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Abstract. New-particle formation from condensable gases is a common atmospheric process that has significant but uncertain

effects on aerosol particle number concentrations and aerosol–cloud–climate interactions. Assessing the formation rates of

nanometer-sized particles from different vapors is an active field of research within atmospheric sciences, with new data

being constantly produced by molecular modeling and experimental studies. Such data can be used in large-scale climate and

air quality models through parameterizations or look-up tables. Molecular cluster dynamics modeling, ideally benchmarked5

against measurements when available for the given precursor vapors, provides a straight-forward means to calculate high-

resolution formation rate data over wide ranges of atmospheric conditions. Ideally, the incorporation of such data should be

easy, efficient and flexible in the sense that same tools can be conveniently applied for different data sets in which the formation

rate depends on different parameters. In this work, we present a tool to generate and interpolate look-up tables of formation

rates for user-defined input parameters. The table generator primarily applies cluster dynamics modeling to calculate formation10

rates from an input quantum chemistry data set defined by the user, but the interpolator may be used also for tables generated

by other models or data sources. The interpolation routine uses a multivariate interpolation algorithm, which is applicable to

different numbers of independent parameters, and gives fast and accurate results with typical interpolation errors of up to a few

percent. These routines facilitate the implementation and testing of different aerosol formation rate predictions in large-scale

models, allowing straight-forward inclusion of new or updated data without the need to apply separate parameterizations or15

routines for different data sets that involve different chemical compounds or other parameters.

1 Introduction

Formation of secondary aerosol particles from condensable gases is a well-known and ubiquitous phenomenon in Earth’s

atmosphere (Kerminen et al., 2018; Kontkanen et al., 2017). Aerosols have significant effects on climate and air quality, with

the indirect climate effect through aerosol–cloud interactions forming the largest uncertainty in radiative forcing assessments20

(Naik et al., 2021). New-particle formation, including the formation and condensational growth of nanoparticles from vapors,

is an important factor affecting aerosol number concentrations and size distributions (Fountoukis et al., 2012; Makkonen et al.,

2012; Gordon et al., 2017). The primary quantity characterizing the formation process is the initial particle formation rate J ,

often referred to as the nucleation rate, which gives the rate at which new particles of ca. 1–2 nm in diameter form per unit time

and volume at given ambient conditions through clustering of vapor molecules. The chemical compounds that are able to drive25
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and enhance the initial formation process include acids, bases, and organic species (Glasoe et al., 2015; Lehtipalo et al., 2018;

Xiao et al., 2021). The roles and effects of different potentially important precursor vapors are not, however, resolved. While

it is established that sulfuric acid (H2SO4) initiates particle formation in the presence of stabilizing species such as ammonia

(NH3) or monoamines (Jen et al., 2014; Almeida et al., 2013), there exist various species, such as diamines (Jen et al., 2016),

organic acids (Zhang et al., 2004) and complex highly oxidized organic molecules (Kirkby et al., 2016), that may contribute30

to particle formation with or without sulfuric acid. Furthermore, quantitative particle formation rates are very challenging to

assess: both theoretically and experimentally deduced formation rates involve high uncertainties (Almeida et al., 2013; Kürten

et al., 2018), and may be sensitive to ambient conditions such as temperature and scavenging sink of the initial molecular

clusters (Olenius et al., 2017; Elm et al., 2020).

The combination of quantum chemistry and molecular cluster dynamics simulations is the state-of-the-art method to cal-35

culate theoretical particle formation rates (Elm et al., 2020). Quantum chemistry is applied to compute the thermodynamics

of the formation of the initial molecular clusters from vapor molecules. The thermochemistry data are converted to cluster

evaporation rate constants and used as input in cluster population dynamics simulations, which determine the formation rate by

modeling cluster formation and growth considering molecular collisions and evaporations and other dynamic processes such

as cluster sinks (Olenius et al., 2013). Such simulations are fast and easy to perform, thus enabling the assessment of forma-40

tion rates over wide ranges of atmospheric conditions for given chemical compounds. Benchmarking the theoretical methods

against experimental data, which often cover a limited set of conditions, provides quality control and uncertainty estimates for

the predicted formation rates (Almeida et al., 2013; Kürten et al., 2016).

