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Abstract. Many large-scale subglacial drainage models im-
plicitly or explicitly assume that the distributed part of the
drainage system consists of subglacial cavities. Few of these
models, however, consider the possibility of hydraulic dis-
connection, where cavities exist but are not numerous or5

large enough to be pervasively connected with one another
so that water can flow. Here I use a process-scale model
for subglacial cavities to explore their evolution, focusing
on the dynamics of connections that are made between cavi-
ties. The model uses a viscoelastic representation of ice and10

computes the pressure gradients that are necessary to move
water around basal cavities as they grow or shrink. The lat-
ter model component sets the work here apart from previous
studies of subglacial cavities and permits the model to repre-
sent the behaviour of isolated cavities as well as of uncavi-15

tated parts of the bed at low normal stress. I show that con-
nections between cavities are made dynamically when the
cavitation ratio (the fraction of the bed occupied by cavities)
reaches a critical value due to decreases in effective pressure.
I also show that existing simple models for cavitation ratio20

and for water sheet thickness (defined as mean water depth)
fail to even qualitatively capture the behaviour predicted by
the present model.

1 Introduction

Much of the interest in subglacial drainage is motivated by25

the effect of pressurized subglacial water on glacier slid-
ing (Iken and Bindschadler, 1986): basal friction is reduced
when basal water pressure is high or, more precisely, when
basal effective pressure is low. The relationship between ef-
fective pressure and basal friction is called the basal friction30

law: a parameterization that computes mean basal drag as a
function of basal effective pressure, sliding velocity, and pos-
sibly other variables that can be computed by a large-scale
model (such as mean cavity size; see e.g. Hewitt, 2013, and
Gilbert et al., 2022). First-principles derivations of friction 35

laws (e.g. Weertman, 1957; Nye, 1969; Kamb, 1970; Fowler,
1981, 1986; Schoof, 2005; Gagliardini et al., 2007; Helanow
et al., 2020, 2021) average stresses over a local process scale,
such as that involved in the ploughing of clasts through till or
the flow of ice over bed obstacles, to compute mean drag at 40

the glacier bed.
The basal effective pressure that appears in the friction law

is likewise defined as a local spatial average of the difference
between local normal stress at the bed and basal water pres-
sure. At the local process scale, actual normal stresses are 45

heterogeneous but have a well-defined average that is gener-
ally close to local ice overburden. By contrast, basal water
pressure is generally not assumed to be heterogeneous in the
friction law. A spatially smoothly varying basal water pres-
sure will result if there is a pervasive, connected subglacial 50

drainage system that causes pressure differences to equili-
brate rapidly.

A growing body of observational evidence, however, sug-
gests that hydraulic isolation of significant parts of glacier
beds is a common phenomenon, even during the summer 55

melt season. Moreover, different parts of the glacier bed can
switch back and forth between being connected and isolated
(Fudge et al., 2008; Andrews et al., 2014; Rada and Schoof,
2018). While not included in most of the current generation
of widely used subglacial drainage models (Werder et al., 60

2013; Sommers et al., 2018), there have been some recent
attempts to account for hydraulic isolation (Hoffman et al.,
2016; Rada and Schoof, 2018). In the framework of modern
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“distributed” drainage models, dynamic changes in connec-
tivity have to be formulated using the primary model vari-
ables, usually effective pressure N and a mean ice–bed gap
width (or “water sheet thickness”) h̄. The model of Rada and
Schoof (2018) uses a discrete network formulation, but its5

distributed equivalent is a distributed water model (Hewitt,
2011, 2013; Schoof et al., 2012; Werder et al., 2013) in which
hydraulic connection is established if sheet thickness h̄ ex-
ceeds a threshold hc: that is, a finite water flux through the
sheet occurs if10

h̄ > hc, (1)

and h̄ is usually assumed to evolve according to a model of
the form (Hewitt, 2011; Schoof et al., 2012)

∂h̄

∂t
= vo(h̄,ub)− vc(h̄,N). (2)

Here, ub is sliding velocity and vo represents opening of the15

water sheet due to sliding over bed roughness, while vc is a
creep closure term. (Note that most drainage models dispense
with the overbar on h̄; I retain it here because I reserve h for
the local ice–bed gap width later.)

The justification for such a treatment of hydraulic con-20

nection is that small cavities can exist in the lee of bed
bumps without being sufficiently connected to each other
to allow water flow, as in a percolation problem (Hammer-
sley and Welsh, 1980). While appealing, this simple treat-
ment has not been tested against a process-scale model of25

subglacial cavity formation. In fact, existing models of cav-
ity formation (Fowler, 1986; Schoof, 2005; Gagliardini et al.,
2007; Helanow et al., 2020, 2021; Stubblefield et al., 2021;
de Diego et al., 2022, 2023) generally assume that the under-
lying bed itself is highly permeable and provides easy access30

for water to be injected into any part of the bed where nor-
mal stress in the ice has dropped to the water pressure in an
ambient (but not otherwise modelled) drainage system.

The present paper is part of an effort to dispense with that
assumption of a perfectly permeable bed and instead study35

how cavities can expand dynamically along the ice–bed inter-
face from an access point or set of access points where water
is injected through the bed at prescribed pressure by an am-
bient drainage system. In a companion paper (Schoof, 2023),
henceforth referred to as Part 1, I have used a modification of40

existing steady-state cavity models in two dimensions (that
is, with only one horizontal dimension) to study cavity ex-
pansion under quasi-steady conditions. That is, Part 1 as-
sumes an ambient drainage system with a prescribed effec-
tive pressureN that varies slowly enough in time for the cav-45

ity roof to always be in a steady state.
Based on that assumption, Part 1 shows that connections

between the ambient drainage system and previously uncavi-
tated parts of the bed are made in a quasi-steady state at a set
of critical effective pressures. The system of cavities also ex-50

hibits hysteresis. If cavity enlargement past a bed protrusion

on its downstream side has occurred previously and cavity
size has shrunk subsequently due to an increase in ambient
effective pressure, then reconnection to the now isolated pre-
existing cavities happens at a different set of higher effective 55

pressure: reconnecting to an existing downstream cavity is
easier than creating that downstream cavity by enlarging the
upstream cavity past the bed protrusion separating the two.

In a time-dependent system, cavity connections are likely
to be more complicated than the quasi-steady model sug- 60

gests. To study dynamic cavity connections, I complement
the work in Part 1 with a generalized dynamic model. Ice is
treated as viscoelastic to account for the possibility that cav-
ity expansion could be very rapid and occur on timescales
that are short compared with the Maxwell time of ice. In ad- 65

dition, I explicitly account for the water pressure gradients
that are necessary to move water around a cavity, in par-
ticular, into any ice–bed gaps that are newly created when
rapid cavity enlargements occur. By using a mass conserva-
tion model for water with a water flux that vanishes when the 70

ice–bed gap size goes to zero, the dynamic model not only
allows the process of cavity expansion to be captured dynam-
ically, but also allows for the dynamic evolution of isolated
cavities.

The generalized model in the present paper is formulated 75

in three dimensions. In principle, this avoids another of the
limitations of the work in Part 1. Because the MATLAB code
I have written is not suitable for full parallelization, I have
not been able to run the model in three dimensions except
for very coarse meshes, leaving an obvious avenue for future 80

research.
The paper is structured as follows: in Sect. 2.1, I formu-

late a basic model for viscoelastic ice flow over a rigid bed,
with a dynamically evolving water layer separating ice and
bed. The model is reduced using the assumption of small bed 85

slopes in Sect. 2.2, while a numerical method for the reduced
model is described in Sect. 2.3. Steady-state numerical solu-
tions of the dynamic model are compared with solutions of
the simpler viscous steady-state model in Part 1 in Sect. 3.1.
The dynamic approach to steady state is studied in Sect. 3.2, 90

with dynamic cavity connections considered in greater de-
tail in Sect. 3.3. The evolution of overpressurized cavities (in
which effective pressure is negative) is described in Sect. 3.4,
and the response of isolated cavities to temporal variations in
forcing effective pressure is studied in Sect. 3.5. The implica- 95

tion of these results for large-scale drainage models and field
observations is discussed in Sect. 4.

