionally large ranges can also be seen in the land, ocean and atmospheric carbon sinks in fig
:::
Fig. 4. For instance, at

::
the

:
2◦ C warming

:

◦
:
C

:::::
GWL, the land may have absorbed as little as

:::
has

:::::::
absorbed

::::::::
between 164

:
PgC (EC-Earth3-CC SSP2-4.5)

, or as much as
:::
and

:
432 PgC (MIROC-ES2L , SSP3-7.0). Similarly, at at

::
the

:
2◦ C warming

:

◦
:
C
:::::
GWL, the ocean may have

absorbed as little as
:::
has

:::::::
absorbed

::::::::
between 137

:
PgC (CanESM5-CanOE SSP3-7.0) or as much as

:::
and

:
401 PgC (NorESM2-LM345

SSP2-4.5). These ranges are equivalent to several decades worth of current global emissions, or approximately a century of the

current annual rates of land or ocean carbon absorption.
::::::
Almost

::
all

::
of

:::
the

::::::::
minimum

::::
and

::::::::
maximum

::::::
values

::::::::
described

::::
here

:::::
occur

::
in

:::
the

:::::::::
SSP3-7.0

:::::::
scenario,

:::
for

::::::
reasons

:::::::::
described

:::::
below

::
in

::::
Sect.

::::
4.2.
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Figure 4. Global total carbon allocation for each level of warming for individual models. The left side shows the allocation as a percentage

and the right side shows the total value in PgC. Each colour palette represents a different scenario, with SSP1-1.9 in greens, SSP1-2.6 in

blues, SSP2-4.5 in oranges, SSP3-7.0 in purples and SSP5-8.5 in reds. The darkest shade denotes the land, the middle shade is the ocean and

the lightest shade is the atmosphere. Within a given GWL and scenario, the models are ordered by their ECS, with less sensitive models at

the top and more sensitive models at the bottom.

The left side of this figure shows several key results related to how carbon is allocated as a percentage of the total between

models. Firstly, at
::
At

:
a given GWL, higher emission scenarios have a higher atmospheric fraction. In effect, the SSP5-8.5350
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scenarios have a higher atmospheric fraction than SSP1-1.9 and SSP1-2.6 scenarios, even at the same GWL. Similarly, higher

emission scenarios have a smaller
:
,
:
a
:::::
lower

:
land fraction, while the ocean fractionis similar across scenarios at the same GWL.

Secondly, warmer GWLs have a larger atmospheric fraction than cooler GWLs. Thirdly warmer GWLs have a smaller land

fraction
:::
and

:
a
::::::::
relatively

:::::::::
consistent

:::::
ocean

:::::::
fraction.

:::::::
Warmer

::::::
GWLs

::::
have

:::::
larger

::::::::::
atmospheric

::::::::
fractions,

:::::
lower

::::
land

::::::::
fractions,

::::
and

::::::::
consistent

:::::
ocean

::::::::
fractions than cooler GWLs. Finally, the ocean fraction is relatively consistent between GWLs and scenarios.355

3.4 Carbon allocation and ECS

The data from fig
:::
Fig. 4 is re-framed in fig 5 as a series of scatter plots. In this figure, each row represents a different scenario,

and each column is a different dataset. These datasets are the GWL threshold year, the total carbon allocated, the carbon

allocation for each domain and the fractional carbon allocation to each domain. The y-axis shows the model’s ECS, and each

point is a different GWL, where the squares are 2 C GWL, the circles are 3 C GWL, and the triangles are 4 C GWL. In all360

cases, the darkest colours are the 2 C GWL, the middle colour are the 3 C GWL, and the lightest colours are the 4 C GWL. For

each group of data, the line of best fit is shown
::::::::
calculated

:
and the absolute value of the fitting error (Err) of the slope (M

:
,
:::
the

:::::::
standard

::::
error

::
of

:::
the

::::::::
estimated

:::::::
gradient

:::::
under

:::
the

::::::::::
assumption

::
of

:::::::
residual

::::::::
normality) over the slope

:::
(M) is shown in the legend,

as Err/M. The fitting error, Err, here is the standard error of the estimated gradient under the assumption of residual normality.

:::
/M. This value indicates whether the slope crosses the origin within the 95% confidence limit . If the uncertainty on the slope365

is greater than the slope itself (and Err/M exceeds unity) , then we can assume that the fit is not statistically significant.
::::::
(Err/M

::
<

::
1)

::
or

:::
not

:::::::
(Err/M

::
>

:::
1).

:::::
While

:::
the

:::::
value

::::::
always

:::::::
appears

::
in

:::
the

:::::::
legend,

:::
the

:::
line

:::
of

::::
best

::
fit

::
is

::::
only

::::::
shown

:::::
when

:::::
Err/M

:::
<

::
1.

All groups with three models or fewer that reach the GWL were excluded as this is
::::
there

::::
were

:
not enough data points to draw

meaningful conclusions.

The goal of this figure is to highlight in broad strokes the ways that ECS interacts with carbon allocation in these models370

:::::
GWL

::::
year,

::::
total

:::::::
carbon

::::::
change

:::
and

::::
the

::::::::
individual

:::::
total

::::::
carbon

::::::::
allocation

::::::::
fractions

:::
are

::::::::
inversely

:::::::::
correlated

::
to

::::
ECS. The

GWL threshold year and the total carbon allocations both have all Err/
::::::
absolute

::::
Err/M values lower than unity and as such are

both correlated with ECS. In both
:::
are

::::::
related

::
to

::::
ECS.

::::
The

::::
total

::::::
carbon

:::::::
change

::
in

::::
both

:
the ocean and the atmosphere ’s total

carbon, the absolute value of Err/M is always smaller than one. This means that the total carbon in both the ocean and the

atmosphere is correlated with the ECS with 95% confidence. However, this is not the case for the ocean or the atmosphere’s375

carbon allocation as a percentage and in many cases Err/M
::
are

::::::
linked

::
to

:::::
ECS,

::
as

::::
their

:::::
Err/M

:::
are

:::::::
smaller

::::
than

::
1.

::::::::
However,

:::
the

:::::::::
correlations

::::::::
between

::::::
carbon

::::::::
allocation

:::::::
fraction

::
of
::::

the
:::::
ocean

::
or

:::
the

::::::::::
atmosphere

::::
and

::::
ECS

:::
are

:::
not

::::::::::
statistically

:::::::::
significant.

::::
For

::::
land,

::::
both

::::
the

::::
total

::::::
carbon

::::
sink

:::
and

:::
the

::::::::
allocation

:::::::
fraction

:::
are

:::
not

::::::::::
consistently

:::::::::
correlated

::
to

::::
ECS

::
at

::
all

:::::::
GWLs.

::
In

:::::::
addition

::
to

:::
the

:::::
GWL

::::
data,

:::
the

::::::
values

:::
for

:::
the

:::::
target

::::
year

:::::
2100

:::
are

:::::
shown

::
in
::::
Fig.