New quantum chemical data, calculated for different chemical species (Elm et al., 2020; Elm, 2019a) or by applying different

physical and computational approaches (Besel et al., 2020), is constantly becoming available. Such data can be used to test the45

effects of different particle formation mechanisms or improved quantitative formation rate predictions in atmospheric large-

scale models. To this end, the formation rate data must be implemented as parameterizations or look-up tables (Dunne et al.,

2016; Ehrhart et al., 2018; Kazil et al., 2010; Yu et al., 2020; Baranizadeh et al., 2016), as applying formation rate simulations

within a large-scale model is not feasible. The formation rate is a function of several parameters, the most obvious of which

are the concentrations of the vapors participating in the formation process, and the temperature. In addition, formation rates50

obtained by cluster simulations include the effects of cluster sink caused by pre-existing larger aerosol particles and, depending

on the chemical compounds and quantum chemical input data, possibly also atmospheric ions and relative humidity. In the

presence of several cluster-forming vapors, particle formation can proceed through multicompound clustering, or parallel

clustering pathways involving non-interacting chemical mechanisms (Elm, 2019b).

Deriving parameterizations quickly becomes cumbersome as the number of independent parameters increases: finding pa-55

rameterization formulas and coefficients that reproduce the formation rate data with a reasonable accuracy throughout the

parameter space is virtually impossible for arbitrary chemical systems. Furthermore, evaluation of very complex formulas

within a computationally heavy large-scale model may not be optimal. The benefit of look-up tables is that values determined

from a table of sufficient resolution are guaranteed to be close to the original data, and no pre-processing of the formation rate

data is needed. The use of such tables, on the other hand, requires multivariate interpolation algorithms that should ideally be60

2



applicable to tables of arbitrary dimensions, with no need for manual changes depending on the number of independent param-

eters. While interpolated values must be sufficiently accurate, the interpolation routine should be computationally efficient and

preferably simple.

In this work, we introduce a tool to incorporate molecular modeling data in atmospheric models by flexible routines to

generate and interpolate formation rate look-up tables. With this approach, we aim to cover the following aspects:65

– flexible implementation of state-of-the-art molecular modeling results in large-scale models,

– inclusion of arbitrary chemical compounds,

– efficient multivariate interpolation, and

– user-friendly routines with no need for modifications depending on, for instance, included chemical compounds.

We construct a look-up table generator that embeds a publicly available cluster dynamics model to calculate formation rates70

from user-defined quantum chemistry input data, and provide a table interpolation routine that can be readily implemented

in a large-scale model. The table generator enables easy application of the standard formation rate modeling approach, but

the interpolator can be used also for tables saved from other models in the same, simple format. We present assessments of

optimal table resolution and interpolation accuracy, and demonstrate the use and performance of the tool by application on

sulfuric acid—ammonia cluster chemistry data. We generate tables suitable for global applications for these data, and assess75

the performance of the interpolation routine in typical computationally heavy model set-ups.

2 Methods

The proposed look-up table approach comprises two components: a generator routine to create tables, and an interpolation

routine to be implemented in an atmospheric model. We refer to the routines as J-GAIN (Formation rate (J) look-up table

Generator And INterpolator). The details of the generation and interpolation routines are presented in Sects. 2.1 and 2.2,80

respectively, and their application is further discussed in Sects. 2.3 and 2.4. The table generator primarily uses input data from

quantum chemical calculations and calls a molecular cluster dynamics model to determine the formation rates, as this is the

standard method in theoretical atmospheric particle formation studies. The interpolation routine can, however, be applied also

to formation rate data obtained by other means by saving the tabulated data in the given table format. Fig. 1 shows a schematic

presentation of the J-GAIN routines, summarizing the input, output and usage. J-GAIN is written in Fortran, with the exception85

that the cluster dynamics model used by the table generator applies also Perl, and licensed under GPL 3.0. The code repository

includes detailed instructions for using the programs (Yazgi and Olenius, 2022a, b).

