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Abstract 14 

To curb the spread of COVID-19 pandemic, many countries around the world imposed an 15 

unprecedented lockdown producing reductions in pollutant emissions. Unfortunately, the lockdown-16 

driven global ambient benzene changes still remained unknown. The ensemble machine-learning 17 

model coupled with the chemical transport models (CTMs) was applied to estimate global high-18 

resolution ambient benzene levels. Afterwards, the XGBoost algorithm was employed to decouple 19 

the contributions of meteorology and emission reduction to ambient benzene. The change ratio (Pdew) 20 

of deweathered benzene concentration from pre-lockdown to lockdown period was in the order of 21 

India (-23.6%) > Europe (-21.9%) > United States (-16.2%) > China (-15.6%). The detrended 22 

change (P*) of deweathered benzene level (change ratio in 2020-change ratio in 2019) followed the 23 

order of India (P* = -16.2%) > Europe (P* = -13.9%) > China (P* = -13.3%) > United States (P* = 24 

-6.00%). Emission reductions derived from industrial activities and transportation were major 25 

drivers for the benzene decrease during lockdown period. The highest decreasing ratio of ambient 26 

benzene in India might be associated with local serious benzene pollution during the business-as-27 

usual period and restricted transportation after lockdown. Substantial decreases of atmospheric 28 

benzene levels saved sufficient health benefits. The global average lifetime carcinogenic risks (LCR) 29 
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and hazard index (HI) decreased from 4.89 × 10−7 and 5.90 × 10−3 and 4.51× 10−7 and 5.40 × 10−3, 30 

respectively. China and India showed the higher health benefits due to benzene pollution mitigation 31 

compared with other countries, highlighting the importance of benzene emission reduction. 32 

1. Introduction 33 

Volatile organic compounds (VOCs) are an important class of organic pollutants in the urban 34 

air and have aroused great attention (Kamal et al., 2016; Koppmann, 2008; Mozaffar and Zhang, 35 

2020). As one of the typical toxic VOC species, benzene poses a variety of negative impacts on 36 

human health including respiratory irritation, asthma, and allergies (Cui et al., 2019; Kim et al., 37 

2013; Tang et al., 2007). Moreover, benzene has high chemical reactivity, and could participate in 38 

photochemical reactions in the atmosphere, thereby leading to the formation of secondary organic 39 

aerosols (SOA) and ozone (Dumanoglu et al., 2014; Hsu et al., 2018; Li et al., 2019). Given the high 40 

toxicity to human health and tremendous harm to air quality (Dumanoglu et al., 2014; Lu et al., 41 

2020), it is highly imperative to decrease the ambient benzene concentration. It was well 42 

documented that ambient benzene mainly originated from anthropogenic emission (Mozaffar and 43 

Zhang, 2020; Pakkattil et al., 2021). Therefore, understanding the response of ambient benzene to 44 

anthropogenic emission was favorable to evaluate the effectiveness of abatement strategies and 45 

inform policy decisions. 46 

Recently, the ongoing global outbreak COVID-19 has resulted in paroxysmal public health 47 

responses including travel restrictions, lockdown, curfews, and quarantines around the world. These 48 

drastic lockdown measures inevitably triggered sweeping disruptions of social and economic 49 

activities, and further affected the emissions and concentrations of some air pollutants (Bauwens et 50 

al., 2020; Berg et al., 2021; Doumbia et al., 2021; Zheng et al., 2021b). The unexpected public health 51 

emergency provided us an unprecedented chance to assess the response of air pollutants to emission 52 

reduction. Bauwens et al. (2020) has observed that the average NO2 column in China during 53 

January-April 2020 decreased by about 40% relative to the same period in 2019 due to the dramatic 54 

decreases of NOx emissions. Later on, Keller et al. (2021) has analyzed the impact of COVID-19 55 

lockdown on global NO2 concentrations and found that the surface NO2 concentrations were 18% 56 

lower than business as usual from February 2020 onward. In addition, Hammer et al. (2021) 57 

estimated that population-weighted mean PM2.5 concentrations in China, Europe, and North 58 
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America experienced changes of -11 to -15, -2 to 1, and -2 to 1 μg/m3 during COVID-19 lockdown 59 

period, respectively. Compared with NO2 and PM2.5, ambient SO2 levels in China (-4.6%) and India 60 

(-14%) did not experience marked variations after lockdown (Zhang et al., 2021; Zhao et al., 2020). 61 

It should be noted that the global O3 concentration even increased up to 50% during this period 62 

(Keller et al., 2021). To date, most of the current studies focused on regional or global criteria 63 

pollutant (e.g., PM2.5, NO2, and O3) concentration changes after the COVID-19 outbreak, while few 64 

studies assessed the impact of COVID-19 lockdown on ambient benzene levels. 65 

    Currently, only several studies assessed the impact of COVID-19 lockdown on atmospheric 66 

benzene level. Mor et al. (2021) observed that the atmospheric benzene level in Chandigarh, India 67 

decreased by 27% during COVID-19 period. Afterwards, Pakkattil et al. (2021) demonstrated that 68 

the ambient benzene levels in Delhi (-93%) and Mumbai (-72%) have suffered from drastic 69 

decreases after COVID-19 lockdown. In China, Pei et al. (2022) revealed the VOC concentration in 70 