::
5.

::::
The

:::::
Err/M

:::
for

:::
the

:::::
target

::::
year

:::::
2100 is

greater than unity . This means that we can not say that the fraction of carbonallocated to the ocean or to the atmosphere is380

correlated with the ECS with 95% confidence. Similarly, this Err/M ratio is not consistently below unity for the land ensembles

at all GWLs. This implies that the total or percentage land carbon allocation is likely to be not correlated with ECS.
::
in

:::
the

::::
total

::::::
carbon,

:::
the

::::::::::
atmospheric

::::::
carbon

:::::::
fraction,

::::
and

::::
both

::::
land

:::::::
columns,

:::::::::
indicating

:
a
::::
poor

:::
fit

::
to

:
a
::::::
straight

::::
line.

::::
This

::::::::
indicates

::::
that

::::
ECS

:
is
::::
not

::::::::
correlated

::
to

:::::
these

::::
data

::
in

:::::
target

::::
year

::::::::
analysis.

:::::::::
Elsewhere,

:::::
when

::::
the

:::::
Err/M

::
of

:::
the

::::::
target

::::
year

::::
2100

::
is
::::
less

::::
than

::::
one,

::
it
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Figure 5.
:::
The

:
GWL

:::
and

:::::
target

:::
year

::::
2100

:
carbon allocation scatter plot matrixfor each. each

::::
Each row represents a different scenario, and

each column is a different data field, including the GWL year, the total carbon allocated, the carbon allocation for each domain and the

fractional carbon allocation to each domain. The y-axis is the model’s ECS, and each point is a different GWL, where the squares are the

2◦ GWL, the circles are the 3◦ GWL, and the triangles are the 4◦ GWL. In all cases, the darkest colours is
::::::::
correspond

::
to

:
the 2◦ GWL, the

middle colour are
:::::
colours

:
the 3◦ GWL, and the lightest colours are the 4◦ GWL. For each group of data,

::
The

::::::
results

::
for the line of best fit is

::::
target

::::
year

::::
2100

::
are

::::
also shown and the

::
in

:::::
purple

:::::::::::::::
downward-pointing

:::::::
triangles.

:::
The absolute value of the fitting error of the slope over the

slope is shown in the legend
::
as

:::::
Err/M.

:::
The

:::
line

::
of

:::
best

::
fit
::
is
:::::
shown

:::::
when

:::::
Err/M

::
<

::
1.

:::
The

::::
year

::::
2100

:::
and

:::
the

:::
total

::::::::::
atmospheric

:::::
carbon

:::
are

:::::::
indicated

:::
with

:::::
purple

::::::
vertical

:::::::
dash-dot

::::
lines.

:

:
is
:::::
often

:::::
close

::
to

::::
unity

:::
or

:::::
larger

::::
than

:::
the

:::::
Err/M

:::
of

:::
the

:::
fits

::
to

:::
the

:::::
GWL

::::
data.

::::
This

::::::::
indicates

::::
that

::::
ECS

::
is

::::
often

::::
less

:::::::::
correlated

::
to385

::::
these

::::
data

::
in

:::::
target

::::
year

:::::::
analysis

::::
than

:::
the

:::::
GWL

::::::
values.

::::
The

:::::
GWL

:::::::
method

:::::
allows

:::
us

::
to

::::::::::
characterise

:::
the

::::::
impact

::
of

:::::
ECS,

:::::
while

::
the

:::::
target

::::
year

:::::::
method

:::::::
obscures

:::
its

::::::::
influence.

:

4 Discussion

We have shown
:::
We

::::::
present

:
an analysis of the carbon allocation in the Earth System for an ensemble of CMIP6 simulations

at three
::
the

::
2,
::

3
::::
and

:
4
:

◦
:
C
::::::

global
:
warming levels. By

:::
We

::::
find

::::
that

:::::::
through using the GWL method instead of focusing on390

a specific target year, we can provide estimates of the behaviour of the carbon cycle that may be more useful and relevant

to policy-makers. In fig
:::::::::::
policymakers.

:::
In

:::
Fig. 2, the difference between a focus on a specific year and the GWL method can

clearly be seen by comparing the top pane against the other three panes. At the year 2100, there are large differences between
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the five scenarios total carbon
::::::
change, the allocation between the three reservoirs and the fractional distribution. However, it’s

not possible to use this target year method to unpick where those differences between scenarios originate. In the lower three395

panes, the differences between scenarios is much smaller. However, these small differences are still significant in absolute

terms, where several years worth
:::::
year’s

:::::
worth

::
of global CO2 emissions separate the scenarios at each GWL.

This method allows a closer analysis of
::::
The

:::::::
pathway

::
to

::
a
:::::
given

:::::
GWL

::
is
::::::::::::::::
scenario-dependent

:::
in

:::
two

:::::
main

:::::
ways.

:::::::
Firstly,

::
the

::::
rate

:::
of

::::::::::::
anthropogenic

::::
CO2:::::::::

emissions
:::
has

::
a
:::::::::::::
non-negligible

::::::
impact

:::
on

:::
the

::::::::::
atmospheric

:::::::
fraction

:::::::
because

::::
the

:::::
ocean

::::
and

:::
land

:::::::
surface

:::
can

:::
not

:::::::
quickly

::::::
absorb

:::
the

::::::::
additional

::::::
carbon

:::::
load.

::
A

::::::
higher

:::
rate

:::
of

:::::::
emission

:::::
leads

::
to

::
a

::::::
slightly

::::::
greater

::::::::
transient400

::::::::
warming,

:::::::
because

:::::::::
fractionally

:::::
more

::
of

:::
the

:::::::
emitted

::::
CO2::

is
::::

still
::
in

:::
the

:::::::::::
atmosphere.

::::::::
Secondly,

::::
CO2::

is
:::
the

:::::::
primary

:::
but

::::
not

:::
the

::::
only

:::::
driver

::
of

::::::::
warming.

::::::::::
Differences

:::::::
between

:::
the

::::::::
non-CO2 :::::::

forcings
::::
play

:
a
::::
role

::
in

:::
the

::::::
realised

::::::::
warming

::
at

:
a
:::::
given

:::::
point

::
in

::::
time

::
in

::::
these

:::::::::
scenarios.

::
In

:::::::
addition,

:::::
while

:::
the

:::::::::::
composition

::
of

::::
each

:::::::
scenario

::::::::
ensemble

::::::
results

::
in

:
a
::::::::
relatively

:::::::
uniform

:::
set

::
of

::::::
values

::
of

::
the

:::::
mean

:::::
ECS

::
in

:::::
Table

::
1,

:::
the

:::::
mean

::::
ECS

::::
does

::::
vary

:::
by

::
up

::
to
:::::

0.21 ◦
:
C
::::::::
between

::::::::
scenarios.