2.1 Table generation

By default, the table generator takes as input molecular cluster thermochemistry data for the given chemical compounds, and

calculates the formation rates by molecular cluster dynamics simulations through coupling to the open-source cluster model90
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Figure 1. Flow chart illustrating the generation and application of particle formation rate tables by J-GAIN. The boxes summarize the

steps for using the two parts: (1) table generation with automatized calculation of formation rates by cluster dynamics modeling, and (2)

implementation of tables and the table interpolator in a host model. User-defined input and output are specified outside the boxes.

ACDC (Olenius, 2021). In practice, application of the generator on a new cluster data set consists of two steps: creating

the formation rate equations by ACDC, and running the generator to obtain the table (see Yazgi and Olenius, 2022a). As

the embedded ACDC application provides automatized and flexible treatment of arbitrary cluster data sets, we recommend

the default table generator when applying the commonly used combination of quantum chemical input and cluster dynamics

modeling to obtain formation rates. It can be noted that ACDC also includes a wide selection of options that increase the95

flexibility: for example, while cluster evaporation rate constants are by default obtained from the thermochemistry data, they

can also be given as direct input if the user wishes to assess them in some other way. The advanced user may also modify

other cluster simulation settings (see the ACDC manual; Olenius, 2021). However, the table interpolator is not limited to tables

generated by the default table generator, and thus it is possible to use alternative approaches to determine formation rates. For

this, the rates must be saved in the same file format as that produced by the default generator, as detailed in Appendix A.100

In addition to the molecular cluster data, the table generator requires user-defined input for the ranges of the parameters

that define the ambient conditions. These parameters include the concentrations of the vapor compounds, temperature (T ),

coagulational scavenging sink (CS; given as vapor condensation sink which is scaled for different cluster sizes within the

cluster dynamics model as derived by Lehtinen et al. (2007)), and optionally also ion production rate (IPR; given as generic

ion pairs per unit volume and time) and relative humidity (RH). This gives n + (2 . . . 4) independent parameters, where n105

is the number of chemical compounds. While vapor concentrations, temperature and cluster sink always affect the particle

formation rate and are thus included by default, the inclusion of IPR and RH depends on the chemical system, and also on data

availability. For strongly clustering chemistries, ion effects may be negligible (Myllys et al., 2019), and also RH effects may
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be minor (Henschel et al., 2016). As the addition of charged species and hydrates in a quantum chemistry data set requires a

significant computational effort, these effects are not always included in available thermochemistry data sets.110

The user sets the range for the values of each parameter by giving the lower and upper limits, and the number of values to be

placed within the limits at even intervals. Parameters can be defined as “logarithmic”, in which case the data points are placed

evenly on a logarithmic scale. This is relevant for, for example, vapor concentrations. The formation rate table is then generated

by running the generator which calls ACDC to obtain the formation rate J for each combination of parameter values.

The tables are outputted as binary files, and a descriptor file is generated together with the table. The latter contains the115

essential information on the table, including the names and units of the independent parameters, the lower and upper limits of

the parameter values, and the numbers of values along each dimension. In order to ensure sufficient accuracy, several tables can

be generated at different resolutions. Then, possible errors in interpolated values can be assessed by interpolating a coarser-

resolution table on the grid of a higher-resolution reference table (Sect. 3.1).

2.2 Table interpolation120

The interpolation routine uses the descriptor file to obtain the number and identities of the independent parameters for the cor-

responding look-up table. After loading the table, the routine determines the formation rate by linear multivariate interpolation.