Pearl River Delta (PRD) decreased by 19% and the decrease rate of ambient benzene reached ~40% 71 

after lockdown. In Europe, Cai et al. (2022) revealed that the ambient benzene level in Orléans even 72 

slightly increased after lockdown, which might be associated with the unfavorable meteorological 73 

conditions. Although the ground-level measurement could reflect the regional ambient benzene 74 

changes during COVID-19 lockdown period to some extents, few regions, especially in developing 75 

countries, have collected sufficient observations for ambient benzene exposure assessment (Geddes 76 

et al., 2016; Van Donkelaar et al., 2015). Moreover, the limited monitoring sites around the world 77 

cannot accurately reflect the global benzene pollution because of large spatial gaps and restricted 78 

spatial representativeness of these ground-based sites (Shi et al., 2018). The health effect assessment 79 

based on these scarce sites alone inevitably increased the probability of exposure misclassification 80 

(Ling and Li, 2021). Fortunately, chemical transport models (CTMs) gave us an unparalleled chance 81 

to capture the full-coverage ambient benzene level at the global scale. Although CTMs generally 82 

showed various biases owing to high uncertainties in initial conditions, input variables, and 83 

parameterizations (Ivatt and Evans, 2020), the machine-learning bias-correction method could 84 

significantly reduce bias in air quality models (Bocquet et al., 2015). Up to date, some studies have 85 

developed multiple machine-learning models to estimate the concentrations of PM2.5 (Wei et al., 86 

2021; Wei et al., 2020), NO2 (Wei et al., 2023), and O3 (Wei et al., 2022) around the world. 87 
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Unfortunately, no study employed the ensemble technique to analyze the change of global ambient 88 

benzene after COVID-19 outbreak. Besides, nearly all of the current studies only used original 89 

observation data to assess the impact of COVID-19 lockdown on ambient benzene level (Pakkattil 90 

et al., 2021). Actually, the concentrations of air pollutants were not only controlled by emission, but 91 

also modulated by complex meteorological conditions (Hammer et al., 2021). For instance, some 92 

pioneering studies have revealed that several severe haze episodes still occurred even with the strict 93 

restrictions put in place in China (Chang et al., 2020; Huang et al., 2021). Hence, it is necessary to 94 

remove the effects of meteorological parameters and then to further quantify the isolated 95 

contribution of emission reduction to global ambient benzene level and health risks during COVID-96 

19 lockdown period. 97 

In our study, the machine-learning model coupled with CTMs was applied to estimate the 98 

global ambient benzene concentrations from 23 January to 30 June in 2019 and 2020. At first, the 99 

CTMs output, emission inventory, meteorological parameters, and many other geographical 100 

covariates were integrated into the ensemble decision tree model to obtain global full-coverage 101 

benzene concentrations in the atmosphere. Then, we also examined the synergetic impacts from the 102 

anthropogenic emissions and meteorological factors during the pre-lockdown and lockdown periods. 103 

Finally, we estimated the emission-induced benzene concentrations before and after COVID-19 104 

lockdown and quantified the benzene-related health benefits due to COVID-19 lockdown in major 105 

regions around the world. This study shows important implications for developing control strategies 106 

to alleviate global atmospheric benzene pollution. 107 

2. Data and methods 108 

2.1 Data preparation 109 

2.1.1 Ground-level benzene observation 110 

Our analysis was performed based on the recent development of unprecedented public access to 111 

ground-level air quality observations. In our study, we collected an air quality dataset of hourly 112 

surface benzene observations at 669 sites at the global scale during 23 January-30 June in 2019 and 113 

2020 (Figure S1). The start date of COVID-19 lockdown in China was January 23th and the national 114 

lockdown lasted for about one month. However, the deblocking date in Wuhan was April 8th. The 115 

start and end dates of lockdown in India were March 25th and April 25th, respectively. The 116 
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lockdown in the United States occurred firstly in California in March 19th, and then the lockdown 117 

lasted for 1-2 months. The lockdown dates in most European countries lasted from March to May. 118 

The detailed spatial distribution of these sites in India, Europe, and the United States are depicted 119 

in Figure S1. The surface benzene dataset in India was downloaded from the Central Pollution 120 

Control Board (CPCB) online database, which has been widely utilized in previous studies (Mahato 121 

et al., 2020; Mor et al., 2021; Sharma et al., 2020). The CPCB database provides data quality 122 

assurance (QA) or quality control (QC) programs by developing strict procedures for sampling, 123 

analysis, and calibration (Gurjar et al., 2016). The ground-level benzene observations in Europe and 124 

the United States were collected from air quality data portal of the European Environment Agency 125 

(EEA) and United States Environmental Protection Agency (EPA), respectively. Only days with 126 

more than 12 h of available data are included in the analysis. All of the hourly data was average to 127 

the daily scale. 128 

2.1.2 Independent variables 129 

The daily benzene concentrations at global scale were simulated using GEOS-Chem model 130 

