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Abstract. This study uses surface disdrometer reflectivity factor estimates to calibrate the vertical and off-vertical pointing 

radar beams produced by an Ultra High Frequency (UHF) band radar wind profiler (RWP) deployed at the US Department of 

Energy (DOE) Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) Central Facility in northern 

Oklahoma from April 2011 through July 2019. The methodology consists of five steps. First, the recorded Doppler velocity 15 

power spectra are adjusted to account for Nyquist velocity aliasing and coherent integration filtering effects. Second, the 

spectrum moments are calculated. The third step increases the signal-to-noise ratio (SNR) due to inflated noise power estimates 

during convective rain events that cause SNR to be biased low. The fourth step determines the RWP calibration constant for 

one radar beam (called the “reference” beam) by comparing uncalibrated RWP reflectivity factors at 500 m above the ground 

to 1-min resolution surface disdrometer reflectivity factors. The last step uses the calibrated reference beam reflectivity factor 20 

to calibrate the other radar beams during precipitation. There are two key findings. The RWP sensitivity decreased 

approximately 3-to-4 dB/year as the hardware aged. This drift was slow enough that the reference calibration constant can be 

estimated over 3-month intervals using episodic rain events. Calibrated moments are available on the DOE ARM data archive 

and Python processing code is available on public repositories. 

1 Introduction 25 

Ultra High Frequency (UHF) band (900 – 1290 MHz) radar wind profiler (RWP) technology was developed in the 1980s by 

the U.S. National Oceanic and Atmospheric Administration (NOAA) Aeronomy Laboratory and Wave Propagation Laboratory 

to study the horizontal wind motions from near the surface to approximately 5 km above ground level (Ecklund et al., 1988; 

Angevine et al., 1996, 1998; Carter et al., 1995). When raindrops are not in the radar resolution volume, the radar return power 

during this “clear-air” condition is due to Bragg scattering from changes in refractive index caused by temperature and 30 

humidity gradients (Gage and Balsly, 1978). When raindrops are in the radar resolution volume, the long radar wavelength of 
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0.25 to 0.33 m implies that Rayleigh scattering dominates the return signal providing vertical structure of precipitation without 

any signal attenuation (Rogers et al., 1993). Calibration procedures for radars operating at higher frequencies will need to 

account for attenuation through the precipitation (Williams, 2022).  

 Radars measure the return signal power as a function of range. For meteorological applications, the signal power 35 

needs to be converted to radar reflectivity factor. In general, there are two methods to convert signal power to radar reflectivity 

factor. The first method directly converts the measured power and range information into radar reflectivity factor. This method 

requires rigorous characterisation of every radar hardware component using best engineering practices. For radars with 

steerable antennas, rigorous engineering practices include recording the transmitted power in real-time and performing balloon 

mounted sphere calibrations to characterize the antenna beam pattern and beam pointing hardware (Chandrasekar et al., 2015). 40 

For radars that are not end-to-end rigorously characterized (e.g., radar wind profilers), the radar reflectivity factor can be 

estimated indirectly by using the noise relative signal power (i.e., signal-to-noise ratio SNR) and an external reference to 

determine the radar calibration constant. For vertically pointing radars, the external reference has come from ground-based 

radars (e.g., Hogan et al., 2000; Williams 2012; Kneifel et al., 2015; Radenz et al., 2018), from near-by surface disdrometer 

observations (Gage et al., 2000; Williams et al., 2005; Myagkov et al., 2020), from near-by rain gauges (Hartten et al. 2019), 45 

and from satellite radar statistics (Protat et al., 2011; Kollias et al., 2019; Hartten et al., 2019; Protat et al., 2022).  

Since RWPs were originally designed for horizontal wind profile measurements, the NOAA Doppler velocity power 

spectra processing routines were optimized to estimate mean radial velocity and did not estimate radar reflectivity factor 

(Merritt, 1995). Even today, real-time processed NOAA RWP datasets do not estimate radar reflectivity factor, but include the 

spectrum moments of SNR, mean radial velocity, spectrum width, and noise power (NOAA, 2022). The radar reflectivity 50 

factor is estimated from SNR as shown in Gage et al. (1994, 2000) and described in more detail in Tridon et al. (2013) and 

Hartten et al. (2019). One limitation of RWP signal processing routines is that increased noise power occurs at range gates that 

have large backscattered signal power. This over-estimated noise power leads to under-estimated SNR, which leads to under-

estimated radar reflectivity factor. The elevated noise power in RWPs was discussed in Tridon et al. (2013) and mitigated by 

using the measured noise power at far range gates as a new noise power at all range gates. The adjusted SNR is then used to 55 

estimate the radar reflectivity factor. The work presented herein builds on the concepts discussed in Tridon et al. (2013), but 

includes additional SNR biases not discussed in that work. Specifically, this study includes signal power biases due to Nyquist 

velocity aliasing and coherent integration filtering. Also, this study uses a daily median noise power in the adjusted SNR 

estimate to account for RWP operating modes that do not have range gates sampling above intense precipitation such that the 

noise power is still biased high at the “far” range gates.  60 

As discussed above, an external reference is needed to determine a radar calibration constant and this study uses 

surface disdrometer reflectivity factors to calibrate RWP radar reflectivity factors obtained at 500 m. The surface disdrometer 

was about 100 m from the RWP and the calibration procedure includes shifting the time-series data to account for the 500 m 

vertical displacement and 100 m horizontal separation between the measurement locations. Depending on the wind speed and 

direction, disdrometer time-series data could led or lag the RWP time-series data. An overarching aim of this study is to 65 
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standardize the RWP signal processing steps to remove known biases in radar reflectivity factor estimates and provide those 

codes to the radar community on a public repository. 

 The radar and disdrometer datasets used in this study are described in Section 2 (Data Sets). Spectrum adjustment 

methods are discussed in Section 3 (Methods) and include adjustments due to Nyquist velocity aliasing, coherent integration 

filtering, and increased noise power. Section 3 also includes calibration methods derived from surface disdrometer 70 

observations. In Section 4 (Results), the radar calibration constant is shown to vary over an 8-year dataset with decreased 

sensitivity caused by degrading hardware and sudden increases in sensitivity due to installing new hardware. Conclusions are 

presented in Section 5 and Appendix A provides additional processing code details.  

2 Data Sets 

This study uses radar observations from a UHF-band radar wind profiler (RWP) operating at 915 MHz and a surface 75 

disdrometer located at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program (Mather 

and Voyles, 2013) Southern Great Plains (SGP) Central Facility in northern Oklahoma, USA, from 22-March-2011 to 18-

August-2019. All datasets used in this study are available online using the ARM Data Discovery Tool (ARM 1998a, 1998b, 

1998c, 1998d, 2011). 

2.1 Radar Wind Profiler 80 

The ARM SGP Central Facility RWP was a Vaisala Meteorological Systems Inc. LAP-3000 wind profiler (Muradyan and 

Coulter, 2020) and is a commercial version of the NOAA UHF wind profiler developed under an industry-government 1991 

Cooperative Research and Development Agreement (CRADA) (Vaisala News, 2002). From 22-March-2011 to 31-March-

2014, the RWP operated in a precipitation mode observing only in the vertical direction. The precipitation mode sampled the 

atmosphere with a short- and long-pulse yielding low-sensitivity short-range measurements and high-sensitivity long-range 85 

measurements, respectively. On 1-April-2014, a wind mode was added to the RWP and consisted of transmitting pulses in 

three different directions in order to estimate the horizontal wind as a function of height. The RWP collected data in both 

precipitation and wind modes for 5 years. On 11-March-2019, the wind mode operating parameters changed and on 19-August-

2019, the RWP hardware failed and was eventually replaced with a wind profiler produced by a different radar manufacturer. 

The LAP-3000 RWP can only collect data in one beam direction with one pulse configuration at a time. Thus, during the 2011-90 

to-2014 period, the radar alternated between two vertically pointing precipitation mode radar beams, requiring approximately 

5 seconds to collect both beams of data. During the 2014-to-2019 period, the radar sequentially collected data in five unique 

radar beams (i.e., two precipitation mode beams and three wind mode beams), requiring approximately 25 seconds to complete 

one observation cycle. Table 1 lists pertinent RWP operating parameters for both modes.  