In general, for an N -dimensional function f = f(x1,x2, ...,xN ) with nearest known data points at locations xj,0 and xj,1 for

each variable xj , where xj,0 < xj,1 and j = 1, . . . ,N , the interpolated value f̃ can be written as

f̃ (x1,x2, ...,xN ) =
∑

(i1,i2,...,iN )∈{0,1}N

f (x1,i1 ,x2,i2 , ...,xN,iN )

N∏
j=1

x′
j , ij = 1

1−x′
j , ij = 0

, (1)125

where the summation goes over the values of f at all combinations of points xj,0 and xj,1 for j = 1, . . . ,N , and

x′
j =

xj −xj,0

xj,1 −xj,0
. (2)

Here, we perform linear interpolation by default for f = logJ and either xj or logxj depending on if parameter j is defined

as linear or logarithmic, respectively. This gives more accurate results than assuming purely linear relationships, as J generally

varies smoothly on a logarithmic scale. Moreover, a linear dependence between the logarithms of J and the concentration C130

of a contributing vapor within a short interval along the C-axis is expected also based on simplified cluster formation theories

(see e.g. Li and Signorell, 2021). The choices of applying either the actual values or the logarithms of the dependent and

independent parameters can also be changed by the user.

Treatment of input values that are outside the ranges covered by the table is parameter-dependent and defined by the user.

For each parameter, the following options are included in the example routines:135

1. Value below/above the table limits → the value is set to the lower/upper limit of the table (this is the default behavior)
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Figure 2. Schematic presentation of treatment of several tables: an example of a possible table combination that the user may construct

according to their needs.

2. Value below the lower limit → J = 0 is returned; input value above the upper limit → the value is set to the upper limit

The latter option is for vapor concentrations, provided that the lower limits of the table are chosen so that effectively no particle

formation is expected at concentrations below the limits. The first option is by default used for other parameters.

2.3 Incorporation of tables in a host model140

In the code repository, we provide an example of simple interfaces to load and interpolate look-up tables within a host model.

The input parameters of the interpolation subroutine include all independent parameters that the particle formation rate may

depend on, and the total formation rate is returned as output. Importantly, the interpolator is not limited to using a single table:

separate particle formation pathways, corresponding to different chemical compounds, can be incorporated as separate tables.

If more than one table are used, the interpolator is applied separately to each table, and the total formation rate can be obtained145

as the sum of the individual formation rates.

The repository includes a simple example of summing the rates interpolated from two separate tables. However, the user

may construct different ways to treat several tables according to their needs and data availability. To give an example, a possible

practical application could be as follows: separate tables are used for parallel formation mechanisms, for example, inorganic

H2SO4–base and organics-driven pathways. There may also be alternative tables that are selected based on the presence of a150

given chemical species, that is, if the concentration of the species is high enough for the species to contribute. For instance,

there may be data for particle formation from H2SO4 and NH3 with or without an amine species. In the presence of the amine,

a table of H2SO4—NH3–amine formation rates is selected for the H2SO4–base pathway, while otherwise a H2SO4—NH3

table is applied. This example of a potential table combination is schematically presented in Fig. 2.
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2.4 Example case: sulfuric acid—ammonia particle formation155

We demonstrate the application and performance of the J-GAIN table generator and interpolator using previously published

quantum chemical data for sulfuric acid and ammonia (Olenius et al., 2013), which are common atmospheric particle formation

precursor vapors. Here, the input molecular cluster data for the H2SO4-–NH3 chemistry includes charged clusters but no

hydration, and therefore the independent parameters that determine the formation rate are vapor concentrations [H2SO4] and

[NH3], T , CS and IPR.160

We apply the H2SO4—NH3 cluster data to generate tables of different resolution and coverage. First, we demonstrate the

effect of table resolution by generating tables that cover subsets of independent parameter ranges where J is sensitive to the

parameter values, and compare the interpolated values of J to accurate values given by a high-resolution reference table.

Second, we generate extended tables suitable for global applications, where the ranges of all independent parameters cover

the various environments from boundary layer to upper troposphere. The extended tables are applied to evaluate the accuracy165

of J interpolated over the full set of parameters [H2SO4], [NH3], T , CS and IPR that follow representative diurnal cycles,

corresponding to practical model implementations. To assess the performance of the interpolation routine for given table sizes,

we determine the interpolation speed for test tables of different numbers of data points and dimensions.

