

634 **Supporting Information (SI)**

635 **SI1. Consideration of Non-linearity of Gas and Solutions for a Mixed Gas State**

636 For gas flow, we can use a pseudo-pressure variable to linearize Eq. (1D) as
637 μ and c_t are functions of pressure. Thee pseudo-pressure p_p is defined as
638 (Haskett et al., 1988)

639
$$p_p = 2 \int_{p_0}^p \frac{p}{\mu z} dp \quad (S1)$$

640 By combining Eq. (S1) with the ideal gas law, the pseudo-density may be
641 expressed as

642
$$\rho_p = \frac{pM}{RT} = \frac{p^2 M}{\mu z RT} \quad (S2)$$

643 Because viscosity and compressibility do not change significantly (less than
644 0.7%) between 200 psi and atmospheric pressures, Eq. (S2) can be simplified
645 to

646
$$\rho_p = \frac{p^2 M}{RT} \quad (S3)$$

647 Thus, the density change is replaced by the pseudo-density for a precise
648 calibration by using pressure squared.

649 During the GPT experiment, different gases in the reference and sample
650 cells may complicate the hydrodynamic equilibrium of gas, and consequently
651 the expression of transport phenomena, as the viscosity and gas
652 compressibility are in a mixed state. Therefore, during the GPT experiment

653 when a different gas exists between the reference and sample cells a, a mixed
 654 viscosity should be used after the gas in reference cell is released into the
 655 sample cell. The viscosity of mixture μ_{mix} under pressure in Eqs. (3A)-(3C)
 656 can be calculated from (Brokaw, 1968; Sutherland, 1895)

657

$$\mu_{mix} = \sum \frac{\mu_i}{1 + \frac{1}{y_i} \left(\sum_{\substack{j=1 \\ j \neq i}}^n B_{ij} y_j \right)} + \mu_p \quad (S4)$$

658 B_{ij} is a correction parameter independent of gas composition and can be
 659 expressed as

660

$$B_{ij} = \frac{\left[1 + \left(\frac{\mu_i}{\mu_j} \right)^{0.5} \left(\frac{M_j}{M_i} \right)^{0.5} \right]^2}{2\sqrt{2} \left(1 + \frac{M_j}{M_i} \right)^{0.5}} \quad (S5)$$

661 in which μ_p is the correction term for the viscosity variation as its changes
 662 with pressure and given by

663

$$\mu_p = 1.1 \times 10^{-8} (e^{1.439\rho_{rm}} - e^{-1.111\rho_{rm}^{1.858}}) \times M_m^{0.5} \cdot \frac{P_{cm}^{2/3}}{T_{cm}^{1/6}} \quad (S6)$$

664 SI2. Gas Transport in GPT

665 From Eq. (1D), the transport of gas in the GPT with the "unipore" model
 666 under a small pressure gradient in a spherical coordinate system with laminar
 667 flow is based on the Darcy-type relation. Because the transfer rate of the fluid
 668 is proportional to the concentration gradient, this process can be expressed as:

669

$$\frac{\partial \rho_p}{\partial t} = \frac{k}{c_t \phi_f \mu} \left(\frac{2}{r} \frac{\partial \rho_p}{\partial r} + \frac{\partial^2 \rho_p}{\partial r^2} \right) \quad (S7)$$

670 We set

671
$$k_s = \frac{k}{\mu} \quad (S8)$$

672
$$K_a = \frac{k_s}{c_t \phi_f} \quad (S9)$$

673 Then, Eq. (S7) becomes:

674
$$\frac{\partial \rho_p}{\partial t} = K_a \left(\frac{2}{r} \frac{\partial \rho_p}{\partial r} + \frac{\partial^2 \rho_p}{\partial r^2} \right) \text{ or } \frac{\partial}{\partial t} (\rho_p r) = K_a \frac{\partial^2}{\partial r^2} (\rho_p r) \quad (S10)$$

675 We next introduce the following dimensionless variables:

676
$$U_s = \frac{r (\rho_{ps} - \rho_{p2})}{R (\rho_{p0} - \rho_{p2})} \quad (S11)$$

677
$$U_f = \frac{\rho_{pf} - \rho_{p2}}{\rho_{p0} - \rho_{p2}} \quad (S12)$$

678
$$\xi = \frac{r}{R} \quad (S13)$$

679
$$\tau = \frac{K_a t}{R^2} \quad (S14)$$

680 where ρ_1 and ρ_2 are the gas density in the reference and sample cells, and
 681 ρ_0 is the gas density outside the connected pore volume (the gas has flowed
 682 from the reference into sample cells but not into samples), and ρ_0 is given by

683
$$\rho_0 = \frac{V_1 \rho_1 + (V_2 - V_b) \rho_2}{V_c} \quad (S15)$$

684 where V_1 is the reference cell volume, V_2 is the sample cell volume, V_b is
 685 the bulk volume of the sample, V_c is the total void volume of the system
 686 minus V_b where $V_c = V_1 + V_2 - V_b$.

