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Abstract. The Asian tropopause aerosol layer (ATAL) is a distinct feature during the Asian summer monsoon season with an

impact on the regional radiative balance of the Earth’s atmosphere. However, the source regions and the detailed transport path-

ways of ATAL particles are still uncertain. In this study, we investigate transport pathways from different regions at the model

boundary (MB
::::
layer

::::::
(MBL) to the ATAL using the two Lagrangian transport models CLaMS (Chemical Lagrangian Model

of the Stratosphere) and MPTRAC (Massive-Parallel Trajectory Calculations), two reanalyses (ERA5 and ERA-Interim), and5

balloon-borne measurements of the ATAL performed by the Compact Optical Backscatter Aerosol Detector (COBALD) above

Nainital (India) in August 2016. Trajectories are initialized at the location of the ATAL, as measured by COBALD in the

Himalayas, and calculated 90 days backward in time to investigate the relation between the measured, daily averaged, aerosol

backscatter ratio and different source regions at the MB
:::::
MBL. Nine source regions at the MB

::::
MBL are distinguished, marking

continental and maritime sources in the region of the Asian monsoon. Different simulation scenarios are performed, to find sys-10

tematic differences as well as robust patterns, when the reanalysis data, the trajectory model, the vertical coordinate (kinematic

and diabatic approach) or the convective parameterisation are varied.

While there are many robust features, the simulation scenarios also show some considerable differences between the air

mass contributions of different source regions at the MB
::::
MBL

:
in the region of the Asian monsoon. The contribution to all

air parcels from the MB
::::
MBL

:
varied between 5% and 40% for the Indo-Gangetic plain, the contribution from the Tibetan15

Plateau varied between 30% and 40% and contributions from oceans varied between 14% and 43% for different scenarios.

However, the robust finding among all scenarios is that the largest continental air mass contributions originate from the Tibetan

plateau and the India subcontinent (mostly the Indo-Gangetic plain), and largest maritime air mass contributions in Asia come

from the Western Pacific (e. g. related to tropical cyclones such as typhoons). Additionally, all simulation scenarios indicate

that transport of maritime air from the Tropical Western Pacific to the region of the ATAL lowers the backscatter ratio (BSR)20

of the ATAL, while most scenarios indicate that transport of polluted air from the Indo-Gangetic plain increases the BSR.
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Therefore, while the results corroborate key findings from previous ERA-Interim based studies, they highlight the variability

of the contributions of different MB
:::::
MBL regions to the ATAL depending on the meteorological input data, vertical velocities

and in particular on the treatment of convection within the model calculations.

1 Introduction25

The Asian tropopause aerosol layer (ATAL) is a layer of particles over Asia in the upper troposphere and lower stratosphere

(UTLS) during the Asian monsoon. The source regions and the chemical composition of the ATAL particles are subject of

current debate. The ATAL occurs between May and September, with a peak in summer in coexistence with the Asian summer

monsoon anticyclone (ASMA) (Brunamonti et al., 2018). The ATAL extends from around 15◦ N to 35◦ N and 0◦ E to 150◦ E at

heights between 14 km and 18 km, even though the extent and density of the ATAL shows a distinct variability on time scales30

of days, months and years (e.g. Vernier et al., 2011; Hanumanthu et al., 2020). First evidence of the ATAL from balloon-borne

observations was found in 1999 (Kim et al., 2003; Tobo et al., 2007). The large extent of the ATAL was later demonstrated by

satellite observations (Vernier et al., 2011; Thomason and Vernier, 2013).

Even though the first satellite observations indicated that the ATAL aerosol particles are liquid, i. e., they are identified as

spherical objects, or very small solid particles (e.g. dust) (Vernier et al., 2011), more direct conclusions about the chemical35

composition and possible source regions of the ATAL were originally not possible. Unique aircraft measurements over the

Indian subcontinent in summer 2017 gave deeper insights into the chemical composition of ATAL particles indicating that

ammonium, nitrate and organics are important contributors to the chemical composition of ATAL particles (e.g. Höpfner et al.,

2019; Appel et al., 2022). Appel et al. (2022) highlight that a significant particle fraction within the ATAL results from the

conversion of gas-phase precursors, rather than from the uplift of primary particles from below. Furthermore, Weigel et al.40

(2021) found evidence of new particle formation at ATAL altitudes emphasizing the presence of secondary aerosol.

To identify the transport pathways as well as the source regions on the Earth’s surface for air masses that contribute to the

ATAL or the Asian monsoon anticyclone a variety of studies were performed (e.g. Bergman et al., 2012; Vogel et al., 2015;

Höpfner et al., 2019; Hanumanthu et al., 2020; Fairlie et al., 2020). The transport in the Asian summer monsoon region is

determined by deep convection, which injects air masses from the surface rapidly into the UTLS (up to
:
a
::::::::
potential

::::::::::
temperature45

:::::
height

::
of

::::::
around

:
360K) within a few hours. In the presence of the ASMA, air masses are transported upward by slow diabatic

heating (with a vertical velocity of about 1-1.5 K per day in ERA-Interim) superimposed on the anticyclonic flow resulting in

an upward spiraling movement of individual air parcels (Vogel et al., 2019). Deep convection contributing to transport in the

ASMA has been reported from a wide range of regions, such as South India, the Bay of Bengal or China (e.g. Vernier et al.,

2018; Bucci et al., 2020; Zhang et al., 2019a, b, 2020), following a wide variety of convective activity over Asia (Fadnavis50

et al., 2013). In addition, the transport from the Western Pacific’s boundary layer into the UTLS within typhoons and subsequent

transport into the ASMA was shown (Vogel et al., 2014; Li et al., 2017, 2020; Hanumanthu et al., 2020). However, most of the

air is injected by continental convection into the ASMA at the southern edge of the Himalayas (Indo-Gangetic plain, Foothills,

Tibetan plateau) (Bergman et al., 2012; Fadnavis et al., 2017; Höpfner et al., 2019; Bucci et al., 2020). Additionally, the relation
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between source regions at the model boundary (MB
::::
layer

::::::
(MBL) and the aerosol backscatter intensity of the ATAL has been55

studied. Evidence from balloon-borne and aircraft measurements indicates that if air from the ocean is injected into the ATAL,

the BSR is reduced, whereas it increases for larger continental contribution (Hanumanthu et al., 2020).

Lagrangian trajectory calculations in combination with observations have been used to investigate the relation between

source regions at the Earth’s surface and the chemical composition of air masses within the Asian monsoon anticyclone as well

as ATAL properties (e.g. Li et al., 2017; Vernier et al., 2018; Höpfner et al., 2019; Legras and Bucci, 2020; Johansson et al.,60

2020; Hanumanthu et al., 2020; Zhang et al., 2019b). These calculations rely on reanalysis data and their ability to correctly

:::::::::
adequately resolve convection and the diabatic vertical ascent in the ASMA. The ERA-Interim reanalysis (Dee et al., 2011)

was frequently used in previous Lagrangian transport studies of the ATAL. The ERA5 reanalysis (Hersbach et al., 2020) is

the latest reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and has replaced the

ERA-Interim reanalysis since 2019. ERA5 has a much higher temporal and spatial resolution than ERA-Interim which impacts65

atmospheric transport simulations (Hoffmann et al., 2019) and improves substantially the resolution of convection and tropical

cyclones (e.g. typhoons) (e.g. Li et al., 2020; Taszarek et al., 2020; Malakar et al., 2020).

In studies of the source regions that are contributing to the composition of the Asian monsoon anticyclone, better agreement

between diabatic and kinematic calculations and between models and observations was found when ERA5 was used instead

of ERA-Interim (e.g. Bucci et al., 2020; Legras and Bucci, 2020). The attribution of the sources, however, still depends on70

the reanalysis data (Bucci et al., 2020). Vertical transport from the MB
::::
MBL

:
to the UTLS is faster with ERA5 than with

ERA-Interim (e.g. Li et al., 2020). Altogether, these studies indicate, that ERA5 improves the simulations in comparison to the

ERA-Interim reanalysis.

Lagrangian transport calculations are expected to be well suited for the detection of ATAL surface source regions. However

only a few investigations have been done with regard to the robustness of this approach against variation of the reanalysis75

data, transport models and vertical velocities. In this study, we build upon the work of Hanumanthu et al. (2020) to reevaluate

the source regions of the ATAL based on backward trajectories and balloon-borne measurements in Nainital, India in 2016.

Hanumanthu et al. (2020) investigated ATAL source regions of COBALD balloon-borne measurements using CLaMS (Chem-

ical Lagrangian Model of the Stratosphere) diabatic backward trajectory calculations driven by ERA-Interim. Here, we extend

this approach with different simulation scenarios based on two reanalyses (ERA5 and ERA-Interim), two Lagrangian transport80

models (Chemical Lagrangian Model of the Stratosphere and Massive-Parallel Trajectory Calculations), two types of vertical

velocities (diabatic and kinematic trajectories), and with changes of integration time-steps and parameterisation parameters

(e.g. for convection). The goal of these sensitivity tests is to identify differences and robust transport features that emerge from

different simulation setups for the vertical transport, including explicit and parameterized convection.

We provide more detailed descriptions of the data, methods, definitions and simulation scenarios in Sect. 2. In Sect. 3,85

we illustrate typical transport pathways to the locations of the measurements over Nainital. Next, we discuss the vertical and

horizontal distribution of the air parcels over different heights and regions. Then, we determine the temporal characteristics of

the transport for specific regions. Finally, the correlation between the daily ATAL backscatter intensity and source regions is

investigated. The summary and conclusions are presented in Sect. 4.
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2 Data and methods90

This study follows closely the approach of Hanumanthu et al. (2020). Balloon-borne measurements with a backscatter sonde

allowed to identify the location of the ATAL along the balloon ascents. Using the Lagrangian transport models, air parcels can

be initialized at the detected ATAL locations and transported backward to the model boundary (MB)
:::::
MBL to find possible

source regions of the ATAL. Additionally, the measured and daily averaged aerosol backscatter at the location of the balloons

can be related to surface regions and their properties. In this section, the methods of Hanumanthu et al. (2020) are described in95

more detail and novel elements that are applied in this study are elaborated.