(v12-01), which included the full gaseous HOx-Ox-NOx-CO-NMVOC chemistry and online aerosol 131 

calculations. The simulation used assimilated meteorological observations (GEOS MERRA-2) at 2° 132 

x 2.5° horizontal resolution with 72 vertical levels for the year 2019 and 2020. The anthropogenic 133 

emission inventory in 2019 was collected from Community Emissions Data System (CEDS). Then, 134 

the emission inventory in 2020 was calculated based on that in 2019 and updated adjustment factor 135 

proposed by Doumbia et al. (2021).  136 

The meteorological parameters were obtained from the NASA Goddard Earth Observing 137 

System Composition Forecast (GEOS-CF) model (Keller et al., 2021b). GEOS-CF integrates the 138 

GEOS-Chem atmospheric chemistry model into the GEOS Earth System Model (Hu et al., 2018; 139 

Long et al., 2015) and provides global hourly analyses of meteorological variables at 0.25° spatial 140 

resolution (Keller et al., 2021b). Meteorological parameters including surface pressure (PS), relative 141 

humidity (RH), 2-m air temperature (T2M), total precipitation (TPREC), 10-m latitudinal wind 142 

component (U10M), 10-m longitudinal wind component (V10M), and boundary layer height (BLH) 143 

obtained from GEOS-CF were used to develop the model (Figure S2). In addition, cropland, forest, 144 

grassland, shrubland, and barren land also have been integrated into the final model (Liu et al., 2020).  145 



6 

 

All of the independent variables collected from multiple sources were regridded to 0.25° grids 146 

using spatial interpolation algorithms. During the process of model development, the most important 147 

procedure was to remove some redundant explanatory variables and then to determine the optimal 148 

variable group. The basic principle of the variable selection was to eliminate the less important 149 

predictors. These variables generally suggested that the R2 value of the submodel did not experience 150 

a significant decrease or even suffered from a slight increase when these redundant ones were 151 

removed from the model. At last, a total of 64001 samples and 7 variables were utilized to predict 152 

the ambient benzene concentrations at the global scale. 153 

2.2 Model development 154 

2.2.1 The ensemble model development for atmospheric benzene estimates 155 

In the pioneering studies, random forest (RF), extreme gradient boosting (XGBoost), and light 156 

gradient boosting machine (LightGBM) exhibited the better estimation accuracy (Li et al., 2021). 157 

RF model holds a great deal of decision trees, and each one experiences an independent sampling 158 

procedure and all of these trees show the same distributions (Breiman). RF model often displays 159 

excellent prediction performance owing to the injected randomness. The model accuracy is strongly 160 

dependent on the number of trees, splitting features, and the variable group. The detailed procedures 161 

are summarized as follows: 162 
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where (xi, yi) is the sample for i = 1, 2, …, N in Q regions (Q1, Q2, …, Qz); R denotes the weight 168 

of each branch; BR represents decision tree branch; cm is the response to the model; zc


 represents 169 

the optimal value, p is the feature variable; c1 is the average of left branch; c2 is the average of right 170 
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branch; q represents the split point. 171 

XGBoost model is an improved algorithm of gradient boosting decision tree (GBDT) model and 172 

loss functions have been extended to the second order function. The detailed XGBoost algorithm is 173 

shown as the following formula (Zhai and Chen, 2018): 174 
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where Y(t) is the cost function at the t-th period;  represents the derivative of the original function; 176 

( 1)

2
ty −  is the second derivative of the original function; l is the differentiable convex loss function 177 

that reflects the minus of the predicted value ( y


) of the i-th instance at the t-th period and the target 178 

value (yi); ft(x) represents the increment; ( )tf  is the regularizer. 179 

   LightGBM model is an update version of XGBoost method, and significantly improve the 180 

running speed of modelling process. Moreover, this method could decrease the cache miss by a large 181 

margin and further improved the predictive accuracy. The detailed algorithms are as follows (Sun 182 

et al., 2020): 183 
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where 
^

f  is the least value of cost function; L(y, f(x)) is the cost function; fT(X) denotes the total 187 

regression trees; ft(X) represents each regression tree; gi and hi represent the first- and second-order 188 

gradient statistics of the cost function, respectively. 189 

Although all of these models showed the better performance in predicting air pollutants, nearly 190 

all of these submodels still suffered from some weaknesses in the prediction accuracy. Hence, it was 191 

necessary to collocate these models using back-propagation neutral network (BPNN) to further 192 

simulate daily ambient benzene concentrations at the global scale. As depicted in Figure 1, three 193 

submodels including RF, XGBoost, and LightGBM were stacked through BPNN model to simulate 194 

the daily atmospheric benzene levels at the global scale. Firstly, a 5-fold cross-validation method 195 
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was utilized to train each submodel to determine the optimal hyperparameter. Then, the BPNN 196 

method was employed to further train the estimated concentrations of three submodels against the 197 

observations (Figure 1). Lastly, the global ambient benzene concentrations were predicted on the 198 

basis of the ensemble model.  199 

2.2.2 The meteorology-normalized benzene estimates 200 

The ambient benzene concentration was influenced by both of meteorological parameters and 201 