3 Results and discussion

3.1 Effect of table resolution on accuracy170

Fig. 3 presents J interpolated along the [H2SO4]-axis and the error in the interpolated values at representative atmospheric

conditions for tables with 2k +1,k = 4...9 data points on the axis. That is, for each subsequent table the number of points is

doubled, resulting in numbers ranging from 17 to 513. For the lowest resolution of 24+1 = 17 points, the relative error is less

than ±10 %, and for ≥ 26 +1 = 65 points the error is well below ±1 %. Fig. 4 shows the error as a function of both [H2SO4]

and [NH3] at two different temperatures for the two lowest resolutions used here. For 24 +1 = 17 points along both axes, the175

error is up to 10 % but mostly below it, and doubling the resolution to 25 +1 = 33 points drops the error below a couple of

percent.

In order to demonstrate the application of the interpolator for interpolation over all independent parameters at realistic am-

bient conditions, corresponding to implementation of the routine in an atmospheric model, J is determined for a representative

diurnal cycle as shown in Fig. 5. The independent parameters are set to follow 24-hour time profiles as described in Appendix B.180

Here, we apply extended tables that cover wide ranges of parameter values, suitable for larger-scale chemical transport or gen-

eral circulation models: [H2SO4] = 105−108 cm−3, [NH3] = 106−3×1011 cm−3, T = 180−320 K, CS = 10−5−10−1 s−1,

and IPR = 0.1− 60 cm−3 s−1. The errors in Fig. 5 are generally of the same order as in Figs. 3 and 4, although somewhat

higher due to interpolation over all parameters. Doubling the table resolution from 24 +1 = 17 to 25 +1 = 33 points (1) only

for vapor concentrations, and (2) for all parameters decreases the maximum errors down to ca. ±15 % and well below ±10 %,185
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Figure 3. Particle formation rate J as a function of H2SO4 concentration for H2SO4—NH3 model chemistry ([NH3] = 1010 cm−3,

T = 298.15 K, CS = 10−3 s−1, IPR = 3 cm−3s−1), determined from look-up tables of different resolution. (a) Absolute J . Note that the

different lines mostly fall on top of each other. (b) Relative error in interpolated J compared to accurate values given by the highest-resolution

reference table with 224 +1∼ 2 · 107 points along the [H2SO4]-axis. (c) Relative error in interpolated J for resolutions of ≥ 26 +1 = 65

points.

respectively. The errors are similar when using different absolute values of the independent parameters, tested by modifying

the diurnal profiles by scaling the parameter values up or down (by e.g. an order of magnitude for vapor concentrations or CS).

In general, such errors are very small compared to typical uncertainty estimates for formation rate data: uncertainties in both

theoretical and experimental J generally span up to an order of magnitude and beyond (see e.g. Kürten et al., 2016). Based

on the present evaluations, the interpolation approach is not expected to add notable uncertainties in the formation rate repre-190

sentation even at the lowest resolutions applied. Moreover, the accuracy is significantly increased by doubling the resolution.

However, it can be noted that high-resolution tables quickly become very large, and the interpolation speed may be affected by

the number of data points along the dimensions. Therefore, the choice of resolution depends on (1) the desired accuracy, (2)

how large tables the user is willing to generate and store, and (3) the computational aspects of the model application considering

the number of calls to the interpolator (Sect. 3.2).195
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Figure 4. Relative error in interpolated particle formation rate J as a function of H2SO4 and NH3 concentrations for look-up tables with

24+1 = 17 and 25+1 = 33 data points along the [H2SO4]- and [NH3]-axes at CS = 10−3 s−1, IPR = 3 cm−3s−1, and (a) T = 298.15 K,

(b) T = 285 K.

3.2 Effect of table size and number of independent parameters on performance

In order to assess the interpolation speed with respect to the numbers of data points and independent parameters, we apply

arbitrary test tables of different sizes and dimensions. Fig. 6 shows the mean run time for one million calls to the interpolator

with randomly assigned input parameter values. Here, the x-axis is the base-2 logarithm of the table size (total number of

values in the table). Therefore, for a table with equal numbers of points 2k +1 along all dimensions, the x-axis corresponds to200

approximately N × k, where N is the number of dimensions.

