
Authors’ answer (AC) to comments of first referee (RC1) 

General comments:  

RC1: This manuscript reports a very comprehensive assessment of current process-oriented 
models of leaf senescence in temperate deciduous trees. It considers aspects that are rarely 
addressed in phenological modelling, and often overlooked or reported quite superficially in 
other manuscripts, despite their potential strong influence on the interpretation of the research. 
The considered aspects are related to the model calibration and evaluation (namely the scale 
of calibration site- vs. species-scale, the choice and parameterization of optimization 
algorithms, the cal/val sampling strategy), and their effect on model projections. 

In essence, this manuscript has the potential to become a vademecum for phenological 
modelers, and possibly beyond this community (I’m thinking here of modelers working with 
models simple/fast enough to allow large numbers of computations), providing an example on 
how to rigorously design cal/val and projection studies. The downside is that the manuscript is 
very long, and sometimes difficult to follow due to the comprehensiveness of the tests 
performed and the results reported. This is not prohibitive to me, and I would like to read 
more often phenological modelling studies conducted in such a rigorous way. Hence I do not 
ask for a general reduction of the manuscript length. However, I strongly recommend the 
authors to provide a section (such sections are called "boxes" in some journals) highlighting 
what they identified from their work as good practices for phenological modelling.  
 
This section would ideally list items regarding to the aspects they deal with (e.g. "how to 
rigorously sample a phenological database for cal/val of a phenological model", "which 
optimization algorithm to choose" etc.) and giving practical numbers / orders of magnitude / 
rules of thumbs useful to other modelers. This may require including in this "box" some 
definitions located here and elsewhere in the manuscript, possibly with examples (e.g. what is 
a "stratified" sampling etc.). I think most of this is already present in the manuscript, but it is 
dispersed and quite difficult to find. To put it more bluntly, currently the manuscript has a 
strong potential but no strong take-home message, and leaves the reader wrung out after an 
avalanche of valuable information.  

In other words, I would like this manuscript to offer two levels of reading: the very detailed 
one that is currently presented. And another, more synthetic one, which would help spread 
good practices in phenological modelling. 

AC: Thank you for your nice summary and general comments. We are happy to hear 
that you see the potential of our manuscript becoming a vademecum. We considered 
your suggestion of adding a section/box that synthesizes our methods and results as well 
as provides practical guidelines to modelers. Further, your specific comments were duly 
considered and answered here below. Corresponding changes in the manuscript 
(following after your comments and our answers) are marked in yellow, whereas green 
and blue signify the changes in response to the comments of the 2nd referee and other 
changes of the authors, respectively. 

We now inserted a summary (i.e., a box), which reads: 
This study analyzed the impact of process-oriented models, optimization algorithms, 
calibration samples and climate scenarios on the simulated timing of autumn leaf 
phenology (Figure 2). The accuracy of the simulated timing was assessed by the root 
mean square error (RMSE) between observed and simulated timing of autumn 