emissions. To isolate the contribution of emission, the impacts of meteorological conditions should 202 

be removed. In our study, the XGBoost approach was utilized to eliminate the impacts of 203 

meteorological conditions. The simulated benzene concentration in each grid (0.25°) based on the 204 

method in section 2.2.1 was treated as the dependent variable. The daily benzene emission, 205 

meteorological factors, month of year (MOY), and day of year (DOY) in each grid were regarded 206 

as the explanatory variables. The raw dataset was randomly classified into a training dataset (90% 207 

of input dataset) for developing the XGBoost model and the remained samples were regarded as the 208 

test dataset. After the development of the XGBoost model, the weather normalized technique was 209 

employed to predict the ambient benzene concentration at a specific time point. The detailed 210 

deweathered algorithms was introduced by Grange and Carslaw (2019) firstly. The meteorology-211 

normalized benzene level served as the concentrations contributed by emission alone. The 212 

differences of total and deweathered benzene concentrations were regarded as the concentration 213 

contributed by meteorology. In addition, the CV R2 value of model using for the separation of 214 

meteorology and emission also should be higher than 0.50, otherwise the model could be considered 215 

to be unreliable. 216 

2.3 Health effect assessment 217 

In our study, the carcinogenic and non-carcinogenic risks of ambient benzene were assessed 218 

based on the standard methodology of United States Environmental Protection Agency (USEPA). 219 

The carcinogenic and non-carcinogenic risks induced by benzene exposure for were evaluated based 220 

on the lifetime carcinogenic risks (LCR) and hazard index (HI). The formulas for calculating 221 

benzene intake (BI), LCR, and HI are as follows (Table S1): 222 

                          BI=(C×ET×EF×ED)/(365×24×AT)                (10) 223 

                              HI=BI/RfC                                (11) 224 
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                             LCR = BI×IUR                             (12) 225 

where C (μg/m3) denotes the concentration of the corresponding ambient benzene; ET is the 226 

exposure time; EF represents the annual exposure frequency (d a−1); ED is the exposure duration 227 

(a); ATnca and ATca denotes the average exposure time for carcinogenic and non-carcinogenic risks 228 

(a), respectively. BI means the benzene intake; RfC represents the reference dose (μg/m3); IUR is 229 

the inhalation risk (1/μg/m3). The non-carcinogenic risk of the ambient benzene is considered to be 230 

high when HI was above 1.0, whereas the health risk is not obvious when HI is below 1.0. The 231 

carcinogenic risk was regarded as definite risk when LCR was higher than 1 × 10−4, while it was 232 

treated as the possible risk when this indicator was located between 1 × 10−6 and 1 × 10−4. The risk 233 

was treated as negligible when the indicator was lower than 1 × 10−6 (Dumanoglu et al., 2014; Li et 234 

al., 2017).  235 

3. Results and discussion 236 

3.1 The model fitting and validation 237 

The ensemble model was utilized to estimate the ambient benzene concentrations at the global scale 238 

during 23 January-30 June in 2019 and 2020. The cross-validation (CV) R2 value of the ensemble 239 

model (R2 = 0.60) was significantly higher than that of RF (0.52), XGBoost (0.53), and LightGBM 240 

(0.55) (Figure S3). Nevertheless, both of the root-mean-square error (RMSE) (1.18 μg/m3) and the 241 

mean absolute error (MAE) (0.59 μg/m3) of the ensemble model were significantly lower than those 242 

of RF (RMSE and MAE: 1.41 and 0.72 μg/m3), XGBoost (RMSE and MAE: 1.37 and 0.70 μg/m3), 243 

and LightGBM (RMSE and MAE: 1.34 and 0.69 μg/m3). The higher R2 value and the lower RMSE 244 

and MAE suggested the higher accuracy of the ensemble model in air quality simulation. In the 245 

pioneering studies, Wolpert (1992) confirmed that the joint use of multiple statistical models could 246 

decrease the probability of overfitting and strengthen the predictive accuracy and transferability of 247 

final models. Besides, our previous studies also demonstrated that the stacking of various decision 248 

tree models could significantly outperform individual model because each decision tree model could 249 

suffer from some weaknesses (Li et al., 2021). For instance, the dataset in the RF model appeared 250 

to be over-fitted when much noise existed in the training data of regression problems (Breiman, 251 

2001). Besides, RF model might underestimated/overestimated the extremely values of ambient 252 

benzene (Xue et al., 2019), which could be neutralized by the XGBoost algorithm through the 253 
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boosting method (Li et al., 2020). For XGBoost algorithm, excessive leaf nodes often showed low 254 

splitting gain, while the LightGBM model could make up this defect (Nemeth et al., 2019). Overall, 255 

the combination of these decision tree models could overcome these weaknesses of these individual 256 

models and enhance the robustness of the final model. 257 

   Although 10-fold CV has verified that the modelling performance of ensemble model was 258 

superior to the individual models, this method cannot examine the spatial transferability of this 259 

model. In our study, many regions except India, Europe, and the United States were lack of 260 

monitoring sites of ambient benzene. Fortunately, the CTMs output provided a strong proxy to 261 

predict the daily ambient benzene concentrations before and after COVID-19 outbreak. In order to 262 

examination the spatial transferability of the ensemble model, the cross validation was performed. 263 