2 A viscoelastic dynamic model

2.1 The basic model

The model in Part 1 is based on the approximation of small 100

bed slopes (Nye, 1969; Kamb, 1970; Fowler, 1981). I will
eventually return to that small-slope approximation but first
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Figure 1. Definitions used in the paper. Beige is used throughout the
paper to indicate the connection portions P of the bed. h is used here
to denote the ice–bed gap, which will often be equal to water depth
hw, but can differ if water pressure vanishes, and a partially vapour-
filled cavity forms. In this figure, the large cavity overlaps with the
connected bed portion P : water freely enters or leaves the cavity at
a pressure prescribed by the ambient drainage system through P .

develop a more general three-dimensional formulation. I use
a Cartesian coordinate system (x1,x2,x3) with the x3 axis
oriented perpendicularly to the mean glacier bed and x1 in
the mean downslope direction (Fig. 1), and I denote time by
t . The rheology of ice is treated here as an elastically com-5

pressible upper-convected Maxwell fluid, in which stress σij
is related to strain rate Dij as (e.g. Bird, 1976)

(1+ ν)δikδj l − νδij δkl
E

O
σ kl +

1
2η

(
σij −

1
3
σkkδij

)
=Dij , (3)

where the superscript O denotes the usual upper-convected
derivative10

O
σ ij=

∂σij

∂t
+ uk

∂σij

∂xk
−
∂ui

∂xk
σkj −

∂uj

∂xk
σik, (4)

and (u1,u2,u3) denotes the velocity field. Strain rate is de-
fined in terms of velocity through

Dij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (5)

Here, E is Young’s modulus, ν is Poisson’s ratio, η is vis-15

cosity, and δij is the Kronecker delta. In response to abrupt
changes in stress (with large ∂σkl/∂t), the rheology reduces
to

(1+ ν)δikδj l − νδij δkl
E

∂σkl

∂t
=Dij ,

as the strain due to the change in stress remains small over20

such short intervals, and hence the advection terms in the
upper-convected derivative are small compared with the time
derivative. Integrating over the time interval over which the
stress change is imposed, it is then clear that the material be-
haves temporarily as a linear elastic material subject to a vis-25

cous pre-stress. If the change in stress occurs over an interval
(ti, tf), then the change in stress is related to the correspond-

ing linearized strain as

(1+ ν)δikδj l − νδij δkl
E

[
σij (x, tf)− σij (x, ti)

]
= εij (x)=

tf∫
ti

Dij (x, t)dt.

Conversely, to emulate Glen’s law (Cuffey and Paterson, 30

2010) over long timescales, when the derivative
O
σ kl becomes

negligible, one would put η = B|σ |1−n/2TS1 , where n and
B are the usual exponent and coefficient in Glen’s law, and
τ is the usual second invariant of the deviatoric stress tensor
stress tensor, 35

σ =
√
σijσij/2.

TS2 In this paper, I will continue to focus on a simpler version
of the model with constant viscosity as in Part 1.

I assume ice occupies a domain defined by x3 >

b(x1,x2)+h(x1,x2, t), where b is a fixed bed elevation and 40

h≥ 0 is an ice–bed gap thickness that can evolve over time.
Here, b is identical to its meaning in Part 1 (as shown in Fig. 1
therein), while the sum of bed elevation and gap thickness
b+h is the cavity roof elevation hC in Part 1. I assume that
the domain represents a boundary layer near the base of the 45

glacier (Fowler, 1981). Consequently, I assume as in Part 1
that gravitational body forces contribute negligibly to stress
compared with overburden, and conservation of momentum
can be written in the form
∂σij

∂xj
= 0, (6) 50

ignoring inertial effects. Conservation of mass requires

∂ρ

∂t
+
∂(ρui)

∂xi
= 0. (7)

In common with typical models in elasticity, this equation
can be used a posteriori to compute variations in density due
to elastic compression of the material, but it is not necessary 55

to compute the velocity field.
At the lower boundary of the ice, x3 = b(x1,x2)+

h(x1,x2, t), I assume that there is free slip regardless of
whether the macroscopic ice–bed separation h vanishes or
not. In the absence of an ice–bed gap in the model, I assume 60

that interfacial premelting (Dash et al., 1995) still generates a
microscopic film that ensures negligible shear stress; this is a
standard assumption of basal sliding theory. Denoting by ni
the unit normal to the lower boundary of the ice, this implies

65

(δij − ninj )σjknk = 0. (8)

The lower boundary also satisfies a kinematic boundary con-
dition of the form

u3 =
∂h

∂t
+ u1

∂(b+h)

∂x1
+ u2

∂(h+ b)

∂x2
, (9)
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where melt is taken to be negligible.
To close the problem, I require one additional boundary

condition. I consider two alternatives. First, I consider the
standard assumption in dynamic models of subglacial cav-
ity formation, namely that the bed is rigid yet highly perme-5

able, with a prescribed water pressure p0
w everywhere. That

assumption is also part of the steady-state model by Fowler
(1986) and Schoof (2005) that I previously generalized in
Part 1. Normal stress cannot drop below that water pressure,
since water forces its way between ice and bed and opens a10

gap or cavity. A fully permeable bed gives a boundary con-
dition on normal stress in the following either–or form (Du-
rand et al., 2009; Stubblefield et al., 2021; de Diego et al.,
2022, 2023):

−σijninj =p
0
w if h > 0 or

(
h= 0 and

∂h

∂t
> 0

)
, (10a)15

−σijninj ≥p
0
w if h=

∂h

∂t
= 0, (10b)

signifying the possibility that compressive normal stress can
exceed water pressure where ice is in contact with the bed,
and a gap is not about to form: put more simply, in contact
areas, normal velocity is prescribed so long as compressive20

normal stress exceeds water pressure, or else normal stress
is prescribed if the ice is about to detach from the bed, and
the inequality constraints serve to determine which boundary
condition applies where (see also Stubblefield et al., 2021).
By contrast, in areas with an ice–bed gap, normal stress is al-25

ways prescribed. Also note that the model here is formulated
in terms of total Cauchy stress, while Part 1 uses a reduced
pressure, from which overburden has been subtracted; I in-
troduce that reduction of stress in the next section.

The boundary conditions above do not permit the forma-30

tion of hydraulically isolated cavities or of underpressurized
contact areas that remain hydraulically isolated as in Part 1.
As an alternative to the boundary conditions (10), I there-
fore consider a bed that is perfectly impermeable except in
specific locations at which water from an ambient drainage35

system can enter or exit the ice–bed gap. As in Part 1, I as-
sume that there is a (typically small) highly permeable por-
tion P of the bed through which water can freely flow while
remaining at the pressure of the ambient drainage system.
Consequently, the boundary conditions (10) hold on P (or,40

strictly speaking, at the upper boundary of P , but since I do
not model water flow through the bed, I will continue to state
conditions “on P ”, meaning the interface of the permeable
bed with a cavity or the lower boundary of the ice). For the
remainder of the bed outside of P , I assume that an active45

hydraulic system inside the ice–bed gap redistributes water.
Specifically, I assume that there is a water column of

evolving height hw inside the ice–bed gap, constrained by
0≤ hw ≤ h. Assuming negligible deviatoric normal stress in
the water column, local force balance demands that water50

pressure pw in that water column (not to be confused with
the prescribed ambient drainage system pressure p0

w, which

generally differs from pw) is given by normal stress at the
bed,

−σijninj = pw. (11a) 55

Outside of the permeable portion of the bed, there is no water
supply, so pw is not prescribed a priori, but the water column
height satisfies a depth-integrated mass conservation equa-
tion of the form

∂hw

∂t
+∇h · q = 0, (11b) 60

which should be understood in weak form, permitting mass-
conserving shocks where necessary. Here q = (q1,q2) is a
two-dimensional flux and ∇h = (∂/∂x1,∂/∂x2) is the corre-
sponding two-dimensional divergence operator. I assume that
the ice–bed gap is shallow (an assumption that I formalize in 65

the next section), and I therefore relate the depth-integrated
water flux q to water column height hw and an along-bed
gradient in water pressure pw(x1,x2, t) as

q =−K (hw, |∇hpw|)∇hpw+
1
2
uhhw, (11c)

where uh = (u1,u2) is the horizontal component of velocity 70

at the base of the ice, and K is a two-dimensional “gap per-
meability”, which I take to be give by the Darcy–Weisbach or
Manning–Gauckler power-law formulation (see e.g. Werder
et al., 2013), of the generic form

K(hw, |∇hpw|)= k0h
α
w |∇hpw|

β−1 , (11d) 75

with α > 1, β = 1/2, and k0 > 0 constant. Note that the
above also covers the case of laminar Poiseuille flow if α = 3
and β = 1. The second term in Eq. (11c) is the small contri-
bution of shear to water flux.