2.1 COBALD aerosol measurements

In August 2016, 15 balloons were launched in Nainital, Uttarakhand, India (29.35◦N, 79.46◦E, 1820 m above sea level) (Bruna-

monti et al., 2018). The balloons carried the Compact Optical Backscatter Aerosol Detector (COBALD), which is a lightweight

backscatter sonde (Brabec et al., 2012). It measures the backscatter at 940 nm (infrared) and 455 nm (blue visible) in proximity100

to the balloon. For the detection of the ATAL the short wavelenghth channel (455 nm) is used (details see Hanumanthu et al.,

2020). Furthermore, the balloon carried a RS41-SGP radiosonde that logged local temperature and pressure. The backscatter

signal can be expressed as the backscatter ratio (BSR). The BSR is the ratio between the total backscatter due to aerosols and air

molecules and the backscatter due to air molecules alone. Based on calculations of Bucholtz (1995), the BSR has been inferred

from the temperature and pressure of the radiosonde and the backscatter of COBALD. Furthermore, a color index (CI), i. e.,105

the ratio between the 940 nm and 455 nm aerosol backscatter has been calculated, because it allows us to discriminate between

large aerosol particles and smaller ones and accordingly between layers of cirrus clouds and ice-free layers of the ATAL. This

analysis provided vertical profiles of the aerosol layer for 15 days in August 2016. Table 1 gives a short overview over the

measurements. While the BSR is determined for every measurement point during the ascent, here we use the daily, vertical

average of the BSR for each balloon flight. Hence, we analyse the day to day changes of the measured BSR profiles and do not110

analyse the BSR for every measurement time-step individually. For further details see Hanumanthu et al. (2020).

2.2 Lagrangian transport models

Lagrangian backward trajectories are started at the COBALD observations of the ATAL to identify the location and time when

air parcels contributing to ATAL were released at the model boundary
::::
MBL. For the backward trajectory calculations, two

different Lagrangian models were used: The Chemical Lagrangian Transport Model of the Stratosphere (CLaMS) and the115

Massive-Parallel Trajectory Calculations (MPTRAC) model.

CLaMS is a full chemical Lagrangian transport model that includes modules for irreversible mixing, chemistry and advection

(McKenna et al., 2002b, a). Here, we focus on the advection module alone, which applies a 4th-order Runge-Kutta scheme

for the trajectory calculations with a default integration time-step of 1800 s. The CLaMS model can be used in hybrid vertical

coordinates (Mahowald et al., 2002; Ploeger et al., 2010; Pommrich et al., 2014; Ploeger et al., 2021). The hybrid coordinate ζ120

is near the surface an orography-following sigma coordinate and transforms continuously into potential temperature at higher
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altitudes above around 300 hPa and
::
(or

:
380 K), respectively. The vertical velocity can be calculated by the reanalysis diabatic

heating rates (diabatic vertical velocity) or by the reanalysis vertical velocities from mass balance (kinematic vertical velocity).

CLaMS can be used with both vertical velocity approaches (e.g. Ploeger et al., 2010; Li et al., 2020), however, in most CLaMS

studies the diabatic approach is used.125

MPTRAC (Hoffmann et al., 2016, 2022) is a Lagrangian transport model for the free troposphere and the stratosphere. It

includes modules for advection, diffusion, and convection, which are applied in this study. The advection module uses the

mid-point scheme for integration with a default time-step of 180 s (Rößler et al., 2018). MPTRAC has been further developed

for this study to use either pressure or zeta coordinates (kinematic or diabatic vertical velocities) to calculate the trajectories

following the approach in CLaMS. In contrast to CLaMS, mixing is computed with two modules that parameterize diffusion130

and subgrid-scale winds, using given diffusivity coefficients and parameterized subgrid-scale wind fluctuation (Stohl et al.,

2005).

Additionally, MPTRAC implements
::::::::::
Atmospheric

:::::::
models

:::
that

:::
are

:::::
used

::
to

:::::
create

:::::::::
reanalysis

::::
data

::::
need

:::
to

:::::
apply

:::::::::
convective

:::::::::::::
parameterisation

::
to
::::::::

mitigate
::::::::
limitation

::
in

:::
the

:::::::::
resolution

::
of

:::::::::
convection

::::::::::::::::::::::::::::::::::::
(e.g. Dee et al., 2011; Hersbach et al., 2020)

:
.
::::::::
However,

::::
since

:::
the

::::::::
reanalysis

:::::::
product

::::
does

::::
only

::::::
contain

:::
the

:::::::
averaged

:::::::::
velocities,

::::::::::
Lagrangian

:::::::
transport

::::::
models

::::
have

::
to

:::::::
employ

:
a
:::::::::
convective135

:::::::::::::
parameterisation

:::
as

::::
well,

::
to
::::::::

simulate
:::::::::
unresolved

::::::::::
convection.

:::::::::
Therefore,

:
the extreme convection parameterisation (ECP)

:::
has

::::
been

:::::::::::
implemented

:::::::
recently

:::
into

::::
the

::::::::
MPTRAC

:
to represent the effects of unresolved convection in the reanalysis data , based

on the work of Gerbig et al. (2003)
:::::::::::::::::::
(Hoffmann et al., 2023)

:
.
::::
The

::::
ECP

::::
was

:::
first

:::::::::
introduced

:::
by

:::::::::::::::::
Gerbig et al. (2003)

:
to
::::::::

estimate

::
the

:::::
upper

:::::
limit

::
of

:::::::::
convective

:::::
cloud

:::::::
transport

:::
and

::::
later

::::
was

::
as

::::
well

:::::::::::
implemented

::
in

:::::::::
HYSPLIT

:::::::::::::::::::
(Loughner et al., 2021). The ECP

vertically mixes the air parcels within a convective column by a randomized density-weighted distribution between the surface140

and the equilibrium level (EL).
:::::
Hence,

::
it
::
is

::::::::
assumed,

::::
that

:::
the

::::::
vertical

:::::::
column

::
is

::::::::::
well-mixed

::::
after

:
a
:::::::::
convective

::::::
event,

::
so

::::
that

:::::
further

:::::::
mixing

:::::
could

:::
not

::::::
change

:::
the

:::::::::
distribution

::::::::
anymore.

:

The stability is assessed with the convective available potential energy (CAPE)and the convective inhibition (CIN). CAPE

is the integrated amount of work that the upward buoyancy force would perform on a given mass of air if it rose vertically

through the atmosphere.
:
If
::
a

::::::
specific

::::::
CAPE

:::::
value

:
is
:::::::::
exceeded,

:::::
which

::
is

::::::
defined

:::
by

:::
the

::::
user,

:::
the

:::::::::
convection

::::::::::::::
parameterisation

::
is145

::::::::
triggered.

:::
The

::::::::::::::
parameterisation

::::::
scheme

::
is
:::::::::
configured

:::
for

:::
the

::::::
largest

:::::::
possible

:::::::::::
enhancement

::
of

:::::::::
convective

::::::::
transport,

::::::::::
additionally

::
to

::
the

:::::::
already

:::::::
resolved

:::::::::
convection

::
in

:::
the

:::::::::
reanalysis.

::::
The

:::::
CAPE

::::::::
threshold

:::
for

:::
the

::::::::
triggering

::
of

:::
the

::::::::::::::
parameterisation

::::
was

::
set

::
to

::
0

:::::
Jkg−1

:::
for

::::
that

:::::::
purpose.

:::
The

:::::::::::
combination

::
of

:::::::
vertical

::::::::::
well-mixing

:::
and

:::
the

::::
most

::::::::
sensitive

:::::::::::
configuration

::
of

:::
the

::::::
trigger

:::::::::
parameter,

:::::
allows

:::
for

:::::::::
estimating

:::
the

:::::
upper

::::
limit

:::
for

:::
the

:::::::::
convective

:::::::
transport

::::
that

:::
can

:::
be

::::::::
simulated

::::::
within

::
the

:::::
given

::::::
model

::::::::::
framework.

::::
Here,

:::
in

:::::::
addition,

::::
we

:::
use

:::
the

:::::::::
convective

:::::::::
inhibition

:::::
(CIN)

:::
as

:
a
::::::
trigger

:::::::::
parameter.

:
The CIN is the energy that air parcels150

need to overcome when a stable layer below the level of free convection exists.
::::::::
Therefore,

::
if

:::
the

::::
CIN

::
is

:::::
larger

::::
than

::
a
::::::
certain

::::::::
threshold,

:::
the

::::::::::::::
parameterisation

::::
isn’t

::::::::
triggered

:::::::::
anymore.

:::
We

:::::::
applied

:
a
::::
CIN

:::::::::
threshold

::
of

:::
50

::::::
Jkg−1.

:::::
This

:::
was

:::::::::
motivated

:::
by

:::::::
spurious

:::::::::
convection

::::
over

:::
the

::::::
Persian

:::::
Golf.

:
It
::::
will

::
be

::::::::
explained

::
in
:::::
more

:::::::
detailed

::::
later

:::::::
(Further

:::::
details

:::
are

::::::::
discussed

::
in
:::::::::
Appendix

:::
F1).

:
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2.3 Reanalysis data155

We used full-resolution ERA5, downsampled
:::::::::::
low-resolution

:
ERA5 and ERA-Interim reanalysis data to drive the backward

trajectory calculations with CLaMS and MPTRAC. Both reanalyses have been developed by the ECMWF. ERA-Interim is the

precursor of ERA5. The ERA-Interim reanalysis offers six-hourly meteorological data at around 80 km horizontal resolution

on 60 levels. It reaches from the surface up to 0.1 hPa. The ERA-Interim reanalysis is available for the years from 1979 to 2019.

The assimilation system for ERA-Interim uses a four-dimensional variational analysis (4D-Var) with a 12 h time window and160

the ECMWF’s Integrated Forecast System (IFS) cycle 31r2 as released in 2006.