In each round, two-thirds of the benzene dataset in India, Europe, and the United States were applied 264 

to train the model and the remained one was utilized to examine the model (e.g., India+Europe for 265 

training and the United States for testing). After three rounds, all of the simulated benzene 266 

concentrations were compared with the corresponding observed values. As shown in Figure S4, the 267 

out-of-bag R2 value reached 0.58, which was slightly lower than the R2 value (0.60) of training 268 

model. In addition, RMSE and MAE of the fitting equation for the out-of-bag data were 1.18 and 269 

0.62, respectively. The result was in good agreement with those based on CV database, indicating 270 

the ensemble model showed satisfied spatial generalization. 271 

    The ensemble model can capture the spatiotemporal variation of ambient benzene during 272 

COVID-19 lockdown period, while the impact of COVID-19 lockdown cannot be quantified 273 

because the contribution of meteorological parameters cannot be removed based on this model alone. 274 

Therefore, it is proposed to employ the XGBoost algorithm to isolate the contribution of emission 275 

reduction to global atmospheric benzene. As depicted in Figure S5, the CV R2 value and slope of 276 

fitting curve reached 0.65 and 0.62, respectively. The result suggested that meteorology-normalized 277 

model was robust because the CV R2 value was much higher than 0.50. 278 

3.2 The impact of COVID-19 lockdown on global atmospheric benzene level 279 

The ensemble model was developed to expand the ground-observed benzene measurement to 280 

the global scale and capture the global spatial variability of ambient benzene. As shown in Figure 281 

S6, the global simulated (total) benzene concentration during Jan. 23-Jun. 30 in 2019 and 2020 282 
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ranged from 0.52 to 6.36 μg/m3, with the average value of 0.92 ± 0.23 μg/m3. At the regional scale, 283 

the benzene concentration displayed significantly spatial variability. The benzene concentration 284 

followed the order of India (1.44 ± 0.14 μg/m3) > China (1.17 ± 0.13 μg/m3) > Europe (1.02 ± 0.08 285 

μg/m3) > United States (0.96 ± 0.09 μg/m3) during Jan. 23-Jun. 30 in 2019 and 2020. Besides, the 286 

global simulated mean benzene level suffered from slight decrease from 0.93 ± 0.06 in 2020 to 0.90 287 

± 0.06 in 2019. However, the inter-annual variation of ambient benzene exhibited remarkable spatial 288 

discrepancy at the global scale. As depicted in Figure S7, the change ratio of simulated (total) 289 

benzene level during the COVID-19 lockdown period (the difference of the benzene level before 290 

COVID-19 lockdown and that during COVID-19 lockdown period) in 2020 was in the order of 291 

India (-18.5%) > Europe (-16.7%) > China (-11.7%) > United States (-11.5%). Compared with 2020, 292 

the change ratio of benzene level during the same period in 2019 followed the order of India (-293 

16.3%) > Europe (-6.62%) > United States (-6.46%) > China (-4.18%). It should be noted that the 294 

simulated ambient benzene concentration suffered from the higher decreasing ratio in 2020 295 

compared with the same period in 2019 in nearly all of the major countries around the world, which 296 

might be associated with the local COVID-19 lockdown measures in 2020.  297 

Due to the interference of meteorological conditions, we cannot quantify the direct impact of 298 

COVID-19 lockdown on ambient benzene based on the comparison of simulated (total) benzene 299 

levels. Thus, the meteorology-normalized method was employed to decouple the separated 300 

contributions of emission reduction and meteorology to ambient benzene. In our study, both of the 301 

change ratio and detrended change ratio were applied to evaluate the impact of COVID-19 302 

lockdown on global ambient benzene level. The change ratio represents the variation of ambient 303 

benzene level during lockdown period in 2020 compared with pre-lockdown period in 2020. 304 

However, the detrended change ratio reflects the difference of the change ratio in 2020 and the 305 

change ratio during the same period in 2019, which could avoid the inter-annual system error and 306 

contingency of a single year. As summarized in Figure 2 and 3, the change ratio of deweathered 307 

benzene concentration from pre-lockdown to lockdown period in 2020 was in the order of India (-308 

23.6%) > Europe (-21.9%) > United States (-16.2%) > China (-15.6%). Meanwhile, the change ratio 309 

of deweathered benzene concentration during the same time in 2019 followed the order of Europe 310 

(-10.2%) > United States (-8.04%) > India (-7.40%) > China (-2.31%). The large gap in the change 311 
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ratio of deweathered benzene level between 2019 and 2020 confirmed that the drastic and 312 

consequential quarantines significantly decreased the ambient benzene concentrations in nearly all 313 

of the regions with lockdown measures. Among all of the major countries, India suffered from the 314 

most dramatic benzene decrease during 24 March 2020-24 April 2020 (-23.6%) compared with the 315 

same period in 2019 (-7.4%). During this period, the prohibition of industrial activities and mass 316 

transportation was proposed to curb the spread of COVID-19 pandemic, leading to the tremendous 317 

reduction of anthropogenic benzene emission (Pathakoti et al., 2021; Zhang et al., 2021). Sahu et al. 318 