Note that Eq. (11b) ignores the compressibility of water, 80

while ice is allowed to be elastically compressible by Eq. (3),
despite the bulk moduli being comparable (Neumaier, 2018).
This is standard practice in hydrofracture models, whose va-
lidity hinges on the assumption of a shallow water layer: in
that case, the displacement of the ice–water boundary that 85

results from compression of the water column is small com-
pared with the displacements that result from compression in
the ice, simply because compressive strain in water is compa-
rable to its counterpart in the ice, but the resulting displace-
ment (being an integral over strain) is much smaller than in 90

the ice.
To avoid the negative fluid pressure singularities common

to hydrofracture models (Spence et al., 1985; Tsai and Rice,
2010, 2012), I permit a “fluid lag” in the form of a vapour-
filled space between water and ice when water pressure drops 95

to zero (or, more strictly, the triple-point pressure of water,
which I treat as negligibly small compared with stresses in
the ice). This means that fluid depth hw and ice–bed gap size
h are related through one of the following two possibilities:

either 0≤ hw =h and pw > 0 (11e) 100
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or 0≤ hw ≤h and pw = 0, (11f)

and pw cannot be negative.
The first possibility, condition (11e), states that there can-

not be a vapour-filled gap between ice and water (of thickness
h−hw > 0) if fluid pressure is above the triple-point pressure5

in the sense that ice, water, and vapour cannot then coex-
ist. This is the default state and corresponds to a completely
fluid-filled ice–bed gap, as is the case in the canonical picture
of subglacial cavities. By the second condition (11f), a water-
filled gap is possible but need not exist at the triple-point10

pressure; given the substantial overburden pressure, this is
only likely to be reached near the tips of cavities that are in
the process of expanding rapidly (e.g. Tsai and Rice, 2010).

As far-field boundary conditions, I consider prescribed
normal and shear stress in the form15

−σ33→ pi, σ13→ τb, σ23→ 0 (12)

as x3→∞, where pi is overburden and τb is the usual “basal
shear stress” of the theory of basal sliding (Fowler, 1981).
In addition, I assume the domain is laterally periodic, with
period a in both horizontal directions.20

The basal boundary conditions for the classical cavitation
problem with a permeable bed consist of Eqs. (8), (9), and
the complementarity condition (10). The stress and normal
velocity conditions (8) and (10) are sufficient to close the
force balance problem (6) (see de Diego et al., 2022, 2023;25

Stubblefield et al., 2021, for the equivalent purely viscous
problem), while the kinematic boundary condition (9) serves
to determine the gap width variable h that appears in the con-
tact conditions (10).

By contrast, the equivalent set of boundary conditions30

for an impermeable bed given above introduces local fluid
pressure pw and fluid depth hw as variables defined at the
boundary, in addition to the gap width h. A simple count-
ing argument shows that Eqs. (8) and (9) combined with
Eqs. (11b)–(11f) close the problem: the force balance rela-35

tion in Eq. (6) requires three boundary conditions, which are
supplied by Eqs. (8) and (11a). The fluid pressure pw fea-
tured in Eq. (11a) is determined through the mass conserva-
tion problem in Eq. (11b)–(11c). The latter constitute a single
equation in fluid depth hw and pressure pw, where hw and40

gap width are determined through the kinematic boundary
condition (9) and whichever one of the two conditions (11e)–
(11f) applies, leading to a total of three equations to specify
the three variables pw, hw, and h.

The counting argument of the previous paragraph is of45

course simplistic: the determination of pw, hw, and h cou-
ples back to the force balance problem through the velocity
components in the kinematic boundary condition. Also note
that isolated cavities (the object of our study) are only present
if the gap width h is either zero or extremely small between50

those cavities and the permeable bed portion P . The formula-
tion above incorporates such regions provided the permeabil-
ity K vanishes when fluid depth hw does (as it must where

the gap vanishes, since hw ≤ h). In the interior of a region
where the ice–bed gap vanishes (that is, where ice is in con- 55

tact with the bed), water flux vanishes and hence ∂hw/∂t = 0
from Eq. (11b). Note that, since there is no water column
present in that case, the variable pw does not represent an
actual fluid pressure in such regions but simply equals the
compressive normal stress. 60

From the gap width relations (11e)–(11f), there are then
two possibilities in the interior of regions where hw = 0: ei-
ther h remains at zero and the kinematic boundary condi-
tion (9) reduces to a condition of vanishing normal veloc-
ity, so u3 = u1∂b/∂x1+ u2∂b/∂x2 and ice remains in con- 65

tact with the bed, or, alternatively normal stress drops to the
triple-point pressure and a vapour-filled cavity forms. The
combination of Eqs. (8), (9), and (11b)–(11f) can therefore
describe not only the physics of a water layer separating ice
and bed, but also the physics of ice–bed contact areas as re- 70

quired.
In practice, only very small pressure gradients should be

required in order to move water fast enough to fill the ice–
bed gap as the latter evolves due to ice flow. That situation
corresponds to the limit of a large gap permeability K (or 75

better, of large k0): the flux relation (11c) then simply serves
at leading order to impose a spatially uniform water pressure
in each basal cavity, as is also the case for the classical cavity
model using the permeable-bed boundary conditions (10). In
that case, shear in the water column also plays an insignifi- 80

cant role, and I retain the second term uhhw/2 in the defini-
tion of flux in Eq. (11c) here simply to make the switch to the
moving coordinate frame employed in Sect. 2.3 more self-
consistent (since an advective term will automatically appear
under the change to a moving frame). 85

2.2 Shallow bed topography

Significant simplifications can be obtained by considering
flow over “shallow” bed roughness, meaning a bed b(x1,x2)

with small slopes (see e.g. Nye, 1969; Kamb, 1970; Fowler,
1986; Schoof, 2005). To obtain a simplified model system- 90

atically, I sketch the required non-dimensionalization here,
building primarily on the seminal work of Fowler (1981).
Defining a horizontal length scale [x] for typical bed rough-
ness wavelengths and a scale [b] for the amplitude of rough-
ness leads to a slope scale 95

ε =
[b]

[x]
, (13)

and the basis of the approximations that follow will be ε� 1.
With a sliding velocity scale ub for motion parallel to the
bed, I can define a scale for velocity variations induced by
deformation around bed topography as [u] = εub and a cor- 100

responding (viscous) stress scale as [σ ] = η[u]/[x]. A nat-
ural choice of timescale is the advective [t] = [x]/ub, and I
assume that there is a density scale [ρ] given by the density
of ice subject to zero stress.
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With these scales in hand, I can define dimensionless vari-
ables as

(x1,x2,x3)= [x](x
∗

1 ,x
∗

2 ,x
∗

3 ),

(u1,u2,u3)= ub(ū, v̄,0)+ [u](u∗1,u
∗

2,u
∗

3),

pw = pi + [σ ]p
∗
n, σij =

{
−pi + [σ ]σ

∗

33 if i = j = 3,
[σ ]σ ∗ij otherwise,

ρ = [ρ]ρ∗

b = [b]b∗, h= [b]h∗, hw = [h]h
∗
w. (14)

In addition, I obtain the following dimensionless parameters

κ =
[t]K([b], [σ ]/[x])[σ ]

[b][x]2
=
k0[t][b]

α−1
[σ ]1/2

[x]3/2
,

τM =
2η
E[t]

, τ ∗b =
τb

ε[σ ]
, N∗ =

pi −p
0
w

[σ ]
, 60 =

pi

[σ ]
. (15)5

Here τM is a dimensionless Maxwell time, κ is a dimen-
sionless ice–bed gap permeability, and τ ∗b is a dimensionless
basal shear stress, while N∗ is the usual (but scaled) effec-
tive pressure defined as the difference between overburden
and the water pressure in the “ambient” drainage system to10

which the bed is connected in the permeable regions P . Note
that p∗n is a reduced normal stress (equivalent to the Lagrange
multiplier λ in de Diego et al., 2022), defined as the differ-
ence between local normal stress pw (the latter only being
equal to water pressure where water is present between ice15

and bed as discussed in Sect. 2.1) and overburden. Where
water is present, p∗n is then the negative of the effective pres-
sure defined in terms of local rather than ambient drainage
system water pressure.