::::
This

:::::
could

::::
also

:::::::
account

:::
for

::::
some

:::
of

::
the

::::::::::
differences

::::
seen

:::::::
between

::::::::::
multi-model

::::::
means

::
in

::::
Fig.

::
2.

:::::::::::
Furthermore,

:::
the

::::::::
SSP1-1.9

::::::::
ensemble

:::
has

:::
the

:::::
lowest

:::::
mean

::::
ECS

::::
and405

::
the

::::::::
SSP5-8.5

::::::::
ensemble

::::
has

:::
the

::::::
highest

:::::
mean

::::
ECS,

::::::
which

::::
may

:::::::::
exaggerate

:::
the

:::::::::
differences

:::::::
between

::::
their

:::::::::::
multi-model

::::::
means.

:::
The

:::::
GWL

::::::::::::
methodology

:::::
allows

::
a
:::::::
focused

:::::::
analysis

:::
on the small and subtle differences between scenariosseen in previous

works. For instance , fig
:
in
::::::::::::::::::

Canadell et al. (2021)
:
,
:::
Fig. 5.31 of Canadell et al. (2021) shows the cumulative carbon emissions

against global mean temperature change for several projections. In that figure, all five projections show a strong correlation

between
::::
CO2:

emissions and warming. In addition, all projections overlap at the same cumulative carbon dioxide emissions410

. Due to results like these, it is widely thought that there are not significant differences in the carbon behaviour of these

::::
CO2 ::::::::

emissions
::::
and

::::
there

:::
are

:::
no

::::
clear

::::::::::
differences

:::::::
between

:
scenarios for the same cumulative carbon dioxide

::::
CO2. Using the

GWL method, we have placed these results under the microscope and demonstrated that non-trivial
::
are

::::
able

::
to

:::::
focus

:::
on

:::
the

:::::::::
differences

:::::::
between

::::::::
scenarios

::
at

:::
the

:::::
same

::::::::
warming

::::
level

:::
and

:::::::::::
demonstrate

:::
that

:::::
small

:
differences exist between scenarios and

that the pathway to a GWL matters . However, these differences are only
:::
for

:::
the

::::::
carbon

:::::::::
allocation.

::::::
While

::::
these

::::::::::
differences415

::
in

::::::
carbon

::::::::
allocation

:::::
may

::::
only

:::
be visible under the zoomed-in focus of a GWL analysis. Our conclusions are compatible

with previous works and we do not claim to refute the results of Canadell et al. (2021),
:::
the

::::::::::
differences

:::::::
between

::::::::
scenarios

:::
are

::::::::
consistent

::::
with

:::::::
previous

:::::::
studies

:::
and

:::
are

:::::
likely

::::
due

::
to

:::::::::
differences

::
in

::::::::
non-CO2:::::::

forcing.
::::::::
However,

::
it

::
is

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

::::
work

::
to

:::::::
quantify

:::
the

::::::::
non-CO2:::::

effect
::
as

::
in

::::::::::::::::
Smith et al. (2020).

On the left side of fig
:::
Fig. 2, the fraction of carbon that remains in the atmosphere is linked with the choice of scenario.420

The higher emission scenarios have higher atmospheric fractions (AF) at the same warming level. The mechanism here is

most likely to be
::::
likely

::::::::::
mechanism

::
is that scenarios with higher carbon concentrations simply reach the global warming levels

sooner, and have proportionally less carbon allocated to the ocean and land surface at that time. The ocean and the land hasn’t

had time to catch
:::
had

:::
not

::::::
caught up with the emissions or the warming associated with that carbon dioxide

::::
CO2 concentration.

This implies that the carbon allocation between the three major sinks is likely impacted by the rate of warming at the GWL425

and there may be some delay between emissions and carbon allocation
::::
CO2:::::::::

emissions
:::
and

:::
the

::::::::::
equilibrium

::::
CO2:::::::::::

atmospheric

:::::::
fraction,

::
as

:::
the

::::::
excess

::::
CO2 ::

is
:::::
slowly

::::::::
absorbed

:::
by

::
the

:::::::::
terrestrial

:::
and

:::::::
oceanic

::::
sinks.
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In the land surface at the 4 ◦ ◦C GWL, the multi-model mean land vegetation carbon increases by 384 and 436 PgC relative to

1850 in SSP5-8.5 and SSP3-7.0 respectively, as shown in fig
::
Fig. 2. In Friend et al. (2014)

::::::
CMIP5, the range relative to the years

1971-1999 was 52–477 PgC with a mean of 224 PgC, and was attributed mainly due to CO2 fertilisation of photosynthesis430

::::::::::::::::
(Friend et al., 2014). While our CMIP6 multi-model mean is compatible with Friend et al. (2014)’s CMIP5 result, we do not

see any individual model with only 52 PgC carbon allocated to the land at the 4 ◦ C GWL in fig 4. This absence is more likely to

be attributed to the difference in the anomaly period (1850 vs 1971), rather than due to the significant changes between CMIP5

and CMIP6 land surface models. The
:::::
VISIT

::
is
:::
the

::::
land

::::::::::
component model that contributed

:::
the

::::::::
minimum

:::::
value

::
of
:

52PgC in

Friend et al. (2014)
::::
PgC

:::
in

:::::
Friend’s CMIP5 analysis, VISIT,

:::
and

::::::
VISIT is part of the MIROC-ES2L ESM in CMIP6 (Hajima435

et al., 2020). However, MIROC-ES2L did not reach the 4◦
:

◦C GWL in any scenario presented here. In all aspects of this

analysis, the land carbon allocation has a much wider range of variability than the ocean. This reflects the significant challenge

and uncertainty inherent in modelling the land surface carbon cycle (Friend et al., 2014; Jiang et al., 2019).

When comparing the same model at the same GWL between scenarios, the differences between scenarios becomes even

more apparent, as shown in fig
:::
Fig. 4. This is especially true for low ECS models. For instance, the minimum and maximum440

carbon allocation in the MIROC-ES2L at 2 ◦C GWL is 1225 PgC in SSP5-8.5 and 1361 PgC in SSP3-7.0. The difference

between these two projections of the same model with the same warming level is 136 PgC. For the decade 2008–2017, the

mean annual emissions were 9.4 ± 0.5 PgC yr−1, so this difference alone is equivalent to around 13 years of our entire

::::::::::::
approximately

::
14

:::::
years

::
of

:::
the current total global emissions.

In fig
::
In

:::
Fig. 4, when comparing individual models between different GWLs, the highest total carbon allocation at the 2 ◦C445

GWL is 1521 PgC (NorESM2-LM SSP3-7.0). This is more total carbon than several models emitted at higher GWLs: the

lowest carbon emiited
::::::
emitted at 4 ◦C GWL was as low as 1220 PgC (

:::
for CanESM5-CanOE ,

::
in

:::
the

:
SSP3-7.0 )

::::::
scenario.