(2022) revealed that the substantial increase of OH radical during COVID-19 period also facilitated 319 

the ambient benzene removal due to the photooxidation reaction. The decrease ratio of deweathered 320 

benzene level in India was close to that of PM2.5 (-26%), while it is was markedly lower than that 321 

of NO2 (-50%) (Zhang et al., 2021). Although both of Europe and the United States also performed 322 

stringent lockdown restrictions in some regions such as Italy, Spain, and California (Guevara et al., 323 

2021a; Keller et al., 2021a), while the detrended change (P*: change ratio in 2020-change ratio in 324 

2019) for deweathered benzene in Europe (P* = -13.9%) and the United States (P* = -6%) between 325 

2020 and 2019 was still lower than that of India (P* = -16.2%) (Table 1). It was assumed that the 326 

absolute concentration of ambient benzene in Europe and the United States were much lower than 327 

that in India. It should be noted that the China displayed relatively gentle decreasing ratio (-15.6%) 328 

after COVID-19 outbreak, which was even lower than the ratio in the United States. As the first 329 

epidemic epicenter country, Chinese government imposed a rapid lockdown measure in Wuhan and 330 

other cities across China in an effort to prevent the spread of the COVID‐19 pandemic (Wu et al., 331 

2020). These restrictions interrupted a wide array of economic activities and reduced primary air 332 

pollutant emissions, and thus resulted in the remarkable decreases of deweathered NO2 (-43.6%) 333 

and PM2.5 (-22%) (Dai et al., 2021). The gentle decreasing ratio of ambient benzene compared with 334 

other pollutants might be linked with the source apportionment of atmospheric benzene. It was well 335 

known that industrial source (e.g., chemical industry and solvent use) was major emission sector of 336 

benzene (Li et al., 2019). Although the contribution from solvent use exhibited substantial decreases 337 

in some cities (Qi et al., 2021; Wang et al., 2021), the chemical industry was not entirely interrupted 338 

even during the COVID-19 lockdown period (Dai et al., 2021). Zheng et al. (2021a) also 339 

demonstrated that the reduction of non-methane volatile organic compounds (NMVOCs) emission 340 
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from industry sector was much less than other pollutants. 341 

Although the deweathered benzene concentrations in nearly all of the major countries 342 

experienced obvious decreases during COVID-19 lockdown period, the change ratios of 343 

deweathered benzene in different regions of these countries still showed large spatial variability. In 344 

China, most of the cities in East China such as Beijing (-30.6%), Shanghai (-6.25%), and Wuhan (-345 

45.3%) experienced dramatic decreases of deweathered benzene levels (Figure S8), which was 346 

mainly contributed by the simultaneous emission reduction of industry and transportation sectors. 347 

Besides, enhanced atmospheric oxidation capacity could accelerate the benzene removal due to the 348 

unbalanced decreases of VOC and NOx emissions (Jensen et al., 2021). However, the deweathered 349 

benzene concentrations in Northeast China and Yunnan province even exhibited slight increases 350 

after COVID-19 outbreak (Figure 4). Dai et al. (2021) also found that the deweathered PM2.5 351 

concentration in Kunming increased ~20% after COVID-19 outbreak. At first, the contribution of 352 

residential combustion source (62.1%) to atmospheric benzene in Yunnan province was higher than 353 

other sectors (Guevara et al., 2021b; Kuenen et al., 2021). Moreover, the increase of domestic 354 

emission due to home quarantine order further increased the ambient benzene concentration (10%) 355 

in this province, which has been demonstrated by the updated emission inventory in 2020 (Doumbia 356 

et al., 2021). The slight increases of deweathered benzene levels in Northeast China after COVID-357 

19 outbreak could be linked with the earlier work 358 

resumption(https://baijiahao.baidu.com/s?id=1658138056285012986&wfr=spider&for=pc). Based 359 

on the simulation result, the deweathered ambient benzene level in Northeast China rebounded 360 

sharply after the third week, and then returned back to normal in the late February. In India, the 361 

decreasing ratios of deweathered benzene in Delhi, Mumbai, Kolkata, Bengaluru, Hyderabad, 362 

Chennai, Ahmedabad, and Lucknow reached 21.6%, 20.9%, 73.7%, 26.9%, 38.0%, 33.7%, 25.1%, 363 

and 33.3% during COVID-19 lockdown period (Figure S9), respectively. Among all of the major 364 

cities in India, the ambient benzene level in Kolkata suffered from the most drastic decrease. It was 365 

assumed that Kolkata is designated as dusty city and filled with vehicle emission. Fortunately, the 366 

city experienced complete stop of vehicles movement, burning of biomass and dust particles from 367 

the construction works, which were important sources for ambient benzene (Bera et al., 2021; 368 