phenology. The future timing was expressed as projected shift between 1980–1999 and 
2080–2099 (Δ100). While the RMSE was related to the models, optimization algorithms, 
and calibration samples with linear mixed-effects models (LMM), Δ100 was related to 
the climate change scenarios, models, optimization algorithms, and calibration samples. 
The analyzed >2.3 million RMSE and 39 million Δ100 were derived from site- and 
species-specific calibrations (i.e., one set of parameters per site and species vs. one set 
of parameters per species, respectively). The calibrations were based on 17 211, 16 954, 
and 11 602 observed site-years for common beech (Fagus sylvatica L.), pedunculate oak 
(Quercus robur L.), and European larch (Larix decidua MILL.), respectively, which 
were recorded at 500 Central European sites per species. 
Process-oriented models are a useful tool to study leaf senescence 
The assessed phenology models differed in their functions and drivers, which had the 
largest influence on the accuracy of the simulated autumn phenology (i.e., model 
performance). In all 21 models, autumn phenology occurs when a threshold related to 
an accumulated daily senescence rate is reached. While the threshold is either a constant 
or depends linearly on one or two seasonal drivers, the rate depends on daily 
temperature and, in all but one model, on day length. Depending on the model, the rate 
is (1) a monotonically increasing response to cooler days and (i) amplified or (ii) 
weakened by shorter days, or (2) a sigmoidal response to both cooler and shorter days. 
In the three most accurate models, the threshold was either a constant or derived from 
the timing of spring leaf phenology (site-specific calibration) or the average temperature 
of the growing season (species-specific calibration). Further, the daily rate of all but one 
of these models was based on monotonically increasing curves, which were both 
amplified or weakened by shorter days. Overall, the relatively large influence of the 
models on the performance justifies inferences from comparisons of process-oriented 
models to the leaf senescence process. 
Chosen optimization algorithms must be carefully tuned 
The choice of the optimization algorithm and corresponding control settings had the 
second largest influence on model performance. The models were calibrated with five 
algorithms (i.e., Efficient Global Optimization based on kriging with/without Trust-
Region formation, Generalized Simulated Annealing, Particle Swarm Optimization, and 
Covariance Matrix Adaptation with Evolutionary Strategies), each executed with few 
and many iterations. In general, Generalized Simulated Annealing found the parameters 
that led to the best performing models. Depending on the algorithm, model performance 
increased with more iterations for calibration. The positive and negative effects of more 
iterations on subsequent model performance relativize the comparison of algorithms in 
this study and exemplify the importance of carefully tuning the chosen algorithm to the 
studied search space. 
Stratified samples result in most accurate calibrations 
Model performance was relatively little influenced by the choice of the calibration 
sample in both the site- and species-specific calibration. The models were calibrated and 
validated with site-specific five-fold cross-validation as well as with species-specific 
calibration samples that contained 75% randomly assigned observations from between 2 
and 500 sites and corresponding validation samples that contained the remaining 
observations of these sites or of all sites of the population. For the site-specific cross-
validation, observations were selected in a random or systematic procedure. The random 
procedure assigned the observations randomly. For the systematic procedure, 
observations were first ordered based on year, mean annual temperature (MAT), or 
autumn phenology date (AP). Thus, every 5th observation [i.e., 1+i, 6+i,… with i ∈ 
(0,1,…,4); systematically balanced] or each fifth of the n observations [i.e.; 
1+i,2+i,…,n/5+i with i ∈ (0,1/5×n,…,4/5×n); systematically continuous] was assigned 
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to one of the cross-validation samples. For the species-specific calibration, sites were 
selected in a random, systematic, or stratified procedure. The random procedure 
randomly assigned 2, 5, 10, 20, 50, 100, or 200 sites from the entire or half of the 
population according to the average MAT or average AP. For the systematic procedure, 
sites were first ordered based on average MAT or average AP. Thus, every jth site was 
assigned to a particular calibration sample with the greatest possible difference in MAT 
or AP between the 2, 5, 10, 20, 50, 100, or 200 sites. For the stratified procedure, the 
ordered sites were separated into 12 or 17 equal-sized bins based on MAT or AP, 
respectively (i.e., the smallest possible size that led to at least one site per bin). Thus, 
one site per bin was randomly selected and assigned to a particular calibration sample. 
The effects of these procedures on model performance were analyzed together with the 
effect of sample size. The results show that at least nine observations per free model 
parameter (i.e., the parameters that are fitted during calibration) should be used, which 
advocates the pooling of sites and thus species-specific models. These models likely 
perform best when (1) sites are selected in a stratified procedure based on MAT for (2) a 
cross-validation with systematically balanced observations based on site and year, and 
their performance (3) should be tested with new sites selected in a stratified procedure 
based on AP. 
Projections of autumn leaf phenology are highly uncertain 
Projections of autumn leaf phenology to the years 2080–2099 were mostly influenced 
by the climate change scenarios, whereas the influence of the phenology models was 
relatively small. The analyzed projections were based on 16 and 10 climate model 
chains (CMC) that assume moderate vs. extreme future warming, following the 
Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively. Under more 
extreme warming, the projected autumn leaf phenology occurred 8–9 days later than 
under moderate warming, namely shifting by -4 to + 20 days (RCP 8.5) vs. -13 to +12 
days (RCP 4.5). While autumn phenology was projected to generally occur later 
according to the better performing models, the projections were over six times more 
influenced by the climate scenarios than by the phenology models. This small influence 
of models that differ in their functions and drivers indicates that the modelled 
relationship between warmer days and slowed senescence rates suppresses the effects of 
the other drivers considered by the models. However, because some of these drivers are 
known to considerably influence autumn phenology, the lack of corresponding 
differences between projections of current phenology models underscores their 
uncertainty rather than the reliability of these models. 

Specific comments: 

RC1: L25-26: should this sentence be understood "in general" for all leaf senescence models? 

AC: Yes. We made this clearer with the expression “current models”. 

Thus, the 3rd paragraph of the abstract now reads: 
Our results justify inferences from comparisons of process-oriented phenology models 
to phenology-driving processes and we advocate species-specific models for such 
analyses and subsequent projections. For sound calibration, we recommend a 
combination of cross-validations and independent tests, using randomly selected sites 
from stratified bins based on mean annual temperature and average autumn phenology, 
respectively. Poor performance and little influence of phenology models on autumn 
phenology projections suggest that current models are overlooking relevant drivers. 
While the uncertain projections indicate an extension of the growing season, further 



studies are needed to develop models that adequately consider the relevant processes 
for autumn phenology. 

RC1: L50: In French, it is customary to call this scientist "Réaumur" (not "De Réaumur") 

AC: We changed this accordingly. 

RC1: L63: meaning of "was not given" ? Clarify 

AC: We clarified the sentence. (L127-128) 

Thus, the 4th paragraph of Sect. 1 now reads: 
Models of spring phenology regularly outcompete models of autumn phenology by 
several days when assessed by the root mean square error between observed and 
modelled dates (4–9 vs. 6–13 days, respectively; Basler, 2016; Liu et al., 2020). These 
errors have been interpreted in different ways and have multiple sources. Basler (2016) 
compared over 20 different models and model combinations for spring leaf phenology 
of trees. He concluded that the models underestimated the inter-annual variability of 
observed dates of spring leaf phenology and were not transferable between sites. Liu et 
al. (2020) compared six models of autumn leaf phenology of trees and concluded that 
the inter-annual variability was well represented by the models, while their 
representation of the inter-site variability was relatively poor. 