687 If the bulk density of the sample is ρ_b and the total mass of the sample is
 688 M_s , then the total number of sample particles N is:

689
$$N = \frac{M_s}{\frac{4}{3}\pi R_a^3 \rho_b} \quad (S16)$$

690 Based on Darcy's law, the gas flow into a sample Q is:

691
$$Q = -4\pi R^2 (k_s \frac{\partial p}{\partial r}) N = -\frac{3}{R} \frac{M_s}{\rho_b} k_s \frac{\partial p}{\partial r} \quad (S17)$$

692 According to mass conservation and in combination with Eq. (S17), for

693 $t > 0$ and $r = R_a$, we have

694
$$-\frac{3}{R} V_b K_a c_t \phi_f \frac{\partial p}{\partial r} \rho_s = V_c \frac{\partial \rho_f}{\partial t} \quad (S18)$$

695 Substituting Eq. (1C) into Eq. (S18), the boundary condition of Eq. (S10),

696 for $\xi = 1$, is:

697
$$-\frac{3}{R} V_b K_a \phi_f \frac{\partial \rho_s}{\partial r} = V_c \frac{\partial \rho_f}{\partial t} \quad (S19)$$

698 Substituting dimensionless variables into Eq. (S10) yields:

699
$$\frac{\partial U_s}{\partial \tau} = \frac{\partial^2 U_s}{\partial \xi^2} \quad (S20)$$

700 By defining parameter K_c as:

701
$$K_c = \frac{V_c}{V_b \phi_f} \quad (S21)$$

702 the boundary condition of Eq. (S19) becomes:

703
$$\frac{\partial U_f}{\partial \tau} = -\frac{3}{K_c} \left(\frac{\partial U_s}{\partial \xi} - \frac{U_s}{\xi} \right) \quad (S22)$$

704 From Eq. (S21), K_c represents the ratio of gas storage capacity of the total

705 void volume of system to the pore volume (including both adsorption and non-

706 adsorption volume) of sample.

707 The initial condition of Eq. (S20), for $\tau = 0$, is:

708 when $0 \leq \xi < 1$, $U_s = 0$ (S23)

709 For $\tau > 0$:

$$\xi = 0, U_s = 0 \quad (S24)$$

$$\xi = 1, U_s = U_f = 1 \quad (S25)$$

$$712 \quad \frac{\partial U_s}{\partial \tau} = \frac{\partial^2 U_s}{\partial \xi^2}, \quad 0 < \xi < 1 \quad (S26)$$

713 Replacing the Heaviside operator $p = \partial/\partial\tau$ as $p = -s^2$, Eq. (S20) and

714 Eq. (S22) then become:

$$715 \quad \frac{\partial^2 U_s}{\partial \xi^2} + s^2 U_s = 0 \Big|_{U_s=0, \xi=0} \quad (S27)$$

$$716 \quad \alpha^2(U_s - 1) = \frac{3}{K_c} \left(\frac{\partial U_s}{\partial \xi} - \frac{U_s}{\xi} \right) \bigg|_{\xi=1} \quad (S28)$$

717 For these first- and second-order ordinary differential equations, we can

718 solve Eqs. (S27) and (S28) as:

$$719 \quad U_s = \frac{\alpha^2 \sin \alpha \xi}{\frac{3}{K_c}(\sin \alpha - \alpha \cos \alpha) + \alpha^2 \sin \alpha} \quad (S29)$$

720 In Eq. (S29), α_n are the roots of Eq. (S30):

$$721 \quad \tan \alpha = \frac{3\alpha}{3+\alpha^2 K_c} \quad (S30)$$

722 Defining the numerator and denominator of Eq. (S29) as functions

723 $f(\alpha)$ and $F(\alpha)$, U_s can be expressed as:

$$724 \quad U_s = \frac{F}{\alpha \rightarrow 0} \frac{f(\alpha)}{F(\alpha)} + 2 \sum_{n=1}^{\infty} \frac{f(\alpha_n)}{\alpha_n F'(\alpha_n)} e^{-\alpha_n^2 \tau} \quad (S31)$$