 The ARM RWP uses the manufacturer’s default processing routines (Muradyan and Coulter, 2020). For each mode, 95 
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the RWP transmits a sequence of pulses and performs coherent integrations, Fast Fourier Transforms (FFTs), and spectra 

averages. Using the precipitation short-pulse mode as an example, the RWP transmits 56 radar pulses (represented by 𝑁𝑁𝑐𝑐𝑐𝑐ℎ) 

and integrates the in-phase and quadrature voltages (also called 𝐼𝐼 and 𝑄𝑄 voltages) to produce one in-phase and one quadrature 

voltage (i.e., 𝐼𝐼𝑐𝑐𝑐𝑐ℎ and 𝑄𝑄𝑐𝑐𝑐𝑐ℎ). After collecting 128 (represented by 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝) coherently averaged 𝐼𝐼𝑐𝑐𝑐𝑐ℎ and 𝑄𝑄𝑐𝑐𝑐𝑐ℎ voltages, a von 

Hann window is applied to the time series and a complex FFT is performed to produce a Doppler velocity power spectrum. 100 

Another sequence of 7,168 pulses (calculated as 𝑁𝑁𝑐𝑐𝑐𝑐ℎ𝑁𝑁𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝) are transmitted and processed to produce another Doppler velocity 

power spectrum. After producing 3 power spectra (represented by 𝑁𝑁𝑝𝑝𝑝𝑝𝑐𝑐), the 3 power spectra are averaged and saved to disk. 

The option of calculating a median spectrum or statistically averaging the 3 spectra (as discussed in Merritt, 1995) in order to 

remove transient signals (e.g., birds or other flying objects passing through the radar beam) was not implemented. A total of 

21,504 pulses �𝑁𝑁𝑐𝑐𝑐𝑐ℎ𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑐𝑐� are transmitted per dwell and a 100 𝜇𝜇s inter-pulse period yields a 2.2 s dwell. For each Doppler 105 

velocity spectrum, the first three spectrum moments (i.e., signal-to-noise ratio, mean radial velocity, and spectrum width) are 

estimated using the manufacturer’s single peak processing routine with integration limits bounded by the Nyquist velocities 

±𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝. The average spectra and the moments are saved to disk. 

Between 2011 and 2019, the RWP had two hardware failures. In 2015, the phase shifter module controlling the beam 

pointing direction failed due to age and overuse. A new phase shifter module was installed. In 2017, the final amplifier in the 110 

transmitter module failed and several relays failed in the phase shifter module. The transmitter module was replaced with a 

used Vaisala unit scavenged from a newer RWP and the relays were replaced. Since calibration constants change with ageing 

and changing hardware, the RWP dataset is divided into five calibration periods as listed in Table 2. 
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 115 
Table 1. Pertinent RWP operating parameters (SGP, Central Facility, 22-March-2011 through 18-August-2019). 

Operating Frequency [MHz]  915    

Operating Wavelength [m]   0.328 

     Precip. Short-Pulse  Precip. Long-Pulse Wind Mode  

Observation Start Date   22-March-2011   22-March-2011   1-April-2014 120 

Observation End Date   18-August-2019  18-August-2019  10-March-2019 

           BeamV  BeamA  BeamB 

Pulse duration [ns]   417   2833   708 708 708 

Range Resolution [m]   62.5   425   106 106 106 

Distance between Range Gates [m]  125 then 62.5*  212.5   62.5 62.5 62.5 125 

Number of Range Gates   75 then 150*  75   60 60 60 

Range to First Gate [m]   327   327   373 373 373 

Range to Last Gate [km]   9.6   16.0   4.0 4.0 4.0 

Elevation Angle [degree]    90    90    90  77  77 

Azimuth Angle [degree]   22   22    22  22  292 130 

Inter-pulse Period (Tipp) [µs]  100   120   41 41 41 

Number of Coherent Integrations (𝑁𝑁𝑐𝑐𝑐𝑐ℎ) 56   34   200 200 200 

Number of points in spectrum (𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝) 128   128    64 64 64 

Number of Averaged spectra (𝑁𝑁𝑝𝑝𝑝𝑝𝑐𝑐)  3   4   12 12 12 

Number of transmitted pulse per dwell^ 21,504   17,408           153,600  153,600  153,600 135 

Nyquist Velocity (𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝) [m s-1]  14.6   19.6   9.99 9.99 9.99 

Velocity resolution (𝑣𝑣) [m s-1]  0.228   0.306   0.312 0.312 0.312 

Dwell+ [s]    2.2    2.1   6.3  6.3  6.3 

* Distance between range gates and the number of range gates changed on 4-April-2014 
^ Number of transmitted pulses per dwell: �𝑁𝑁𝑐𝑐𝑐𝑐ℎ𝑁𝑁𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑐𝑐� 140 
+ Dwell is the time needed to transmit all pulses: Dwell = �𝑇𝑇𝑁𝑁𝑝𝑝𝑝𝑝𝑁𝑁𝑐𝑐𝑐𝑐ℎ𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑐𝑐� [s] 
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Table 2. RWP operating periods with consistent hardware 

Period Start   End    Hardware Version  Operating Modes 

A  22-March-2011   31-March-2014   Radar hardware #1  Precipitation 145 

B  1-April-2014   14-July-2015  Radar hardware #1  Precipitation and Wind 

- 15-July-2015   24-Sept-2015  Hardware failure   No data collected 

C 25-Sept-2015   10-April-2017  Radar hardware #2  Precipitation and Wind 

- 11-April-2017   5-June-2017   Hardware failure   No data collected 

D  6-June-2017   10-March-2019  Radar hardware #3 Precipitation and Wind 150 

E  11-March-2019   18-August-2019  Radar hardware #3  Precipitation 

 

2.2 Surface Disdrometer 

A 2-dimensional video disdrometer (VDIS) manufactured by Joanneum Research, in Graz, Austria (Schönhuber et al., 2008), 

was deployed about 100 m from the RWP at the SGP Central Facility (Wang et al., 2021; ARM, 2011). The 2DVD uses two 155 

orthogonal pointing cameras in the horizontal plane to detect raindrops falling through a 10 cm square opening and then 

estimates the raindrop number concentration with a 1-minute temporal resolution (Tokay et al., 2001, 2013). Radar reflectivity 

factors assuming Rayleigh scattering were calculated using PyDisdrometer routines (Hardin and Guy, 2014) as used in 

previous studies using 2DVD observations (Giangrande et al., 2019). 

 The calibration procedure uses the 1-minute surface disdrometer radar reflectivity factor to estimate a RWP 160 

calibration constant for the precipitation short-pulse mode using 1-minute averaged RWP observations at 500 m altitude. The 

other RWP modes could be calibrated directly with the 1-minute surface disdrometer observations, but to increase the number 

of samples, the other RWP modes are calibrated using the precipitation short-pulse mode as a reference and using multiple 

range gates and nearest-in-time observations. The calibration procedure described herein is only valid for RWP modes that 

collect data while it is raining. If the RWP is adaptive and collects precipitation mode data when it is raining and wind mode 165 

data otherwise, then there are not any near-in-time precipitation mode observations nor surface disdrometer observations 

available to calibrate the wind mode observations. In this situation, the precipitation mode data can be calibrated but the wind 

mode data cannot be calibrated with the disdrometer observations.  

3 Methods 

The ARM RWP records the average Doppler velocity power spectra and real-time spectrum moments are calculated on the 170 

RWP host computer using the RWP manufacturer processing routines. These real-time spectrum moments are labelled “a0” 

using ARM’s file naming protocols (ARM, 2022) and saved on the ARM archive in netCDF format (ARM 1998a, 1998b, 
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1998c, 1998d). The recorded spectrum moments are not calibrated and do not include a radar reflectivity factor estimate. To 

illustrate the motivation for reprocessing the recorded spectra and recalculating the spectrum moments, Fig. 1 shows time-

height cross-sections of recorded moments including signal-to-noise ratio (𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎0) [dB] (Fig. 1a), mean radial velocity (𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎0 ) 175 

[m s-1] (Fig. 1b), and spectrum noise power (𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑎𝑎0 ) [dB] (Fig. 1c) for a rain event on 7-June-2018 using the precipitation short-

pulse mode. Examination of the 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎0 time-height structure in Fig. 1a suggests convective rain near 11:45 to 12:00 UTC 

followed by stratiform rain after about 12:15 UTC. There are a couple questionable features in this figure between 11:35 and 

12:10 UTC that raise concern about the quality of the real-time spectrum moments. First, the 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎0 contains speckles of low 

magnitude SNR above the height of about 3 km. Second, the 𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎0  has large, unphysical jumps in velocity over several range 180 

gates and over several profiles due to Nyquist velocity aliasing. Third, the spectrum noise power 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑎𝑎0 , which is the 

denominator in estimating SNR, has large and variable magnitudes at nearly all range gates. The first two features are due to 

the on-line processing codes incorrectly estimating the spectrum moments, and the third feature is due to the broad signal 

velocity power spectra occupying a large portion of the velocity power spectrum causing the noise level estimate to be 

contaminated by the signal power.  185 

This section describes the five step RWP calibration procedure. First, the raw Doppler velocity power spectra are 

adjusted to account for both Nyquist velocity aliasing (see Section 3.1.1) and coherent integration filtering (see Section 3.1.2). 