RC1: L88-89: about space-for-time approach, the paper by Jochner et al. is interesting, and 
not appearing in the reference list: Susanne Jochner, Amelia Caffarra, Annette Menzel, Can 
spatial data substitute temporal data in phenological modelling? A survey using birch 
flowering, Tree Physiology, Volume 33, Issue 12, December 2013, Pages 1256–1268, 
https://doi.org/10.1093/treephys/tpt079 

AC: We were not aware of this publication and cited it now. Of course, the 
impossibility of site-specific models to project to new sites remains, why we did not 
alter our statement but referenced the study you mentioned above. 

RC1: L113 "in contrast": I do not understand the logical link with preceding sentence here 

AC: We clarified the sentence. 

Thus, the 9th paragraph of Sect. 1 now reads: 
Sample size in terms of the number of observations per site and the number of sites 
may influence the quality of phenology models as well. Studies on phenology models 
have usually selected sites with at least 10 or 20 observations per site, independent of 
the calibration mode (e.g. Delpierre et al., 2009; Keenan and Richardson, 2015; Lang 
et al., 2019). In studies with species-specific models, a wide range in the number of 
sites have been considered, namely 8 to >800 sites (e.g. Liu et al., 2019; Liu et al., 
2020). In site-specific calibration, the number of sites may be neglected as the site-
specific models cannot be applied to other sites. However, the number of observations 
is crucial, as small samples may lead to overfitted models due to the bias-variance 
trade-off (James et al., 2017, Ch. 2.2.2), i.e. the trade-off between minimizing the 
prediction error in the validation sample versus the variance of the estimated 
parameters in the calibrated models. To our knowledge, no study to date has examined 
possible overfitting in phenology models. In addition, in species-specific calibration, 



the number of sites could influence the degree to which the population is represented 
by the species-specific models. While such reasoning appears intuitively right, we are 
unaware of any study that has systematically researched the correlation between the 
number of sites and the degree of representativeness. 

RC1: L120-121: site-specific vs. species-specific calibration: behind this is the question of 
tree populations local adaptations, that is not considered here. It was in Delpierre et al. 2009 
(and Chuine et al. 2000). Mention it somewhere. 

AC: We briefly mentioned local adaption and the indicated references. 

Thus, the 6th paragraph of Sect. 1 now reads: 
When considering phenology data from different sites, one must, in principle, decide 
between two calibration modes, namely a calibration per site and species or a 
calibration over various sites with pooled data per species. While the former 
calibration leads to a set of parameters per species and site, the latter leads to one set 
of parameters per species. On the one hand, site-specific models may respond to local 
adaptation (Chuine et al., 2000) without explicitly considering the underlying 
processes as well as to relevant but unconsidered drivers. For example, a model based 
solely on temperature may provide accurately modelled data due to site-specific 
thresholds, even if the phenological observations at some sites are driven by additional 
variables such as soil water balance. On the other hand, species-specific models may 
consider local adaptation via parameters such as day length (Delpierre et al., 2009) and 
may be better suited for projections to new other sites and changed climatic 
conditions, as they apply to the whole species and follow a space-for-time approach 
(but see Jochner et al., 2013). 

RC1: L153: the assertion "the proper order (e.g. the date for leaf coloration was before the 
date for leaf fall)" is wrong: leaf fall can occur before leaf coloration. Or at least, part of the 
leaf fall can occur before reaching BBCH94 (= 40% of leaves colored or fallen) considered in 
this paper (L159). Which BBCH code did you consider for leaf fall? 

AC: We checked the order according to the BBCH codes, i.e., BBCH10 had to occur 
before BBCH11 (i.e., leaf separation before leaf unfolding) and BBCH94 had to occur 
before BBCH95 (i.e., 40% of leaves colored or fallen before 50% of leaves colored or 
fallen). To our knowledge, these orders cannot be reversed. However, the description 
of the codes was certainly misleading. We changed this accordingly. 

Thus, the 1st paragraph of Sect. 2.1.1 now reads: 
We ran our computer experiment with leaf phenology observations from Central 
Europe for common beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), 
and European larch (Larix decidua MILL.). All phenological data were derived from 
the PEP725 project database (http://www.pep725.eu/; accessed on April 13, 2022). 
The PEP725 dataset mainly comprises data from 1948–2015 that were predominantly 
collected in Austria, Belgium, Czech Republic, Germany, the Netherlands, 
Switzerland, and the United Kingdom (Templ et al., 2018). We only considered site-
years for which the phenological data were in the proper order (i.e., the first leaves 
have separated before they unfolded, BBCH10 before BBCH11, and 40% of the leaves 
have colored or fallen before 50% of the leaves, BBCH94 before BBCH95; Hack et 
al., 1992; Meier, 2001) and the period between spring and autumn phenology was at 
least 30 days. Subsequently, we only considered sites with at least 20 years for which 



both spring and autumn phenology data were available. We randomly selected 500 of 
these sites per species. Each of these sites comprised 20–65 (beech), 20–64 (oak), or 
20–30 (larch) site-years, all of which included a datum for spring and autumn 
phenology. This added up to 17 211 site-years for beech, 16 954 site-years for oak, 
and 11 602 site-years for larch. Spring phenology corresponded to BBCH11 for beech 
and oak and BBCH10 for larch, while autumn phenology for all three species was 
represented by BBCH94, hence forward referred to as leaf coloration (Hack et al., 
1992; Meier, 2001). 