725

726 SI2-1: Solution for the Limited K_c Value

Under the condition of limited K_c value, Eq. (S20) is solved with the boundary condition of $0 < \xi < 1$ at time t , and the gas state on the grain surface is initially at equilibrium with the gas outside. Using the Laplace transform, Eq. (S31) is given as (the Laplace transform part can be found in APPENDIX V of Carslaw & Jaeger, 1959) (Brokaw, 1968; Sutherland, 1895):

$$U_s = \frac{\xi K_c}{K_c + 1} + 6 \sum_{n=1}^{\infty} \frac{\sin \xi \alpha_n}{\sin \alpha_n} \frac{K_c e^{-\alpha_n^2 \tau}}{9(K_c + 1) + \alpha_n^2 K_c^2} \quad (\text{S32})$$

As the pressure transducer detects the pressure in the reference cell, with the boundary condition $U_f = U_s|_{\xi=1}$, we can calculate U_f as:

$$U_f = \frac{K_c}{1 + K_c} + 6 \sum_{n=1}^{\infty} \frac{K_c e^{-\alpha_n^2 \tau}}{9(K_c + 1) + \alpha_n^2 K_c^2} \quad (\text{S33})$$

For a convenient expression of α_n through logarithmic equation, Eq. (S33) can be transformed as:

$$(1 - U_f)(1 + K_c) = 1 - 6 \sum_{n=1}^{\infty} \frac{K_c(1 + K_c)e^{-\alpha_n^2 \tau}}{9(K_c + 1) + \alpha_n^2 K_c^2} \quad (\text{S34})$$

The left side of Eq. (S34) clearly has a physical meaning for the state of gas transport outside the sample, and we define $(1 - U_f)(1 + K_c)$ as F_f , which is less than, but infinitely close to, 1. Parameter F_f represents (1) the fraction of final gas transfer of V_c which has taken place by time t , which can be interpreted as the net change in the density of gas at time t to time infinity as Eq. (S35), or (2) as the fractional approach of the gas density to its steady-state in terms of dimensionless variables as Eq. (S36).

746
$$F_f = \frac{\rho_{p0} - \rho_{pf}}{\rho_{p0} - \rho_{f\infty}} \text{ or} \quad (\text{S35})$$

747
$$F_f = \frac{1 - U_f}{1 - U_\infty} = \frac{\rho_{p0} - \rho_{pf}}{\rho_{p0} - \rho_{p2}} (1 + K_c) \quad (\text{S36})$$

748 where for $\tau \rightarrow \infty$, the result of U_f and $\rho_{f\infty}$ would tend to be the limiting
749 value:

750
$$U_\infty = U_s = U_f \xi = \frac{\xi K_c}{1 + K_c} \Big|_{\xi=1} \quad (\text{S37})$$

751
$$\rho_{f\infty} = \frac{V_1 \rho_1 + (V_2 - V_s) \rho_2}{V_1 + V_2 - V_s} = \frac{K_c}{1 + K_c} (\rho_{p0} - \rho_{p2}) + \rho_{p2} \quad (\text{S38})$$

752 Thus, Eq. (S34) can be expressed as:

753
$$F_f = 1 - 6 \sum_{n=1}^{\infty} \frac{K_c (1 + K_c) e^{-\alpha_n^2 \tau}}{9(K_c + 1) + \alpha_n^2 K_c^2} \quad (\text{S39})$$

754 For calculating the permeability, Eq. (S39) can be linearized as a function
755 of time as there are no variables other than the exponential part:

756
$$\ln(1 - F_f) = f_1 - s_1 t \quad (\text{S40})$$

757 where f_1 is the intercept for the y-axis of function (S40):

758
$$f_1 = \ln \left[\frac{6K_c(1+K_c)}{9(1+K_c) + \alpha_1^2 K_c^2} \right] \quad (\text{S41})$$

759 The slope s_1 can be captured by the fitted line of the linear segment, and
760 α_1 is the first solution of Eq. (S30):