The ERA5 reanalysis offers hourly meteorological data on a 30 km horizontal grid (0.3◦×0.3◦) over 137 levels from the

surface up to 80 km. The ERA5 reanalysis was processed with an improved model version compared to ERA-Interim (IFS cycle

41r2 with 4D-Var assimilation), including novel parameterisations of atmospheric waves and convection. The ERA5 reanalysis

covers the time period between 1950 and the present. Increase of spatial and temporal resolution in ERA5 particularly improves165

the representation of tropical cyclones and convection in the reanalysis in comparison to ERA-Interim and other reanalysis data

(e.g. Taszarek et al., 2020; Li et al., 2020). ERA5 was also found to significantly improve Lagrangian transport simulations in

the free troposphere and stratosphere (Hoffmann et al., 2019).

The low resolution
::::::::::::
low-resolution ERA5 data set (referred to as ERA5lr) was created by down-sampling of the full-resolution

data to a 1◦×1◦horizontal grid and 6 hour time-steps, applying a truncation to T213 as is specified in the ECMWF MARS data170

processing system. The vertical levels of ERA5 were kept unchanged. Low-resolution ERA5 data was used in previous studies

to benefit from the improvements of the ERA5 reanalysis but to avoid high computational costs and costs for handling the

much larger amount of data compared to ERA-Interim (e.g. Ploeger et al., 2021).

2.4 Simulation scenarios

For the Lagrangian backward trajectory calculations with CLaMS and MPTRAC, the air parcels are initialized at positions175

of the measured ATAL in August 2016 on 15 measurement days. For every measurement time of the COBALD instrument,

i.e. every second, one air parcel is initiated. During a flight the balloons horizontal drift is below 10 km in the ATAL. The

differences are below 50 km in the ATAL when different balloons, from different days, are compared and hence, they are

as well negligible. Table 1 shows an overview over the measurements and the number of air parcels initialized per day. Two

balloon flights are discussed separately; the flight on 12 August, when a large cirrus cloud covered the full UTLS in the sampled180

region and 15 August, when no ATAL was detected (for details see Hanumanthu et al., 2020). All air parcels are each calculated

backward for 90 days to cover the entire Asian monsoon period (JJA).

Different scenarios for the calculations have been applied to study the impact of the reanalysis data (ERA5 vs. ERA-

Interim), Lagrangian model differences (CLaMS vs. MPTRAC), vertical velocities (diabatic and kinematic) , modules and

parametrizations
:::
and

:::::::::::::::
parameterisations (convection vs. no convection) and the size of the time-step (180 s vs. 1800 s) on the185

simulated transport. We consider the default configurations of the models for the integration time-step. Additionally, one sce-

nario with MPTRAC is included, for which instead of initialising one air parcel per measurement point, 1000 air parcels are
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initialized and random perturbations along the trajectories were added. With this ensemble approach, sampling uncertainties

were estimated. For the particle diffusion we used the default settings (see Hoffmann et al., 2022). A summary of all scenarios

can be found in Table 2.190

Table 1. Overview on COBALD measurements in August 2016. BSR is the daily, vertically averaged BSR. The number of measurements

i.e. the number of initialized air parcels per flight is labeled #AP.

day 02 03 05 06 08 11 12 15 17 18 19 21 23 26 30

BSR 6.7 9.2 6.7 8.3 7.1 7.0 - 2.3 7.6 6.5 7.3 5.6 5.4 8.0 5.9

#AP 670 419 413 385 680 269 463 444 651 705 569 250 331 120 392

Table 2. Overview over scenarios of 90 days backward calculations performed for the ATAL measurements above Nainital in August 2016.

The abbreviation for each scenario contains at the first position the reanalysis, at the second position the vertical velocity and at the third

position the model, where each label is separated by a dash. Optional properties are added the same way at the last position.

abbreviation reanalysis vertical velocity model time-step convection dispersion

parameterisation

EI-kin-C ERA-Interim kinematic CLaMS 1800s no
::
off no

::
off

EI-kin-M ERA-Interim kinematic MPTRAC 180s no
::
off no

::
off

EI-dia-C ERA-Interim diabatic CLaMS 1800s no
::
off no

::
off

EI-dia-M ERA-Interim diabatic MPTRAC 180s no
::
off no

::
off

E5-kin-C ERA5 kinematic CLaMS 1800s no
::
off no

::
off

E5-dia-C ERA5 diabatic CLaMS 1800s no
::
off no

::
off

E5-kin-M ERA5 kinematic MPTRAC 180s no
::
off no

::
off

E5-dia-M ERA5 diabatic MPTRAC 180s no
::
off no

::
off

E5-kin-M-ECP ERA5 kinematic MPTRAC 180s yes
::
on

:
no

::
off

E5-kin-M-1800s ERA5 kinematic MPTRAC 1800s no
::
off no

::
off

E5-kin-M-Diff ERA5 kinematic MPTRAC 180s no
::
off yes

::
on

:

E5lr-kin-M ERA5 low res. kinematic MPTRAC 180s no
::
off no

::
off

E5lr-dia-M ERA5 low res. diabatic MPTRAC 180s no
::
off no

::
off

2.5 Classification of air parcel origin

The origin of the air parcels found in the ATAL is classified vertically and horizontally based on the 90 day backward trajectory

calculations. Vertically, we follow Hanumanthu et al. (2020) with four classes, the model boundary (MB
::::
layer

::::::
(MBL), the lower

troposphere (LT), the upper troposphere (UT) and the lower stratosphere (LS). These vertical layers are defined by values of

the vertical coordinate ζ and the potential temperature θ as presented in Table 3. The MB
::::
MBL is defined as the layer below the195
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120 K ζ-level, which approximately corresponds to heights between 2 km and 3 km. Accordingly, an air parcel is considered

to originate from the MB
::::
MBL

:
if it is located at any time below the 120 K ζ-level (Pommrich et al., 2014; Vogel et al., 2019;

Hanumanthu et al., 2020).

Hanumanthu et al. (2020) used backward trajectory times between 40 and 80 days. We extended the calculations to 90 days

of time for each air parcel to completely cover the entire Asian summer monsoon season in our analysis. We found that a200

majority of the transport from the MB
:::::
MBL to the ATAL occurred within 90 days (i.e. 60%-90% of air parcels reach the MB

::::
MBL

:
during that time), with only low increase when longer integration time is used (lower than around 5 percentage points

per 10 additional days).

When an air parcel is classified as originating from the MB
::::
MBL, it is also horizontally classified according to the position

where it left the MB
:::::
MBL for the last time. For this position, we defined several possible source regions. The regions were205

motivated by different surface characteristics, such as the presence of aerosol or aerosol precursors and by source regions

proposed by earlier studies (e.g. Li et al., 2017; Höpfner et al., 2019; Li et al., 2020; Hanumanthu et al., 2020). For the conti-

nents, the following regions are defined: the Asian Highlands, i.e. mostly the Tibetan Plateau
:::
and

:::
its

:::::::::
immediate

:::::::::::
surroundings

::::::
(around

:::::
60%

::
of

:::
the

::::::::
highlands

:::::
area), the Indo-Gangetic plain together with the foothills of the Himalayas, a region South of

India plus Sri Lanka and finally South East Asia.
::
In

:::::::::
particular,

:::
for

:::
the

:::::
Asian

::::::::
highlands

:::
we

::::::
found

:::
that

::::
75%

:::
of

:::
the

::
air

:::::::
parcels210

:::::::
originate

:::::
from

::
the

:::::::
Tibetan

::::::
Plateau

:::::::
(heights

::::::
larger

::::
than

::::::
around

:::::
4 km)

:::
and

:::
up

::
to

::::
98%

::::::::
originate

::::
from

:::
the

::::::
Tibetan

:::::::
Plateau

:::
and

:::
its

::::::::
immediate

::::::::::::
surroundings. Other parts of the continents are summarized as the residual continent. For the oceans, three regions

were defined: the Tropical Western Pacific that has been affected by typhoon activity, the Arabian Sea, the Bay of Bengal and

the residual oceans. Figure 3a illustrates the different regions. For more detail of the definitions, see Appendix A.

Additionally, for those air parcels that do not originate from the MB
:::::
MBL, but instead circulate still in the ASMA after 90215

days of backward trajectory time, we define the class of the ASMA. For this purpose, we are considering the 3D box from

0
◦

E to 135
◦

E, and from 0
◦

N to 45
◦

N (magenta box in Fig. 3a) within the UTLS region. Each air parcel within this box is

considered to be part of the ASMA.

Table 3. Classes for vertical classification of the distributed air parcels. Air parcels have to fulfil all he criteria to be attributed to a specific

class. ζ is the vertical zeta-coordinate, θ is the potential temperature, λ is the longitude and ϕ is the latitude of an air parcel.

class ζ-criterion θ-criterion lon/lat criterion abbrev.

Model boundary
::::
layer ζ ≤120 K MB

:::::
MBL

Lower troposphere ζ >120 K θ ≤340 K LT

Asian summer monsoon anticyclone ζ >120 K θ >340 K 0≤ λ≤ 135◦, 0≤ ϕ≤ 45◦ ASMA

Upper troposphere ζ >120 K 340 K< θ ≤370K not in ASMA UT

Lower stratosphere ζ >120 K 370 K > θ not in ASMA LS
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3 Results

In the following, we present transport pathways, transport times and possible surface source regions of air mass contributions220

to the ATAL above Nainital in August 2016. Furthermore, the relation between the observed ATALs backscatter intensity and

different model boundary
::::
MBL

:
regions is analysed. Our analysis is performed for different simulation scenarios as described

in Sect. 2.4.

3.1 Transport pathways from source regions to the measured ATAL

Examples of backward trajectories of air parcels of all of the 15 measurement days from the ATAL measurement to the MB,225

categorised by the source region. Shown are trajectories of scenario E5-kin-C. Colors indicate the time when the air parcels

left the MB. Gray dots at the bottom show the horizontal position of the APs 48 h before they crossed the MB from below. In

(c), additionally, tracks of three typhoons are plotted (Nepartak, Nida, Omais), where each point is colored like the trajectories

and the mean time of occurrence.