RC1: L154: "After corresponding correction..." is unclear. Rephrase. 

AC: We clarified the sentence (see inserted the 1st paragraph of Sect. 2.1.1 here 
above). 

RC1: L174: why using Tmin as a "general" driver? Models often use the daily average 
temperature. 

AC: Indeed, except for the models TPMt, TPMp, PIAGSI, PIA+ and PIA- (Lang et al. 
2019, Zani et al. 2020), all compared models use daily average temperature, whereas 
Jibran (2013) and Lim et al. (2007) describe cold stress to promote leaf senescence. 
Since cold stress likely relates more to daily minimum temperature, we used the latter 
in all models. This is also what was done in the currently most recent model 
comparison (Zani et al. 2020), which can now directly be compared with our 
comparison. However, we agree that this adaptation of the models CDD, DM1, DM2, 
SIAM, TDM1, TDM2, PDM1, PDM2, TPDM1, and TPDM2 must be pointed out and 
discussed, both of which we did in sections 2.2 and 4.5.2. 

Thus, the note to Table 1 in Sect. 2.2 now reads: 
Daily senescence rate responds to the daily drivers minimum temperature (T) and day 
length (L), following either a monotonically increasing curve (Mon) with cooler 
temperatures, which may be weakened or amplified with shorter days (Mon− or 
Mon+), or a sigmoidal curve (Sig). The threshold value is either a constant (Co) or a 
linear function (Li) of one or two of the following seasonal drivers: site-specific 
anomaly of (1) spring phenology (a.dSP), (2) growing season index (a.GSI), and (3) 
daytime net photosynthesis accumulated during the growing season ignoring or 
considering water limitation constraints (a.Anet and a.Anet–w), as well as the actual 
(4) leafy season or growing season mean temperature (TLS and TGS), (5) low 
precipitation index averaged over the leafy season (LPILS), or (6) adapted low 
precipitation index of the growing season (LPIZa20). Further, the number of free 
parameters fitted during model calibration and the sources for each model are listed 
(i.e., De09: Delpierre et al. (2009); Du05: Dufrêne et al. (2005); Ke15: Keenan and 
Richardson (2015); La19: Lang et al. (2019); Li19: Liu et al. (2019); Za20: Zani et al. 
(2020)). Note that the models CDD, DM1, DM2, SIAM, TDM1, TDM2, PDM1, 
PDM2, TPDM1, and TPDM2 are originally driven by daily mean  rather than daily 
minimum temperature (cf. Sect. 4.5.2). All models are explained in detail in 
Supplement S2. 

And Sect. 4.5.2 reads: 
4.5.2 Daily minimum vs. mean temperature as driver of the senescence rate 
Most original publications of the compared models calculated the senescence rate from 
the mean rather than the minimum temperature, whereas we used the minimum 



temperature for all models. Our choice was based on the stress exhibited by cool 
temperatures that promotes leaf senescence (Jibran et al., 2013; Lim et al., 2007) and 
the recent model comparison by Zani et al. (2020), who used daily minimum 
temperature throughout their study. This choice allowed to compare or study with Zani 
et al. (2020) and to assess the response curves of the senescence rate. However, 
inferences on the drivers of leaf senescence would be more profound, if they were 
based on a comparison that additionally considers models driven by mean temperature, 
as suggested in some of the original publications (i.e., Delpierre et al., 2009; Dufrêne 
et al., 2005; Keenan and Richardson, 2015; Liu et al., 2019). Such an extended 
comparison is certainly essential to gain further insight in the process of leaf 
senescence but may only focus on the models to remain feasible, rather than also 
including optimization algorithms and sampling procedures. 

RC1: L178-179: 0.25° is a quite coarse spatial resolution, notably when it comes to 
mountainous areas. Any correction of temperature with altitude (through lapse rate)? 

AC: To not further complicate and lengthen the study, we did not correct temperature 
with elevation. However, we discussed this in the newly added section 4.5.1. 

Sect. 4.5.1 reads: 
4.5.1 Driver data 
Modelled weather data can be biased, which affects model outputs based on these data. 
For example, correcting climate projections for bias increased the accuracies of 
projected forest ecosystem function and of the simulated timing of leaf phenology 
(Drepper et al., 2022; Jourdan et al., 2021). Here, we refrained from bias-correcting 
the meteorological data for the past and future, which likely negatively affected the 
accuracy of the simulated timing of autumn leaf phenology for the past and future. 
Thus, we probably received too large RMSE and projected shifts that were both too 
small and too large. But did the use of uncorrected meteorological data affect our 
comparison of model vs. calibration effects on model performance and projections? 
The used meteorological data for the past is likely more accurate for some sites than 
for others. This is probably also true for the used meteorological data for the future, 
but the sites with more vs. less accurate data likely differ between climate scenarios. In 
addition, some scenarios can be systematically warmer than others, for example (cf. 
above). Therefore, the effect of sites on model performance and the effect of climate 
scenarios on model projections was probably inflated by the uncorrected 
meteorological data. In contrast, these data probably affected all models similarly and 
the sampling procedures randomly, whereas the optimization algorithms remained 
unaffected. Thus, the use of uncorrected meteorological data most likely had little 
impact on our results. 
Spatial and elevational differences between a particular site and the centre of the 
corresponding grid cell, from which the meteorological data were extracted, affect the 
input data. Gridded data may poorly represent the conditions at a particular site due to 
spatial and elevational differences. For example, precipitation and temperature can 
change in response to different terrain and the lapse rate, respectively, while the leaf 
area index and plant-available water capacity can change due to different vegetation 
and soil conditions. These effects of spatial and elevational differences were not 
considered in this study and may have led to inaccurate input data (e.g., average MAT 
for the site Grossarl, 47.2° N / 13.2° E at 900 m a.s.l., in the Austrian Alps was ~0.6° 
C, which makes beech growth unlikely; Holtmeier and Broll, 2020). The degree of 
inaccuracy probably differs between sites, which inflated the site effects on model 