Going forward, I will assume that ε� 1. In addition, the20

Maxwell time τM� 1 is short (so that the ice for the most
part behaves as a viscous material, as is the case in exist-
ing models for subglacial cavity formation) and permeability
κ � 1 is large (so that water pressure in a connected portion
of the ice–bed gap rapidly equalizes, as is also assumed in25

existing models, which do not attempt to model the dynamic
redistribution of water inside cavities). However, unlike ε,
both τM and κ will be explicitly retained in the model to cap-
ture rapid changes in ice–bed gap during cavity connection
events.30

I omit the asterisk decorations immediately for improved
readability. To an error of O(ε), the model becomes

τM
[
(1− ν)δikδj l − νδij δkl

]( ∂σkl
∂t
+ ū

∂σkl

∂x1
+ v̄

∂σkl

∂x2

)
+ σij =

∂ui

∂xj
+
∂uj

∂xi
for x3 > 0, (16a)

∂ρ

∂t
+ ū

∂ρ

∂x1
+ v̄

∂ρ

∂x2
= 0 for x3 > 0, (16b)

∂σij

∂xj
= 0 for x3 > 0, (16c)35

σi3 = 0 for i = 1,2 at x3 = 0, (16d)
−σ33 = pn, at x3 = 0, (16e)

∂h

∂t
+ ū

∂(b+h)

∂x1
+ v̄

∂(h+ b)

∂x2
= u3 at x3 = 0, (16f)

with two possible closures. The first, which I refer to as a
permeable bed, puts 40

pn =−N if h > 0 or
(
h= 0 and

∂h

∂t
> 0

)
(17a)

pn ≥−N if h=
∂h

∂t
= 0 (17b)

at x3 = 0. The second, which I refer to as an impermeable
bed, imposes the boundary conditions (17) only for points
(x1,x2) ∈ P (that is, for points that lie in a part of the bed to 45

which the ambient drainage system has access). Flow of wa-
ter occurs only through the ice–bed gap otherwise, satisfying

∂hw

∂t
+∇h · q = 0, (18a)

q =−κhαw |∇hpn|
−1/2
∇hpn+

1
2
hwū, (18b) 50

hw = h if pn >−60, (18c)
hw ≤ h if pn =−60. (18d)

with pn ≥−60 and ū= (ū, v̄). The far-field boundary con-
ditions are

σi3→ 0 for i = 1,2,3 as x3→∞. (19) 55

Note that the condition σ13→ 0 imposed here does not con-
flict with the alternative condition u1→ 0 used, for instance,
in Schoof (2005): in the purely viscous model in the lat-
ter paper, σ13 behaves as ∂u1/∂x3 in our present notation,
and σ13→ 0 implies u1→ constant. Setting that constant to 60

zero simply removes the indeterminacy of u1 in the model
above (consisting of Eqs. 16–19), which arises because the
latter remains invariant under adding a constant to u1: that
indeterminacy needs to be resolved by going to higher or-
der but does not affect the leading-order sliding velocity 65

since u1 is a small correction to the sliding velocity ū since
[u]/ub = ε� 1. The total velocity is ub+ εu1 and therefore
remains equal to ub at leading order regardless of what finite
value u1 approaches as x3→∞.

As in other models of basal sliding with small-slope bed 70

roughness (Nye, 1969; Kamb, 1970; Fowler, 1981, 1986;
Schoof, 2005), the basal shear stress τb is a higher-order cor-
rection to the basal stress field: a relationship between the ap-
plied shear stress (τb,0) and the sliding velocity (ū, v̄) (that
is, a friction law) can be computed by considering overall 75

force balance at first order in ε. Doing so leads to the follow-
ing integral constraints (Fowler, 1981):

τb =−
1
a2

a∫
0

a∫
0

σ33
∂(h+ b)

∂x1
dydx,

0=
1
a2

a∫
0

a∫
0

σ33
∂(h+ b)

∂x2
dydx, (20)
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where a is the scaled period of the bed. While this is the
main objective of many treatments of basal cavitation, my
main goal here is to understand the evolution of basal con-
nectivity instead, and I forego the computation of basal drag
as a function of sliding velocity, simply imposing a constant5

sliding velocity: to that end, I also assume that sliding only
occurs in the x1 direction and put v̄ = 0.

At first sight, this may not seem all that different from the
original model of Sect. 2.1. From a computational perspec-
tive, major advantages of the reduced model arise from the10

linearization of the upper-convective derivative into a greatly
simplified material derivative in Eq. (16a): effectively, the ef-
fect of the small-slope approximation alone is similar to the
usual small-strain approximation that can be obtained when
explicitly taking the limit of a small Maxwell time. In addi-15

tion, the small-slope approximation reduces the free bound-
ary problem for the lower boundary of the ice into a problem
posed on a fixed domain x3 > 0, in which the type of bound-
ary condition that applies at any given part of the boundary
must be determined as part of the solution through the in-20

equality constraints in the boundary conditions (17) or (18).

2.3 Numerical method

Computationally, the problem defined in the previous section
is well-suited to solution by mixed finite elements in order
to handle both the viscoelastic rheology and the inequality-25

constrained boundary conditions as described in de Diego
et al. (2022, 2023). (There is a technical difference here in
the sense that the latter authors use mixed finite elements
in velocity, pressure, and normal stress at the bed, whereas
the compressible problem considered here naturally calls for30

mixed finite elements in velocity and the full Cauchy stress
tensor; the key to handling the boundary conditions is the
use of mixed elements for normal stress at the bed.) Unlike
these previous studies, an in-depth analysis of the numerical
algorithm is not my goal here, in large part due to the com-35

plications introduced by the dynamic drainage model (18a).
Instead, I hope to spur interest in the problem and develop-
ment of more sophisticated approaches by showing results
using the simplest approach that appears capable of discretiz-
ing and solving the model as stated.40

I use a coordinate frame moving at the sliding velocity
(ū,0) to eliminate the advection terms in Eq. (16a) and (16f)
and use a backward Euler step to semi-discretize in time. The
time step is fully implicit except for the use of upwinding in
the discretization of the mass balance in Eq. (18a), in which45

I define the upwind direction based on the direction of ∇hpw
after the previous time step. At each time step, Eq. (16a)
combined with Eq. (16c) then takes the mathematical form
of a compressible linear elasticity problem, with velocity tak-
ing the place of displacement and “elastic” moduli that dif-50

fer from the usual E and ε (which would become 1 and ν
in dimensionless terms): the effective moduli in fact depend
on step size δt as well as τM and ν. Instead of applying the

far-field boundary conditions (19) at infinity, I apply them at
a finite distance D from the bed to ensure a finite domain 55

size. I solve Eqs. (16a) with (16c)–(16e) in weak form us-
ing piecewise linear finite elements to discretize the velocity
field, piecewise constant elements for stress, and a piecewise
linear representation along boundary elements for pw and h.
Although piecewise linear finite elements are appropriate for 60

compressible elastic problems of the type solved at each time
step (Kikuchi and Oden, 1988), a more sophisticated choice
of basis functions may in fact be preferable here as the long-
timescale behaviour of the solution can be expected to mimic
an incompressible viscous fluid (e.g. Arnold et al., 1984). 65

To handle the mass conservation problem (18a), I use a
finite-volume discretization with piecewise constant hw, ap-
proximating gradients in pw on element boundaries by us-
ing the same piecewise linear representation of pw as in the
weak form of Eq. (16e). A finite-volume scheme is mass- 70

conserving by construction, which is essential in modelling
isolated cavities. I use an upwind scheme for flux q to prevent
water depth hw from becoming spuriously negative where
there is net water drainage out of a cell. Doing so requires
an upwind direction to be defined. I use the upwind direc- 75

tion defined by the water pressure gradient solved for in the
previous time step.