Second, the spectrum moments are recalculated (see Section 3.1.3). Third, the recalculated SNR is increased to account for 

leaking signal power into the noise power to yield an adjusted signal-to-noise ratio (see Section 3.2). Fourth, a calibration 

constant is determined for the precipitation short-pulse radar beam (defined as the “reference” beam) by comparing radar 190 

reflectivity factors with surface disdrometer observations (see Section 3.3). The last step determines relative calibration offsets 

between the reference beam and the other four radar beams. The calibration constant for each beam is the combination of the 

reference beam calibration constant and that beam’s relative calibration offset (see Section 3.4). To differentiate between the 

real-time processed moments and the reprocessed moments, the former estimates are labelled “a0” and the latter are labelled 

“revised”. 195 
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Figure 1. Radar wind profiler (RWP) spectrum moments calculated with the real-time processing algorithms and downloaded from 
the DOE ARM archive. RWP is located at the SGP Central Facility. Observations are from the vertically pointing beam using the 
precipitation short-pulse mode on 07-June-2018 between 11:20 to 12:40 UTC. (a) Signal-to-Noise Ratio (SNR) [dB], (b) mean radial 
velocity with positive values moving downward toward the radar [m s-1], and (c) spectrum noise power [dB]. 200 

3.1 Doppler Velocity Power Spectrum Adjustments and Calculating Spectrum Moments 

This subsection describes three processing steps: 1) spectrum adjustments due to Nyquist velocity aliasing, 2) spectrum 

adjustments due to coherent integration, and 3) recalculating the spectrum moments. Appendix A presents a flow diagram 

illustrating how these processing steps are applied to a profile of radar observations.  

3.1.1 Eliminating Nyquist Velocity Aliasing 205 

Nyquist velocity aliasing is when the target radial velocity exceeds the Nyquist velocity and the target appears to be moving 

in the opposite direction. One velocity aliasing mitigation technique is to concatenate two copies of the same Doppler velocity 

spectrum to remove the artificial boundary at the Nyquist velocity (Williams et al., 2018). Figure 2 shows an example of 
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velocity aliasing between 5 and 8 km using precipitation short-pulse mode Doppler velocity power spectra for a single profile 

collected on 7-June-2018 at 11:58:20 UTC. The original power spectra are plotted within the Nyquist velocity (𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝) range 210 

of ±14.6 m s-1, with downward motions having positive values consistent with raindrop gravitational fall speeds. The original 

spectra are copied in Fig. 2 to visualize and to mitigate Nyquist velocity aliasing. Specifically, the original downward motions 

between 0 and 14.6 m s-1 are copied to upward motions between -29.2 to -14.6 m s-1. The original upward motions between -

14.6 and 0 m s-1 are copied to downward motions between 14.6 to 29.2 m s-1. The red circles in Fig. 2 designate real-time mean 

radial velocity moments 𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎0 . Note the jump in 𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎0  near 5.5 km from downward to upward motion, which is due to the 215 

assumption in the real-time signal processing routines that all signal power is within the Nyquist interval of ±𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝.  

 
Figure 2. Spectra profile at time 11:58:20 [UTC] on 7-June-2018. Downward velocities have positive values and are approaching the 
ground-based radar. Original spectra are plotted between Nyquist velocities -14.6 and 14.6 m s-1 and are indicated with solid lines. 
The portion of original spectra with downward motion is copied to be more upward than the Nyquist velocity (i.e., portion labelled 220 
“a”) and the portion of original spectra with upward motion is copied to be more downward than the Nyquist velocity (i.e., portion 
labelled “b”). Red circles designate real-time estimated mean radial velocities and blue squares denote revised mean radial velocities. 
Dashed line indicates 0 m s-1 velocities. Spectra magnitudes are uncalibrated spectral power density units expressed in decibels (i.e., 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏[𝑺𝑺(𝒗𝒗)] with units dB). 
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For spectra that have velocity aliasing, the SNR is biased low when using the assumption that all of the signal power 225 

is within ±𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 . This issue can be visualized in Fig. 3 and shows individual spectra at 6 km (Fig. 3a) and 3 km (Fig. 3b). 

The signal-to-noise ratio can be estimated using (Riddle et al., 2012): 

 𝑆𝑆𝑁𝑁𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙 �
∑ [𝑆𝑆(𝑣𝑣𝑖𝑖)−𝑛𝑛�]Δ𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒
𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛�𝑁𝑁𝑝𝑝𝑠𝑠𝑠𝑠Δ𝑣𝑣
�  [dB]       (1) 

where 𝑣𝑣𝑝𝑝𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝 and 𝑣𝑣𝑚𝑚𝑛𝑛𝑒𝑒 [m s-1] are the integration limits indicating the start and end velocities of the power spectrum 𝑆𝑆(𝑣𝑣𝑁𝑁) 

containing signal power [uncalibrated power per (m s-1)], 𝑣𝑣𝑁𝑁 is the velocity bin, Δ𝑣𝑣 [m s-1] is the velocity bin resolution, 𝑛𝑛� is 230 

the spectrum mean noise level [uncalibrated power per (m s-1)] (Hildebrand and Sekhon, 1974), and 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 is the number of 

points in the spectrum. The real-time processing routine uses only the spectrum between ±𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 to determine the spectrum 

moments. In Fig. 3b, the maximum magnitude is near 10 m s-1 (downward), the 𝑣𝑣𝑝𝑝𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝 integration limit is near 0 m s-1 and the 

𝑣𝑣𝑚𝑚𝑛𝑛𝑒𝑒 limit stops at the Nyquist velocity of 14.6 m s-1. The spectrum between these integration limits is shaded red and labelled 

a0 spectrum in Fig. 3. The revised processing routine uses the extended spectrum that spans between ±2𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝. Since the 235 

original spectrum is copied into the extended spectrum, the maximum magnitude peak that occurs near 10 m s-1 (downward) 

also occurs near -19 m s-1 (upward). The revised processing routine uses information from the previous range gate to select 

which of the two peaks to process. Appendix A describes the processing steps using a prior velocity 𝑉𝑉𝑝𝑝𝑠𝑠𝑁𝑁𝑐𝑐𝑠𝑠 to select one of the 

two peaks. After a peak is selected, the revised processing routine uses the same search technique as the real-time processing 

routine, except it uses the extended spectrum illustrated in Figs. 2 and 3. For spectrum shown in Fig. 3b , the 𝑣𝑣𝑝𝑝𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝 integration 240 

limit is the same determined from the real-time processing routine, but the 𝑣𝑣𝑚𝑚𝑛𝑛𝑒𝑒 limit extends past the Nyquist velocity and 

ends where the spectrum crosses the mean noise level near 20 m s-1 (downward). The different integration limits cause the 

real-time processing method to underestimate both the SNR and mean radial velocity relative to the dealiased method by 0.2 

dB and 0.2 m s-1, respectively. As will be seen in the next section, including the incoherent averaging filtering effects will 

increase these differences.  245 

 In Fig. 2, between 5.5 and 9 km, 𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎0  appears to have upward motion. This is because the true maximum spectrum 

magnitude has a downward velocity occurring outside the ±𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 boundaries and the aliased peak has an upward velocity. 

Figure 3a shows the velocity power spectrum at 6 km and the real-time processing routine found integration limits that bound 

the upward spectrum maximum magnitude peak near -12 m s-1. The integration limits are -14.6 (at the Nyquist boundary) and 

approximately -5 m s-1. This a0 spectrum region is shaded red in Fig. 3a. In contrast, the revised processing routine selected 250 

the downward moving peak in the dealiased spectrum and found integration limits of approximately 11 and 24 m s-1 downward 

(spectrum region with blue strips). The different integration limits produce significantly different mean radial velocities of 

𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎0  equal to -10.5 m s-1 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 equal to 17.9 m s-1. 
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Figure 3. Example of integration limits used in the real-time and revised spectrum moment estimation algorithms. Uncalibrated 255 
spectral power density expressed in decibels [dB] for profile at 11:58:20 [UTC] on 7-June-2018 at (a) 6 km and (b) 3 km. Red shading 
and blue horizontal bars indicate spectral power density used to estimate a0 and revised moments, respectively. 

3.1.2 Coherent Integration Adjustment 

Coherent integration is a signal processing technique that accumulates the radar measured in-phase and quadrature voltages 

(aka, 𝐼𝐼  and 𝑄𝑄  voltages) over consecutive transmitted pulses. Sinusoidal oscillations with slowly varying phase over the 260 

accumulation interval are said to be coherent and their accumulated 𝐼𝐼 and 𝑄𝑄 voltages cause an increase in signal power. 