performance and model projections. In contrast, the effects of models, sampling 
procedures, and optimization algorithms were probably unaffected by the inaccurate 
input data (cf. above), so these data most likely had a neglectable effect on our results. 

RC1: L183: what is a "climate model chain"? Is one CMC corresponding to one particular 
climate model run under a particular RCP? 

AC: A CMC is a particular combination of a global and regional climate model 
(clarified in the revised manuscript). 

RC1: Table 1: From Suppl Mat 2, it is unclear how you implemented the relatively complex 
responses to GSI and Anet described in Ziani et al. 2020. Did you actually code those 
responses? What cast doubts to me is your use of the term "apparent photosynthesis" in Suppl 
Mat 2, though it seems from Suppl Mat 1 that you indeed computed photosynthesis. This 
should be clarified in Suppl Mat 2, e.g. with a mention to Ziani et al. 2020 (their suppl. mat.). 

AC: Yes, we coded these responses according to the Supplement S3 (Sect. S2.2 and 
S2.3). Following your comment, we clarified that GSI, Anet and Anet–w were 
calculated by ourselves. (Supplement S2: p. 2 and Supplement S3: pp. 1 and 4) 
Unfortunately, we are unable to fully understand your doubts as “Suppl Mat” 1 and 2 
probably point to Supplements S1 and S2 but these supplements explain the used data 
(S1) and phenology models (S2). However, we believe you referred to the 
Supplements S2 and S3 instead, which explain the used models and model drivers, 
respectively, and answer your comment accordingly. To our understanding of Egle 
(1960) and Wohlfahrt and Gu (2015), for example, the apparent photosynthesis (Anet) 
equals the difference between the real (or gross) photosynthesis (Agd) and light (or 
daytime) respiration. And this is what we calculated in Eq. S32 of Supplement S3, 
defining light respirations as the daytime fraction of apparent respiration (Rd): 
Anet = Agd – Rd × L / 24 . 
Our understanding from Zani et al. (2020) is that they also did the following. While 
they described their models in the main part as dependent on photosynthesis, Eqs. 20 
and 22 in their supplement clearly point to the apparent photosynthesis. 
Therefore, we strongly agree with you that it must be clarified if the apparent or real 
photosynthesis was used. We now have done so in the changes in section S2.3 of 
Supplement S3. In addition, we calculated these drivers ourselves, which we also 
specified in section S2 of Supplement S3. 

Thus, the 1st paragraph of Supplement S3: Sect. 2 now reads: 
The threshold value is either a constant or depends linearly on one or two of the 
following seasonal drivers: the timing of spring phenology in the current year, the 
mean temperature or low precipitation index (LPI) of the typical growing season or 
leafy season, the current growing season index (GSI), or the accumulated apparent 
photosynthetic rate ignoring or considering water limitation constraints (Anet or Anet–w) 
during the current growing season. These drivers were calculated from the minimum, 
mean, and maximum air temperature, net short- and longwave radiation, downwelling 
shortwave radiation, precipitation, and soil moisture as well as plant-available water 
capacity, atmospheric CO2 concentration, leaf area index and plant functional type (cf. 
Supplement S1). We calculated driver values according to Eqs. S2–S42 and either 
applied directly or as site-specific anomalies (in the SIAM, SIAMZa20, PIAGSI, PIA+, 
and PIA– models), depending on the model. Furthermore, all driver values except for 
the spring phenology depend on the period for which they are calculated. This period 
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was either from observed spring to average autumn phenology per site and species 
(average temperature, LPIZa20, GSI, Anet, and Anet–w for the TDMZa20, PDMZa20, 
TPDMZa20, PIAGSI, PIA+, and PIA– models) or from observed spring phenology to the 
first day of the accumulation period (d1; average temperature and LPI for the TDM1, 
PDM1, TPDM1, TM2, PDM2, TPDM2 models). 