Note that in similar elastic problems solved elsewhere, wa-
ter can never be completely removed from a pre-existing gap,
though it can become arbitrarily thin (Balmforth et al., 2010; 80

Warburton et al., 2020). The distinction between a very thin
gap and no gap at all is of little consequence here, since I
assume that there is free slip at the base of the ice regardless
of whether hw > 0, and the permeability approaches zero as
hw does. 85

The use of piecewise constant finite volumes for hw con-
flicts with the natural discretization of h using piecewise lin-
ear finite elements; I handle this by using a finite-volume
mesh based on a Voronoi tessellation of the bed that is dual
to the Delaney triangulation used for the finite-element mesh, 90

ensuring that nodes on which h and pw are evaluated as part
of the finite-element discretization are also cell centres on
which hw is defined. I then impose the conditions (18d) and
(18c) pointwise at these nodes or cell centres.

All inequality constraints that are part of the boundary 95

conditions for either the impermeable or permeable bed case
can be written as complementarity problems in discretized
form, of the generic form

f (y1)≥ 0, g(y2)≥ 0, f (y1)g(y2)= 0;

take the conditions (18c)–(18d) as an example, where y1 = 100

h−hw, y2 = pw+pi , and f (y1)= y1, g(y2)= y2. I reformu-
late each of these complementarity problems generically in
the semi-smooth form (see also de Diego et al., 2022, 2023;
Zarrinderakht et al., 2022),

min(f (y1),g(y2))= 0, 105
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and use a semi-smooth Newton method to solve for each
backward Euler step.

The code is written in MATLAB and uses neither adaptive
time stepping (beyond automatic step size reduction when
the Newton solver fails to converge to a prescribed tolerance5

for a given backward Euler step) nor adaptive meshing (al-
though the mesh used is non-uniform, with nodes concen-
trated near the bed). Both of these features would be desir-
able future improvements. Although the code is written so
it can be used for both two- and three-dimensional domains,10

the lack of adaptive meshing still leads to a relatively coarse
resolution along the bed and restricts any realistic use of the
code to two dimensions.

3 Results

In the numerical results reported here, I use the model (16)15

with a prescribed sliding velocity ū= 1 and v̄ = 0 in a two-
dimensional domain of width a = 2π , and I employ the sim-
per notation (x,z)= (x1,x3). I use plane strain conditions,
in which u2 = 0 and none of the variables depend on x2, but
transverse normal stress σ22 is generally not zero or constant20

in time. I use the double-humped bed defined by

b(x)= sin(x)+ sin(2x), (21)

which is identical to Eq. (10) of Part 1 with h0 = 1 and
a = 2π and therefore makes the dimensionless parameter N
here be the direct equivalent ofN∗ in Part 1. In addition, I ei-25

ther assume a fully permeable bed so that the constraints (17)
hold, or I assume that only part of the bed is permeable, ap-
plying the constraints (17) to a subset P of the bed. In that
case, I set P to be either a small interval around xP = 1.64 or
a small interval around xP = 4.65 (the interval being a single30

cell or element), while boundary conditions (18) hold across
the remainder of the bed. The locations xP are chosen to be
identical to those used in Part 1 and correspond to the lo-
cations where cavities form at the highest possible effective
pressures N .35

I use a finite domain depth D = a, and the finite-element
mesh consists of 9419 triangles with 4811 non-uniformly
distributed nodes, 178 of which are at the bed and form the
cell centres of the finite-volume tessellation of the bed. This
degree of resolution was practically the maximum I could40

achieve in MATLAB with multi-threading on six to eight
processors. I use a short Maxwell time τM = 1/50 and large
permeability κ = 70, with the intention of representing a vis-
cous limit for the ice and inviscid behaviour in the water
column at O(1) timescales. The dimensionless overburden45

is set to pi = 103, and in practice (at the resolution that I
am able to achieve), the condition (18d) for generating a par-
tially vapour-filled ice–bed gap was never satisfied in the dis-
cretized model.

For the purpose of visualizing results, I focus mostly on50

several easy-to-identify scalar attributes of the solution and

their evolution in time, plotting only selected cavity profiles.
I identify cavity end points bj and cj as the upstream and
downstream end points, respectively, of any finite intervals
above a minimum threshold size of |cj−bj | ≥ 0.15, in which 55

gap width h exceeds hε = 5× 10−4 everywhere. Two com-
monly used measures of cavity size are mean cavity size h̄
and cavitation ratio θ (Thøgersen et al., 2019). I compute
both of these from the following formulae,

h̄(t)=
1
a

a∫
0

h(x, t)dx, θ(t)=
1
a

a∫
0

H(h(x, t)−hε)dx, 60

where H is the usual Heaviside function. Note that θ is
simply the fraction of the bed that is cavitated, since θ =
a−1∑(cj − bj ), the sum being taken over all cavities in one
bed period. Both θ and h̄ could be used to parameterize
cavity geometry in a large-scale subglacial drainage model 65

(the scale of individual cavities being “microscopic” in these
models; see Hewitt, 2011; Schoof et al., 2012; Werder et al.,
2013),

3.1 Steady states: a test case

The dynamic model of Sect. 2 should agree with the simpler, 70

purely viscous model of Part 1 in the limit of a short Maxwell
time τM (thus ensuring an absence of elastic effects) and of
a large cavity permeability parameter κ (ensuring negligible
water pressure gradients except where water layer depth hw
vanishes, or nearly does), provided the solution is also in 75

steady state. To test the numerical solution of the dynamic
model, I therefore compare its steady-state results with the
results of the model of Part 1 for the same forcing effective
pressure N and for the same isolated cavity volumes when
these are present (Fig. 2). Note that the problem in Part 1 is 80

solved by an entirely different numerical method from that in
Sect. 2.3, providing a robust test.

There is an important qualification to the meaning of
“steady state” here: I simply compute a numerical solution
of the model (16), subject to Eq. (17) in P and boundary 85

conditions (18) elsewhere, for a long time interval. The nu-
merical method in Sect. 2.3 employs a moving frame, so a
steady-state solution of the underlying dynamic model is a
travelling wave solution in that moving frame. In practice,
the solution retains residual oscillations even for large times 90

t . Provided the contact area is substantially larger than a
few finite-volume cells, these residual oscillations are small
(Fig. 3), and I interpret them as numerical artefacts resulting
from the use of a travelling coordinate frame, combined with
the inherent heterogeneity involved in an unstructured mesh 95

(which is also still relatively coarse, with 178 finite-volume
cells at the lower domain boundary): an underlying steady-
state solution in the original coordinate system becomes a
travelling wave solution in the travelling frame used for com-
putation. Any grid effects (small or large) are then bound to 100

be periodic, including those involved in the contact area mov-
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ing relative to the mesh (which presumably account for uplift
and therefore cavity shape).