Conversely, accumulating 𝐼𝐼 and 𝑄𝑄 voltages over high frequency oscillations, including noise fluctuations, will produce smaller 

magnitude accumulated 𝐼𝐼  and 𝑄𝑄  voltages resulting in smaller signal power. Thus, coherent integration increases radar 

detection by acting as a low-pass filter that increases low-frequency signal powers and decreases high-frequency noise power 

(Farley, 1985).  265 
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Coherent integration is also known as time-domain averaging (TDA) and is implemented by changing the number of 

coherent integration samples 𝑁𝑁𝑐𝑐𝑐𝑐ℎ, which changes the effective time between transmitted samples and decreases the Nyquist 

velocity using: 

 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 = �𝜆𝜆
4
� � 1

𝑁𝑁𝑐𝑐𝑐𝑐ℎ𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼
�           (2) 

where 𝜆𝜆 is the radar operating wavelength and 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 is the inter-pulse period (aka, time between transmitted pulses). Coherent 270 

integration also applies a boxcar filter to the 𝐼𝐼 and 𝑄𝑄 voltage time-series samples before integrating, which is equivalent to 

applying a low-pass filter to the integrated time-series (Wilfong et al., 1999). Since coherent integration is performed before 

computing the FFT on the complex 𝐼𝐼 and 𝑄𝑄 voltage samples, the low-pass filter manifests as a reduction in FFT signal power 

magnitude as a function of velocity 𝑣𝑣𝑁𝑁 and has the form (Schmidt et al., 1979): 

 𝑆𝑆𝑠𝑠𝑚𝑚𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒
𝑝𝑝𝑁𝑁𝑠𝑠𝑛𝑛𝑎𝑎𝑠𝑠 (𝑣𝑣𝑁𝑁) = 𝑆𝑆𝑚𝑚𝑒𝑒𝑝𝑝𝑚𝑚𝑐𝑐𝑝𝑝𝑚𝑚𝑒𝑒

𝑝𝑝𝑁𝑁𝑠𝑠𝑛𝑛𝑎𝑎𝑠𝑠 (𝑣𝑣𝑁𝑁) �
𝑝𝑝𝑁𝑁𝑛𝑛2�

𝜋𝜋�
𝑣𝑣𝑖𝑖
∆𝑣𝑣�

𝑁𝑁𝑝𝑝𝑠𝑠𝑠𝑠
�

�𝑁𝑁𝑐𝑐𝑐𝑐ℎ
2 ��𝑝𝑝𝑁𝑁𝑛𝑛2�

𝜋𝜋�
𝑣𝑣𝑖𝑖
∆𝑣𝑣�

𝑁𝑁𝑐𝑐𝑐𝑐ℎ𝑁𝑁𝑝𝑝𝑠𝑠𝑠𝑠
��

 �       (3) 275 

where 𝑆𝑆𝑠𝑠𝑚𝑚𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒𝑚𝑚𝑒𝑒
𝑝𝑝𝑁𝑁𝑠𝑠𝑛𝑛𝑎𝑎𝑠𝑠 (𝑣𝑣𝑁𝑁) is the recorded signal power spectrum at velocity bin 𝑣𝑣𝑁𝑁 , 𝑆𝑆𝑚𝑚𝑒𝑒𝑝𝑝𝑚𝑚𝑐𝑐𝑝𝑝𝑚𝑚𝑒𝑒

𝑝𝑝𝑁𝑁𝑠𝑠𝑛𝑛𝑎𝑎𝑠𝑠 (𝑣𝑣𝑁𝑁) is the expected signal power 

spectrum without any time-domain low-pass filtering effects, and 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝  is the number of complex 𝐼𝐼  and 𝑄𝑄  samples after 

coherent integration, which is also the number of velocity bins in the power spectrum after performing the FFT calculation. 

The ratio �𝑣𝑣𝑖𝑖
Δ𝑣𝑣
� yields integers from −𝑁𝑁𝑝𝑝𝑠𝑠𝑠𝑠

2
 to 𝑁𝑁𝑝𝑝𝑠𝑠𝑠𝑠

2
. Note that the low-pass filter response function (the expression within the 

square brackets in (3)) has a magnitude of one when 𝑣𝑣𝑁𝑁 = 0 and decreases with increasing 𝑣𝑣𝑁𝑁.  280 

 The impact of the TDA low-pass filter can be mitigated by applying a correction factor to the recorded Doppler 

velocity power spectra as discussed in Wilfong et al. (1999). Since the low-pass filter only affects coherent signals, the 

correction factor should only be applied to the signal portion of the power spectrum and not to the random noise power. Thus, 

the TDA corrected power spectrum 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇(𝑣𝑣𝑁𝑁) is estimated using: 

 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇(𝑣𝑣𝑁𝑁) =  [𝑆𝑆(𝑣𝑣𝑁𝑁) − 𝑛𝑛�] �
�𝑁𝑁𝑐𝑐𝑐𝑐ℎ

2 ��𝑝𝑝𝑁𝑁𝑛𝑛2�
𝜋𝜋�

𝑣𝑣𝑖𝑖
∆𝑣𝑣�

𝑁𝑁𝑐𝑐𝑐𝑐ℎ𝑁𝑁𝑝𝑝𝑠𝑠𝑠𝑠
��

𝑝𝑝𝑁𝑁𝑛𝑛2�
𝜋𝜋�

𝑣𝑣𝑖𝑖
∆𝑣𝑣�

𝑁𝑁𝑝𝑝𝑠𝑠𝑠𝑠
�

 � + 𝑛𝑛�        (4) 285 

where 𝑆𝑆(𝑣𝑣𝑁𝑁) is the recorded Doppler velocity power spectrum. For the precipitation short-pulse mode, the correction factor 

magnitude (the expression in the square brackets in (4)) at ±𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 is 2.47 in natural units as in equation (4) or 3.9 dB in 

decibels. Figure 4 shows the recorded power spectra shown in Fig. 3 with the revised spectrum corrected for the TDA filtering 

expressed in (4). The 𝑆𝑆𝑁𝑁𝑆𝑆 and mean radial velocity moments for real-time moments and the revised spectrum are listed in Fig. 

4. Comparing the non-TDA and TDA corrected moments for the dealiased spectra at 6 km (see Figs. 3a and 4a, respectively), 290 

indicates the SNR increased 7.4 dB and the mean radial velocity became more downward by 1.6 m s-1 when including the 

TDA filter correction. Note that the difference in a0 and TDA corrected mean radial velocities at 6 km is 30 m s-1 (see Fig. 4a) 
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and is not a multiple of ±2𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (±29.2 m s-1). This indicates that simple integer ±2𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 adjustments, as proposed by 

Tridon et al. (2013), will not account for improper integration limits used in the real-time processing routines. 

 295 
Figure 4. Similar to Fig. 3, except the revised spectrum (blue line and blue horizontal bars) have been TDA corrected using (4). 

3.1.3 Calculating Spectrum Moments 

After adjusting the recorded spectrum due to Nyquist velocity aliasing and coherent integration effects, the spectrum moments 

are calculated following the method and equations presented in Williams et al. (2018) Appendix A. The calculated revised 

spectrum moments include spectrum signal power (𝑃𝑃𝑝𝑝𝑁𝑁𝑠𝑠𝑛𝑛𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒) [dB], spectrum noise power (𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒) [dB], signal-to-noise ratio 300 

(𝑆𝑆𝑁𝑁𝑆𝑆𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒) [dB], spectrum mean radial velocity (𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒) [m s-1], spectrum standard deviation (𝜎𝜎𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒) [m s-1], spectrum 

width (𝑊𝑊𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 = 2𝜎𝜎𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 ) [m s-1], spectrum skewness, and spectrum kurtosis. The dealiasing procedure described in 

Section 3.1.1 produces a spectrum with two peaks (e.g., see Figs. 2 and 3). To determine which peak to analyse, the processing 
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routine starts at the lowest range gate and calculates a prior velocity 𝑉𝑉𝑝𝑝𝑠𝑠𝑁𝑁𝑐𝑐𝑠𝑠 that is used to select a peak in the next range gate. 