Thus, the 1st paragraph of Supplement S3: Sect. S2.3 now reads: 
The threshold values of the PIA+ and PIA– models are both driven by apparent 
photosynthesis, ignoring and considering water limitation constraints, respectively 
(Anet and Anet–w; [mol m−2]; Zani et al., 2020). Anet and Anet–w were accumulated 
between observed spring phenology and the site-specific average autumn phenology. 
They are based on apparent photosynthesis, which signifies the daytime change in 
CO2. This change can be calculated by deducting daytime respiration from gross 
photosynthesis (Agd; [mol m−2]), which may also be referred to as light respiration and 
real photosynthesis, respectively (Egle, 1960; Wohlfahrt and Gu, 2015). Agd is limited 
by photon availability, Rubisco activity, and sink capacity (Farquhar et al., 1980; 
Kirschbaum and Farquhar, 1984; Collatz et al., 1991). It can be expressed as min(JE, 
JC, JS), with JE, JC, and JS being the respective rates depending on light, Rubisco 
activity, and sink capacity (Collatz et al., 1991, Eq. A.1): 

RC1: L248: were the models tested in their ability to simulate trends in observed data (if any 
over 20-65 years?) 

AC: Model accuracy was assessed solely based on the RMSE and we did not perform 
an additional assessment of the model’s ability to simulate past trends. However, this 
would certainly be an interesting study, which we may conduct in the future. 

RC1: L259-260: Does this mean that the parameters used for model evaluation and model 
projections were possibly different? Why so? 

AC: Yes, in site-specific calibration, the parameters were possibly different. The site-
specific models were evaluated with a 5-fold cross-validation, which leads to five sets 
of parameters. Which of these sets should be used for projections? Maybe the set that 
led to the smallest RMSE or the average parameters calculated from all five sets? On 
the one hand, different RMSE are likely related to differences in the observations used 
for validation and thus do not justify the use of one parameter set over another. On the 
other hand, average parameters are unlikely to lie in any local optimum or even the 
global optimum. Compared to these alternatives, the selection of parameters derived 
from the calibration with the whole data appeared most reliable to us. 

RC1: L440-441: I'm unsure we are here talking about model external validation. If this is the 
case, it is not particularly surprising that site-specific calibration can sometimes yield, at the 
very same site, unrealistic results when the model is used to predict unknown data. Indeed, 
site-specific parametrisation are more prone to over-fitting (few data points over which to fit 
the model), as compared to species-specific parametrisation (which includes many sites). 

AC: We are not sure, if we understand you correctly. With “external validation” we 
refer to the fact, that the models were validated with observations that have not yet 
been used for their calibration. These “external” observations, however, were recorded 
at the same site as the observations used for calibration. This may lead to unrealistic 
results due to overfitting, if the number of observations left for calibration is low, 
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which is exactly what we wanted to study (i.e., effects of the sample size). We agree 
that such unrealistic results should be expected, why we deleted the word 
“surprisingly”. 

Thus, the 1st paragraph of Sect. 3.1.1 now reads: 
Across the phenology models, optimization algorithms, and sampling procedures, the 
observed distribution of the external root mean square error (RMSE) of the pooled 
species differed considerably between the calibration and validation modes. Overall, 
the smallest median RMSEs were similar between the site- and species-specific 
calibration modes, ranging from 10.1 to 12.4 and 11.7 to 12.6 or 12.4 to 12.9 days in 
the respective site- and species-specific calibration validated within sample or within 
population (Fig. 3, Supplement S6: Table S1). The smallest mean RMSE were 
considerably larger with the site- than with the species-specific calibration (19.2–52.1 
vs. 11.6–23.9 or 12.9–24.4 days; grey dots in Fig. 3). Accordingly, standard deviations 
were larger with the site- than with the species-specific calibration (28.4–66.5 vs. 3.7–
36.6 or 1.2–36.0 days; Fig. 3, Supplement S6: Table S1). 

RC1: Fig. 3b: inversion of the x-axis is confusing. It took me several minutes to understand 
this subplot (as compared to the text description), because i intuitively tried to interpret the x-
axis with negative values on the left of the vertical dashed line. 

AC: We felt that the plot is easier to understand when more accurate models are 
visualized with a dot further to the right, but maybe we were wrong. Since we cannot 
be sure, what our readers will prefer, we changed the plots such that the x-axes are not 
inversed anymore (L581). 



Thus, Figure 3 now is: 

 

 

RC1: L531: how possible is this? Considering that NA-producing and non-converging runs 
are assigned high RMSE values. 

AC: We agree that this finding for species-specific models is counterintuitive. 
However, on the one hand, the LMMs are not perfect (adjusted R2 range from 0.41 to 



0.54) and the ranks of the reference model CDD, whose RMSE is specified on L618 
and which has confused you, changed from 14 to 18 and 14 for species-specific 
models validated within sample and population, respectively. On the other hand, large 
samples led to most NA-containing calibration runs (Supplement S6: Fig. S1). At the 
same time, GenSA large samples also led to the lowest RMSE when NA-values were 
replaced with 170 d. It may well be that many of these NA-producing runs based on 
large samples led to lower-than-average external RMSEs, especially since the 
punishing effect of a particular replacement is weaker in large samples. We added a 
paragraph in section 4.3 (L930-942), in which we discuss this issue. 