The solutions of the dynamic model (plotted against the
original, as opposed to moving, coordinate x in Fig. 2) are
therefore not strictly numerical steady states, but an effec-5

tively random instant within that residual oscillation cycle.
That said, Fig. 2 shows close agreement between the solution
of the dynamic model and the steady-state solution of Part 1,
at least for the moderate values of N for which the dynamic
model produces a recognizable near-steady state within a rea-10

sonable time span. This equally applies for solutions with
and without isolated cavities. Note, however, that the isolated
cavity volume in Fig. 2c differs from that predicted in Sect. 3
of Part 1. That is unsurprising: the isolated cavity volume
computed there by the viscous steady-state model of Part 115

results from a very slow change in N and a cavity configura-
tion that is in a quasi-steady state at all times. To compute the
solution in Fig. 2, I instead use an abrupt, finite jump in N to
force changes in cavity configuration (see also Fig. 3). At the
instant when a cavity becomes isolated, that cavity is gener-20

ally not in steady state, or at the critical value of N at which
steady-state cavities first become isolated, and consequently
we cannot expect isolated cavity volume to be the same as
that computed in Part 1.

Figure 3 provides a further comparison between results25

of the dynamic model of the present paper and the steady-
state solutions of Part 1 in the form of green lines show-
ing mean cavity depth h̄ in panel (a) and grey lines show-
ing cavity end-point positions in panel (b), computed as in
Part 1. Panel (a) shows that, for small N and for the time30

intervals over whichN is held steady, there are continued os-
cillations of non-negligible size, which I discuss further in
the next section. These have time-averaged cavity depths h̄
that are somewhat smaller than the predicted steady-state re-
sults. For larger N , the residual oscillations discussed above35

are of much smaller amplitude and have time-averaged h̄ that
agrees closely with the steady-state results, but also remains
slightly smaller. This is true except once an isolated cavity
forms at t = 636: the steady-state results as computed us-
ing the method from Part 1 predict a smaller isolated cavity40

than that which is trapped in the dynamic solution as dis-
cussed above. In all cases, cavity end-point positions late in
each interval of fixedN agree closely with those predicted by
the Part 1 steady-state solver, although upstream cavity end
points computed by the dynamic model (shown in red) are45

systematically located slightly downstream of the locations
predicted by Part 1. This may in part occur because cavi-
ties are very shallow at their upstream ends, and the post-
processing of the dynamic model results uses a threshold
value of h≥ 5× 10−4 to identify one of the finite-volume50

cells at the bed as part of a cavity.

Figure 2. Comparison of steady cavity roof geometry (denoted by
b+h for the dynamic model, hC for the steady viscous model of
Part 1) for xP = 1.64. The bed is shown in grey, with the permeable
bed portion P in beige. The result for the dynamic model is shown
as a blue shaded cavity, and the result of the steady-state model
of Part 1 is shown as a red curve. (a) N = 1.053 before cavity ex-
pansion, (b) N = 1.053 after cavity expansion, and (c) N = 2.37,
with an isolated cavity volume of V2 = 1.87 imposed in the model
of Part 1, the volume having been computed from the dynamic so-
lution. Note that this cavity volume is different from the value of
V2 = 1.062 for the isolated cavities that form under quasi-steady
conditions for the same bed in Part 1. The two cavity roof shapes
are practically indistinguishable in each case.

3.2 Dynamic approach to equilibrium

The purpose of introducing a dynamic model is precisely
to study the transient behaviour leading up to the eventual
steady state. Figure 3 shows time series of forcing effective 55

pressure N , cavity end positions bj and cj , mean cavity size
h̄, and cavitation ratio θ as the bed is forced with step changes
in N through a permeable patch at xP = 1.64.

As expected from Part 1, the steady-state mean cavity size
h̄ and cavitation ratio θ increase as N is decreased, and the 60

rapid expansion of the cavity after t = 78 is irreversible. The
dominant feature of the time series is, however, the over-
shoot in h̄ after each step in N occurs: h̄ transiently exceeds
its new equilibrium value following each decrease in N and
conversely drops below its equilibrium value following an in- 65

crease in N . This overshoot is barely perceptible at the scale
shown in Fig. 3 for cases where a significant part of the bed
remains uncavitated (with θ close to 0.5, at times prior to
t = 78) or when there are two separate contact areas (after
t = 636). The overshoot is much more clearly visible for the 70

latter case in the solutions shown in Fig. 4, where a shorter
overall time interval is plotted.

The overshoot becomes large once there is only a single
contact area with a cavitation ratio close to unity (between
t = 78 and t = 636 in Fig. 3). In each case, the overshoot 75

is followed by an oscillatory approach to equilibrium. Once
again, the nature of the oscillatory approach to equilibrium
depends on the extent of cavitation: when there is a single
contact area with θ close to unity, the dominant (peak-to-
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Figure 3. Dynamic cavity evolution under step changes in forcing effective pressure N with P = {1.64}. (a) Mean cavity depth h̄ (black,
left-hand axis) and cavitation ratio θ (blue, right-hand axis) against time t . Green shows the steady-state mean cavity depth computed as
in Part 1. (b) Cavity end-point locations at the upstream (red) and downstream (blue) end of cavities against t . Grey shows the steady-state
cavity end-point positions as computed in Part 1. (c) The corresponding shape of the bed with the permeable region P in beige. The direction
of ice flow (in the positive x direction) is indicated by an arrow; the flipped x and b axes mean that the bed shape is a mirror image of that in
Fig. 2. (d) The forcing effective pressure N as a function of time. Grey vertical lines in panels (a)–(b) and (d) indicate abrupt changes in N .
The solutions in panels (a)–(c) in Fig. 2 correspond to the solutions here at t = 78, t = 636, and t = 670, respectively.

peak) period of oscillation is close to the advective timescale
a/ū for one bed wavelength a, and attenuation to equilib-
rium is slow, often taking several oscillation periods for the
amplitude to halve. The magnitude of the overshoot and sub-
sequent oscillations is largest immediately after contact with5

the smaller bed protrusion is lost and the cavity expands
rapidly after t = 78: in fact, the oscillations are large enough
for the ice to contact the smaller bed protrusion temporarily
as marked in Fig. 3b.

Conversely, if there is limited cavity extent with only the10

lee of the larger bed protrusion cavitated and θ close to 0.5
(again prior to t = 78), or if there are two separate contact
areas (after t = 636), attenuation is much more rapid, and
the dominant peak-to-peak period is approximately half the
advection timescale for one bed wavelength. Additional bed15

contact therefore appears to have a significant damping effect
on the oscillations.

The most sustained oscillations occur when there is a sin-
gle small contact area in each bed period at low effective
pressure N (an arguably contrived situation for real glacier20

beds). Note that the cavitation ratio θ overshoots only slightly
(Fig. 3a) and approaches equilibrium rapidly, while cavity
height h̄ continues to oscillate significantly. Cavitation ratio
and ice–bed gap size are therefore not good proxies for each
other. Closer inspection of the cavity end-point locations in25

Fig. 3b for the interval between t = 78 and t = 636 indicates
that the continued oscillations in h̄ coincide with in-phase os-
cillations of both cavity end points. In the absence of compa-
rable oscillations in θ , this implies a back-and-forth motion
of the contact area, without significant change in its size. That 30

contact area motion occurs around the top of the prominent
bed protrusion at x = 0.8. A change in position of the con-
tact area there leads to a significant fractional change in the
slope ∂b/∂x that the ice is incident on (since this location
is the maximum of b, where ∂2b/∂x2 is large and negative). 35

Changes in bed slope in the contact area in turn affect ver-
tical velocities through Eq. (16f) (where the ice–bed gap h
vanishes in the contact area).

These variations in vertical velocity are presumably the
reason for the significant oscillations in h̄: when v3 is larger, 40

this causes uplift of the cavity roof downstream of the contact
area, and that uplifted cavity roof causes the contact point to
migrate downstream too, causing the contact area to move
over time to a flatter location, thereby reducing the amount
of uplift. That in turn causes reduced uplift of the cavity roof, 45

so the contact area moves again to a steeper part of the bed,
restarting the cycle (albeit with a smaller amplitude in each
cycle). I illustrate the interactions between contact slope an-
gle and growth of the cavity further in Sect. 3.3, in particu-
lar in Figs. 8–9, and in video V1 in the Supplement, which 50
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shows an animation of the evolving cavity shape correspond-
ing to Fig. 3.