The performance is primarily affected by the number of dimensions: the addition of a new dimension may increase the run

time by up to a factor of ∼ 2. In addition, the run time exhibits a major increase when the table size becomes very large,

here beyond ca. 228 (of the order of ≳ 108) data points. This is due to memory limits and management, and thus the exact

threshold size depends on the computing system. For example, for the H2SO4–NH3 table with N = 5 and the current simple205

test set-up with 64 GiB memory on the node, the threshold of ∼ 228 points corresponds to k > 5. In the case that managing
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Figure 5. Particle formation rate J for a diurnal cycle in which all independent parameters [H2SO4], [NH3], T , CS and IPR vary with time

(Appendix B). (a) Absolute J . (b) Relative error in interpolated J compared to accurate values. Interpolated values are determined from the

extended tables with increasing resolution either along only vapor concentration axes, or along all axes as indicated in the legend.

very large tables becomes slow on a given system, the performance can be optimized by splitting the table into subtables that

cover different parts of the ambient conditions parameter space.

The approximative run times of Fig. 6 can be compared to typical overall times for e.g. global-scale applications. We have

implemented the H2SO4–NH3 table for first tests in the EC-Earth climate model (Döscher et al., 2022). In this EC-Earth set-210

up, the total number of grid points where the interpolation routine is called is 367200 (120× 90 horizontal grid points and 34

vertical layers), the time step for determining the formation rate is one hour, and the chemistry model uses 90 processes. This

corresponds to approximately ≲ 1 minute run time for the formation rate routine for a simulation of one year, assuming a mean

time of ≲ 2 seconds for 106 look-ups (Fig. 6, resolutions of 24+1 = 17 and 25+1 = 33 for all axes). Such contribution can be

considered acceptable compared to the overall model run time of ≳ 10 hours per year, or to the contribution of the atmospheric215

chemistry component which accounts for up to even ∼90 % of the total run time (van Noije et al., 2014).

For applications with e.g. higher spatial resolution or shorter time step, the performance of the formation rate routine can

be optimized by reasonable choices of table dimensions and size. For example, for very strongly clustering chemical systems,

the presence of atmospheric ions has only minor effects. The IPR parameter could thus be discarded in the interest of speed.

In addition to the resolution of the independent parameter values (i.e. the absolute intervals), also their ranges (minimum and220

maximum values) can be chosen considering the modeled environment, so that redundant values are avoided. If the numbers

and ranges of parameters cannot be optimized further, very large tables can be divided into separate subtables that cover

different sets of ambient conditions, and selected within the host model application based on the input conditions.

It can also be noted that considering the high accuracy of the interpolated values, interpolation from pre-generated tables

is superior compared to the time required to calculate the formation rates by the molecular cluster model. For example, gen-225

erating the table of (24 +1)5 = 1419857 data points takes 27 hours on a single process, corresponding to a mean time of ca.

0.068 seconds per value. Such times would be infeasible for operational models.
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Figure 6. Time required to perform one million look-ups for tables of different sizes. The figure shows different combinations (2k +1,2l +

1,2m +1, ..) of data points along axes, keeping k = l and the total number of points < (27 +1)2(24 +1)4 ∼ 230.37. For more details, see

discussion in Sect. 3.2.

3.3 Potential limitations in applying formation rates in a host model

It must be noted that incorporating aerosol formation rates in an atmospheric model involves given limitations. These limita-

tions are independent of the data source of implementation method, and apply equally to look-up tables, parameterizations or230

other approaches. An obvious restriction is the availability of tracers in the host model. While various chemical compounds

may contribute to atmospheric particle formation, including large numbers of new species in a chemical transport model may

be cumbersome. In addition, sources of individual chemical species, such as different types of amines or organic acids, may

not be well quantified.