Thus, the 4th paragraph of Sect. 4.3 now reads: 
The RMSE increased for some models when non-converging calibration runs or runs 
that yielded NA values in either the calibration or validation were excluded. For our 
performance results, we substituted NA values with an error between observed and 
simulated day of autumn leaf phenology of 170 d (i.e., a larger error than observed in 
any calibration run). Accordingly, non-converging runs led to an RMSE of 170 d, 
which were analyzed together with the RMSE of converging runs (cf. Sect. 2.5.2). 
Now, if the RMSE is analyzed excluding the non-converging runs and the runs that 
yielded NA values, intuitively one would expect the average RMSE to shrink, but this 
was not the case in the species-specific models (cf. Supplement 6: Sect. S2.2.2). In 
other words, punishing with large RMSE and large errors for non-converging runs and 
NA values led to smaller estimated RMSE and thus better estimated model 
performance. The relationship between performance and sample size may explain this 
counterintuitive result. Large samples favored the performance of species-specific 
models but also more often led to NA values than smaller samples (cf. Supplement 6: 
Sect. S1). At the same time, larger samples weaken the effect of a particular 
substitution of an NA value with 170 d on the RMSE. Thus, calibrations with large 
samples may well have been more accurate despite some NA values and may have 
resulted in lower RMSE despite NA substitution, which positively affected the overall 
performance of the models. 

RC1: L534-548: a question relative to optimization algorithm is: is the identity of the 
algorithm involved, or is it more the design of the simulation: in other words we see in SM4, 
Table S1 that the "normal" vs. "extended" runs of the calibration procedures include less vs. 
more iterations. I do not see an analysis considering the influence of this number of iterations 
per algorithm. Apparently, the influence of iteration number is small (Fig 3b: points are close 
whether considering "norm" or "extd" for one algorithm). If the "extd" simulation number was 
extended further, would that modify the results? 

AC: The influence of the number of iterations per algorithm can be seen in Fig. 3a, for 
example. More iterations led to better results in most cases except for CMA-ES in site-
specific models and for PSO in species-specific models. Since the number of iterations 
affects the step size with which the global optimum is searched (exploration-
exploitation trade-off), we assume that the step size became too small in the afore 
mentioned exceptions. This led us to the conclusion that careful tuning of the 
algorithms is very important. 
We agree that there was no specific analysis of the influence of this number. 
Analyzing the effect of only two states, i.e., “few” vs. “many” iterations is certainly 
not enough. A profound study of the effect of the number of iterations together with a 
suggestion of how to set the corresponding parameters of the algorithm would be 
helpful for the modelers. 



RC1: Fig 4b: if CMC numbers point to particular climate models, one sees the effect of the 
climate model can be huge ! Were these climate models unbiased (against local observed 
climate data)? Climate model bias can influence process-based model simulations strongly, 
see e.g. Jourdan et al. 2021 

AC: Yes, CMC numbers point to particular models. For time reasons, we refrained 
from bias correcting these data, but we now discuss this in section 4.5.1 (see further 
above). 

RC1: L621-623: I do not see this on Fig. 4b (i.e. dot coefficients of DM2 and DM2Za20 are 
not remarkable relative to other models) 

AC: Yes. Here we refer to Supplement S6: Fig. S6; Supplement S6: Table S27. 

RC1: L698: rewrite to "phenology" 

AC: Done. 

RC1: L711-712: recall which models lead to the best results in Zani et al. 2020 

AC: We already discuss the best models in sect. 4.1 and mention the corresponding 
original studies. We now referred to Lang et al. (2019) and Zani et al. (2020) as 
studies with which our findings do not agree. 

Thus, the 2nd paragraph of Sect. 4.1 now reads: 
Relatively simple models driven by daily temperature, day length, and partly by 
seasonal temperature or spring leaf phenology performed best. Patterns in ranked 
coefficient estimates generally showed that the models DM1 and DM2 developed by 
Delpierre et al. (2009) and the models DM1Za20, DM2Za20, TDMZa20, and SIAMZa20 
adapted by Zani et al. (2020) performed best. These models are very similar to the 
models that Liu et al. (2020) adapted from Delpierre et al. (2009) and Caffarra et al. 
(2011), which performed best in their model comparison study. Further, the models 
DM1 and DM2 performed best in Delpierre et al. (2009). However, the models 
DM1Za20, DM2Za20, TDMZa20, and SIAMZa20 did not lead to the best results in Zani et 
al. (2020). Daily senescence rate in all these models depends on daily temperature and 
day length, while the threshold is either a constant or linearly derived from the actual 
average temperature during the growing season or the site-anomaly of spring 
phenology. Interestingly, the best performing models in site-specific calibration were 
those adapted by Zani et al. (2020) such that the senescence rate was based on a 
sigmoid curve, which economized one free model parameter (Table 1 and Supplement 
S2: Table S1). We hypothesize that fewer parameters generally lead to an advantage 
with few training observations, which needs to be examined in more detail in further 
studies. Finally, our study supports previous studies that have also demonstrated the 
superiority of models based on daily temperature, day length, seasonal temperature, 
and spring phenology, while questioning the effect of photosynthesis on autumn leaf 
phenology as suggested by Zani et al. (2020) and indicating that the model by Lang et 
al. (2019) benefits from considering seasonal drivers. 

RC1: L741 "other models": recall briefly their characteristics here 

AC: Done (see the 2nd paragraph of Sect. 4.1 inserted here above). 



RC1: L750: rephrase to "local adaptation (Peaucelle et al. 2019)" 

AC: Done. 