In its simplest form, this mechanism is what happens if
one rigid corrugated surface is dragged over another (imag-
ine two pieces of corrugated sheet roofing moving relative5

to each other); in the present case, the ability of the ice to
deform is significant, and the lower surface of the ice does
change shape to adapt to the rigid bed underneath, which ac-
counts for the approach to a steady state. It is then perhaps
not surprising that low effective pressure N gives rises to the10

most sustained oscillations: deviatoric stresses in the ice are
then small, leading to less rapid deformation of the ice as it
moves over the bed, and adjustment to a new steady state is
slower than when stresses are larger. This is particularly evi-
dent in video V1 in the Supplement.15

The generic behaviour shown in Fig. 3 is not unique to ei-
ther starting with a small cavity and an isolated low-pressure
bed region (as is the case before the cavity rapidly expands
at t = 78) or indeed having only a limited permeable bed
patch P . Figure 4 shows a solution for step changes in N20

with the same bed configuration as in Fig. 3, but with an ini-
tial condition that includes an isolated cavity in the lee of the
smaller bed protrusion. The oscillatory approach to equilib-
rium clearly mimics that in Fig. 3, except for the absence
of dramatic oscillations following cavity connection (after25

t = 78 in Fig. 3 and after t = 40 here): connection with an ex-
isting cavity involves relatively small changes in h̄ in Fig. 4,
so the lack of a large overshoot in Fig. 4 is not surprising.

Figure 5 shows a similar solution for stepwise changes in
N , but now with a fully permeable bed. Except for the as-30

sumption of a viscoelastic rheology and small bed slopes,
this case is analogous to those in Gagliardini et al. (2007),
Helanow et al. (2020, 2021), Stubblefield et al. (2021), and
de Diego et al. (2022, 2023). Note that viscoelasticity should
be mostly irrelevant here, since there are limited changes in35

the solution that occur over short timescales∼ τM, and where
significant changes occur that rapidly, they invariably do so
immediately after a step change in N . Here, too, we see that
h̄ overshoots its equilibrium value and decays in an oscilla-
tory manner, though I have not chosen to run each step in N40

for long enough to see a complete approach to equilibrium.
As in the case of an only partially permeable bed, the oscil-
lations in h̄ are again much longer-lasting when there is a
single contact area per bed wavelength a, and the period of
oscillations approximately doubles when contact is lost with45

the smaller bed protrusion, while the cavitation ratio does not
exhibit the same degree of oscillatory behaviour.

While the dynamic behaviour of the fully permeable bed
case is similar to the impermeable bed, there are two notable
differences. First, as in the case of reconnection of a previ-50

ously isolated cavity for the impermeable bed case in Fig. 4,
drowning of the smaller bed protrusion for the permeable bed
does not cause the significant overshoot oscillation that is ap-
parent at t = 78 in Fig. 3. Second, the irreversible nature of
cavity expansion at that point in time in Fig. 3 is absent for55

the permeable bed case in Fig. 5, confirming the steady-state
results of Part 1.

The cavitation ratio is very close to unity (typically around
0.96–0..98) for the long-lasting oscillations at low N identi-
fied above (between t = 258–420 and t = 200–260 in Figs. 3 60

and 5, respectively). With such a small contact area, only
about three to six nodes in the finite-element mesh are in
contact with the bed (also note that the numerical method
treats a bed cell as either separated from the bed with h > 0
or in contact with h= 0, and the cavity end-point location 65

therefore jumps in increments of a single cell size, giving the
plots of θ and of cavity end-point location against t a non-
smooth appearance, while the mean ice–bed separation h̄ is
much smoother).

A very small number of nodes in contact with the bed 70

raises the question of numerical artefacts. A comprehensive
study of mesh size effects is beyond the scope of the work
presented here. Due to the limitations of working in a MAT-
LAB coding environment, it is difficult to refine the mesh sig-
nificantly beyond what is used in the computations reported 75

above. For the case of a fully permeable bed (which typically
permits larger time steps), I have been able to refine the mesh
to double the number of nodes on the bed for a relatively
short computation. A comparison for a shortened version of
the computation in Fig. 5 is shown in Fig. 6. While there are 80

differences, these are mostly in the detail: the cavitation ratio
time series is significantly smoother for the higher-resolution
results (as might be expected), and the oscillations in h̄ are
also somewhat smoother. There are, however, no dramatic
changes of the kind that one might expect for a mesh that is 85

effectively very coarse around the contact area, lending con-
fidence to the conclusion that the sustained oscillations in h̄
at low effective pressure are a robust feature of the solution.

3.3 Dynamic cavity connection

The rather long time interval over which the solution in Fig. 3 90

is plotted makes it impossible to see the fine detail of ice–bed
gap evolution when a cavity expands rapidly across the top
of a bed protrusion, as happens shortly after t = 78. Such
rapid expansion corresponds to an isolated part of the bed
becoming connected to the subglacial drainage system and is 95

therefore of particular interest.
In Fig. 7, I focus on that rapid expansion (moving the time

origin to the instant that N undergoes the step change that
leads to cavity expansion). Prior to expansion, the cavity is
in a quasi-steady state (see Sect. 3.1 and Fig. 2a) atN = 1.05. 100

In addition to replotting the solution in Fig. 3, corresponding
to a step down to N = 0.70, I also compute the response to
larger step changes in order to determine how step size af-
fects the speed and nature of the cavity expansion.

Immediately after the drop in N , h̄ and θ undergo a rapid 105

but small increase. The increase in cavity size is larger when
N drops to a lower value and is the result of elastic uplift of
the ice around the edge of the pre-existing cavity. The speed
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Figure 4. Using the same plotting scheme as in Fig. 3, dynamic
cavity evolution under step changes in N with P = {1.64}. Here the
initial state includes an isolated cavity around x = 4.65.

of the initial expansion is much faster than the advective
speed ū and is presumably controlled by the gap permeabil-
ity κ as is the case in hydrofracture problems with negligible
fracture toughness (Mitchell et al., 2006). I have, however,
not checked for the effect of κ numerically.5

Importantly, this initial “hydrofracture” (which is not a
hydrofracture in the true sense, as it corresponds to a pre-
existing fracture being re-opened) has a very limited extent.
In fact, the same initial fracture occurs every time that N
goes through a step change, regardless of whether the cav-10

ity expands significantly afterwards. For step changes in N
that do not lead to large-scale expansion by drowning of a
smaller lee-side protrusion, that brief hydrofracture episode
is the only part in the process of cavity enlargement that in-
volves elastic effects (in the sense of occurring over a shorter15

interval than the Maxwell time). This initial hydrofracture-
like rapid increase in cavity size is followed by a period of
much more moderate cavity growth, with gradual growth in
h̄ and the downstream cavity end point advancing at speeds
comparable to ū or slower. The rate of cavity growth is again20

greater for lower N .
In interpreting the results for θ and cavity end-point posi-

tion in Fig. 7, recall that the numerical method uses a trav-
elling frame that moves precisely at speed ū, and cavity end
points are by construction located at the finite-volume cell25

centres in that travelling frame. This once more explains the
non-smooth appearance of the plots in Fig. 7b and why cav-
ity end points can appear to move backwards, especially for
larger values of N (the blue and red curves). That backward
motion corresponds to one of the advected finite-volume30

cells going from ice–bed separation to contact. Where such
backward motion of the cavity end point does not occur, the

cell centre that is the cavity end point moves precisely at ū.
Consequently, the relatively coarse spatial resolution limits
the ability to resolve variations in the speed of the cavity end 35

point.
The second phase of slower cavity growth is the result of

viscous deformation. Only once the downstream cavity end
point has advanced significantly downstream does the rapid
expansion (or connection) of the cavity past the smaller bed 40

protrusion occur, marked as “rapid connection” in Fig. 7b.
The precise location of the downstream cavity end point at
which this occurs depends slightly on the value of N , with
a less-advanced cavity end point at the onset of cavity con-
nection if N is lower (c = 4.08 at N = 1.6× 10−3 versus 45

c = 4.23 at N = 0.70). The cavitation ratio is relatively uni-
form at θ ≈ 0.56 for all forcing effective pressures at the on-
set of connection.