The ASMA extends from northeast Africa to the Western Pacific from early June until the end of September, therefore230

air parcels circulate in the ASMA over a wide range of longitudes and latitudes. Depending on its extension and position,

convection can uplift air from different regions of the Earth’s surface - i.e. with different chemical composition - into altitudes

of the anticyclone. Within the ASMA, the air from different origins will be mixed, for example due to instabilities of the ASMA

(e.g. Gottschaldt et al., 2018). Different source regions can contribute to the chemical composition of the ASMA, therefore trace

gases and aerosol are in general not homogeneously distributed within the ASMA. The ASMA can show a bimodal structure,235

where one circulation centre is placed roughly over Iran and the other one is centred roughly over South-East-Asia and where

the separation of the two modes varies in time(Yongfu et al., 2002; Nützel et al., 2016; Honomichl and Pan, 2020)
:
.
::::
The

:::::
shape

::
of

:::
the

::::::
ASMA

::::::
varies

:::::::
between

::::::
normal

::::
and

:::::::
bimodal

:::
on

::
a

::::
daily

:::::
basis,

::::::::
however

::
in

:::
the

::::::::::::
climatological

:::::
mean

::
it
::
is
::::::::::::
controversely

::::::::
discussed

:
if
::::
two

::::::
modes

::::
exist.

:::
In

:::::::
addition

::::::
smaller

::::::
eddies

:::
can

::
be

:::::::::
separated

::
to

:::
the

::::
west

:::
and

::
to

:::
the

::::
east

::::::::::
(sometimes

::::::
referred

:::
to

::
as

::::
third

:::::
mode)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Yongfu et al., 2002; Nützel et al., 2016; Honomichl and Pan, 2020; Manney et al., 2021).240

Figure 1 shows four exemplary transport pathways of air parcels from different regions at the model boundary
:::::
MBL to the

measured ATAL over Nainital in August 2016 due to convective transport. For the illustration of transport pathways we use the

scenario E5-kin-C, because it is representative with regard to the general patterns also for the other scenarios, while particular

differences are analysed in depth later. We also include trajectories of all days of measurement for the illustration.

Figure 1a shows injections into the center of the ASMA in proximity of Nainital, originating from the Tibetan plateau.245

Throughout the season the air is pumped upward into the ASMA on timescales from hours to a few days (50% of transport

from the MB
:::::
MBL

::
of

:::::
Asian

:::::::::
Highlands

:
into the UTLS is within three days

:::
less

::::
than

::::
half

:
a
::::

day, see also Tables E2 and E1).

In the ASMA, air masses are uplifted by diabatic heating superimposed by the anticyclonic flow until they meet the mea-

surement points over Nainital. Air parcels circle in a rising spiral, within the two modes of the ASMA, until they meet the

measurement points over Nainital (e.g. Vogel et al., 2019). A small number of air parcels leaves the ASMA for a while, and is250

9



subsequently transported along the subtropical jet, circumnavigating the Earth, until the air parcels are trapped in the ASMA

again. Thereafter, the air parcels also arrive at the measurement points.

Figure 1b shows the uplift of air into the ASMA mostly over the Indo-Gangetic plains and at the foothills of the Himalayas.

The air masses were transported mainly directly from the Indo-Gangetic plain into the UTLS. The transport in the ASMA and

sporadically along the jet-streams is the same as for the Tibetan Plateau. Hence, at the foothills of the Himalayas, transport255

pathways from two regions with two very different land-cover properties converge, the Tibetan Plateau or
:::
and the Indo-Gangetic

plain. The transported air masses subsequently mix in the ASMA.

Figure 1c illustrates transport from the Pacific to the measurement locations in relation to three typhoons (named Nepartak,

Nida and Omais) that occurred during the relevant time period (we use the typhoon best track data of the Japan Meteorological

Agency). The typhoons uplift a large number of air parcels from the maritime surface into the eastern edge of the ASMA.260

Depending on the position of the ASMA modes and the typhoons, the uplifted air masses are circulating in the outer edge

of the ASMA (e.g. for Nida and Nepartak) or they circle mostly in the eastern mode, and the inner area of the ASMA (e.g.

Omais). Because of the multiple circulations in the ASMA the typhoons influence the measurements with a delay in time of

several days. The impact of typhoons on the air masses in the ASMA and the ATAL has been reported before (e.g. Li et al.,

2020; Hanumanthu et al., 2020).265

Figure 1d presents a transport pathway from the Arabian Sea to the ASMA. The transport of the air parcels occurs in four

steps. At first, the air leaves the MB
::::
MBL

:
into the free troposphere over the Arabian see, possibly due to shallow, maritime

convection. Secondly the air is transported eastward within the free troposphere to the foothills of the Himalaya or to the

Bay of Bengal. During this transport, over the Indo-Gangetic plain, or at the Bay of Bengal, deep convection uplifts the air

to the southern edge of the ASMA, which is the third step of transport. In the last step, the air masses circle in the ASMA270

until they are measured at Nainital. A similar long-range transport pathway to the Himalayas can be observed for the Bay of

Bengal. However from the Bay of Bengal more air parcels can enter the ASMA directly from the maritime boundary than

from the Arabian Sea.
:::
This

::
is

:::::
likely

::::::
related

::
to
:::
the

::::::
overall

::::::
Asian

::::::::
monsoon

:::::::::
circulation,

::
in
::::::

which
:::
air

::::::
masses

:::
are

::::::::::
transported

::
in

::
the

:::::::::::
troposphere

::::
from

:::
the

:::
AS

::::::
across

:::::
India,

:::::
while

:::
the

::::
Bay

:::
of

::::::
Bengal

::
is

:
a
:::::::

known
:::::
source

:::
of

::::
deep

::::::::::
convection.

:::::::::
Moreover,

:::::
those

::
air

::::::
masses

::::
that

:::
are

:::::::::::
convectively

:::::::
uplifted

::::
into

:::
the

:::::
UTLS

:::::
over

:::
the

::::
AS,

:::
are

::::
often

:::::::
located

::
at

:::
the

:::::
outer

::::
edge

:::
of

:::
the

::::::::::
anticyclone275

:::
and

::::::::
westward

:::::
from

:::::::
Nainital.

:::::::
Hence,

:::
this

::::::::
transport

:::::::
pathway

:::
to

:::::::
Nainital

::
is

:::::
much

:::
less

:::::::::
probable. In Appendix B, the transport

pathways from the Bay of Bengal, South India, South-East-Asia and the remaining ocean and continent are presented as well.
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(a) Asian Highlands/Tibetan Plateau (b) Indo-Gangetic plain

(c) Tropical Western Pacific (d) Arabian Sea

1

Figure 1.
:::::::
Examples

::
of

:::::::
backward

:::::::::
trajectories

::
of

::
air

::::::
parcels

::
of

:::
all

::
of

:::
the

::
15

::::::::::
measurement

::::
days

::::
from

:::
the

:::::
ATAL

::::::::::
measurement

::
to

:::
the

:::::
MBL,

::::::::
categorised

::
by

:::
the

:::::
source

::::::
region.

:::::
Shown

:::
are

:::::::::
trajectories

::
of

::::::
scenario

::::::::
E5-kin-C.

:::::
Colors

:::::::
indicate

::
the

::::
time

::::
when

:::
the

:::
air

:::::
parcels

:::
left

:::
the

:::::
MBL.

::::
Gray

:::
dots

::
at

::
the

::::::
bottom

::::
show

:::
the

::::::::
horizontal

::::::
position

::
of

::
the

::::
APs

:::
48 h

:::::
before

::::
they

::::::
crossed

::
the

:::::
MBL

::::
from

:::::
below.

::
In

:::
(c),

:::::::::
additionally,

:::::
tracks

::
of

::::
three

:::::::
typhoons

::
are

::::::
plotted

::::::::
(Nepartak,

::::
Nida,

::::::
Omais),

:::::
where

::::
each

::::
point

::
is

::::::
colored

:::
like

::
the

:::::::::
trajectories

:::
and

:::
the

::::
mean

::::
time

::
of

::::::::
occurrence.
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3.2 Scenario intercomparison of contributions from source regions and related transport pathways

Although the general transport pathways from the MB
::::
MBL to the measurement locations, as presented in Sect. 3.1, exist in all

simulation scenarios with the Lagrangian transport models, the contributions of different source regions can differ, depending280

on the used scenario. Here, we present the differences and similarities of the vertical and horizontal distribution of the source

regions between the different scenarios. For the analysis, we use all 15 measurement days and 90-day backward trajectories.

First, the fraction of air from different atmospheric layers is calculated for all model scenarios (see Fig. 2). Wide agreement

can be found with ERA5 even when models, integration step-sizes, and vertical velocities are varied
::::::
(except

:::::
when

:::
the

:::::::
extreme

:::::::::
convection

::::::::::::::
parameterisation

::
is

:::::::::
employed). The total amount of transport from the MB

::::
MBL

:
lies between 74% and 80% for285

the ERA5 scenarios. The distribution from the LT, UT, or LS shows only some minor differences. Large disagreement is found

between the diabatic and kinematic vertical velocities using ERA-Interim. With kinematic vertical velocities, only around 60%

of the air parcels originate in the MB
::::
MBL, while with diabatic velocities the results are closer to the ERA5 scenarios (around

75% amount of transport from the MB
::::
MBL). Disagreement in ERA-Interim, when varying the vertical velocities, was also

found in other studies (e.g. Ploeger et al., 2010; Li et al., 2020; Legras and Bucci, 2020). The low resolution
::::::::::::
low-resolution290

ERA5 data set maintains the higher consistency of ERA5 in comparison to ERA-Interim and the total transport from the MB

::::
MBL

:
is only slightly reduced, probably because the vertical resolution is unchanged and higher vertical velocities over the

continent remain also higher in ERA5lr as well. A large increase of transport from the MB
:::::
MBL is caused by the onset of

the convection parameterisation in scenario E5-kin-M-ECP. In this case only around 10% of the air parcels originate outside

the MB
::::
MBL

:
and no air parcels originate in the LT. The latter can be explained, when following the air parcels backward in295

time: If the air parcels enter the LT during backward calculations they likely enter a region where the ECP is triggered. Then

transport into the MB
::::
MBL

:
takes place immediately.

