

Supplementary Materials for

Collision-sticking rates of acid-base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model

Huan Yang^{*1}, Ivo Neefjes¹, Valtteri Tikkanen¹, Jakub Kubečka², Theo Kurtén³,
Hanna Vehkamäki¹, and Bernhard Reischl¹

¹Institute for Atmospheric and Earth System Research / Physics, Faculty of Science,
University of Helsinki, P.O. Box 64, FI-00014, Finland

²Department of Chemistry, iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

³Institute for Atmospheric and Earth System Research / Chemistry, Faculty of Science,
University of Helsinki, P.O. Box 55, FI-00014, Finland

*Correspondence: huan.yang@helsinki.fi

Calculated potential of mean force (PMF) curves for acid-base clusters

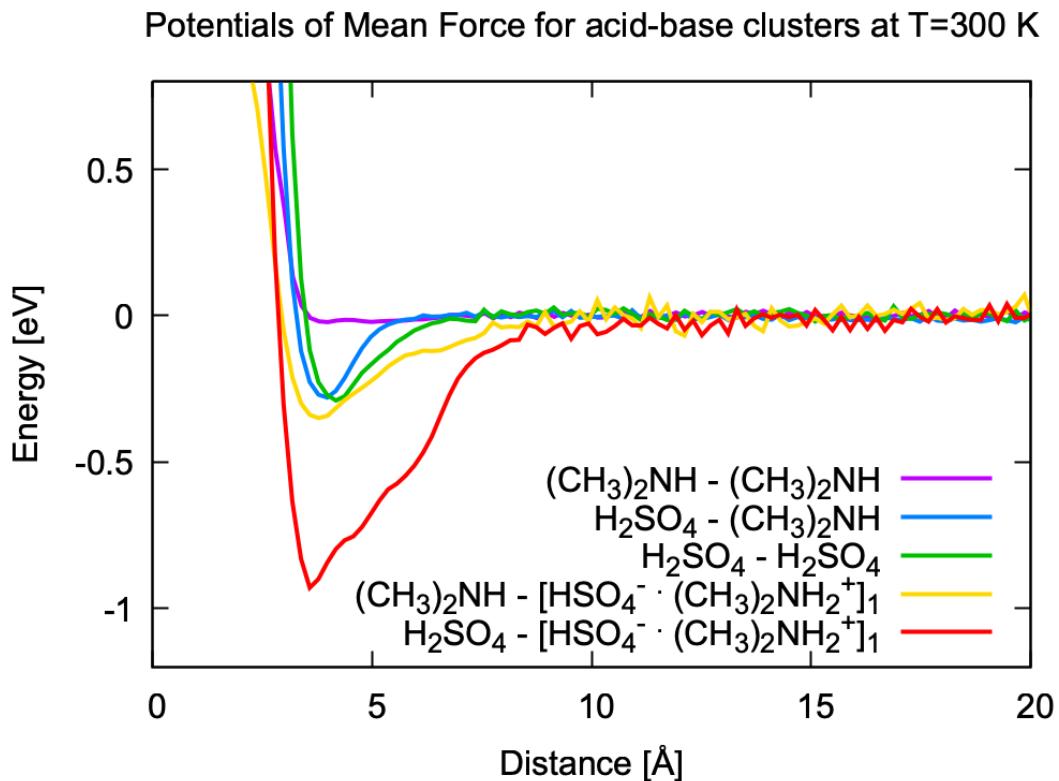


Figure S1. Potentials of Mean Force as a function of the center of mass distance between the investigated acid-base “monomers” in the Hamaker approach, obtained from well-tempered metadynamics simulations at T=300 K using an OPLS-AA force field.

Extracted ϵ and σ values from the calculated PMF curves

Table S1. Extracted ϵ and σ values

	(CH ₃) ₂ NH & (CH ₃) ₂ NH	H ₂ SO ₄ & H ₂ SO ₄	H ₂ SO ₄ & (CH ₃) ₂ NH	H ₂ SO ₄ & HSO ₄ ⁻ · (CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH & HSO ₄ ⁻ · (CH ₃) ₂ NH ₂ ⁺
ϵ [eV]	~0	0.29	0.26	0.93	0.35
σ [Å]	N/A	3.71	3.54	3.19	3.36
r_ϵ [Å]	N/A	4.17	3.97	3.58	3.77

Two example cases where the interacting hard-sphere model and the central field approach result in significantly different critical impact parameters

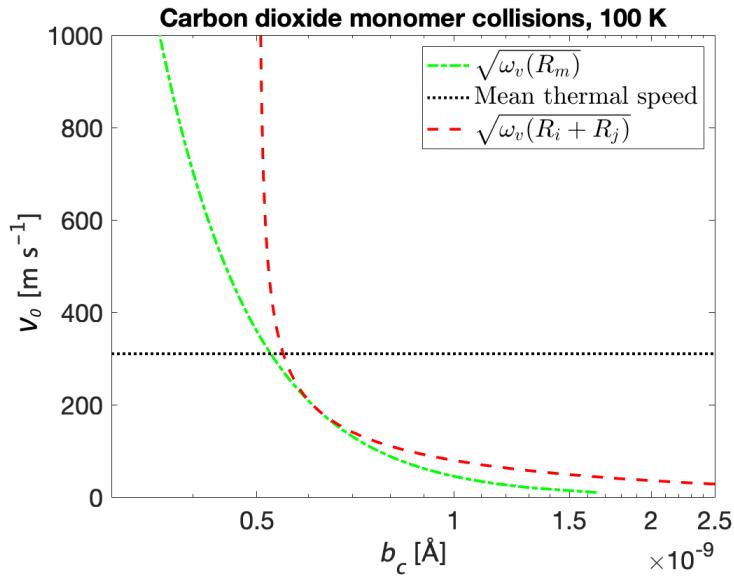


Figure S2. Critical impact parameter for collisions of carbon dioxide monomers at 100 K.
The Lennard-Jones parameters are $\epsilon = 0.0108$ eV and $\sigma = 3.04$ Å [1].