In addition, both CanESM5 models and the UKESM1
:::::::::::::
UKESM1-0-LL

:
model reached 4 ◦C of warming in three difference

:::::::
different scenarios with less atmospheric carbon than NorESM2-LM had when it reached the 2 ◦C of warming.

::::::
GWL. This

highlights the significant role that a models ECS plays in the uncertainty of warming projections. A model’s sensitivity to CO2450

concentration significantly impacts its projection of the total carbon allocation at global warming levels, as well as the absolute

values of the individual carbon sinks in the ocean and land.

This sensitivity also impacts allowable carbon budgets, and widens the range in the allowable emissions (Lowe and Bernie, 2018)

. A carbon budget is the remaining carbon that can be emitted before hitting a warming threshold such as the 2 C GWL.

However, we have demonstrated that the time over which that carbon is emitted impacts its warming effect. If the same total455

carbon were emitted over a longer period, then the resulting warming would be lower. In effect, there is not a direct one to one

correspondence between emissions and global warming levels in these simulations.

The ocean maintains similar allocation percentages across the GWLs, but in fig
::
Fig. 3 there is a small decline in ocean carbon

allocation percentage at the highest CO2 concentration scenarios towards the end of the 21st century. This is likely because

much of the ocean is forecast to become increasingly stratified in the coming century, which would reduce downwards mixing460

of CO2 (Li et al., 2020; Muilwijk et al., 2023). This reduction in downward mixing combined by the decline in solubility

with rising sea surface temperature, causes the overall absorption rate is of CO2 into the ocean to be reduced. The increase in
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stratification is caused by warmer surface layers, combined with gradual decline in overturning rates and overall circulation

(Thibodeau et al., 2018; Li et al., 2020; Caesar et al., 2021; Sallée et al., 2021). Ocean acidification may also be playing a role

reducing the
:
in

::::::::
reducing

:::
the

:::
rate

:::
of

:::
the chemical transition of dissolved CO2 and thus also slowing uptake (Zeebe, 2012). In465

combination, these effects act to reduce the rate
:::
that absorbed CO2 is removed from the surface layer.

::
In

:::
the

::::::
ocean,

::::::::
enhanced

:::::
ocean

::::::::::
acidification

::::
has

:
a
:::::
range

:::
of

::::::
effects

:::
but

:::
has

:::::
been

::::::
shown

::
to

::::::::
decrease

:::::::
survival,

:::::::::::
calcification,

:::::::
growth,

:::::::::::
development

::::
and

:::::::::
abundance

::::
over

:
a
:::::
broad

:::::
range

::
of

::::::
marine

:::::::::
organisms

::::::::::::::::::
(Kroeker et al., 2013).

:

While the ocean fraction is more or less consistent throughout the SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios at the GWLs,

the land fraction declines over the coming century in fig
::
Fig. 3, from 35% at the end of the historical period to 25.3% in SSP2-470

4.5, 22% in SSP3-7.0 and 17% in SSP5-8.5 at the year 2100. The land fraction is forecast to decline over the coming century

in the higher CO2 concentration scenarios, although the total land carbon allocation increases. There are several possible ex-

planations for this slowdown of uptake.
::::
Land

::::::::::
ecosystems

::::
have

::::
been

::::::
shown

::
to

:::::::
become

:::::::::::
progressively

:::
less

:::::::
efficient

::
at
:::::::::
absorbing

:::::
carbon

:::
as

:::::
levels

::
of

:::::::::::
atmospheric

::::
CO2::::::::::::

concentrations
::::::::

increase
::::::::::::::::
(Wang et al., 2020).

:
The soil respiration could increase due to

warming more than the carbon uptake increase
:::::::
increases due to photosynthetic uptake (Nyberg and Hovenden, 2020). Alterna-475

tively the nitrogen limitation could progressively limit photosynthetic uptake (Ågren et al., 2012). The changing climate may

impact vegetation growth and photosynthetic uptake via droughts and warming, which moves plants outside the most efficient

temperatures for photosynthesis. It is not clear from this work which factors have the largest impact.

The differences in carbon allocations seen here have consequences in the real world. Higher
:::::
Global

::::::::
warming

:::
and

::::::
higher CO2

suppresses global precipitation, as higher temperatures increase both global and regional precipitation changes (Tebaldi et al., 2021)480

. As levels of
:::::::
increases

:::
the

::::::::
regional

:::
and

::::::::
temporal

:::::::::
variability

::
of

:::::::::::
precipitation

:::::::::::::::::
(Tebaldi et al., 2021)

:
.
:::::
There

::
is
::::

also
:::

the
::::::

direct

:::::
effect

::
of

:::::::::
increasing

::::::::::
atmospheric

:
CO2 concentrations atmosphere increase, land ecosystems globally become progressively

less efficient at absorbing carbon (Wang et al., 2020). Higher CO
::
on

:::::::
radiative

:::::::
cooling

::::
rates.

:::::
This

::::::
impacts

:::
the

:::::::
vertical

:::::::
thermal

:::::::
structure

::
of

:::
the

:::::::::
atmosphere

::::
and

:::
thus

:::::::
tropical

::::::::::
overturning

:::::::::
circulations

::::
and

::::::
regional

:::::::::::
precipitation.

::::
This

:::::
direct

:::::
effect

::
of

::::::::::
atmospheric

::::
CO2 ::

is
::::::::::
independent

:::
of

:::
the

:::::
level

::
of

::::::::
warming

::::::::::::::::
(Bony et al., 2013).

:::::
This

:::::
means

::::
that

:::::::
models

::
or

::::::::
scenarios

::::
that

:::::
have

:
a
:::::::

greater485

::::::::::
atmospheric

::::::
fraction

:::
of

:::
CO2 causes enhanced ocean acidification, which has a range of effects but has been shown to decrease

survival, calcification, growth, development and abundance over a broad range of marine organisms (Kroeker et al., 2013).

4.1 Survivor bias and Impact of ECS

Not all scenarios are expected to reach these warming thresholds before the year 2100. While it is highly likely that all SSP5-8.5

will reach 2 C of warming, it is unlikely that any SSP1-1.9 experiments will reach 4 C of warming. This is why the 4 C GWL490

pane of fig. 2 only includes two multi-model means , while the 2 C GWL pane includes four. On the other hand, in certain

combinations of scenario and GWL, it is possible that only some models reach the threshold. For instance, three of the six

SSP1-1.9 models reach the 2 C GWL . As described above, the method that we used to populate fig. 2 took the multi-model

mean first with all models contributing equally, then used that ensemble mean to calculate the GWL threshold years. An

alternative method could first calculate the GWL threshold years for individual ensemble members, then take the mean of only495
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those that reach the threshold. This alternative method would implicitly include survivor bias, causing the overall weighting

and conclusions to be biased towards high ECS models.