More details of the processing steps are provided in Appendix A. 305 

3.2 Signal-to-Noise Ratio (SNR) Adjustment 

Signal power is estimated relative to the estimated mean noise power and is quantified with the signal-to-noise ratio 𝑆𝑆𝑁𝑁𝑆𝑆. If 

the noise power estimate is too large, then the signal-to-noise ratio and the inferred signal power are underestimated. The a0 

processed noise power 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑎𝑎0  shown in Fig. 1c had increased magnitudes at nearly all range gates during the convective rain 

event between approximately 11:35 and 12:10 UTC. This increased noise power is not expected for RWPs because the gain is 310 

constant with range so that noise power should be independent of range. Also, Fig. 2 shows signal power spread over a large 

fraction of the velocity spectrum. These two features are linked: the broad signal spectra are causing increased noise power 

estimates. Specifically, as the signal velocity power spectrum broadens and occupies more of the velocity spectrum, the noise 

estimator is biased by the inclusion of signal power. The RWP online signal processing uses the Hildebrand and Sekhon (1974) 

noise level estimator to separate noise-only spectral bins from signal-plus-noise spectral bins based on the statistical properties 315 

of both populations (for more details see Merritt, 1995 and Wilfong et al., 1999). If the signal-plus-noise spectral bins are 

included in the noise-only population, then the noise level estimate will be biased high leading to an underestimated 𝑆𝑆𝑁𝑁𝑆𝑆. To 

correct for this low 𝑆𝑆𝑁𝑁𝑆𝑆 bias, a reference noise power 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚
𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑐𝑐𝑚𝑚 [dB] is determined and an adjusted SNR is estimated using: 

 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 = 𝑆𝑆𝑁𝑁𝑆𝑆𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 + 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 − 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚
𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑐𝑐𝑚𝑚   [dB]      (5) 

where 𝑆𝑆𝑁𝑁𝑆𝑆𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 and 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 are moments calculated in Section 3.1.3. 320 

The noise power for every spectrum is estimated using the method outlined in Hildebrand and Sekhon (1974). The 

reference noise power 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚
𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑐𝑐𝑚𝑚 is the median noise power derived from all spectra collected on a given day. Figure 5 shows 

the daily median noise power for the precipitation short-pulse (black plusses) and long-pulse (red crosses) for the 8-year 

dataset. The jump in daily median noise power in mid-2017 corresponds to replacing the transmitter with a used, yet updated 

version, from the same RWP vendor. It is interesting to note that the seasonal noise variation decreased with the updated 325 

transmitter and not when the equipment shelter air conditioning system was updated in mid-2016. 
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Figure 5. Daily median noise level for the precipitation short-pulse (black plusses) and long-pulse (red crosses) mode for observations 
between 2011 and 2019. 

Figure 6 illustrates the impact of adjusting the signal-to-noise ratio with the reference noise power. Fig. 6a shows the 330 

real-time estimated 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎0 (thick line) and 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑎𝑎0  (thin line) profiles. The large variations in 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑎𝑎0  between 4 and 5 km appear 

as large and inverse variations in 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎0. Figure 6b shows the adjusted signal-to-noise ratio using two methods. The method 

described in Tridon et al. (2013) uses the real-time moments (𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎0 and 𝑃𝑃𝑛𝑛𝑐𝑐𝑁𝑁𝑝𝑝𝑚𝑚𝑎𝑎0 ) to estimate the adjusted signal-to-noise ratio 

𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑎𝑎0  (thick blue line in Fig. 6b). The method described herein recalculates the moments and then estimates the adjusted 

signal-to-noise ratio 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒  using equation (5) (thin red line). The profile offset in Fig. 6b is due to different reference 335 

noise powers used in the two methods. The 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑎𝑎0  has more variability than 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑠𝑠𝑚𝑚𝑣𝑣𝑁𝑁𝑝𝑝𝑚𝑚𝑒𝑒 , indicating that the revised 

spectra reprocessing method produces smoother, more vertically consistent, SNR vertical profiles than the Tridon et al. (2013) 

method. 
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Figure 6. Moment profiles at time 11:48:25 [UTC] on 7-June-2018. (a) SNR and spectrum noise power from real-time spectrum 340 
processing routines. (b) Adjusted SNR using the a0 moments shown in panel (a) (thick blue line) and adjusted SNR using the revised 
spectral method (thin red line). The adjusted SNR profiles are offset because of different reference noise values. 

3.3 Calibrating Reference Beam to Surface Disdrometer 

The precipitation short-pulse beam is defined as the RWP reference beam and the radar reflectivity factor 𝑍𝑍𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 [dBZ] 

for this beam is estimated from the adjusted signal-to-noise ratio 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒
𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 using 345 

 𝑍𝑍𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝(𝑟𝑟) = 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒
𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 + 20 log(𝑟𝑟) + 𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝   [dBZ]    (6) 

where 𝑟𝑟 [m] is range from the radar and 𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 [dB] is the calibration constant. To estimate the calibration constant 

𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝, an initial value of 𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 equal to 0 dB is selected and equation (6) is used to estimate the RWP reflectivity 

factor at all range gates. These initial RWP reflectivity factors at 500 m above ground level are averaged into 1-minute 

quantities and then compared with the 1-minute surface disdrometer radar reflectivity factors. Using only disdrometer 350 

reflectivity factors between 20-to-40 dBZ, the reflectivity factor differences are calculated for RWP lags between ±4 minutes. 

Both positive and negative lags are needed because the two instruments are separated by approximately 100 m and the 

horizontal wind speed and direction can cause the surface rain observations to occur before the radar observations at 500 m 

altitude. Figure 7 shows scatter plots and statistics of mean, standard deviation, and Pearson’s correlation coefficient for the 

7-June-2018 rain event at nine different lags. For this rain event, the distribution in Fig. 7d is selected for calibration because 355 

it has the highest Pearson’s correlation coefficient of 0.95. 
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Figure 7. Scatter plots of reflectivity factor differences between RWP precipitation short-pulse mode (with 𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷 = 𝟏𝟏 dB) and 
surface disdrometer for different minute lags for the rain event on 7-June-2018. Positive lags indicate RWP shifted to later time. 
Lag times for each panel are (a) -4 min (b) -3 min, (c) -2 min, (d) -1 min (e) 0 min, (f) 1 min, (g) 2 min (h) 3 min, and (i) 4 min. This 360 
rain event had 153 minute samples with surface disdrometer reflecticity factor between 20 and 40 dBZ. Each panel indicates rain 
event mean difference, standard deviation (sd), and Pearson’s correlation coefficient (r). Panel (d) has the largest Pearson’s 
correlation coefficient and is used for calibrating this event. The calibration constant for this event is 𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷 = −𝟒𝟒𝟒𝟒. 𝟓𝟓 dB. 

Using the calibration constant and lag determined from Fig. 7d (i.e., 𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 =-49.5 dB and -1-minute lag), Fig. 

8a shows the time-height cross-section of calibrated RWP precipitation short-pulse mode radar reflectivity factor. Figure 8b 365 

shows a time-series of RWP reflectivity factor at 500 m (red crosses) and the surface disdrometer reflectivity factor (black 

plusses). The blue thin lines in Fig. 8b at 20 and 40 dBZ indicate the reflectivity factor range used for calculating the RWP 

and disdrometer differences, which are shown in Fig. 8c. Also shown in Fig. 8c are the statistics for this lag, including lag, 

number of samples, calibration constant, standard deviation, and Pearson’s correlation coefficient. Figure 8d shows surface 

disdrometer rain rate 𝑆𝑆𝑆𝑆 and mass-weighted mean diameter 𝐷𝐷𝑚𝑚. The standard deviation of 1.9 dB for this event is due to 370 

spatiotemporal mismatch between the surface disdrometer and radar sample volume as well as measurement uncertainties of 



18 
 

both instruments, and is comparable to 1-to-2 dB measurement uncertainties of side-by-side surface disdrometers (Tapiador et 

al., 2017; Wang et al., 2021). Note that the lag is only used in the calibration procedure and not used as a time offset for any 

other purpose. 