Here, we apply particle formation rates from H2SO4 and NH3 which are common species included in atmospheric models,235

and comprise a central particle formation pathway according to current understanding (Dunne et al., 2016; Gordon et al., 2017).

Tables generated in this work can thus be easily implemented in standard models that include aerosol formation processes. On

the other hand, H2SO4–amine particle formation, for example, requires the inclusion of amine species which are not common

tracers despite their potential importance to aerosol formation (Bergman et al., 2015). Different types of amines may exhibit

different particle formation efficiencies, but some amine species are similar in terms of their effects on the formation rate (Jen240

et al., 2014; Olenius et al., 2017). In order to test the importance of such particle formation agents in a large-scale model, some

simplifications are often needed.

A simplified option to include rough source–sink dynamics for species that can be assumed to have common sources and

similar properties with respect to gas-phase chemistry and gas-to-particle partitioning is to implement a lumped or repre-

sentative trace compound. For example, monoamines with similar properties—namely di- and trimethylamines—have been245

approximated as a single representative alkylamine species, the emissions of which are scaled from ammonia emissions by as-
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sumed amine-to-ammonia ratio due to their common sources (Bergman et al., 2015). To take into account possible differences

in the particle formation rates due to different amines, an option is to estimate the contributions of individual species based

on available measurements (Schade and Crutzen, 1995). Oxidized organic species can be treated in a similar manner through

a representative highly oxidized, ultra/extremely low-volatile compound (generally referred to as HOM or ULVOC/ELVOC;250

Kirkby et al., 2016; Schervish and Donahue, 2021), which is already included in some transport models (Gordon et al., 2017;

Julin et al., 2018; Patoulias and Pandis, 2022).

In addition, it can be noted that the standard approach to implement formation rates involves certain approximations related

to molecular cluster kinetics. Namely, formation rates are assumed to be determined solely by ambient conditions, applying the

steady-state approximation for the cluster population and omitting time-dependent vapor–cluster–aerosol kinetics (Yu, 2003;255

Olenius and Riipinen, 2017; Olenius and Roldin, 2022). While such simplifications are needed for large-scale applications,

they may affect the secondary particle concentrations. To minimize such effects, it can be recommended to extend the modeled

aerosol size distribution to as small sizes as achievable instead of extrapolating the formation rate to a substantially larger

size (Lee et al., 2013), or to apply a more detailed size distribution representation on the smallest particle sizes (Blichner

et al., 2021). Nevertheless, the inherent steady-state assumption in the initial formation rate at ca. 1 nm is likely to cause260

overprediction in the case of strongly clustering, low-concentration trace species, and thus the rate should be considered as an

upper-limit estimate for such chemistries (Olenius and Roldin, 2022).

4 Conclusions

Adequate representation of aerosol particle formation from vapors in atmospheric models is needed for assessing the climate

and health effects of aerosols. The increasing amount of available computational molecular cluster chemistry data enable calcu-265

lation of new-particle formation rates for different chemical compounds and computational chemistry methods. As formation

rates are typically complicated functions of ambient conditions, a practical approach to apply them in an atmospheric model

framework is through look-up tables. Here, we provide a tool to generate and interpolate formation rate tables, applicable to

arbitrary sets of chemical species, for conveniently incorporating theoretical particle formation rate data in large-scale models.

Tests conducted using data for H2SO4-–NH3 particle formation show that the interpolation approach is efficient and accu-270

rate, with maximum interpolation errors typically ranging from negligible to ca. ±(10− 20) % depending on table resolution.

Interpolation errors can also be minimized by choosing to interpolate given parameters on a logarithmic instead of a linear

scale. As interpolation speed is affected by the number of independent parameters and also by the table size for very large ta-

bles, the choice of parameters and the resolution should be optimized considering the computational burden of the application

where the table is implemented. For heavy applications, redundant independent parameters that have only minor effects on the275

formation rate can be discarded, and the number of data points along each dimension can be set according to the desired accu-

racy. The flexibility of the provided tool makes the routines easy to apply to different data sets and choices of table dimensions

and size. This design facilitates data transfer between the molecular modeling and the large-scale modeling communities.
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Appendix A: Data sources and table format

For J-GAIN, formation rate tables can be created (1) by the provided table generator when applying the molecular cluster280

dynamics modeling approach, or (2) by saving tabulated formation rates from another data source in a similar table. The details

of the formats are listed below, and detailed instructions for the table generator are available in the J-GAIN repository (Yazgi

and Olenius, 2022a).