The SSP1-1.9 scenario includes data from 6 models, yet only three models reach the 2 C GWL, as can be seen by comparing

tab. 1 and fig. 4. Similarly, the SSP2-4.5 scenario includes data from 13 models, yet only two models reach the 4 C GWL.

These missing models would most likely reach the thresholds at some point after the year 2100, if allowed to run for enough500

additional years with positive net
:
at

:
a
:::::
given

:::::
GWL

::::
will

::
be

::::
more

:::::
prone

::
to
::::
this

:::::::
regional

:::::::
response

::
to

:::::::
changed

::::::::::
atmospheric

::::::::
radiative

:::::::
cooling,

:::::::
stability

::::
and

:::::::::
circulation

:::::::
change,

:::
than

:::::::
models

::
or

::::::::
scenarios

::::
with

:
a
:::::::
smaller CO2 emissions

::::::
fraction

:::
in

::
the

::::::::::
atmosphere.

4.1
::::::

Impact
::
of

::::
ECS

:

The ensemble of CMIP6 models has a wide range of ECS values, and their sensitivity to carbon has impacts on
:::
this

:::::::
impacts

several aspects of carbon allocation. The
:::
We

::::
show

::::
that

:::
the GWL threshold year and the total carbon

::::::
change

:
are both inversely505

correlated with ECS. Similarly,
::::::::
Similarly,

:::
we

::::::
found

:::
that

:
the carbon in the atmosphere and allocated to the ocean are both

inversely correlated with ECS. The ECS does not appear to be consistently correlated with the total land carbon allocation

or the land carbon fraction at all scenarios and GWLs. The wider uncertainty and challenging nature of land surface carbon

modelling is reflected in a broader range of behaviours in land carbon models in CMIP6.

The ECS impacts the GWL threshold year, but this range is also affected by the survivor biasdescribed above
::::::
survivor

::::
bias.510

While we hesitate to draw conclusions from extrapolating the lines of best fit of fig
:::
Fig. 5, the line of best fit for the 2 ◦C

GWL threshold year for the SSP1-2.6 scenario crosses the year 2100 at a
::
an ECS equivalent to 3.1 ◦C. As the likely range

of ECS values could be as low as 2.5 ◦C, this means that a non-trivial part of the ECS-phase space could be excluded by

the ScenarioMIP limit of forecasting to the year 2100. Note that with the method we used to calculate the GWL year uses a

smoothing window of 21 years, so the last possible GWL threshold year is 2090. While we could extend the analysis with515

some longer term simulations, very few models and scenarios are available beyond the year 2100. To address this issue, the

next round of ScenarioMIP for
::
in CMIP7 could extend its standard cut off beyond the year 2100. This would reduce survivor

bias at 2 ◦C GWL and allow the inclusion of models with a low but still feasible ECS of 2.5◦C.

:::::::::::::::::::
Hausfather et al. (2022)

::::::
outline

:
a
::::
few

:::::::
analysis

::::::::
strategies

:::
for

:::::::::
addressing

:::
the

:::
“hot

:::::::
model”

:::::::
problem

::
in

:::::::
CMIP6.

::::
The

:::
first

::::::
option

:
is
:::
to

:::
use

:::
the

:::::
GWL

:::::::::::
methodology

:::
as

:::
we

::::
have

::
in

::::
this

:::::
work.

::::
One

::
of

:::
the

:::::::::
alternative

:::::::::::::::
recommendations

::
is

::
to

:::::::
perform

:::::::
analysis

:::
of520

::::::
CMIP6

:::::::::
ensembles

:::::::
without

:::
the

:::::::::::
contributions

::
of

::::::
models

::::
that

:::
fall

:::::::
outside

:::
the

:::::
likely

::::
ECS

:::::
range

:::
of

:::
2.5

:
-
::
4 ◦

::
C.

::
In

::::
our

::::
case,

::::
this

:::::
would

::::::
remove

:::::
seven

:::
of

:::
the

::::::
thirteen

:::::::
models

::::
from

:::
the

::::::::
analysis,

::::::
leaving

:::
six

::
or

:::::
fewer

::::::
models

:::::::::::
contributing

::
to

::::
each

::::::::
scenario.

::::
This

:::::
would

::
be

:::
an

:::::::::::
unnecessarily

:::::
harsh

::::::::::
requirement

:::
as

:::
we

::::
have

::::::
already

::::::::::::
demonstrated

:::
that

:::::
using

:::::
GWL

:::::::::::
methodology

::::
can

::::::
reduce

:::
the

:::::
impact

:::
of

:::
the

:::::
range

::
of

::::
ECS

:::::::
relative

::
to

:::
the

::::::
“target

::::
year”

::::::::::::
methodology.

::
In

::::::::
addition,

:::::::::::
uncertainties

::
in

:::::
cloud

::::::::
feedbacks

::::
have

:::::
been

::::::::
identified

::
as

:::
the

:::::
main

:::::
cause

::
of

:::
the

:::::
large

:::::
range

::
of

::::
ECS

:::::::::::::::::::::::
(Ceppi and Nowack, 2021),

::::
and

:
it
::

is
::::::::
unlikely

:::
that

:::::
there

::
is

:::::
direct

::::
link525

:::::::
between

:
a
::::::
models

::::::
ability

::
to

::::::::
reproduce

:::::
cloud

::::::::
feedback

::::::::
behaviour

::::
and

::
its

::::::
ability

::
to

::::::::
reproduce

:::
the

::::::
carbon

:::::::::
allocation,

::
as

:::::
these

:::
are

:::::::::::
independently

::::::::
modelled

::::::::
systems.

:::
We

::::
have

::::
used

::::
the

:::::
terms

:::::::
effective

:::::::
climate

:::::::::
sensitivity

::::
and

::::::::::
equilibrium

::::::
climate

:::::::::
sensitivity

::::::::::::::
interchangeably.

:::::::::
However,

::::
they

::
are

::::
not

:::
the

:::::
same.

::::::::::::::::::::::
Gjermundsen et al. (2021)

::::::::
compared

::::
two

::::
Earth

:::::::
System

:::::::
models,

:::::::::
NorESM2

:::
and

::::::::
CESM2,

:::
that

::::
had

:::
the

:::::
same
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::::::::::
atmospheric

:::::
model

:::
but

:::::::
different

::::::
ocean

::::::::::
components.

:::::
These

::::
two

::::::
models

:::
had

::::
very

:::::::
different

::::::
EffCS

:::::
values

:::
but

:::::
were

::::::::
otherwise

::::
very530

::::::
similar.

::::::::::
NorESM2’s

:::::
EffCS

::
is
::::
2.56

:

◦
:
C

:::
and

:::::::::
CESM2’s

:::::
EffCS

::
is

::::
5.15

:

◦
::
C.