Kumar and and Singh, 2003). In Europe, the deweathered benzene levels in nearly all of the cities 369 
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displayed marked decreases because most European countries have imposed lockdowns to combat 370 

the spread of the COVID-19 pandemic (Guevara et al., 2021a). For example, the private car use and 371 

heavy good vehicles (HGVs) on the road in London reduced by 80% and 30-40%, respectively (Shi 372 

et al., 2021). The drastic decrease of transportation emission triggered the P* value in London 373 

between 2020 and 2019 reaching -43.6%. In the United States, the decreasing ratios of deweathered 374 

benzene levels in the cities of Eastern United States and California were generally higher than those 375 

in Central United States, which was in good agreement with the spatial variability of PM2.5 decrease 376 

(Hammer et al., 2021). It was closely associated with the length of lockdown period 377 

(https://en.wikipedia.org/wiki/COVID-19_lockdowns). 378 

In addition, ambient benzene levels were also strongly affected by meteorological conditions 379 

that alter photochemical production, advection, and depositional loss. Hence, we examined how 380 

meteorological parameters influenced the temporal variability of ambient benzene during COVID-381 

19 lockdown period. In 2020, most of the major countries including China (3.9%), Europe (5.2%), 382 

and the United States (4.7%) suffered from slight unfavorable meteorological conditions, which was 383 

in good agreement with the impact of meteorological conditions on ambient NO2 concentrations 384 

(Shi et al., 2021). Among all the meteorological parameters, air temperature was the most important 385 

factor for ambient benzene in nearly all of the regions around the world during the study period. 386 

Compared with 2019, the air temperatures in China, India, Europe, and the United States increased 387 

by 0.4, 0.9, 0.4, and 0.2℃  during the same period in 2020, respectively. Jia and Xu (2014) 388 

demonstrated that the increased air temperature generally suppressed the benzene photooxidation 389 

and secondary organic aerosol (SOA) formation. Thus, the increased air temperature was not 390 

beneficial to the further reduction of ambient benzene. Except air temperature, some other factors 391 

such as RH, rainfall amount, and wind speed might affect the ambient benzene level. For instance, 392 

the increased RH could be favorable to the benzene oxidation and the higher rainfall amount 393 

promoted the benzene removal. However, in the machine learning model, the importance values of 394 

these variables were much lower than that of air temperature. Overall, the result suggested that the 395 

unfavorable meteorological conditions (air temperature) weakened the health benefits of ambient 396 

benzene due to drastic lockdown measures around the world. 397 

3.3 The effect of COVID-19 lockdown on global health risks 398 
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The global average LCR during 23 January-30 June in 2019 and 2020 were 4.89 × 10−7 and 399 

4.51× 10−7 after removing the contributions of meteorological conditions, respectively (Figure S10). 400 

Although the COVID-19 lockdown decreased the LCR value slightly, both of the LCR values during 401 

two periods were lower than the threshold level of 10−6, suggesting that dwellings in most regions 402 

could avoid carcinogenic risk through inhalation exposure to benzene (Li et al., 2017). However, 403 

the LCR values showed significant spatial difference in different regions. For instance, North China 404 

often suffered from the relatively higher benzene pollution, and the LCR value in this region 405 

decreased from 1.03 × 10−6 (possible risk) during the study period in 2019 (the same period to 2020) 406 

to 7.37 × 10−7 during COVID-19 lockdown period. The result verified that the stringent emission 407 

control measures significantly decreased the health risk due to benzene exposure. The LCR value 408 

across India only decreased from 6.55 × 10−7 to 6.42 × 10−7 during the study period, whereas the 409 

northern part of India such as Bihar decreased from 1.14 × 10−6 to 1.09 × 10−6 due to the impact of 410 

COVID-19 lockdown (Figure 5). As the most populous province of India, Bihar possessed more 411 

than 124 million people (http://kolkata.china-consulate.org/chn/lqgk/t1331638.htm). The result 412 

suggested that the COVID-19 lockdown certainly obtained remarkable short-term health benefits 413 

through decreasing the ambient benzene exposure. The LCR values in Europe and the United States 414 

decreased from 4.99 × 10−7 and 4.77 × 10−7 to 4.57 × 10−7 and 4.63 × 10−7, respectively. Compared 415 

with China and India, Europe and the United States suffered from relatively low carcinogenic risk 416 

of benzene exposure even before COVID-19 lockdown. Although the COVID-19 lockdown further 417 

decreased the LCR values in these regions, the overall carcinogenic risk was negligible.  418 

Additionally, the non-carcinogenic risk around the world during the period was also assessed 419 

based on HI. The average HI of ambient benzene exposure in China, India, Europe, and the United 420 

States reduced from 8.92 × 10−3, 7.45 × 10−3, 6.32 × 10−3, and 5.76 × 10−3 in 2019 to 8.53 × 10−3, 421 

7.13 × 10−3, 5.81 × 10−3, and 5.59 × 10−3
 during COVID-19 lockdown period in 2020 (Figure 6), 422 

respectively. Although HI value in some regions including Bihar (1.52 × 10−2 to 1.41 × 10−2) and 423 

Uttar Pradesh (1.04 × 10−2 to 1.03 × 10−2) in India and Beijing-Tianjin-Hebei (BTH) (1.25 × 10−2 to 424 