 375 
Figure 8. RWP precipitation short-pulse mode and surface disdrometer observations from 7-June-2018 between 11 and 16 UTC. (a) 
RWP radar reflectivity factor with calibration constant of -49.5 dB, (b) RWP radar reflectivity factor (red crosses) at 500 m range 
with -1-minute lag and surface 2DVD radar reflectivity factor (black plusses), (c) reflectivity factor difference (RWP – VDIS) for 
samples with VDIS reflectivity factor within 20 to 40 dBZ as indicated with blue thin lines in panel (b), and (d) disdrometer rain 
rate 𝑹𝑹𝑹𝑹 and mean diameter 𝑫𝑫𝒎𝒎. Statistics of lag, number of samples, calibration constant, standard deviation (sd), and Pearson’s 380 
correlation coefficient (r) are shown in panel (c). 
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 Figure 9 shows improved moments and calibrated reflectivity factors for the same rain event shown in Fig. 1. The top 

panel (Fig. 9a) shows the revised adjusted signal-to-noise ratio (𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒
𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝) and the middle panel (Fig. 9b) shows the 

revised mean radial velocity (𝑉𝑉𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛
𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝). Compared to the a0 real-time processed moments, the reprocessed moments shown 

in Figs. 9a and 9b show improved data quality and uniformity. The calibrated radar reflectivity is shown in Fig. 9c. 385 

 
Figure 9. Similar to Fig. 1 except RWP spectrum moments for the precipitation short-pulse mode calculated with the revised 
processing algorithms. (a) Signal-to-noise ratio 𝑺𝑺𝑺𝑺𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝑷𝑷𝑷𝑷𝒂𝒂

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷 [dB], (b) mean radial velocity 𝑽𝑽𝒎𝒎𝑷𝑷𝒂𝒂𝒎𝒎
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷 [m s-1] with positive values 

moving downward consistent with raindrop gravitation fall speeds, and (c) surface disdrometer calibrated radar reflectivity factor 
𝒁𝒁𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷 [dBZ]. 390 

3.4 Relative Calibration Constants for Other Radar Beams 

The radar sensitivity can be adjusted by changing the transmitted pulse length, the number of coherent integrations, and the 

number of averaged Doppler velocity spectra. Using the precipitation short-pulse mode as the reference beam, the expected 

relative change in sensitivity for the other four radar beams can be estimated using: 
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 𝐶𝐶𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑝𝑝𝑁𝑁𝑣𝑣𝑚𝑚𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚 = 20𝑙𝑙𝑙𝑙𝑙𝑙 � Δ𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀

Δ𝑅𝑅𝐼𝐼𝑠𝑠𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝𝑃𝑃ℎ𝑐𝑐𝑠𝑠𝑠𝑠
� + 10𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑁𝑁𝑐𝑐𝑐𝑐ℎ

𝑀𝑀𝑀𝑀𝑀𝑀

𝑁𝑁𝑐𝑐𝑐𝑐ℎ
𝐼𝐼𝑠𝑠𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝𝑃𝑃ℎ𝑐𝑐𝑠𝑠𝑠𝑠� + 5𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑁𝑁𝑠𝑠𝑝𝑝𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀

𝑁𝑁𝑠𝑠𝑝𝑝𝑐𝑐
𝐼𝐼𝑠𝑠𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝𝑃𝑃ℎ𝑐𝑐𝑠𝑠𝑠𝑠� + 20𝑙𝑙𝑙𝑙𝑙𝑙[𝑠𝑠𝑠𝑠𝑛𝑛(𝜃𝜃𝑚𝑚𝑠𝑠)] (7) 395 

where Δ𝑆𝑆 is the range resolution, 𝑁𝑁𝑐𝑐𝑐𝑐ℎ is the number of coherent samples, 𝑁𝑁𝑝𝑝𝑝𝑝𝑐𝑐 is the number of averaged power spectra, 𝜃𝜃𝑚𝑚𝑠𝑠 

is the elevation angle from the horizon, and the superscripts PrecipShort and MUT represent the precipitation short-pulse mode 

and the mode under test (MUT), respectively. Using the values from Table 1 and equation (7), Table 3 lists the expected 

relative sensitivities for the precipitation long-pulse mode and the wind mode. The last term in (7) represents the decrease in 

gain associated with beam pointing direction in phased array antennas (Balanis, 1997). As the beam pointing direction deviates 400 

from broadside (aka, vertical direction in the RWP), the projected antenna area decreases causing the gain to decrease and 

beam width to increase (Balanis, 1997; Palmer et al., 2022). System losses and variations in antenna gain cause the measured 

relative sensitivities to deviate from the expected values listed in Table 3. 

The reflectivity factor for the other four radar beams follows equation (6) with the addition of the relative calibration 

constant 𝐶𝐶𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑝𝑝𝑁𝑁𝑣𝑣𝑚𝑚𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚 [dB] and is estimated using: 405 

 𝑍𝑍𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚(𝑟𝑟) = 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚 + 20 log(𝑟𝑟) + �𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 − 𝐶𝐶𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑝𝑝𝑁𝑁𝑣𝑣𝑚𝑚𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚�  [dBZ].   (8) 

The negative sign in the bracketed term is because a positive 𝐶𝐶𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑝𝑝𝑁𝑁𝑣𝑣𝑚𝑚𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚  indicates this mode is more sensitive than the 

precipitation short-pulse mode and will produce a larger 𝑆𝑆𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒𝑎𝑎𝑁𝑁𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚  for the same radar reflectivity factor. Note that weaker 

radar reflectivity factors will be detected at further ranges at the expense of possible receiver saturation from large reflectivity 

factor targets at close range. 410 
 
Table 3. Expected relative sensitivity of other radar beams compared with the reference precipitation short-pulse beam. Relative 
sensitivity has three terms in equation (7) and is dependent on range resolution 𝚫𝚫𝑹𝑹, coherent integration 𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷, and number of 
averaged Doppler velocity power spectra 𝑺𝑺𝒂𝒂𝑷𝑷𝑷𝑷. 

Relative Sensitivity   Precipitation Mode          Wind Mode 415 

     Long-Pulse    BeamV  BeamA BeamB 

Elevation angle [degree]   90°    90°  77° 77° 

Azimuth angle [degree]   22°    22° 22° 292° 

 20𝑙𝑙𝑙𝑙𝑙𝑙 � Δ𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀

Δ𝑅𝑅𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝𝑃𝑃ℎ𝑐𝑐𝑠𝑠𝑠𝑠
�  [dB]  16.5     4.6 4.6 4.6 

 10𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑁𝑁𝑐𝑐𝑐𝑐ℎ
𝑀𝑀𝑀𝑀𝑀𝑀

𝑁𝑁𝑐𝑐𝑐𝑐ℎ
𝐼𝐼𝑠𝑠𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝𝑃𝑃ℎ𝑐𝑐𝑠𝑠𝑠𝑠�  [dB]  -2.2    5.5 5.5 5.5 420 

 5𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑁𝑁𝑠𝑠𝑝𝑝𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀
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𝐼𝐼𝑠𝑠𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝𝑃𝑃ℎ𝑐𝑐𝑠𝑠𝑠𝑠�  [dB]  0.6    3.0 3.0 3.0 

 20𝑙𝑙𝑙𝑙𝑙𝑙[𝑠𝑠𝑠𝑠𝑛𝑛(𝜃𝜃𝑚𝑚𝑠𝑠)]  [dB]   0.0    0.0 -0.2 -0.2 

 𝐶𝐶𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑝𝑝𝑁𝑁𝑣𝑣𝑚𝑚𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚  [dB]  14.9    13.1 12.9 12.9  
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To estimate relative sensitivities between the other beams and the reference beam, reflectivity factors are estimated 425 

at all profiles and range gates using equation (8) with 𝐶𝐶𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑝𝑝𝑁𝑁𝑣𝑣𝑚𝑚𝑂𝑂𝑝𝑝ℎ𝑚𝑚𝑠𝑠𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚 set to zero, and then estimating the differences from nearby 

precipitation short-pulse mode observations. Figure 10 shows scatter plots and histograms of reflectivity factor differences for 

the precipitation long-pulse beam during the 7-June-2018 rain event. Valid observations are constrained to be within the height 

interval of 800 and 2100 m and precipitation short-pulse reflectivity factors greater than 30 dBZ. Over 13,000 valid samples 

are used from this event to calibrate the precipitation long-pulse beam. The mean relative offset is 15.5 dB for this event, with 430 

a standard deviation of 1.3 dB. The relative calibration constant 𝐶𝐶𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑝𝑝𝑁𝑁𝑣𝑣𝑚𝑚
𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑃𝑃𝑐𝑐𝑛𝑛𝑠𝑠 is set to 15.5 dB and implies that the long-pulse 

mode is more sensitive and produces a larger signal-to-noise ratio for the same radar reflectivity factor as expressed in equation 

(8).  

Figure 11a and 11b show the time-height cross-sections of cross-calibrated precipitation short- and long-pulse 

reflectivity factors at their native resolution for the 7-June-2018 rain event. Figure 11c shows the precipitation long-pulse 435 

relative calibration offset for each matched short- and long-pulse observation. The relative calibration offsets shown in Fig. 

11c are the same samples used to produce Fig. 10 and indicate the limited height interval used in the comparison to avoid large 

reflectivity gradients near the radar bright band caused by melting particles.  