761
$$s_1 = \frac{\alpha_1^2 K_a}{R_a^2} \quad (\text{S42})$$

762 Thus, the permeability can be calculated as:

763
$$k = \frac{R_a^2 \mu c_t \phi_f s_1}{\alpha_1^2} \quad (\text{S43})$$

764 **SI2-2: Solution for K_c Goes to Infinity**

765 When V_c has an infinite volume compared to the void volume in a sample,
 766 which means that the density of gas in V_c would be kept at ρ_{p0} , and α
 767 would approach $n\pi$ in Eq. (S30), then Eq. (S32) can be transformed as:

$$768 \quad U_s = \xi + \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{\sin n\pi\xi}{n} e^{-(n\pi)^2\tau} \quad (S44)$$

769 In this situation, $U_f = 1$, and as the gas density would be maintained at the
 770 initial state at ρ_{p0} , it would be a familiar case in diffusion kinetics problems
 771 with the uptake rate of F_f to be expressed as F_s in V_b (Barrer, 1941):

$$772 \quad F_s = \frac{\rho_{sav}}{\rho_{s\infty}} \quad (S45)$$

773 where ρ_{sav} is the average value of ρ_{sr} in the grain, and $\rho_{s\infty}$ is the
 774 maximum value of ρ_{sr} :

$$775 \quad \rho_{sr} = \rho_{ps} - \rho_{p2}, \quad \rho_{s\infty} = \rho_{p0} - \rho_{p2} \quad (S46)$$

776 The value of ρ_{sr} in the grain is:

$$777 \quad \rho_{sav} = \frac{3}{R^3} \int_0^R \rho_{sr} r^2 dr \quad (S47)$$

778 Then F_s becomes:

$$779 \quad F_s = \frac{3}{R^3} \int_0^R \frac{U_s}{\xi} r^2 dr \quad (S48)$$

780 Substituting Eq. (S44) into Eq. (S48), we can calculate:

781
$$F_s = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{e^{-(n\pi)^2 \tau}}{n^2} \quad (S49)$$

782 Similar to Eq. (S39), Eq. (S49) can also be linearized to calculate the
 783 permeability in τ from the fitted slope. For $\tau \geq 0.08$, Eq. (S49) can be
 784 reduced as:

785
$$F_s = 1 - \frac{6}{\pi^2} e^{-\pi^2 \tau} \quad (S50)$$

786 When t is small enough (for $\tau \leq 0.002$), Eq.(S49) can be transformed
 787 into Eq. (S51).

788
$$F_s = 6 \sqrt{\frac{\tau}{\pi}} \quad (S51)$$

789 As F_s is a special solution of F_f with the case of K_c goes to infinity, we
 790 can arrive at:

791
$$F_s = F_f = (1 - U_f)(1 + K_c) \quad (S52)$$

792 For testing the ultra-low permeability rocks using granular samples when K_c
 793 goes to infinity, Eq. (S50) and Eq. (S51) can be selected using different τ
 794 values.

795 From the fitted slope s_2 of function $\ln(1 - F_s)$ from Eq. (S50), we can
 796 then derive the permeability:

797
$$k = \frac{R_a^2 \mu c_t \phi_f s_2}{\pi^2} \quad (S53)$$

798 The results of Eq. (S53) are very similar to Eq. (S43) as the first solution
 799 for Eq. (S30) is very close to π .

800 From the fitted slope s_3 of function F_s^2 from Eq. (S51), we can derive
801 the permeability:

802
$$k = \frac{\pi R_a^2 \mu c_t \phi_f s_3}{36} \quad (S54)$$

803

804 **SI3. A Case of Data Processing for GPT**

805 We show here an illustration of the data processing procedure for the GPT
806 with a molecular sieve sample (<https://www.acsmaterial.com/molecular-sieves-5a.html>). This material consists of grains of 2 mm in Diameter with a
807 porosity of 26.28%, and a uniform pore-throat size of 5Å in Diameter, with a
808 particle density of 2.96 g/cm³. For a 45 g sample, the K_c value is 19.4 from
809 Eq. (S21), and therefore 4.9% of the density ratio $(1 - K_f)$ is available for
810 mass transfer from Eq. (1K).

812 The experimental data were captured under a strict temperature control and
813 unitary-gas environment, along with a precise measurement of barometric
814 pressure. The experiment was run twice, and after the data were collected, 1)
815 we made a rough evaluation of the "Penetration Zone" of this sample based on
816 Figs. 5-6. For this molecular sieve sample, the "Penetration Zone" is shown in
817 Fig. S1, and the mass transfer in unit time more conforming to a linear state
818 (shown as Fig. 5) over a large time range, especially at 100-300s; 2) data in
819 the selected range (100-300s) were fitted respectively for the slope from Fig.