For the J-GAIN table generator, the molecular cluster input data is given in the format of the ACDC model. Briefly, the set

of input files include285

1. Molecular compositions of the clusters

2. Cluster formation free energies as enthalpies and entropies

3. Cluster dipole moments and polarizabilities if also charged species are included

These files are summarized in the J-GAIN repository where also example files for the present test case can be found (Yazgi

and Olenius, 2022a, ACDC subdirectory), and described in detail in the ACDC technical manual (Chapter 3) available in the290

ACDC repository (Olenius, 2021). Before applying the table generator, the user creates the ACDC formation rate equations

for the given input by running the program provided in the J-GAIN repository. This gives the standard model set-up, although

it can be noted that the advanced user may also adjust the cluster modeling settings within the program if wanting to, for

example, modify rate constants (ACDC manual, Chapter 2.5). Lastly, for running the table generator, the user sets the ranges

of the ambient conditions in the namelist file (template provided in the generator subdirectory).295

For other data sources, the data need to be processed into the table format applied by the J-GAIN interpolator, including two

files:

1. Binary file that contains the formation rate array

2. Descriptor file that lists the independent parameters and their ranges

The rates are saved in the binary file as a flattened 1-dimensional array that can be constructed by iterating over the independent300

parameter values in a nested loop. The order of the parameters in the nested loop must be the same as that in the descriptor

file. That is, if the descriptor file lists parameters x1,x2, ...,xN , in this order, the outermost loop must correspond to x1 and the

innermost to xN :

i= 0

for i1 = 1 to imax,1 do305

...

for iN = 1 to imax,N do

i= i+1

Save f(i) = f(x1,i1 ,x2,i2 , ...,xN,iN )
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end for310

...

end for

where ij is the index corresponding to values given for parameter xj , and imax,j is the total number of values for xj . Example

codes for such loop are included in the J-GAIN repository. The descriptor file can be created by following the instructions and

example files in the repository (table generator subdirectory).315

Appendix B: Parameter descriptions in the diurnal test case

Table B1 lists the functional forms of the independent parameters applied for the diurnal test case (Fig. 5). The time profiles,

visualized in Fig. B1, are simply set to exhibit realistic magnitudes and shapes: the temperature peaks at daytime while the

condensation sink drops as boundary layer grows, and [H2SO4] follows a sinusoidal diurnal profile due to the photochemical

production of H2SO4. [NH3] and ion production rate generally do not show regular diurnal patterns, but are here set to vary in320

order to test the interpolation approach at different combinations of independent parameters.

Table B1. Parameter value as a function of time t (in hours) for the diurnal test case.

Parameter Value f = f(t), t= 0...24 h

[H2SO4] [cm−3]

0.5× (107 − 105)× (sin(2π(t− 6)/12− 0.5π)+ 1)+105, t ∈ {6...18}

105, otherwise

[NH3] [cm−3] (109 − 2 · 1010)× exp(−((t− 18)/12)2)+ 2 · 1010

T [K] 10× exp(−((t− 10)/6)2)+ 283.15

CS [s−1] (10−3 − 6 · 10−3)× exp(−((t− 10)/12)2)+ 6 · 10−3

IPR [cm−3s−1] 0.5× (4− 1)× (sin(2π(t− 6)/24− 0.5π)+ 1)+1

14



Figure B1. Time profiles of the independent parameters for the diurnal test case.

Code and data availability. J-GAIN is available at https://github.com/tolenius/J-GAIN (current version) and doi:10.5281/zenodo.7457152

(v1.0). Scripts and tables applied for the figures in this work are available from the corresponding authors.
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