Estimating the relative calibration offsets for the three wind beams follows the same procedure used for estimating 

the precipitation long-pulse beam relative calibration offset. As expected, the calibration offsets for the oblique beams have 440 

more event-to-event variability than the vertically pointing wind mode beam and will be discussed further in the next section 

and shown in Fig. 14. 
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Figure 10. Reflectivity factor differences between precipitation long-pulse beam with 𝑪𝑪𝑷𝑷𝑷𝑷𝟏𝟏𝒂𝒂𝑷𝑷𝑷𝑷𝒗𝒗𝑷𝑷

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏𝒎𝒎𝟏𝟏 = 𝟏𝟏  [dB] and disdrometer 
calibrated precipitation short-pulse beam observations for the rain event on 7-June-2018. Observations are limited to heights 445 
between 800 and 2100 m and precipitation short-pulse beam reflectivity greater than 30 dBZ. (a) Histogram of reflectivity difference 
(long-pulse – short-pulse) and indicates relative calibration offset, (b) relative 2-dimensional count of reflectivity difference, (c) 
histogram of disdrometer calibrated precipitation short-pulse reflectivity. 
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Figure 11. Time-height cross-sections for the 7-June-2018 rain event. (a) Surface disdrometer calibrated precipitation short-pulse 450 
reflectivity factor 𝒁𝒁𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷, (b) cross-calibrated precipitation long-pulse reflectivity factor 𝒁𝒁𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏𝒎𝒎𝟏𝟏 with 𝑪𝑪𝑷𝑷𝑷𝑷𝟏𝟏𝒂𝒂𝑷𝑷𝑷𝑷𝒗𝒗𝑷𝑷

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏𝒎𝒎𝟏𝟏 = 15.5 
dB, and (c) the precipitation long-pulse relative calibration offset for each matched short- and long-pulse observation. Relative 
calibration offset is only calculated for 𝒁𝒁𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷 > 𝟑𝟑𝟏𝟏 dBZ and for heights between 800 and 2100 m.  

4 Results 

This section explores how the individual rain event precipitation short-pulse beam calibration constants varied over the 8-year 455 

record from 22-March-2011 to 18-August-2019. The variation of the relative calibration constants is examined as a function 

of ageing hardware and a function of changing radar hardware after equipment failures. 

4.1 Reference Beam Calibration: Event, Monthly, and 3-Month Intervals 

From 22-March-2011 to 18-August-2019, the precipitation short-pulse beam calibration constant 𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 was estimated 

on 340 days, each having at least 120 minutes of surface disdrometer reflectivity factor greater than 20 dBZ. Figure 12 shows  460 
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𝐶𝐶𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 for every valid precipitation event using black plus symbols. The calibration constant is approximately -50 dB at 

the beginning of this record in 2011 and then increases to about -35 dB near the beginning of 2015. There is an abrupt drop in 

calibration constant near the end of 2015, and then the calibration constant steadily increases until the end of this dataset in 

2019. Snow events were not included in the calibration procedure.  

 An increase in calibration constant, without changing operating parameters, indicates the radar sensitivity is 465 

degrading. Referring to equation (6), if the reflectivity factor is constant and the measured SNR decreases because of ageing 

radar hardware, then the calibration constant must increase. Thus, from early 2011 to mid-2015, the calibration was stable until 

early 2013, then increased approximate 15 dB over the next 2 years indicating a rapid change in calibration. There was a 

hardware failure in mid-2015.  

 The gaps in measurements in mid-2015 and early 2017 are when the radar was not operating. A new antenna phase 470 

shifter module was installed in September 2015, and the calibration constant dropped by about 10 dB relative to the old 

hardware. In mid-2017, a new radar transmitter and receiver module was installed and the mean noise level dropped by about 

7 dB (see Fig. 5), but the short-pulse beam calibration constant did not change significantly. The steady increase in calibration 

constant from 2016 through 2019 suggests an approximate 3 dB/year decrease in sensitivity for this modified radar. Though 

not documented publicly, similar decreasing sensitivity rates have been estimated in other NOAA UHF wind profilers and 475 

have been attributed to delamination of the fibreglass patch antenna (Ecklund et al., 1988). 

 The slow change in calibration constant between precipitation events suggests that the disdrometer-to-RWP 

calibration procedure could be performed using fixed time intervals instead of individual rain events. To test this hypothesis, 

calibration constants were determined using all rain events during 1-month and 3-month intervals (i.e., months of JFM, AMJ, 

JAS, and OND). The 1- and 3-month calibration constants are plotted in Fig. 12 using blue squares and red triangles, 480 

respectively. The blue and red vertical lines represent 1- and 3-month calibration constant standard deviations, with mean 

standard deviations over the 9-year record equal to 3.6 and 2.9 dB, respectively. These standard deviations represent variations 

due to spatiotemporal mismatch of surface disdrometer and radar measurements, instantaneous measurement uncertainties of 

both instruments, as well as aging hardware over the sampling interval. 

 485 
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Figure 12. Precipitation short-pulse beam calibration constant 𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝟏𝟏𝑷𝑷𝑷𝑷 [dB] from March 2011 through July 2019 estimated using 
individual rain events (black plusses), 1-month interval (blue squares), and 3-month interval (red triangles). Vertical blue and red 
lines are +/- standard deviation for 1- and 3-month interval calculations, respectively. Mean standard deviations over the 9-year 
dataset were 3.6 and 3.0 dB for the 1- and 3-month intervals, respectively. 490 

4.2 Relative Calibration for each Hardware Calibration Period 

Since the radar operating parameters did not change during the 2011 to 2019 interval, variations in relative calibration constants 

will depend on changes to the radar hardware. This section examines how the precipitation long-pulse and wind mode relative 

calibration constants evolved with hardware changes. 

4.2.1 Changes in Precipitation Long-Pulse Relative Calibration Constant 495 

The relative calibration constants for the precipitation long-pulse beam were estimated for every day with at least 1000 

precipitation short- and long-pulse range gate samples between 800 and 2100 m range and with precipitation short-pulse 

reflectivity factor greater than 30 dBZ. The lower height limit of 800 m is to ensure the long-pulse beam observations are 

beyond the radar blind zone, and the 2100 m limit is to avoid reflectivity factor gradients near the melting layer. The 

precipitation long-pulse relative calibration constant was estimated for the 690 days meeting these criteria and are shown in 500 

Fig. 13 using black crosses. The dashed lines are the mean relative calibration values for each stable hardware interval labelled 

A through E (see Table 2). The relative calibration constant mean and standard deviation for each interval are listed in Table 

4.  
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Figure 13. Precipitation long-pulse beam relative calibration constant 𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏𝒎𝒎𝟏𝟏 [dB] from 22-March-2011 through 18-August-505 
2019 estimated using individual rain events (black crosses). Thick dashed lines are mean relative calibration constants (listed in 
Table 4) for stable hardware intervals labelled A through E as described in Table 2. 

 
Table 4. RWP relative calibration constants [dB] (standard deviation) relative to precipitation short-pulse mode 

      Precipitation          Wind Mode 510 

Period Start  End    Long-Pulse  BeamV  BeamA   BeamB 

A  22-March-2011  31-March-2014  14.5 (0.3)  

B  1-April-2014  14-July-2015  14.8 (0.3)  9.3 (0.7)  12.9 (3.1)  19.9 (2.3) 

C 25-Sept-2015  10-April-2017  14.5 (0.3) 8.7 (0.7)    7.8 (1.1)    6.5 (1.5) 

D  6-June-2017  10-March-2019  15.4 (0.7)  9.0 (0.9)    8.1 (2.6)    2.1 (2.9) 515 

E  11-March-2019  18-August-2019  15.5 (0.2) 

 

4.2.2 Changes in Wind Mode Relative Calibration Constants 

Similar to the conditions applied when estimating the precipitation long-pulse beam relative calibration constants, the wind 

mode beams were estimated for every day with at least 1000 range gate samples between 500 and 2100 m range and with 520 

precipitation short-pulse reflectivity factor greater than 30 dBZ. The wind mode has a shorter pulse length than the precipitation 

long-pulse beam, which enables valid wind observations down to 500 m. Figure 14 shows the daily relative calibration 

constants for the three wind beams (black crosses) with thick dashed lines representing the mean relative calibration constant 

for each hardware interval. The vertical beam relative calibration constant is fairly stable over the 2014 to 2019 observation 

period, with values listed in Table 4. There is more event-to-event variability in the oblique beam relative calibration constants 525 

compared to the vertical beam because there is more horizontal distance between the vertical pointing reference beam and the 
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oblique beams. A 14° off-vertical pointing angle causes approximately 250 m horizontal distance between the vertical beam 

and oblique beam at 1 km height. Aside from the larger event-to-event variability, the oblique beam mean relative calibration 

constants change for each radar hardware configuration. This is probably due to changes in the antenna phase shift module 

that controls the antenna beam pattern and pointing direction. Table 4 lists the mean oblique beam relative calibration constants 530 

for each hardware configuration. 

