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Calculated potential of mean force (PMF) curves for acid-base clusters 

 

Figure S1. Potentials of Mean Force as a function of the center of mass distance between the 
investigated acid-base “monomers” in the Hamaker approach, obtained from well-tempered 

metadynamics simulations at T=300 K using an OPLS-AA force field. 

 

Extracted 𝝐 and 𝝈 values from the calculated PMF curves 

Table S1. Extracted 𝜖 and 𝜎 values 

 (CH!)"NH & 
(CH!)"NH 

H"SO# & 
H"SO# 

H"SO# & 
(CH!)"NH 

H"SO# & 
HSO#$ ∙ (CH!)"NH"% 

(CH!)"NH & 
HSO#$ ∙ (CH!)"NH"% 

𝜖 [eV] ~0 0.29 0.26 0.93 0.35 

𝜎 [Å] N/A 3.71 3.54 3.19 3.36 

𝑟! [Å] N/A 4.17 3.97 3.58 3.77 
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Two example cases where the interacting hard-sphere model and the central field approach 
result in significantly different critical impact parameters 
 

 

Figure S2. Critical impact parameter for collisions of carbon dioxide monomers at 100 K.  
The Lennard-Jones parameters are 𝜖 = 0.0108 eV and 𝜎 = 3.04 Å [1]. 

 

Figure S3. Critical impact parameter for collisions of water monomers at 250 K.  
The Lennard-Jones parameters are 𝜖 = 0.031 eV and 𝜎 = 2.928 Å [2]. 
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The root of Eq. 14 in the main text 

In this part, we provide a reasoning to the statement that Eq. 14 in the main text always has exact 
one real root that is larger than 𝑅", and we shall identify that root. Substitution of Eq. 13 in the 
main text into 𝜔#(𝑟) yields: 

𝜔#(𝑟, 𝑈$%) = 𝑟& 61 + '(!!)"

*##$
∙ +
(-$./!$)%

9.      (S1) 

We take the derivative of Eq. S1 with respect to 𝑟 and obtain:  

𝜔#1(𝑟, 𝑈$%) = 2𝑟 61 − '(!!)"

*##$
∙ &-$2/!$

(-$./!$)&
9 ≡ 2𝑟[1 − 𝜃𝑓(𝑟)],    (S2)  

where, 𝜃 = '(!!)"

*##$
 is a positive constant and  

𝑓(𝑟) = &-$2/!$

(-$./!$)&
= &

(-$./!$)%
+ 3/!$

(-$./!$)&
      (S3) 

decreases monotonically from +∞ to 0 as 𝑟 increases from 𝑅% to +∞. Therefore, 𝜔#1(𝑟, 𝑈$%) =
0 ⟺ 𝑓(𝑟) = +

4
 should have a single root for 𝑟 > 𝑅%. Note that 𝜔#1(𝑟, 𝑈$%) = 0 is equivalent to 

Eq. 14 in the main text, so now it is safe to say that Eq. 14 has a single real root larger than 𝑅%. 
This single real root 𝑅$ should correspond to the maximum of the four roots of the quartic function 
defined by Eq. 14, which is: 

𝑅$& = − 5%
65&

+𝑀 + +
&D−4𝑀

& − 2𝑝 + 7
8

,      (S4) 

where 𝑝 = '5&5$.35%$

'5&$
= 0 , 𝑞 = 5%%.65&5%5$2'5&$5'

'5&%
= −2𝑙"

9 , 𝑀 = +
&D−

&
3
𝑝 + +

35&
(𝑁 + :#

;
) ,  

𝑁 = I:'2<:'$.6:#%

&

%

, Δ= = 𝑎&& − 3𝑎3𝑎+ + 12𝑎6𝑎= = −36𝑅%&𝑙%
9 , and Δ+ = 2𝑎&3 − 9𝑎3𝑎&𝑎+ +

27𝑎3&𝑎= + 27𝑎+&𝑎6 − 72𝑎6𝑎&𝑎= = 108𝑙%
+& with 𝑙% ≡ N'(!!)

"

*##$
O
'
". Substituting the expressions of 

coefficients 𝑎> into Eq. S4 and rearranging leads to Eq. 15 in the main text. 
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