::
In

::::
that

:::::
work,

::::
they

:::::
found

::::
that

:::
the

::::::
greater

:::
heat

:::::::
storage

::
at

::::
depth

:::
in

::::::::
NorESM2

:::::::
delayed

:::
the

::::::::
Southern

:::::::
Ocean’s

::::::
surface

::::::::
warming

:::
and

:::::::::
associated

:::::
cloud

:::::::::
responses,

:::::
which

::
in

::::
turn

:::::::
delayed

:::
the

:::::
global

:::::
mean

::::::
surface

::::::::
warming.

::::
This

:::::
effect

::::::::
appeared

::
in

:::
the

::::::
4xCO2:::::::::

simulation
::::::
several

::::::::
centuries

::::
after

:::
the

:::
150

::::
year

::::::
cutoff

::::
used

::
to

:::::::
calculate

::::
ECS

:::::
with

:::
the

:::::::
Gregory

::::::
method

::::::::::::::::::
(Gregory et al., 2004)

:
.
:::::
After

:
a
::::::::
sufficient

:::::::
number

::
of

:::::::::
simulated

:::::
years,

:::
the

:::::
same

:::::
cloud

:::::::
feedback

:::::::::
eventually

::::::
occurs

::
in

::::
both

:::::::
models,

::
the

:::::
same

::::::::
warming

:
is
::::::::
realised,

:::
and

:::
the

:::
two

:::::::
models

:::::
would

:::::
show

::::::
similar

::::::::::
equilibrium535

::::::
climate

::::::::::
sensitivities.

::::
The

:::::::
Gregory

::::::
method

:::
for

:::::::::
calculating

:::
the

:::::::
effective

:::::::
climate

::::::::
sensitivity

::::
that

:::
was

::::
used

::
by

::::::::::::::::::
Zelinka et al. (2020)

::
to

:::::::
generate

:::
the

::::
ECS

:::::
values

:::::
used

:::
here

:::::
does

:::
not

:::
tell

:::
the

:::::
entire

::::
story

:::
for

:::
the

:::::::::
eventually

::::::
realised

::::::::
warming

::::
from

::
a

::::
given

::::::::::
cumulative

::::::::
emission,

::::::
because

::
it
::
is

:::
not

::::
fully

::::::::::
compatible

::::
with

:::
the

::::
true

:::::::::
equilibrium

:::::::
climate

:::::::::
sensitivity.

::
It

::::
may

::
be

:::::::
possible

::
to
::::
take

::::
this

:::::
effect

:::
into

:::::::
account

::
in

:::::
future

::::::
works,

:::
for

::::::::
instance,

::
by

::::::::
replacing

:::
the

:::::::
surface

::::::::::
atmospheric

::::::::
warming

:::::::
anomaly

::::
with

:::::
some

:::::::
measure

:::
of

:::
the

:::::
global

:::::::::::::::
volume-weighted

:::::
mean

:::::
ocean

::::
heat

::::::::
anomaly.

:
540

4.2 Anomalous behaviour in SSP3-7.0

The SSP3-7.0 scenario often appears to be an outlier, for
:
.
:::
For

:
instance, in figs. 2 and 4, it does not conform to the pattern

of the other scenarios. Also, in fig. 4,
:
In

::::::::
addition,

:
SSP3-7.0 is the scenario showing the widest range of carbon allocation

behaviours at both the 2 ◦C and 3 ◦C GWLs .
:
in

::::
Fig.

::
4.

:
The SSP3-7.0 scenario has the highest methane concentration and

air pollution precursor emissions forcing, even higher than those in SSP5-8.5 (Meinshausen et al., 2017, 2020).
::
In

:::
the

:::::
other545

::::::::
scenarios,

:::
the

:::::::
methane

:::
and

:::::::
aerosol

::::::::
precursors

:::::
scale

::::::::::::
approximately

::
in

:::::::::
proportion

::
to

:::
the

::::
CO2::::::::::::

concentration. Methane is a strong

greenhouse gas and has a warming effect, but pollution precursor emissions are linked to aerosols and cloud formation, which

generally have a cooling effect (Twomey, 1977; Meinshausen et al., 2017). In CMIP6, methane warming can overwhelm,

be overwhelmed by, or balance with aerosol cooling and the relative strengths of these effects depend strongly on the model

parameterisation choices and there
::::
their relative strengths in the scenario forcing. The relative strength of the warming methane550

emissions and the cooling aerosol precursors determines the impact on the warming rate and hence the GWL timing. While in

other scenarios the methane and aerosol precursors scale approximately in proportion to the CO2, in
:::
This

::
is
::::
why

:::
the

::::::::
warming

::
in SSP3-7.0 , they are significantly higher. Therefore, SSP3-7.0 scenarios may have a very different warming response to CO2

than other scenarios, and warming is less closely linked
:
is

:::
not

::
as

::::::
tightly

::::::
bound

:
to the atmospheric CO2 concentration . So

while
::
as

::
in

::::
other

:::::::::
scenarios.

:::::
Even

::::::
though warming is still correlated to total cumulative emissions, SSP3 scenarios may reach555

the GWLs significantly
::::::::
relatively earlier or later than other scenarios at the same CO2 concentration. This effort

:::::
effect could

be investigated in detail if for instance the SSP3-8.5 or SSP5-7.0 scenarios were simulated.

In any case, the
:::
The

:
impact of different methane and aerosol precursor emissions on the climate response remains highly

uncertain in CMIP6. The overall warming impact of methane is not further considered in this work as is it secondary to CO2

warming, but it could be examined in future extensions.560
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4.3 Limitations and possible extensions

While the CMIP6 experiments start in 1850 from a pre-industrial control, clearly this is not the starting point for the anthro-

pogenic impact on the land surface or the carbon cycle. Changes to the carbon cycle
:::
The

::::::
human

::::::
impact

:::
on

:::
the

:::::::::::
environment

began much earlier and this has implications for ongoing
:::::::
on-going

:
carbon partitioning (Bronselaer et al., 2017; Le Quéré

et al., 2018; Friedlingstein et al., 2022). For instance, between 1765 and 1850, atmospheric CO2 rose by roughly 10 ppm, and565

accounting for this era resulted in a 4.5% change in ocean uptake in CMIP5 models (Bronselaer et al., 2017).

Similarly, the representation of dynamic vegetation, soil carbon and fire response is most likely under-sampled in this en-

semble (Arora et al., 2020; Koch et al., 2021). Notably, CMIP6 models are not capturing present-day tropical forest car-

bon dynamics; the multi-model mean estimate of the pan-tropical carbon sink is half of the observational estimate (Koch

et al., 2021). This uncertainty in the strength of carbon–concentration and carbon–climate feedbacks over land is well known570

(Cox et al., 2000; Friedlingstein et al., 2006; Arora et al., 2013).
::::::::
established

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cox et al., 2000; Friedlingstein et al., 2006; Arora et al., 2013)

:
.