820 S2, then slopes were compiled in Table SI3-1; 3) permeabilities were
821 calculated using the slope of the fitted curve, and all results for LLT, ILT and
822 IET are also shown in Table SI3-1; 4) the results were checked with their
823 dimensionless times to verify whether the early- or late-time solutions were
824 used correctly. Table SI3-1 clearly shows that the results of IET should be
825 selected for this sample, as the dimensionless time is less than 0.024. Note that
826 the data fluctuation shown here was from a high resolution ($\pm 0.1\%$ for 250
827 psi) pressure sensor without undergoing a smoothing process; meanwhile, for
828 data in the 100-200, 200-300, and 300-400 seconds of experimental duration,
829 100, 200, and 300 seconds respectively were used to calculate the
830 dimensionless times for the results in Table SI3-1.

831 In addition, the validity of the permeability obtained needs to be verified by
832 using the time interval employed in data fitting and the calculated permeability
833 results to calculate the τ (Table SI3-1). If the dimensionless time is less than
834 0.024 (as occurred for the case of molecular sieve), the IET solution is selected;
835 if the dimensionless time is greater than 0.024 and K_c is greater than 10, the
836 ILT solution is used; if τ is greater than 0.024 and K_c is less than 10, then
837 the LLT solution is employed. However, for sample sizes smaller than 1.27
838 mm, Conflicting Results (described in Table 1) occur, and results from this
839 situation are not recommended due to poor data quality.

Table SI3-1. Permeability results of molecular sieve from LLT, IET and ILT

Fitting range (s)	LLT (m ²)	τ - LLT	IET(m ²)	τ - IET	ILT (m ²)	τ - ILT	Slope-LLT	Slope-IET	Slope-ILT
100-200	5.60E-22	0.004	1.02E-21	0.007	5.00E-22	0.003	0.0004	0.0007	0.0004
200-300	4.20E-22	0.006	5.81E-22	0.008	3.75E-22	0.005	0.0003	0.0004	0.0003
300-400	2.80E-22	0.006	4.36E-22	0.009	2.50E-22	0.005	0.0002	0.0003	0.0002

Fig. S1. Unit pressure change varying with experimental time.

845 Fig. S2. Fitted slopes for each solution; (a) to (c) are results of LLT and ILT, while
846 (d) to (f) of IET.

847 **SI4. Equipment and samples**

848 The experimental setup in the GPT presented in this study is based on the
849 GRI-95/0496 protocols (Guidry et al., 1996) and the SMP-200 guidelines from
850 Core Laboratories with the gas expansion approach (shown in Fig. S3). In this
851 work, gases (He, Ar, N₂, or CO₂) with different molecular sizes and sorption
852 capacities were tested using two shale core samples (X1, X2) from an oil-
853 producing lacustrine formation in the Songliao Basin, China. X1 is used for
854 sample size study where X2 used for experiment with different gas. Also, we
855 used the molecular sieve to exhibit the practical utilization of the GPT method
856 in SI3. We gently crushed the intact samples with mortar and ground to
857 different granular sizes from 0.34 mm to 5.18 mm through a stack of sieves
858 (named here as Size X: 8 mm to #8 mesh; GRI+: #8-#12 mesh; Size A: #12-
859 #20 mesh; GRI: #20-#35 mesh; Size B: #35-#80 mesh).

860

861 Fig. S3. Scheme of the GPT experiment for granular samples with all the cells and
862 supplies placed inside an incubator for temperature control.

863 After loading each sample, related accessories (e.g., solid discs or balls for
864 volume control; and hence porosity, sample mass, and solution-related) were
865 placed below samples inside the cell (Fig. S3). Next, valves 1 and 3 were
866 closed, then valves 2 and 4 were opened for air evacuation. Using a precise
867 pressure gauge connected to the reference cell shown in Fig. S3 we monitored
868 changes in the pressure. The evacuation time typically lasted at least 15-30
869 min, and then the system was allowed to stabilize for another 15 min. As the
870 moisture content of the samples significantly influences the final vacuum, the
871 samples were placed into the sample cell immediately after removal from the
872 drying oven set at 60°C for two days and cooling in a low-humidity desiccator.