Second, the fraction of air from different model boundary
:::::
MBL regions contributing to the ATAL is compared for all model

scenarios (see Fig. 3b). Model scenarios driven with ERA5 show very similar results. For ERA5 scenarios, about 40% of

the air parcels that originate from the MB
:::::
MBL, originate from the Tibetan Plateau and other Asian highlands. Around 5%300

to 10% of air parcels come each from South India and South East Asia. The contributions from the Indo-Gangetic plain is

between 10% and 20%, with higher values for diabatic calculations. The Indian subcontinent, i.e. the Indo-Gangetic plain

and South India together have the largest contribution from the continent. Around 25% of the air parcels that come from the

MB
::::
MBL

:
originate from oceans, mostly the Western Pacific and many are related to tropical cyclones. In contrast to ERA5,

using ERA-Interim increases the contribution of air parcels from the oceans up to around 40%. This increase does not rely on305

the variation of the vertical velocity and is robust for all scenarios driven with ERA-Interim. The contribution from the Indo-

Gangetic plain is reduced to 5%-10% with ERA-Interim compared to ERA5, and shows also a difference between diabatic

and kinematic velocities. With the extreme convection scenario the contribution from the oceans is smaller than in the cases

with ERA5. However, with the ECP the contribution from the Indo-Gangetic plain and the foothills of the Himalayas increases

strongly at the expense of contributions from the Tibetan plateau and the oceans.
::
As

:
a
:::::::::::
consequence

::
of

:::
the

:::::::
frequent

::::::::::
occurrence310

::
of

:::::
CAPE

::::::
above

:::::
South

:::::
Asia,

:::
the

::::::::
scenario

::::
with

::::
ECP

::::::::
simulates

:::::
more

::::
and

::::::
deeper

:::::::::
convective

:::::::
updrafts

:::
in

:::
this

::::::
region,

:::::
than

:::
the
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:::::::
scenarios

:::::::
without

:::::
ECP.

::::::
Hence,

::::::::
transport

:::::
from

:::
the

:::::
MBL

:::
that

::::::
would

:::
be

::::::
missed

:::::::
without

:::
the

::::
ECP,

::::::::
increases

::::
the

:::::::::::
contributions

::::
from

:::::
South

:::::
Asia.

:
Finally, the ERA5 low resolution

::::::::::::
low-resolution

:
scenarios show a decrease of consistency between the

diabatic and kinematic approach. The kinematic approach has a bias to more transport from the ocean in the low-resolution

data in comparison to the fully resolved ERA5 data, while the results for the diabatic approach show only minor difference to315

the fully resolved ERA5 data in the statistics.

With the ensemble scenario (E5-kin-M-Diff), we tested uncertainties due to unresolved sub-grid scale wind fluctuations and

found standard deviations lower than 1% for the distribution of air parcels to different vertical layers or horizontal regions.

Therefore, the sub-grid scale wind fluctuations do not cause a serious bias in this analysis. The ensemble scenario E5-kin-M-

1800s was used to investigate possible biases between the models due to different time-steps. However, as the results remain320

almost unaltered for MPTRAC when the time-step is varied from 180 s to 1800 s we rule out a serious bias for our analysis.

The probability density function (PDF) for air parcels leaving the model boundary
:::::
MBL is shown in Fig. 4. All scenarios

except the ECP scenario show a very similar pattern, with most dominant transport from a region centered at the eastern

foothills of the Himalayas and the south-eastern Tibetan plateau (around 50%), while transport from other regions is much less

but not irrelevant. If contours for ERA5 scenarios and ERA-Interim scenarios are compared, air parcels are dispersed more325

with ERA-Interim, particularly in direction of the ocean, while ERA5 resolves more transport at the continent and disperses

the air parcels less. Using the scenario with ECP deforms the pattern even more, because more transport happens then at the

Indo-Gangetic plain, due to higher convective available potential energy (CAPE) in this region than at the Tibetan plateau. The

results of the ECP depend on the selection of the CIN and CAPE thresholds. We used the CIN threshold to remove spurious

parameterized convection over the Persian Golf (see Appendix F).330

In summary, ERA5 provides improved robustness against changes of the vertical velocity between the kinematic and diabatic

approach in comparison to ERA-Interim, and yields very good agreement between the two Lagrangian models. Using the ECP

in MPTRAC indicates that even scenarios with ERA5 could miss effects of unresolved convection, particularly locally over

the Indo-Gangetic plain. This leads to difficulties when distinguishing the contributions from the Tibetan plateau and the Indo-

Gangetic plain.
:::::
When

:::
air

::::::
parcels

:::::::
passing

:::
the

::::::
region

::::::
around

:::
the

:::::::::
Himalayas

::::::
during

:::
the

:::::::::
backward

::::::::
trajectory

:::::::::::
calculations,

:::
the335

::::::
position

::::::
where

::::
they

:::
are

::::::::::
transported

:::::
back

:::
into

::::
the

:::::
MBL

::
is

:::::::
sensitive

:::
to

:::
the

::::::::::::
representation

::
of

:::
the

::::::::::
convection.

:::::
With

:::
the

:::::
ECP,

:::::::::
convection

:
is
::::::::
enhanced

::::
over

:::
the

::::
IGP.

::::::
Hence,

:::
far

:::::
more

::
air

::::::
masses

:::
are

::::::::
attributed

::
to

:::
the

::::
IGP

::::
with

:::
the

::::
ECP,

:::::
while

:::::::
without

:::
the

::::
ECP

::
the

:::::
most

:::
air

::::::
parcels

:::::::
originate

:::::
from

:::
the

:::
TP.

::::::
Further

::::::::::::
improvement

::
in

::::::::
reanalysis

::::
and

::::::::::::::
parameterisation

::
are

:::::::
needed

::
to

::::::
remove

::::
this

:::::::::
uncertainty.

:
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Figure 2. Vertical classification of air parcel origin after 90 days of backward trajectory calculations with different scenarios.
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(a) Definition of the Regions

(b) Classification after 90 days

1

Figure 3. (a) shows the definition of contributing regions. The purple box marks an area that contains most of the air parcel that circulate in

the ASMA. (b) shows the horizontal classification of the air parcels according to the surface regions after 90 days backward trajectory time.

Shown is the fraction of air parcels that reach the MB
:::

MBL.
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(a) Scenarios with ERA-Interim (b) Scenarios with ERA5

(c) Scenarios with ERA5 and ECP (d) Scenarios with low resolution ERA5

1

Figure 4. Contours of the probability density function (PDF) of the surface sources for 90 days backward trajectories and all measurements.

Colors indicate the different scenarios. For each scenario the inner, thick contour encloses 50% of the points where air parcels left the MB

::::
MBL and the outer contour encloses 90% of them. In between, a thin contour is shown for 75%. For the sake of clarity, the contours are

smoothed by a Gaussian kernel. The black cross indicates the position of Nainital. The three thick gray lines show typhoon tracks.

3.3 Scenario intercomparison of the temporal evolution of transport from the MB
:::::
MBL to the measured ATAL340

The transport time of the air parcels from the MB
:::::
MBL to the ATAL affects aerosol formation. The time of the transport is

therefore an important parameter to analyse. An analysis of the temporal evolution of the transport process from the MB
:::::
MBL

to the measurements also highlights some differences between the model scenarios.

To emphasize the possible lifetimes of air masses transported to the location of the measurements in the UTLS, Fig. 5a shows

the frequency of air parcels leaving the MB
::::
MBL per day at different times before the measurements for the different scenarios.345

These frequencies are classified in two categories, the continents and the oceans. Most of the relevant maritime processes that

transport air masses out of the MB
::::
MBL

:
into the upper atmosphere take place more than two weeks before the measurements.

This can be found for all scenarios except for the scenario with ECP. This scenario shows very rapid transport out of the MB

::::
MBL

:
three days before the measurements. For scenarios with ERA-Interim the frequency of air parcels leaving the MB

:::::
MBL
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is higher than for ERA5 if transport times longer than 40 days are considered, in particular for the diabatic scenarios with350

ERA-Interim.

Considering transport from the continent, for
:::
For ERA-Interim only a few air parcels originate from the continent with trans-

port times less than two weeks, independent of the used vertical velocity (diabatic or kinematic). This resembles the results of

Hanumanthu et al. (2020), who used diabatic CLaMS trajectories driven by ERA-Interim. In contrast, all scenarios with ERA5

show that air from the continent can be transported much faster to the location of the measurements even in much less than two355

weeks. This is likely due to better resolved a
::::::
better

:::::::::::
representation

:::
of convection in ERA5 in comparison to ERA-Interim. This

fast transport at the beginning is maintained with the low-resolution ERA5 data, although it is reduced in temporal and spatial

resolution in comparison to the full ERA5. Furthermore, using the ECP, reveals that also ERA5 potentially underestimates

convection in the first days. The fast transport with ECP is caused by the frequent triggering of the parameterisation over the

continent, particularly over the Indo-Gangetic plain, where the atmosphere often shows convective parameters (CAPE, CIN)360

that suggest unstable conditions. However, our approach of the ECP has to be considered as an
::
the

:
upper limit for convective

transport
:::
the

:::::::::
convective

:::::::
transport

::::
that

:::
can

:::
be

::::::::
simulated

::::::
within

:::
the

:::::
given

::::::
model

:::::::::
framework. In summary, in ERA5 air masses

are transported from the continental MB
:::::
MBL to the ATAL relatively fast (within two weeks), so that less air parcels remain

to originate from the maritime MB
:::::
MBL, while with ERA-Interim this effect reverse. With ERA-Interim only few air parcels

are transported fast to the ATAL from the continent, while more and older air parcels originate from the oceans.365

Figure 5b shows the accumulation of air parcels within the ASMA during the transport processes to the ATAL over Nainital.