 
Figure 14. Relative calibration constants for wind mode for every rain event from March 2014 through February 2019. (a) Vertical 
beam (beamV, az: 22°, el: 90°), (b) oblique beam (beamA, az: 22°, el: 76°), and (c) oblique beam (beamB, az: 292°, el: 76°).  Thick 
dashed lines are mean relative calibration constants (listed in Table 4) for stable hardware intervals labelled B, C, and D as described 535 
in Table 2.   

5 Conclusions 

This work describes a procedure to calibrate a UHF band radar wind profiler (RWP) reflectivity factor to surface disdrometer 

observations. The revised procedure builds on the method described in Tridon et al. (2013) by correcting the recorded Doppler 

velocity power spectra due to Nyquist velocity aliasing and coherent integration bias effects before recalculating the spectrum 540 



28 
 

moments. The revised method also calibrates the oblique pointing RWP beams that are used to measure horizontal wind 

motions. 

 This cross-calibration procedure uses precipitation measurements from one instrument (i.e., surface disdrometer) as 

the reference dataset and then calibrates another instrument (i.e., the RWP) using measurements from the same precipitation 

event. This method cannot identify any biases in measurements from either instrument and the difference in measurements 545 

also includes instrument measurement uncertainties. To address biases, the calibration procedure is structured so that a single 

calibration constant establishes the disdrometer-to-radar calibration. Then, if future comparisons with another instrument 

determine the disdrometer-to-radar calibration is biased, a simple offset can be added to the radar reflectivity factor. 

Regarding measurement uncertainties, the standard deviation of the reflectivity factor difference (i.e., 

𝑠𝑠𝑠𝑠[𝑍𝑍𝐼𝐼𝑠𝑠𝑚𝑚𝑐𝑐𝑁𝑁𝑝𝑝𝑆𝑆ℎ𝑐𝑐𝑠𝑠𝑝𝑝 − 𝑍𝑍𝑇𝑇𝑁𝑁𝑝𝑝𝑒𝑒𝑠𝑠𝑐𝑐𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑠𝑠]) includes variability due to different measurement technologies and due to spatiotemporal 550 

differences between measurements made at the surface and 500 m above the ground. The radar-to-disdrometer reflectivity 

factor difference standard deviations were similar in magnitude (i.e., approximately 2 dB) to standard deviations from side-

by-side surface disdrometers measuring the same precipitation event (Tapiador et al., 2017; Wang et al., 2021). Thus, the 

reflectivity factor difference standard deviation is a relative measure indicating the quality of the comparison and is larger than 

a calibration constant uncertainty.  555 

 The calibration procedure determined an absolute calibration constant for the precipitation short-pulse beam, which 

was then called the “reference” beam. The relative calibration between this reference beam and all other beams was determined 

enabling all beams to be cross-calibrated to the surface disdrometer, including the RWP oblique pointing beams. The horizontal 

distance between the vertically pointing reference and oblique pointing beams caused an increase in event-to-event variability 

in the oblique beam relative calibration constant, as the two radar beams were observing different regions of the same 560 

precipitation event.  

 The precipitation short-pulse calibration constant changed over the 8-year dataset. The calibration constant tended to 

increase over time, corresponding to a decrease in radar sensitivity, consistent with hardware degrading over time. Referencing 

equation (6), degrading hardware will produce smaller 𝑆𝑆𝑁𝑁𝑆𝑆 for the same radar reflectivity factor, which is compensated with 

a larger calibration constant. The radar sensitivity increased significantly (i.e., over 10 dB) when degraded hardware was 565 

replaced with new hardware. Between early 2013 and mid-2015, the RWP sensitivity decreased by about 15 dB, for a rate of 

about 7 dB/year, before a hardware failure in mid-2015. Between 2016 and 2019, the RWP radar sensitivity decreased at a rate 

of about 3-to-4 dB/year. The approximate 2 dB calibration standard deviation and the slow change in radar sensitivity implies 

that the calibration constant can be computed using many rain events over a 1- or 3-month interval.  

 To promote the calibration of radar wind profilers and other radar systems, the processing codes used in this study 570 

are available on a public GitHub repository (Williams, 2023a) and a public Zenodo repository (Williams, 2023b). This code 

is being incorporated into the ARM RWP processing suite with the intent of ARM RWP spectra being reprocessed using this 

calibration procedure. Also, the 8-years of data processed in this study are available on the ARM Archive as a PI product 

(Williams, 2023c).  
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Appendix A 575 

This appendix describes the processing steps applied to a spectra profile needed to account for Nyquist velocity aliasing 

(Section 3.1.1), coherent integration bias (Section 3.1.2), and calculating the spectrum moments (Section 3.1.3). As discussed 

in Section 3.1.1, spectrum power from targets with true radial velocities greater than the Nyquist velocity will appear to be 

moving in the opposite direction due to velocity aliasing. The Python code provided in public repositories eliminates velocity 

aliasing by extending the original spectrum from 0 to 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 to the velocity range −2𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 to −𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (this segment is 580 

called “a” in Fig. 2) and copying the segment from −𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 to 0 to the velocity range 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 to 2𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 (this segment is 

called “b” in Fig. 2). One problem created by copying and appending the original spectrum to itself is that the new spectrum 

now has two peaks with the same maximum magnitude. One peak is in the ±𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 velocity range and the other peak is in 

one of the two extended spectrum velocity ranges. To determine which peak to process, the provided Python code utilizes a 

prior velocity 𝑉𝑉𝑝𝑝𝑠𝑠𝑁𝑁𝑐𝑐𝑠𝑠 derived from the previous range gate to select one of the two peaks, which ensures continuity between 585 

range gates.  

Figure A1 shows the flow diagram to process one spectra profile as implemented in the provided Python code. The 

processing diagram starts in box 1 in the upper left corner of Fig. A1. In box 2, the original spectrum at the lowest range gate 

is read into memory. The prior velocity 𝑉𝑉𝑝𝑝𝑠𝑠𝑁𝑁𝑐𝑐𝑠𝑠 is set to zero (box 3), which effectively assumes the spectrum velocity peak is 

not velocity aliased in this first range gate. The original spectrum is extended to ±2𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝 in box 4. Box 5 identifies the two 590 

peaks in the extended spectrum. Using 𝑉𝑉𝑝𝑝𝑠𝑠𝑁𝑁𝑐𝑐𝑠𝑠 as the reference, the peak closest to 𝑉𝑉𝑝𝑝𝑠𝑠𝑁𝑁𝑐𝑐𝑠𝑠 is selected for further processing (box 

6). The integration limits 𝑣𝑣𝑝𝑝𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝 and 𝑣𝑣𝑚𝑚𝑛𝑛𝑒𝑒 define the region containing signal power and are needed to estimate the spectrum 

moments (e.g., see equation 1). Box 7 estimates the integration limits by starting at the spectrum peak and moving down both 

sides of the peak until the spectrum magnitude drops below the mean noise level 𝑛𝑛� (Carter et al., 1995). Box 8 performs the 

time-domain averaging (TDA) correction, which is only applied to the signal power above  𝑛𝑛� between the integration limits. 595 

The spectrum moments are calculated in box 9 and the prior velocity 𝑉𝑉𝑝𝑝𝑠𝑠𝑁𝑁𝑐𝑐𝑠𝑠 is updated in box 10. If the current range gate is 

not the last range gate in the profile (box 11), then the next range gate original spectrum is read into memory (box 12) and 

processing continues in box 4. If the current range gate is also the last range gate in the profile (box 11), then box 13 is executed 

and estimates the adjusted 𝑆𝑆𝑁𝑁𝑆𝑆 at all range gates using equation (5). Box 14 estimates the radar reflectivity factor at all range 

gates. The next profile is selected in Box 15 and processing resumes in box 1.         600 
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Figure A1. Flow diagram to process one spectra profile as implemented in the provided Python code.    605 

Code availability. The Python code that processes the raw Doppler velocity power spectra is available on GitHub: 

https://github.com/ChristopherRWilliams/RWP_Python_Moments Williams, 2023a). This Python source code is also stored 

in an open repository with digital object identifier https://doi.org/10.5281/zenodo.7734427 (Williams, 2023b).   

 

Data availability. All raw observations used in this study are available on-line using the DOE ARM data discovery tool:  610 

http://dx.doi.org/10.5439/1025128, http://dx.doi.org/10.5439/1025129, http://dx.doi.org/10.5439/1025136, 

http://dx.doi.org/10.5439/1025137, and http://dx.doi.org/10.5439/1025315. The calibrated RWP moments produced in this 

study are available on the DOE ARM archive as a PI Product at this link: https://iop.archive.arm.gov/arm-iop/0pi-

data/williams/rwp-cal (Williams, 2023c).  
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