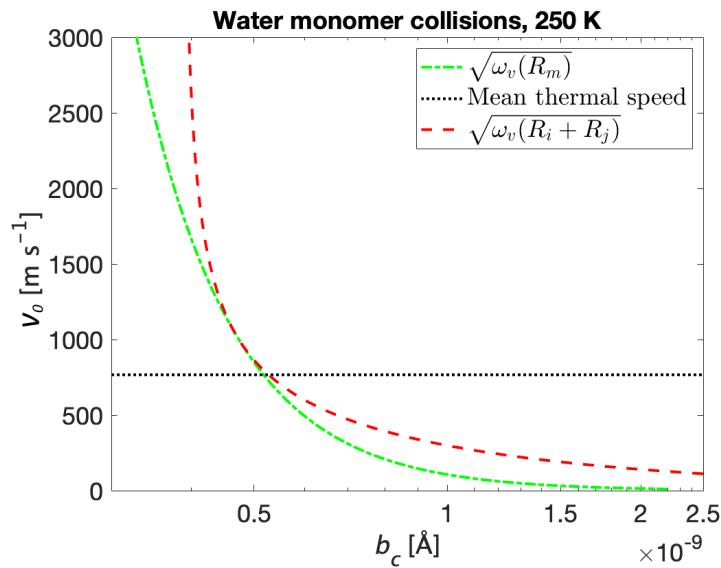


Figure S3. Critical impact parameter for collisions of water monomers at 250 K.
The Lennard-Jones parameters are $\epsilon = 0.031$ eV and $\sigma = 2.928$ Å [2].

The root of Eq. 14 in the main text

In this part, we provide a reasoning to the statement that Eq. 14 in the main text always has exact one real root that is larger than R_c , and we shall identify that root. Substitution of Eq. 13 in the main text into $\omega_v(r)$ yields:

$$\omega_v(r, U_{mc}) = r^2 \left[1 + \frac{8n_c \epsilon \sigma^6}{\mu v_0^2} \cdot \frac{1}{(r^2 - R_c^2)^3} \right]. \quad (S1)$$

We take the derivative of Eq. S1 with respect to r and obtain:

$$\omega_v'(r, U_{mc}) = 2r \left[1 - \frac{8n_c \epsilon \sigma^6}{\mu v_0^2} \cdot \frac{2r^2 + R_c^2}{(r^2 - R_c^2)^4} \right] \equiv 2r[1 - \theta f(r)], \quad (S2)$$

where, $\theta = \frac{8n_c \epsilon \sigma^6}{\mu v_0^2}$ is a positive constant and

$$f(r) = \frac{2r^2 + R_c^2}{(r^2 - R_c^2)^4} = \frac{2}{(r^2 - R_c^2)^3} + \frac{3R_c^2}{(r^2 - R_c^2)^4} \quad (S3)$$

decreases monotonically from $+\infty$ to 0 as r increases from R_c to $+\infty$. Therefore, $\omega_v'(r, U_{mc}) = 0 \Leftrightarrow f(r) = \frac{1}{\theta}$ should have a single root for $r > R_c$. Note that $\omega_v'(r, U_{mc}) = 0$ is equivalent to Eq. 14 in the main text, so now it is safe to say that Eq. 14 has a single real root larger than R_c . This single real root R_m should correspond to the maximum of the four roots of the quartic function defined by Eq. 14, which is:

$$R_m^2 = -\frac{a_3}{4a_4} + M + \frac{1}{2} \sqrt{-4M^2 - 2p + \frac{q}{M}}, \quad (S4)$$

where $p = \frac{8a_4a_2 - 3a_3^2}{8a_4^2} = 0$, $q = \frac{a_3^3 - 4a_4a_3a_2 + 8a_4^2a_1}{8a_4^3} = -2l_c^6$, $M = \frac{1}{2} \sqrt{-\frac{2}{3}p + \frac{1}{3a_4}(N + \frac{\Delta_0}{N})}$, $N = \sqrt[3]{\frac{\Delta_1 + \sqrt{\Delta_1^2 - 4\Delta_0^3}}{2}}$, $\Delta_0 = a_2^2 - 3a_3a_1 + 12a_4a_0 = -36R_c^2l_c^6$, and $\Delta_1 = 2a_2^3 - 9a_3a_2a_1 + 27a_3^2a_0 + 27a_1^2a_4 - 72a_4a_2a_0 = 108l_c^{12}$ with $l_c \equiv \left(\frac{8n_c \epsilon \sigma^6}{\mu v_0^2}\right)^{\frac{1}{6}}$. Substituting the expressions of coefficients a_i into Eq. S4 and rearranging leads to Eq. 15 in the main text.

References

- [1] Manos, G., Dunne, L., Jalili, S., Furgani, A., Neville, T.: Monte Carlo Simulation and Exact Statistical Mechanical Lattice Models as a Development Tool for Zeolite Multi-Component Adsorption Isotherm Derivation, *Adsorption Science & Technology* 30, 503-519, 2012.
- [2] Hirschfelder, J. O., Curtiss, C. F., Bird, R. B.: *Molecular theory of gases and liquids*, 1964.