The differences between the scenarios can be understood when the transport is described following the calculations backward

in time, i.e. when we look at the “draining” of the ASMA during backward calculations. Our calculations show that in all

scenarios most of the air parcels start in the ASMA. When the air parcels are traced back in time, the share of air parcels in

the ASMA for scenarios with ERA5 and ERA-Interim starts to diverge. In the first two weeks backward in time (-14 days to 0370

days), scenarios with ERA5 show more transport back into the MB
::::
MBL

:
than scenarios with ERA-Interim, i.e. the share of air

parcels in the MB
::::
MBL

:
increases faster with ERA5 and the share in the ASMA declines faster than with ERA-Interim. This is

in agreement with faster transport from the continent with ERA5 than with ERA-Interim as described before. After calculating

the trajectories further back in time (longer than two weeks), the share of air parcels in the ASMA starts to converge again for

the ERA-Interim scenarios with diabatic velocities (EI-dia-C, EI-dia-M) and the ERA5 scenarios. This convergence is partly375

caused by the increased backward transport to the maritime MB
::::
MBL

:
in the scenarios with ERA-Interim and the diabatic

scheme, while with ERA5 the transport to the maritime MB
:::::
MBL is smaller in comparison (see also Fig. 5a, left panel, -70

days to -30 days). The ERA-Interim scenarios with kinematic approach (EI-kin-C, EI-kin-M) diverge further from all other

scenarios, showing a much lower share of air parcels in the MB
::::
MBL

:
than other scenarios and the most air parcels in the

UTLS. After around two weeks the share of air parcels in the UTLS increases more in the scenarios with ERA-Interim and380

kinematic vertical velocities (see lower plot in Fig. 5b) than in all other scenarios. Ploeger et al. (2010, 2011) demonstrated

more dispersion in backward trajectory calculations with ERA-Interim and the kinematic approach than with the diabatic

approach. This effect explains the large difference of the scenarios EI-kin-C and EI-kin-M from the other scenarios and why

many air parcels are transported back into the UTLS with these scenarios.
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(a) Horizontal Classification

(b) Vertical Classification

1

Figure 5. Time evolution of transport from the MB
:::

MBL
:
to the ASMA within 90 days, relative to the start of the trajectories. (a) shows the

frequency of air parcels leaving the MB
::::
MBL smoothed with a one-week running mean. The short lines at the top indicate for some scenarios

the maximum time for the first 300 air parcels with the smallest transport time. (b) shows the share of air parcels that are within the ASMA

(upper panel, dashed line), the share of air parcels that are in the MB
::::
MBL

:
(upper panel, solid line) and the share of air parcels that are in the

UTLS (lower panel, solid line).
18



3.4 Backscatter changes associated with changes in the transport and source regions385

Hanumanthu et al. (2020) found a distinct day-to-day variability of the ATAL backscatter intensity. This variability may be

correlated with daily to weekly changes of the transport within the highly variable anticyclone and variability of tropical con-

vection and therefore with changing surface source regions. To analyse the changes from measurement to measurement, the

contribution of different source regions to the vertical ATAL profile has been reconstructed for every balloon flight separately.

Subsequently, the relative deviation of the contribution of a specific region on one day from the mean contribution during390

all measurements normalized by the mean contribution was calculated as a relative, normalized deviation (in percent). Ac-

cordingly, RND(t) =
(

C(t)

C(t)
− 1

)
× 100 was calculated for every day of a selected scenario. RND(t) denotes the relative,

normalized deviation for measurement day t and C(t) denotes the contribution of air parcels for the measurement day t from

the selected region. The contribution C(t) is measured as the ratio between the number of air parcels from the selected region to

the total number of air parcels for the measurement day. C(t) is the time averaged contribution over all measurement days for395

the selected scenario. This calculation has been done for all scenarios separately to allow a direct day-to-day intercomparison

of the scenarios.

Figure 6 shows the normalized deviations for the Indo-Gangetic plain and the Western Pacific Ocean for 13 measurement

days. The days with no ATAL or with large cirrus cloud coverage have been excluded from the analysis (12 and 15 August).

Furthermore, we focus on the Indo-Gangetic plain and the Western Pacific Ocean as they show the most robust and significant400

results in comparison to other source regions.

Figures 6a,b show the relative, normalized deviation for every measurement day. Overall, all scenarios indicate a clear

temporal evolution of the contribution from the two regions during the weeks of the campaign in August: The scenarios show

that in the early phase of the campaign (2, 3, 6 and 8 August) the contributions from the Indo-Gangetic plain were enhanced

relative to other days, while in the later phase (19-30 August) contributions from the Indo-Gangetic plain were relatively low.405

For contributions from the Western Pacific the opposite is found, because of increased impact of typhoons on the measurements

at the end of August (see Fig. 6a,b). The variability from day-to-day, in contrast to the general temporal evolution, has
:::::
From

:::
day

::
to

::::
day,

:::
the

::::::
relative

:::::::::
normalized

::::::::
deviation

:::::::
changes

::
in

:::::::
absolute

:::::
terms

::::
with

:
a magnitude of several

::::
only

:
a
::::::
couple

:
10%.

::::
This

::
is

::
in

::::::
contrast

:::
to

:::
the

::::
total

::::::
change

::
of

:::
the

::::::
relative

::::::::::
normalized

::::::::
deviation

::::::
during

:::
the

::::::
period,

:::::
which

::
is

:::::::
roughly

::::::
around

:::::
90%. For some

measurement days, the scenarios show similar day-to-day differences (e.g. 2-8 August for the Tropical Western Pacific), but for410

other periods the day-to-day variability differ strongly between scenarios (e.g. 23-30 August for the Tropical Western Pacific).

Figures 6c and 6d show the relation between the averaged measured BSR for every day and the daily relative, normalized

deviation. For the Indo-Gangetic plain in all scenarios large backscatter ratios coincide with large normalized deviations,

although in some scenarios this relation is considerable weak. For the Tropical Western Pacific, in all scenarios low backscatter

ratios clearly coincide with higher normalized deviations.415
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(a) Indo-Gangetic plain (b) Tropical Western Pacific

(c) Indo-Gangetic plain (d) Tropical Western Pacific

1

Figure 6. (a) and (b) show the relative, normalized deviation for each measurement day of the Indo-Gangetic plain and the Tropical Western

Pacific. (c) and (d) show the relations between the daily averaged backscatter intensity and the relative, normalized deviation. The lines show

linear fits for each scenario. Colored dots show results for all scenarios. The colorcode for the dots is the same as in Fig. 5, where every color

correspondence to one scenario.
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(a) (b)

1

Figure 7. (a) Difference between the source region PDF of the five days with maximum ATAL backscatter intensity and five days with

minimum backscatter intensity, derived from the multi scenario mean. The orange contours show areas where at least two thirds of the

scenarios indicate high values during a strong ATAL. The purple contours show the same for the weak ATAL cases. Data is given on a

5◦grid. The gray lines indicate the tracks of tropical storms that influenced the measurements. (b) Spearman correlation coefficient for

the relation between the daily BSR and the contributions of different regions for different scenarios. Crossed out areas hatch insignificant

results (p-value higher 0.10). Boxes with yellow stars indicate p-values lower than 0.05. Colors emphasize positive (red) and negative (blue)

correlations.

To further compare transport of those days with a low ATAL backscatter intensity above Nainital with those days with a high

one, we also calculated the PDFs of surface source regions for each day separately. In particular, we selected the five days with

strongest (3, 6, 26, 17, 19 August) and the five days with the weakest backscatter intensity (21, 23, 30, 18, 5 August) for the

analysis. Figure 7a shows the differences between the two PDFs for the multi-scenario mean. The results indicate that transport

from the Indo-Gangetic plain, India, the Bay of Bengal and the northern part of the Tibetan Plateau may have strengthened the420

ATALs backscatter intensity during the measurements. The intensity of the ATAL over Nainital again seems to be low when

more transport from the tropical cyclones and the region of their landfall occurred. Although the PDF differences vary strongly

from scenario to scenario (see Fig. D1 in the Appendix), at least two third of the scenarios agree on these characteristics.

For a complete analysis, we used the Spearman rank-order correlation coefficients to check if there is a monotonic relation

between the measured backscatter and the contribution of specific regions. Figure 7b summarizes these correlations for the425

Indo-Gangetic plain and the area of active typhoons at the Tropical Western Pacific. Correlations to other regions can be found

in the Appendix in Fig. E1.

We find a significant (p<0.1) and robust negative correlation between the backscatter intensity of the ATAL and the Western

Pacific influenced by typhoons. This correlation remains to be present both for the simulation with ECP with maximum strength

of convection and with ERA-Interim where in contrast convection is underestimated. Most scenarios also indicate a positive430
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correlation between the backscatter intensity of the ATAL and enhanced contributions from the Indo-Gangetic plain. Although,

impacts of unresolved convection likely can be neglected for the relation to the West Pacific, the correlation for the Indo-

Gangetic plain changes substantially from 0.6 to 0.1 with parameterized convection (see E5-kin-M-ECP). Moreover, for the

Indo-Gangetic-plain the correlation in the scenarios E5lr-dia-M and EI-dia-C remains insignificant. The most significant results

however, are obtained in the ERA5 scenarios, supporting the hypothesis that polluted air from the Indo-Gangetic plain led to435

higher backscatter intensity and vice versa clean maritime air from the Western Pacific lead to a dilution of the ATAL and

therefore to a weaker BSR intensity.

Most scenarios furthermore have a positive correlation for contributions from the Arabian Sea, the rest of India, and the

Bay of Bengal. Such relations seem plausible given the transport pathways from the Arabian Sea and the Bay of Bengal to

the ATAL over Nainital, which include a period of horizontal transport in the polluted troposphere over India before a second440

step of upward transport in deep convection. Additionally, air masses from the Arabian Sea could carry dust from the Arabian

Peninsula. Air from South-East-Asia is also weakly correlated with a decrease of the ATAL backscatter intensity, which is

possibly related to the landfall of some typhoons.

Other source regions have been considered to establish such relations, but given the limited amount of data and systematic

model uncertainties, no further robust results were found. The positive relation between the Tibetan plateau
::::
Asian

::::::::::
Highlands,445

::
i.e.