873 The experiments were conducted at the temperature of 35°C by placing the
874 SMP-200 inside an incubator equipped with a high precision temperature-

875 humidity sensor to monitor changes. This is to ensure that the system
876 temperature was always stable (0.05°C over at least 45 mins of experimental
877 duration). For temperature monitoring, after evacuation, we closed valves 3
878 and 4 followed by opening valves 1 and 2 (shown in Fig. S3) and monitoring
879 the heat convection and conduction in the system with the pressure gauge.
880 Normally, the sample was placed inside the sample cell in less than 30 sec
881 after opening the incubator and remained at least 45 min for the gas pressure
882 to stabilize before the pressure decay test. After the pressure was stabilized
883 (0.005 psi for an experimental pulse pressure of 200 psi), it was deemed that
884 there was no appreciable additional flow due to temperature variation in the
885 system, as indicated by the rebound of the pressure decay curve. After reaching
886 a unitary gas condition and stable temperature in the GPT experiment, valves
887 2 and 4 were closed, and the reference cell was filled with the probing gas
888 (mostly non-reactive helium) at 200 psi. Valve 2 was then opened to release
889 the pressure in the reference cell into the void volume in the sample cell, and
890 the pressure decay for both reference and sample cells were recorded over time.

891 **SI5. Experimental conditions**

892 We performed leakage tests by measuring the pressure variation with non-
893 porous solids, such as steel balls, as any leakage would cause pressure
894 variations and, accordingly, errors in permeability measurements of tight

895 porous samples (Heller et al., 2014). Before the data from porous samples were
896 analyzed, the leakage pressure from the steel ball experiment was subtracted
897 from the sample data to correct the modest (<5% of the pressure levels used
898 for permeability analyses) leakage effect.

899 The need for a unitary gas environment (a single gas used in both reference
900 and sample cells) is needed to successfully measure permeability via the GPT
901 method. The relative movement of gas molecules in the mass transfer process
902 is driven by the gas density gradient in the system. During gas transport, the
903 pressure variance was recorded and used to obtain the permeability coefficient.
904 However, when the gas in both cells is different, e.g., helium in the reference
905 and air in the sample cells, the mathematical analysis requires a complicated
906 correction accounting for the mean molar mass and the average gas dynamic
907 viscosity of the gas mixture. In this study, we present the calculation with the
908 viscosity of mixed gases for the GPT in the SI1. Since the mixed gas
909 environment is not recommended, air evacuation should be used for a well-
910 controlled unitary gas environment in the GPT.

911 A stable temperature is another critical point to ensure the success of the
912 GPT experiment. A sensitive pressure transducer in combination with the ideal
913 gas law, used to establish the relationship between pressure and gas volume
914 change, would be a much more convenient and precise way than the gas flow

915 meter to determine the gas permeability considering the measurement
916 accuracy. According to Amonton's law (Gao et al., 2004), the kinetic energy
917 of gas molecules is determined by the temperature, and any changes would
918 alter the molecular collision force causing a pressure variation and a
919 volumetric error. The GPT experiments were run two or three times on the
920 same sample, and the sample skeletal density at the end of the experiment were
921 obtained to check the overall indication of leakage and temperature control.
922 The experimental data with relatively large and stable skeletal density (mostly
923 the last run, from small but appreciable pressure change to reach stable values)
924 were used.

925

926

927

928

929

930

931

932

933

301 **Appendix References:**

302 Barrer, R.M., 1941. Diffusion in and through solids, Рипол Классик.

303 Brokaw, R.S., 1968. Viscosity of gas mixtures, National Aeronautics and Space
304 Administration.

305 Carslaw, H.S., Jaeger, J.C., 1959. Conduction of heat in solids.

306 Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U., 2004.
307 Frictional forces and Amontons' law: from the molecular to the macroscopic scale, ACS
308 Publications.

309 Guidry, K., Luffel, D., Curtis, J., 1996. Development of laboratory and petrophysical
310 techniques for evaluating shale reservoirs. Final technical report, October 1986-
311 September 1993, ResTech Houston, Inc., TX (United States).

312 Haskett, S.E., Narahara, G.M., Holditch, S.A., 1988. A method for simultaneous
313 determination of permeability and porosity in low-permeability cores. SPE formation
314 evaluation 3(03), 651-658.

315 Heller, R., Vermylen, J., Zoback, M., 2014. Experimental investigation of matrix permeability
316 of gas shalesExperimental Investigation of Matrix Permeability of Gas Shales. Aapg Bull.
317 98(5), 975-995.

318 Sutherland, W., 1895. XXXVII. The viscosity of mixed gases. The London, Edinburgh, and
319 Dublin Philosophical Magazine and Journal of Science 40(246), 421-431.

320