1.14 × 10−2) in China still experienced decreases during COVID-19 lockdown period, the HI values 425 

in these regions were still significantly lower than the risk threshold (HI = 1). Therefore, the impact 426 

of COVID-19 lockdown on non-carcinogenic risk of benzene exposure was insignificant. 427 
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4. Conclusions and limitations 428 

The drastic lockdown measures largely reduced the air pollutant emissions. The meteorology-429 

normalized ambient benzene concentrations in China (-15.6%), India (-23.6%), Europe (-21.9%), 430 

and the United States (-16.2%) experienced dramatic decreases after COVID-19 outbreak. 431 

Furthermore, the decreasing ratios in these major regions during COVID-19 lockdown period were 432 

much higher than the same period in 2019, indicating the aggressive emission control measures 433 

efficiently decreased ambient benzene concentrations. Emission reductions from industrial activities 434 

and transportation were major drivers for the decreasing of ambient benzene level during lockdown 435 

period, while the relatively stable solvent use emission could restrict the further decrease of benzene 436 

pollution. Besides, the slight increase of domestic emission during this period might be an important 437 

reason for the benzene increase in some regions (e.g., Yunnan province). There is also an urgent 438 

need to control the household combustion and solvent use emissions apart from the emissions from 439 

industry and transportation sectors.  440 

Besides, substantial decreases of atmospheric benzene levels could save sufficient health 441 

benefits. Dramatic decreases of benzene emissions in Europe and the United States cannot save 442 

effective health benefits because the ambient benzene levels in both of these regions during 443 

business-as-usual scenario were significantly lower than the risk threshold. However, the benzene 444 

decreases in North China Plain (NCP), China and Bihar, India could save abundant health benefits 445 

because these regions often suffered from severe atmospheric benzene pollution during business-446 

as-usual scenario. Thus, more targeted abatement measures are needed to reduce the benzene 447 

emission in these areas. For instance, the stricter industrial and vehicle emission standards for VOC 448 

control should be implemented in China and India. Moreover, some measures including limiting the 449 

amount of coal-fired power plants, adding environmentally friendly cars and clean fuels for vehicles 450 

and vessels, and strengthening the labeling system for vehicles in use should be strengthened. 451 

It should be noted that our study still suffered from some limitations. First of all, the monitoring 452 

sites were not evenly distributed around the world, and thus the simulation result might show the 453 

higher uncertainty in the regions lack of monitoring sites. Besides, the GEOS-Chem model still 454 

suffered from some uncertainties due to imperfect chemical mechanism and inaccurate emission 455 

inventory. In the future work, the model should be further improved. 456 
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Figure 1 The workflow of global atmospheric benzene modelling. CTM output represents the 

simulated benzene concentration based on GEOS-Chem model. Meteo denotes the meteorological 

parameters derived from GEOS-CF reanalysis. Emission represents the daily emission of benzene. 

MOY and DOY are the month of year and day of year, respectively. Simulated benzene represents 

the predicted benzene concentrations based on the ensemble model. Deweathered benzene denotes 

the benzene concentration after removing meteorological effects.  
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Figure 2 The global average deweathered benzene concentrations in 2019 (Jan. 23-Jun. 30) (a) and 

2020 (Jan. 23-Jun. 30) (b). (c) represents the difference of deweathered benzene concentrations in 

2020 and 2019 (Unit: μg/m3). 
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Figure 3 The weekly variations of atmospheric benzene concentrations (μg/m3) in some major 

regions around the world during Jan. 23-Jun. 30. The red line and background denote mean values 

and standard deviation of deweathered weekly benzene concentrations in 2020. The cyan line and 

background denote mean values and standard deviation of deweathered weekly benzene levels in 

2019. The dashed vertical red line suggests COVID-19 restriction dates, and the black line indicates 

the beginning of easing measures. 

 



26 

 

Figure 4 The concentration difference for deweathered benzene between COVID-19 period in 2020 

and the same period in 2019 in East Asia, South Asia, Europe, and North America (Difference = 

deweathered benzene concentration in 2020-deweathered benzene concentration in 2019) (Unit: 

μg/m3). 
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Figure 5 The carcinogenic risk differences (Unit: 10-7) for atmospheric benzene between COVID-

19 period in 2020 and the same period in 2019 in East Asia, South Asia, Europe, and North America 

(Difference = benzene concentration in 2020-benzene concentration in 2019). 
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Figure 6 The non-carcinogenic risk differences (Unit: 10-3) for atmospheric benzene between 

COVID-19 period in 2020 and the same period in 2019 in East Asia, South Asia, Europe, and North 

America (Difference = benzene concentration in 2020-benzene concentration in 2019). 
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Table 1 The change ratio (%) of deweathered (Pdew) and detrended (P*) benzene concentrations in 

major regions around the world. 

Change ratio  China  India Europe United States 

Pdew in 2020 -15.6 -23.6 -21.9 -16.2 

Pdew in 2019 -2.31 -7.40 -8.04 -10.2 

P* -13.3 -16.2 -13.9 -6.00 
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