::::::
mostly

:::
the

:::::::
Tibetan

:::::::
plateau, and the backscatter intensity of the ATAL, found by Hanumanthu et al. (2020) was reproduced

for similar scenario set-ups (see EI-dia-C). However, some scenarios show even negative correlations.
::
To

::::::
check

:
if
::::

our
:::::
result

::::
could

:::::::
depend

::
on

:::
the

::::::::
definition

:::
of

:::
the

:::::
Asian

:::::::::
Highlands,

:::
we

::::::::
moreover

:::::::::
calculated

:::
the

:::::::::
correlation

::::
with

:
a
:::::
more

::::::
narrow

:::::::::
definition,

::::::
focused

:::
on

:::
the

::::::
Tibetan

:::::::
Plateau,

:::
but

::::
still

:::::::
obtained

:::::::::
ambiguous

:::::::::::
correlations.

Our results corroborate that the transport calculations presented here are capable of capturing the general evolution and450

patterns during the course of August robustly, but might differ if day-to-day changes are considered. The observed general

temporal evolution might be related to a large scale change of the meteorological conditions during August, that led to a

shift to more air masses from the Western Pacific and prior typhoons and less transport from the Indian Subcontinent. The

differences in the representation of day-to-day changes might arise from the uncertainty about the daily changing convection.

4 Discussion and conclusions455

In this study, we investigated the source regions of the ATAL in August 2016. To identify the source regions at the model

boundary
:::::
MBL and the transport pathways contributing to the ATAL and to investigate the sensitivity of the applied meth-

ods, different trajectory calculations were conducted. Simulations with different model scenarios using different Lagrangian

transport models (CLaMS and MPTRAC), wind data (ERA-Interim and ERA5), vertical velocities (kinematic and diabatic),

integration time-steps and a convection parameterisation (ECP) were analyzed. Additionally, we correlated daily contributions460

of source regions at the surface to daily measured COBALD backscatter intensities at ATAL altitudes to quantify the role of

the regions for the intensity of the ATAL.
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Most of the air from the MB
::::
MBL

:
that influenced the measurements originated at the Tibetan Plateau (i.e. ≈ 30%-40% of

air masses originating at the MB
::::
MBL). This is found for all scenarios, except for the scenario with the extreme convection

paramterisation
::::::::::::::
parameterisation. In the scenario with the ECP (E5-kin-M-ECP), the Indo-Gangetic plain is contributing most465

(≈ 30%). The Indo-Gangetic plain is the second largest continental contributor (10 – 20 %) to the air masses influencing the

measurements in all other scenarios (except for ERA-Interim with a diabatic approach). The contribution from the Indo-

Gangetic plain, however, is much smaller than from the Tibetan Plateau in those scenarios. In summary, most of the upward

transport takes place at the eastern part of the Indo-Gangetic plain that extends to the Bay of Bengal, including the foothills of

the Himalayas and the Tibetan Plateau. These regions have been found to be dominant for the transport into the ASMA and the470

ATAL also by other studies (e.g. Bergman et al., 2012; Bucci et al., 2020; Hanumanthu et al., 2020).

In our simulations, a small amount of air was transported from South-East-Asia and North India, to the ATAL as well. Such

transport processes contributing to the ATAL have also been reported before (e.g. Vernier et al., 2018; Bucci et al., 2020;

Zhang et al., 2019a, b, 2020). Air masses from the maritime boundary layer were transported to the measurement locations

in significant numbers as well. This includes mostly air masses from surrounding seas, such as the Arabian Sea, the Bay of475

Bengal and the Western Pacific. Typhoons in the Tropical Western Pacific played an important role for the transport process

from the maritime boundary layer, which is in good agreement with previous studies, which showed their relevance for the

UTLS and the composition of the ATAL (Li et al., 2017, 2020; Hanumanthu et al., 2020).

By studying the transport pathways and times, we showed some systematic differences between simulation scenarios that

are related to the representation of convection and the diabatic ascent in the ASMA. ERA5 has a better representation of480

convective updrafts and tropical cyclones compared to the ERA-Interim reanalysis, attributed to its better spatial and temporal

resolution and other improvements of the ECMWF forecast model and data assimilation scheme. Therefore, the fraction of air

from the MB
::::
MBL

:
transported upward to ATAL altitudes is lower or about equal in scenarios with ERA-Interim in comparison

to scenarios with ERA5. This is in particular true over the continent. Hence, in ERA-Interim convection over the continent is

less frequent than in ERA5(40% vs. 23% of all air parcels from the MB), so that larger fractions of air parcels originate from485

remote maritime regions with ERA-Interim
:::::
(40%

::
vs.

:::::
23%

::
of

::
all

:::
air

::::::
parcels

::::
from

:::
the

::::::
MBL).

ERA-Interim simulations show also strong differences with regard to the transport from the MB
::::
MBL

:
into the UTLS, when

the vertical velocity is varied between diabatic velocities (75% of all air parcels) and kinematic velocities (60% of all air

parcels). These differences between kinematic and diabatic trajectories are strongly reduced, when ERA5 is used, where the

diabatic approach shows similar fractions of air transported from the MB
::::
MBL

:
to ATAL altitudes like the kinematic approach490

(74% vs. 80%). Large differences with regard to the vertical transport in typhoons between ERA5 and ERA-Interim have been

reported before by Li et al. (2020) and an improvement of consistency between vertical velocities by Legras and Bucci (2020)

in the Asian monsoon region.

Although ERA5 resolves convection better than ERA-Interim (Hoffmann et al., 2019), it might still underestimates
:::::::::::
underestimate

the extent of fast vertical transport caused by deep convection at the foothills of the Himalayas and at the Indo-Gangetic plain.495

This possible deficiency is indicated by the simulation scenario with ECP, that shows a strong increase of convection near

Nainital at the Indo-Gangetic plain and the foothills. Our results show, that ERA5 provides a significant improvement for the
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simulation of transport processes in the Asian monsoon region with regard to the consistency between scenarios with differ-

ent models and vertical velocity schemes. However, ERA5 possibly still has limitations with regard to the representation of

the convection, which needs to be evaluated in further studies that take observations of convection into account. In addition,500

our study shows for the employed Lagrangian model (MPTRAC and CLaMS) minor differences. These differences are likely

caused by differences in the integration scheme and the interpolation method. Both models are equally valuable in case of the

present analysis.

Taking into account the measured backscatter intensity of the ATAL, we found two regions with a significant and robust

impact on the ATALs variability. Meteorological conditions that are favourable to transport from the Indo-Gangetic plain505

increase the ATAL backscatter intensity, while conditions favourable to transport of air masses from the Tropical Western

Pacific and the influence of typhoons decrease the ATAL backscatter intensity. In case of the Tropical Western Pacific, these

findings hold for the different sensitivity calculations carried out, and hence we corroborate the results by Hanumanthu et al.

(2020), by showing that this correlation is robust despite the systematic uncertainties represented by the different simulation

scenarios. In case of the Indo-Gangetic plain 10 of 13 scenarios are underpinning this finding of a positive correlation, while510

the remaining three scenarios show very low and insignificant correlations. To completely remove the remaining uncertainties,

further observations in the region are needed.

Our findings are in agreement with results of previous studies. Studies found ammonium nitrate particles as a major compo-

nent of the ATAL (Höpfner et al., 2019). Ammonia, the precursor of this aerosol is emitted frequently over the Indo-Gangetic

plain, which is an area of active agriculture and industry (Kuttippurath et al., 2020) and could be transported fast enough into515

the ASMA within hours to a few weeks according to our calculations. Transport within typhoons up into the UTLS can provide

clean and dry air from the ocean (Li et al., 2020) leading to a reduction of the backscatter intensity of the ATAL, as also shown

in our simulations. The possible role of dust from the Asian deserts or highlands for the formation of the ATAL is discussed

in the literature (e.g. Vernier et al., 2011; Bossolasco et al., 2021). Our calculations do not disprove that dust from the Tibetan

Plateau could have contributed to the ATAL in August 2016, but indicate that dust is likely not essential to understand the520

observed variability of the ATAL backscatter intensity during this period. Indeed, the simulations indicate a large potential for

transport of dust into the ASMA from the Asian Highlands, i.e. mostly the Tibetan Plateau, but this transport more likely leads

to a constant background over the observed period.

Code and data availability. The ERA-Interim and ERA5 reanalysis data are available from ECMWF. The CLaMS code can be accessed

from the Jülich GitLab server: https://jugit.fz-juelich.de/clams/CLaMS (last access: 1 December 2022). MPTRAC can be accessed under the525

terms of the GNU General Public License at the GitHub repository: https://github.com/slcs-jsc/mptrac (last access: 1 December 2022). We

made use of the Japanese best track data of typhoons for the analysis of the relation between tropical storms and the transport pathways

(https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html, last access: 15 July 2022). Balloon sounding data will be

provided on request by S. Fadnavis (suvarna@tropmet.res.in).
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Appendix A: Definition of source regions530

To construct our surface source regions, first the geopotential is considered to define the Asian Highlands as the region in

Asia with a geopotential larger than 15000 m2 s−2 (corresponding to a geopotential height of approximately 1.5 km) similar to

Hanumanthu et al. (2020).
:::
The

:::::::
Tibetan

::::::
plateau

::
is

::::::
defined

:::
by

:
a
:::::::::::
geopotential

:::::
larger

::::
than

:::::
40000

:::
m2

:::
s−2

:::::::
(around

:::::
4 km).

:
Secondly,

a land-sea mask is used to distinguish between oceans and continents. The continental regions are defined by the boxes found

in Table A1. The boxes defined in Table A2 define maritime regions, where only those regions are included that are part of the535

sea according to the land-sea mask.

Table A1. The continental source regions are defined by the overlap of longitudinal and latitudinal restricted boxes and the continent without

the Asian Highlands. The Asian Highlands are defined by a GPH criteria.

Name Label Minimum Longitude Maximum Longitude Minimum Latitude Maximum Latitude

Asian Highlands AH 40◦ E 110◦ E 20◦ N 90◦ N

South India SI 65◦ E 90◦ E 5◦ N 23.5◦ N

Indo-Gangetic plain IGP 67.5◦ E 90◦ E 23.5◦ N 35◦ N

South-East-Asia SEA 100◦ E 160◦ E 7◦ N 30◦ N

Table A2. The maritime source regions are defined by the overlap of longitudinal and latitudinal restricted boxes with the seas.