The global ocean carbon inventory is also affected by the land-to-ocean carbon flux from river runoff and the carbon burial

in ocean sediments, which is not represented in our ensemble (Arora et al., 2020). The flux of land carbon into the ocean

via rivers is between 0.45 ± 0.18 PgC yr−1 and 0.78 ± 0.41 PgC yr−1 and is generally not considered in ESMs (Jacobson575

et al., 2007; Resplandy et al., 2018; Hauck et al., 2020). Including the riverine flux of particulate and dissolved organic carbon

would require models to represent both estuarine and shallow shelf processes. This would most likely require higher model

resolutions and computational costs.

In this
:::
One

::
of

:::
the

:::::::::
limitations

::
of

:::
the

:::::
GWL

:::::::::::
methodology

::
is
::::
that

:
it
:::::::
focuses

::
on

:::
the

:::::::
realised

::::::::
warming

:
at
::
a
::::::
specific

:::::
point

::
in

:::::
time.

::::
This

:
is
:::
the

::::::::
transient

::::::::
warming,

:::
and

::
it
::
is

:::::::
unlikely

::::
that

:::
this

::::::::
warming

:::::::
includes

:::
the

:::
full

:::::
effect

::
of

:::
all

:::::::::
cumulative

:::::
CO2 :::::::::

emissions.
::
In580

:::::
effect,

:::
the

::::
CO2:::::::::

emissions
::::
have

:::
not

:::
yet

::::::
played

::::
out

::
to

::::::::::
equilibrium

::
at

:::
the

::::::
GWL,

:::
and

:::::
there

::
is

:::::
likely

::
to

:::
be

:
a
:::::::::
continued

:::::
delay

::
in

::::
their

:::::::
warming

::::::
effect.

:::
Not

::
all

::::::::
scenarios

:::
are

::::::::
expected

::
to

:::::
reach

::::
these

::::::::
warming

:::::::::
thresholds

:::::
before

:::
the

::::
year

:::::
2100.

:::
For

::::::::
instance,

:::::
while

:
it
::
is

::::::
highly

:::::
likely

:::
that

:::
all

::::::::
SSP5-8.5

::::::::::
simulations

::::
will

:::::
reach

:
2
:

◦
:
C
:::
of

::::::::
warming,

::
it

::
is

:::::::
unlikely

::::
that

:::
any

::::::::
SSP1-1.9

:::::::::::
experiments

::::
will

:::::
reach

:
4
:

◦
:
C
:::

of

::::::::
warming.

:::
On

:::
the

::::
other

:::::
hand,

::::
only

:::::
some

::
of

:::
the

:::::::
models

:::::
reach

:::
the

::::::::
threshold

::
in

::::::
certain

:::::::::::
combinations

::
of

:::::::
scenario

::::
and

:::::
GWL.

::::
For585

:::::::
instance,

:::::
three

::
of

:::
the

::
six

::::::::
SSP1-1.9

:::::::
models

::::
reach

:::
the

::
2 ◦

::
C

:::::
GWL.

:::::
These

:::::::
missing

::::::
models

::::::
would

::::
most

:::::
likely

:::::
reach

:::
the

:::::::::
thresholds

:
at
:::::

some
:::::

point
:::::

after
:::
the

::::
year

:::::
2100,

::
if
:::::::

allowed
:::

to
:::
run

:::
for

:::::::
enough

:::::::::
additional

:::::
years

::::
with

:::::::
positive

:::
net

:::::
CO2 :::::::::

emissions.
::::::
Future

:::::
works

:::::
could

:::::::::
potentially

::::::
extend

::::
their

:::::::
analysis

::
by

::::::::
including

:::
the

::::::::::::
long-timeline

::::::::
scenarios

::::::
beyond

:::
the

::::
year

:::::
2100.

::::
The

::::::
method

::::
that

::
we

:::::
used

::
to

::::::::
populate

::::
Fig.

:
2
:::::
took

:::
the

::::::::::
multi-model

:::::
mean

::::
first

::::
with

:::
all

:::::::
models

::::::::::
contributing

:::::::
equally,

::::
then

:::::
used

:::
that

:::::::::
ensemble

::::
mean

::
to

::::::::
calculate

:::
the

:::::
GWL

::::::::
threshold

:::::
years.

:::
An

:::::::::
alternative

::::::
method

:::::
could

:::
first

::::::::
calculate

:::
the

:::::
GWL

::::::::
threshold

::::
years

:::
for

:::::::::
individual590

::::::::
ensemble

::::::::
members,

::::
then

:::
take

:::
the

:::::
mean

::
of

::::
only

::::
those

::::
that

:::::
reach

::
the

:::::::::
threshold.

::::::::
However,

:::
this

:::::::::
alternative

::::::
method

::::::
would

::::::::
implicitly

::::::
include

:::::::
survivor

::::
bias,

:::::::
causing

:::
the

::::::
overall

::::::::
weighting

::::
and

::::::::::
conclusions

::
to

::
be

::::::
biased

::::::
towards

::::
high

:::::
ECS

::::::
models.

:

::
In

:::
this

:
work, we used concentration driven scenarios instead of emission driven scenarios. Emission driven scenarios allow

significantly more flexibility in the behaviour of the atmospheric carbon, in effect
:
.
::
In

::::::::
practice,

:::
this

::::::
would

::
be

::::
like

:
adding a
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third degree of freedom into the
::::
total

::::::
carbon

::::::::
allocation

:
calculation. Although a limited set of emission driven runs exist, it595

was found that there are actually very few differences in simulated temperature or atmospheric CO2 concentration between

concentration driven and emission driven scenarios (Lee et al., 2021, Sec. 4.3.1.1). In any case, several key datasets required

in the calculation of the land use emissions (LUE) in eq
::::
LUE

:
in

:::
Eq. 1

:
) were not available in the emission driven experiments at

the time of writing.

In fig
:::
Fig. 3, the multi-model mean of both SSP1 scenarios shows signs of recovery and carbon drawdown,

:::
but

:::
no

:::::::
datasets600

::
in

:::
this

:::::::
analysis

::::
drop

:::::
below

:::
the

::
2 ◦

::
C

:::::
GWL

::::::::
threshold. In future versions of this work

:::::
studies, it would be interesting to examine

whether the carbon allocation behaves similarly on the way down as it did on the way up.
::
the

::::::::::
reversibility

::
of

::::::
carbon

:::::::::
allocation

::::
with

:::::::
negative

:::::::
emission

:::::::
forcing

::::::::
scenarios.

:
More generally, extension simulations beyond 2100 would be valuable for studying

how patterns of carbon allocation change as emissions decline past net zero
:::::::
net-zero.