RC1: L752: "the less such consideration is possible" : unclear, rephrase. 

AC: Done. 

Thus, the 3rd paragraph of Sect. 4.1 now reads: 
Sites had a relatively large influence on projections with species-specific models, and 
the number of sites per sample had a negative effect on the sample-level model 
performance of species-specific models. Relevant drivers may be missed by models 
based on senescence rates driven by temperature and day length and a corresponding 
threshold (e.g. Fu et al., 2014b). Recent models accounted for this and based their 
threshold for the senescence rate on spring phenology (SIAM model; Keenan and 
Richardson, 2015) or on seasonal drivers such as the average growing season 
temperature or accumulated apparent photosynthetic product (TDM or PIA models; 
Liu et al., 2019; Zani et al., 2020). However, Gill et al. (2015) and Chen et al. (2018) 
observed site-specific responses of leaf phenology to climate change, which could be 
due to site-specific soil properties (Arend et al., 2016), nutrient availability (Fu et al., 
2019), and local adaptation (Peaucelle et al., 2019), which are not yet included in the 
current models. In addition, observations may be biased (Liu et al., 2021) and the 
perceptions of observers at different sites are usually not aligned. Models can consider 
relevant but excluded drivers and observer bias through differently calibrated 
parameters, such as a sample-specific threshold constants, for example. this is not 
possible to the same extent for species-specific models as for site-specific models. 
However, the positive effect of such sample-specific parameters decreases as the 
number of sites in the sample increases, shifting the modeled values closer to the mean 
observation of the calibration sample. Consequently, we expect (1) a larger effect of 
sites on projections based on species-specific rather than site-specific models and (2) 
an increasing RMSE with more sites per sample. Here we observed both, i.e. the 
relative influence of sites on projections increased from 24% to 46% or 41% if based 
on site-specific models or species-specific models projected within sample or within 
the entire population, respectively. Moreover, the RMSE of species-specific models 
validated within sample increased with more sites as expressed by the site ratio s:S. 
This demonstrates that some relevant drivers of autumn leaf phenology are not yet 
considered in the evaluated process-oriented models and/or that bias in observed 
phenology data may be amplified when the same observer is at a particular site for 
multiple years. 

RC1: L758-759: and/or that the observed data are more prone to observation bias, that can 
magnify if same observer is operating across years at a given site (in practice, observers inter-
calib are rare). See Liu et al. 2021 

AC: We added corresponding thoughts to Sect. 4.1 (see the 3rd paragraph of Sect. 4.1 
inserted here above). 

RC1: L788-789: interesting result. Where does this "17 sites" come from? I do not remember 
seeing that earlier in the manuscript. 



AC: 17 is the number of sites in stratified samples based on the average timing of 
autumn phenology (L270). The result is mentioned in L454–L465, visualized in 
Figure 3d, and quantified in Supplement 6: Table S2. 

RC1: L819: Cochran (1946) is missing from the reference list 

AC: We now included this reference. 

RC1: L852: remove "but see" 

AC: Done. 

RC1: L889-891: we touch here the question of local adaptation again 

AC: Yes. We now mentioned this explicitly in L991. 

Thus, the 3rd paragraph of Sect. 4.4 now reads: 
Sites generally exhibited the second largest influence on projected shifts and had more 
influence when the latter were projected with species- than with site-specific models, 
which could be due to correct modelling of site differences or to poorer calibration for 
sites with phenology that deviates from the sample mean. Studies of past changes in 
autumn phenology of trees found ambiguous trends between different sites (Piao et al., 
2019; Meier et al., 2021). Different trends may be the result of opposing weather 
effects, e.g. moderate versus severe heat and drought spells (Xie et al., 2015), or of 
different correlations between spring and autumn phenology, dependent on nutrient 
availability and elevation (Fu et al., 2019; Charlet de Sauvage et al., 2022), possibly 
related to local adaptation (Alberto et al., 2011; Quan and Wang, 2018). Thus, it may 
be that such opposing weather effects or different correlations led to the strong 
influence of sites on projected autumn phenology. However, this strong influence 
could also be due to the above-described tendency of models to the mean and 
subsequent poorer calibration for sites at the extremes of the climatic and phenological 
spectrum within samples. This hypothesis is further supported by the larger relative 
influence of sites on projections with species- than with site-specific models. In 
addition, species-specific models performed worse than site-specific models (based on 
converged runs without NA values), as was also reported by Basler (2016) with 
respect to models of spring phenology, while Liu et al. (2020) found that species-
specific models poorly reflected the spatial variability of autumn phenology. Thus, it 
seems improbable that the species-specific models with generally poorer performance 
predicted site differences more accurately than the site-specific models with generally 
better performance. Therefore, we suspect that the large influence of sites on 
projections with species-specific models is primarily due to insufficiently modelled 
processes of leaf phenology and the consequent tendency of phenology models to the 
mean. 

RC1: L897: "Different models altered the reference shifts by -12 to +2 days", recall the 
average. 

AC: Done.  

RC1: L970: "... and found our data to strongly encourage further research" is unclear. 



AC: We tried to refer to the exploratory nature of our study. Since we mentioned this 
later, we simply deleted it here. 
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