Name Label Minimum Longitude Maximum Longitude Minimum Latitude Maximum Latitude

Arabian Sea AS 50◦ E 80◦ E 7◦ N 27◦ N

Bay of Bengal BOB 80◦ E 100◦ E 7◦ N 27◦ N

Tropical Western Pacific TWP 100◦ E 160◦ E 7◦ N 30◦ N
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Appendix B: Transport pathways from source regions

(a) South India

(b) South-East-Asia (c) Bay of Bengal

1

Figure B1. Exemplary backward trajectories of air parcels of all of the 15 measurement days from the ATAL measurement to the MB
::::
MBL,

categorised by the source region. Colors indicate the time when the air parcels leaves the MB. Gray dots at the bottom show the horizontal

position of the APs 48 h before they cross the MB from below
::
are

:::::
chosen

::
as
::
in
::::
Fig.

:
1.

27



(a) Residual Ocean (b) Residual Continent

1

Figure B2. Exemplary backward trajectories of air parcels of all of the 15 measurement days from the ATAL measurement to the MB
::::
MBL,

categorised by the source region. Colors indicate the time when the air parcels leaves the MB
::::
MBL. Gray dots at the bottom show the

horizontal position of the APs 48 h before they cross the MB
::::
MBL

:
from below.
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Appendix C: PDF for different Scenarios

(a) EI-kin-C (b) EI-dia-C

(c) E5-kin-C (d) E5-dia-C

(e) E5-kin-M (f) E5-kin-M-ECP

1

Figure C1. PDFs for the MB
:::

MBL
:
source region for some scenarios.
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Appendix D: PDF differences for different Scenarios

(a) EI-kin-C (b) EI-dia-C

(c) E5-kin-C (d) E5-dia-C

(e) E5-kin-M (f) E5-kin-M-ECP

1

Figure D1. PDF differences for days with high and low ATAL backscatter for specific scenarios, similar to Fig. 7a, illustrating the sensitivity

of the PDF differences to the chosen scenario.
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Appendix E: Correlation to all regions540

Figure E1. All Spearman correlation coefficients for the relation between the daily BSR and the contributions of different regions for different

scenarios. Crossed out areas hatch insignificant results (p-value higher 0.10). Boxes with yellow stars indicate p-values lower than 0.05. The

regions are ordered according to the scenario mean from lowest to highest correlations.
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Table E1. Mean transport time from the MB
::::
MBL into the UTLS in days, determined by the difference between the leaving time at the MB

::::
MBL and the arrival time above 340 K. Abbreviations are as defined in Table A1 and A2.

Scenario All Res. Oc. TWP AS
:::
Res.

:::::
Cont.

:
SEA BOB

:::
AH IGP SI

:::::
TWP AH

::
AS

:
Res Cont

::::
BOB

::
SI

EI-kin-C 7.2 13.8 9.1 5.9 2.2 6.2 7.0 9.8 5.6 6.0

EI-kin-M 7.2 13.0 12.7 5.4 2.0 6.1 7.0 8.3 5.9 5.3

EI-dia-C 6.4 14.3 14.4 4.2 1.1 5.9 8.4 8.8 6.5 3.0

EI-dia-M 6.2 14.5 13.8 4.1 1.1 6.4 8.3 9.6 6.8 3.3

E5-kin-C 3.3 8.3 8.6 2.9 1.2 3.9 3.2 6.3 3.9 2.2

E5-kin-M 3.4 9.3 9.4 2.6 1.3 4.3 3.0 6.2 3.7 2.4

E5-dia-C 3.4 10.7 10.4 2.5 0.9 4.3 3.7 6.6 3.9 2.2

E5-dia-M 3.3 9.8 10.5 2.8 0.8 4.3 4.4 6.3 3.9 2.2

E5-kin-M-ECP 0.1 0.2 0.4 0.1 0.1 0.1 0.1 0.2 0.1 0.1

E5-kin-M-1800s 3.3 9.0 9.7 2.5 1.3 4.2 3.0 5.4 3.9 2.5

E5-kin-M-Diff 3.3 9.0 9.4 2.9 1.3 4.1 3.1 6.5 3.8 2.2

E5lr-kin-M 4.6 11.5 12.7 4.5 1.6 4.3 4.1 6.6 4.2 3.5

E5lr-dia-M 3.6 13.0 14.1 3.0 1.0 4.0 3.9 5.9 4.0 2.3
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Table E2. Median transport time from the MB
::::
MBL into the UTLS in days, determined by the difference between the leaving time at the

MB
::::
MBL

:
and the arrival time above 340 K. Abbreviations are as defined in Table A1 and A2.

Scenario All Res. Oc. TWP AS
:::
Res.

:::::
Cont.

:
SEA BOB

:::
AH IGP SI

:::::
TWP AH

::
AS

:
Res Cont

::::
BOB

::
SI

EI-kin-C 4.7 10.0 7.3 3.3 0.3 5.2 5.2 7.7 4.9 5.2

EI-kin-M 4.9 10.0 10.1 2.9 0.4 5.2 5.1 6.9 5.2 4.7

EI-dia-C 3.6 11.2 11.6 2.7 0.3 5.3 5.4 8.2 5.5 1.7

EI-dia-M 3.3 11.3 11.3 3.0 0.3 5.5 5.2 8.3 5.4 1.8

E5-kin-C 1.1 5.0 7.2 1.5 0.4 3.5 1.5 5.3 3.0 1.2

E5-kin-M 1.2 5.5 8.2 1.5 0.4 3.6 1.6 5.6 3.2 1.2

E5-dia-C 1.0 7.9 8.3 1.5 0.3 3.6 1.7 5.5 2.9 1.5

E5-dia-M 1.0 6.8 6.9 1.6 0.3 3.8 1.9 5.5 3.2 1.5

E5-kin-M-ECP 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0

E5-kin-M-1800s 1.2 5.2 8.2 1.5 0.4 3.6 1.4 4.6 2.9 1.6

E5-kin-M-Diff 1.1 5.2 8.0 1.5 0.4 3.7 1.3 5.8 3.0 1.0

E5lr-kin-M 2.5 7.7 9.8 3.1 0.7 3.7 2.2 5.9 3.4 2.7

E5lr-dia-M 1.4 10.0 10.8 2.4 0.5 3.5 2.0 5.0 3.6 1.5
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Appendix F: Sensitivity tests for simulations employing the extreme convection parameterisation (ECP)

The default setting of the ECP in MPTRAC relies on a CAPE value of 0 J kg−1 as a threshold for triggering convection events.

For our study, we found the parametrization
:::::::::::::
parameterisation

:
can be improved to avoid spurious parameterized convection

events over the Persian gulf and the Red Sea. In these regions, extremely high convective inhibition, i.e. very stable low-level

layers, prevent the release of the CAPE. Therefore, we implemented an additional threshold for CIN threshold, which was set545

to 50 J kg−1 to remove unrealistic parametrized convection events over the Persian gulf. Figure F1 illustrates the impact of

the parameter choices of the convection parametrization
:::::::::::::
parameterisation

:
on the source identification for different threshold

settings. E5-CAPE0-CIN50 is the same scenario as simulation E5-kin-M-ECP in other parts of the paper.
:::::
Table

::
F1

:::::
gives

::
a

::::::
detailed

::::::::
overview

:::::
about

:::
the

:::::::
different

:::::::
set-ups

::
of

:::
the

:::::::::
convection

::::::::::::::
parameterisation.

:

Figure F1. The same as in Fig. 4, but for simulations with varying settings of the ECP parameters CIN and CAPE. E5-CAPE0-CIN50 is the

same as simulation E5-kin-M-ECP.
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Table F1.
:::::::
Overview

:::
over

::::::::
scenarios,

::::
with

::::::
different

::::::
set-ups

::
of

:::
the

::::::::
convection

:::::::::::::
parameterisation,

::
of

::
90

::::
days

::::::::
backward

:::::::::
calculations

::::::::
performed

::
for

:::
the

:::::
ATAL

:::::::::::
measurements

::::
above

:::::::
Nainital

:
in
::::::

August
:::::
2016.

:::
The

:::::::::
abbreviation

:::
for

::::
each

::::::
scenario

:::::::
contains

::
at

::
the

::::
first

::::::
position

:::
the

::::::::
reanalysis,

:
at
:::
the

:::::
second

:::::::
position

::
the

:::::
CAPE

:::::::
threshold

::::
and

:
at
:::
the

:::
last

::::::
position

:::
the

:::
CIN

::::::::
threshold.

::::::::::
abbreviation

: ::::::::
reanalysis

: ::::::
vertical

:::::::
velocity

: :::::
model

: ::::::::
time-step

:::::
CAPE

: ::::
CIN

:::::::
diffusion

:

:::::::::::::::::
E5-CAPE0-CININF

:::::
ERA5

: ::::::::
kinematic

: ::::::::
MPTRAC

: :::::
1800s

:::::::
0 Jkg−1

:
-

::
off

:

:::::::::::::::
E5-CAPE0-CIN50

: :::::
ERA5

: ::::::::
kinematic

: ::::::::
MPTRAC

: :::::
1800s

:::::::
0 Jkg−1

::::::::
50 Jkg−1

::
off

:

::::::::::::::::
EI-CAPE0-CININF

: :::::::::::
ERA-Interim

::::::::
kinematic

: ::::::::
MPTRAC

: :::::
1800s

:::::::
0 Jkg−1

:
-

::
off

:

:::::::::::::::
EI-CAPE0-CIN50

:::::::::::
ERA-Interim

::::::::
kinematic

: ::::::::
MPTRAC

: :::::
1800s

:::::::
0 Jkg−1

::::::::
50 Jkg−1

::
off

:

::::::::::::::::::
EI-CAPE1000-CIN50

:::::::::::
ERA-Interim

::::::::
kinematic

: ::::::::
MPTRAC

: :::::
1800s

::::::::::
1000 Jkg−1

::::::::
50 Jkg−1

::
off

:

::::::::::::::
EI-CAPE0-CIN2

:::::::::::
ERA-Interim

::::::::
kinematic

: ::::::::
MPTRAC

: :::::
1800s

:::::::
0 Jkg−1

:::::::
2 Jkg−1

::
off

:
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