While we made every effort to build a uniform ensemble, ScenarioMIP’s flexible contributions means that we have a diversity605

in data occupancy between scenarios. The SSP5-8.5 ensemble has the highest mean ECS, meaning that the multi-model mean

of this ensemble will likely be warmer than other scenarios multi-model mean’s at the same atmospheric carbon concentration.

Similarly, we were fortunate that the mean ECS of our SSP1-1.9 ensemble falls in a similar range to the other scenarios,

despite it containing significantly fewer models that the other scenarios. While the impact of ensemble bias is a small effect

here, the multi-modle means could have had a much wider range of mean ECS values between scenario groups. In the future,610

any investigation using the multi-model means needs to be careful with handling the equilibrium climate sensitivity bias of the

ensemble. Two ensembles constituted of differing sets of models may not always be directly comparable.

In fig 5, we generated a fit to each datasat
::::::
dataset against the ECS. This fit is built on the assumption that these behaviours

are linear and that the straight line fit is a reasonable approximation of their behaviour. However, as can be seen in this figure,

this is not true in all cases. Several of the datasets have non-linear behaviours with regards to ECS. It may be possible to expand615

upon this work and generate more complex fits to these datasets to estimate the behaviour of these models within the likely

ECS range of 2.5 -4
:
-
::
4 ◦C.

::
In

:::
this

:::::
work,

:::
we

::::::
attempt

::
to

::::::::
maximise

:::
the

:::::::
number

::
of

:::::::
models.

::::::::::::
ScenarioMIP’s

::::::
flexible

:::::::::::
contributions

::::::
means

:::
that

::::
each

:::::::::
scenario’s

::::::::
ensemble

:
is
:::::::::
composed

::
of

:
a
::::::::
different

::
set

:::
of

::::::
models,

::
as
::::::
shown

::
in

:::::
Table

::
1.

::::
This

:::::::
diversity

::::::
results

::
in

::
a

:::::::
different

:::::
mean

::::
ECS

:::
for

::::
each

:::::::
scenario.

:::
We

:::::
were

:::::::
fortunate

::::
that

:::
the

:::::
range

::
of

:::
the

::::
mean

:::::
ECS

:::::
values

::::
was

::::
only

::::
0.21 ◦

::
C,

::::::
despite

:::
for

:::::::
instance

::::::::
SSP1-1.9

:::::::::
containing620

::::::::::
significantly

:::::
fewer

::::::
models

::::
that

::
the

:::::
other

::::::::
scenarios.

::
A
::::::::
different

::
set

::
of

:::::::
models

:::::
could

::::::::::
conceivably

:::::
result

::
in

:
a
:::::
wider

:::::
range

::
of

:::::
mean

::::
ECS

:::::
values

:::::::
between

:::::::::
scenarios,

:::::
which

::::::
would

::::::
impact

:::
the

:::::::
warming

:::::
rates

:
at
:::

the
:::::
same

::::
CO2:::::::::::::

concentrations,
::::::
making

::::::::::::
interpretation

::::
more

::::::::::
challenging

::::
and

:::::::::
potentially

::::::::::
introducing

::::
bias

::
in

:::
the

:::::::::::
conclusions.

::
In

::::::
future

:::::::::::
investigations

:::
of

:::::
CMIP

:::::::::::
multi-model

::::::
means

::::
using

:::
the

::::::
GWL

:::::::::::
methodology,

:::
the

::::::
mean

::::::::::
equilibrium

::::::
climate

:::::::::
sensitivity

::
of

:::::
each

::::::::
ensemble

::::::
should

:::
be

:::::::
included

:::::::::
alongside

:::
the

::::::
analysis

:::
as

:::
two

:::::::::
ensembles

:::::::::
constituted

::
of

::::::::
differing

:::
sets

::
of
:::::::
models

::::
may

:::
not

::::::
always

::
be

:::::::
directly

::::::::::
comparable.

:
625
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5 Conclusions

Using an ensemble of CMIP6 simulations, we have shown that
::::::::
quantified

::::
how

:
the carbon allocation between Earth system

::::::
System components differs between scenarios after the same change in global mean surface temperature anomaly. Scenarios

with higher carbon concentrations reach the global warming levels sooner, and have proportionally less carbon allocated to

the ocean and land surface at that time than scenarios with lower emissions. The differences in estimated carbon emissions630

between scenarios vary even at the same GWL, and can be equivalent to several years
:
’ worth of global total emissions. These

result appear as
:::
This

::
is

:
a result of the GWL methodology, but our conclusions are nevertheless compatible with previous works

and we do not claim to refute previous target year analyses.

A model’s sensitivity to CO2 concentration significantly affects its total carbon allocation between the atmosphere, ocean

and land at all global warming levels. However, our CMIP6 ensemble contains many models that fall outside the likely ECS635

range of 2.5 - 4.
:
4
:

◦C. By using the GWL methodology, we can exploit the full CMIP6 ensemble and weight each model

equally, without excluding the so-called “hot models”. We did not find a consistent relationship between ECS and any of the

fractional carbon allocations. However, we did demonstrate that ECS and total carbon allocation are correlated
::::::
related. Models

with lower sensitivity to carbon reach the GWL with more carbon in the individual reservoirs and more carbon overall. This is

because it takes low ECS models longer to reach the same warming level, allowing more time for carbon to accumulate in the640

Earth system
::::::
System.

In addition to the impacts of ECS and total atmospheric carbon concentration, the
::::::
distinct

::::::::::::
characteristics

::
of

::::
each

:
scenario

pathway also influences the carbon allocation. The SSP3-7.0 scenario includes methane induced
:::
both

::::
high

:::::::::::::::
methane-induced

warming and high pollution precursors coolingimpacts, and the strength of these effects are model specific and not directly

related to ECS. These environmental forcers in SSP3-7.0 can generate a very different warming response, GWL threshold year645

and carbon allocation than scenarios where CO2, methane and pollution precursors all scale with historical values.

Ultimately, across all model simulations, a significant rise in global mean surface temperature is projected over the 21st

century. This underscores the need for an accelerating transition to low carbon technologies to reduce the risk of the worst

effects of climate change.

Code and data availability. This analysis was performed using ESMValTool and the exact software tools used in this manuscript are avail-650

able via zenodo: 10.5281/zenodo.8335060, version 1.1. The main ESMValTool recipe is recipe_gwt_time_series_CMIP6_2022_all.yml

in the esmvaltool/recipes directory, and the main diagnostic script is diagnostic_gwt_timeseries.py in the esmvaltool/

diag_scripts/ocean directory. An up-to-date version of the base ESMValTool system is available on github: github.com/ESMValGroup

which includes up to date code, documentation and tutorials. CMIP6 climate model data used in this paper was obtained from the CEDA’s

Earth System Federation Grid node, but is widely available elsewhere: https://esgf-node.llnl.gov/search/cmip6/655

Video supplement. A video abstract for this paper is available here: path-to-be-confirmed.
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