The subsequent rapid expansion of the cavity (following
the second phase of slower cavity growth and correspond- 50

ing to the “drowning” of the smaller bed protrusion) can be
separated into two parts: an initial advance of the cavity end
point from c ≈ 4.1 to c ≈ 4.5 over a time interval around
10−2, somewhat shorter than a single Maxwell time. This
part of the cavity expansion is marked with rapid connection 55

in Fig. 7b and is effectively another example of hydrofrac-
ture. It is not accompanied by any noticeable change in h̄.
Subsequently, cavity expansion continues more slowly to a
final position around x ≈ 6, though the cavity end point con-
tinues to migrate at speeds greater than ū during this phase. 60

It is only during this slower expansion that the cavity depth
h̄ increases more rapidly: this phase is much longer than a
single Maxwell time and is again associated with viscous de-
formation of the ice. That increase in depth continues after
the cavity end point stops advancing rapidly and eventually 65

leads to overshoot of the equilibrium depth and the oscilla-
tions in Fig. 3a.

Figure 8 illustrates the evolution of cavity shape for the
case of a drop in N to 0.47. The initial condition is shown
in panel (a) and the aftermath of the initial hydrofracture in 70

panel (b). The difference between the two is all but impercep-
tible. Cavity shape immediately before the rapid expansion
is shown in panel (c), with the cavity end point having mi-
grated a short but noticeable distance to the top of the smaller
bed protrusion. The subsequent rapid expansion of the cavity 75

leads to an extended, thin ice–bed gap extending downstream
of the pre-existing cavity (panel d): this corresponds to the
rapid increase in θ accompanied by an insignificant change
in h̄.

The gap then thickens more slowly (panel e), leading to 80

oscillatory behaviour (panels f–j; these later times are not
shown in Fig. 7). The final steady state is shown in panel (k).
Note that panels (f)–(j) illustrate the mechanism for over-
shoot oscillations described in Sect. 3.2: the contact area on
the more prominent upstream bump migrates downstream 85

and shrinks between panels (f) and (h), causing a reduced
vertical velocity and subsequently a reduced cavity height
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Figure 5. Using the same plotting scheme as in Fig. 3, dynamic cavity evolution under step changes in N with a fully permeable bed,
P = (0,a).

Figure 6. Using the same plotting scheme as in Fig. 3, dynamic
cavity evolution under step changes in N with a fully permeable
bed, P = (0,a), using a smaller initial value of N than in Fig. 5.
In each panel the solution for the same mesh as used in Fig. 5 and
all remaining figures is shown in black and blue in panel (a) and
blue and red in panel (b). The solution for a mesh with twice the
resolution at the bed is shown in magenta and green in panel (a)
and black in panel (b).

being advected downstream as shown in panel (i). In fact,
contact area undergoes much more significant change in
size and location here than it does in later oscillations: in
panel (g), there are two contact areas, one on the larger bed
protrusion upstream and one on the smaller one downstream,5

Figure 7. Cavity connection under different step changes in N . The
cavity is initially in a (quasi-)steady state with N = 1.05 and a sin-
gle small cavity attached to the larger bed protrusion in the bed. N
is then changed abruptly at t = 0 to values of 0.70 (red), 0.47 (blue),
0.21 (yellow), 0.041 (magenta), and 1.6×10−3 (black). (a) Cavita-
tion ratio θ (dashed) and mean cavity depth h̄ (solid) against time t .
(b) Downstream cavity end-point position against time t .

while in panel (h), there is a water-filled gap with thickness
above the threshold for contact identification everywhere.
The main contact area on the larger bed protrusion subse-
quently migrates upstream again as a result of the reduc-
tion in cavity height, with a steeper average contact angle in 10

panel (i) than (g), leading to larger vertical velocities. These
in turn cause increased uplift once more and therefore the
subsequent increase in cavity height in panel (j).

I illustrate the oscillation mechanism further in Fig. 9,
where I plot the mean contact angle of all contact areas 15
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Figure 8. Cavity shapes for a step change from N = 1.02 to
N = 0.47 (the blue curves in Fig. 7) at (a) t = 0, (b) t = 10−3,
(c) t = 0.32, (d) t = 0.49, (e) t = 1.35, (f) t = 3.39, (g) t = 4.62,
(h) t = 5.16, (i) t = 6.61, (j) t = 8.70, and (k) t = 120. Red dots
correspond to upstream cavity end points and blue dots to down-
stream end points.

against time in the same plot as mean cavity roof height h̄ and
cavitation ratio θ . The oscillation mechanism is most clearly
seen later in the interval shown: here, the contact angle is
shown as red peaks when H̄ is increasing most rapidly and
then steadily decreases around the maximum of h̄, as advec-5

tion causes the downstream end of the cavity to enlarge and
the re-contact point to migrate downstream. In time, down-
stream migration and reduction in contact angle cause h̄ to
decrease again.

3.4 Overpressured cavities10

In the computations above, I have focused on a permeable
bed section P immediately in the lee of the largest bed pro-
trusion. As explored in Part 1, the location of the permeable
bed section has major qualitative implications for steady-
state results. These are replicated in the dynamic model. Fig-15

ure 10 shows results analogous to Fig. 3, but with P cen-

Figure 9. Cavity height h̄ (black), cavitation ratio θ (blue), and
mean contact angle 〈∂b/∂x〉 (red and green) corresponding to a
step change from N = 1.02 to N = 0.47 at t = 0 (for h̄ and θ ,
these are the blue curves in Fig. 7, plotted for a longer time inter-
val). For each contact area (cj ,bj+1, I compute the mean contact

angle as 〈∂b/∂x〉 = (bj+1− cj )
−1 ∫ bj+1

cj ∂b/∂xdx = (b(bj+1)−
b(cj ))/(bj+1− cj ). Note that there is an interval from t = 4.94
to t = 5.69 during which the code detects no contact area (a suf-
ficiently deep water layer is present everywhere), and there are two
contact areas between t = 4.43 and t = 4.88.

tred on the downstream side of the smaller bed protrusion at
xP = 4.64.

Two solutions are plotted, both of them identical up to
t = 260. One is forced by N being reduced to close to zero 20

and then increasing again. The other is indicated as “over-
pressure solution” by arrows and hasN lowered successively
to −0.46 and −0.96. In line with the results in Part 1, we
see relaxation to steady states for all positive N , as well as
at N =−0.46, which lies above the critical value Ndrown = 25

−0.79 in Fig. 5 of Part 1. In fact, with a substantial uncav-
itated portion of the bed, relaxation to steady state is rela-
tively rapid with limited overshoot of cavity size h̄ as is also
the case for t < 78 in Fig. 3. Only for the lowest value of
N =−0.96 used does complete detachment of ice from the 30

bed occur, with θ reaching unity (Fig. 10a).

3.5 Pressure in isolated cavities

In Part 1, I showed that steady-state effective pressure in iso-
lated cavities is remarkably insensitive to changes in the ef-
fective pressure N in the ambient drainage system. This is 35

far from true of the dynamic response of an isolated cavity to
changes in N . The dynamic response is of significant inter-
est, as this is what a subglacial water pressure sensor would
measure if connected to such an isolated cavity.

Here, I give three examples in which the connected cav- 40

ity in the lee of the larger bed protrusion (with xP = 1.64) is
forced periodically as shown in panels (b1)–(b3) of Fig. 11.
The period and amplitude of the forcing pressure oscillation
differ between the columns of Fig. 11, with a period of π
(column 1), 2π (column 2), and 4π (column 3). For refer- 45

ence, note that the advective period is a/ū= 2π . The green
curves in panels (b1)–(b3) show that effective pressure NM
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Figure 10. Using the same plotting scheme as in Fig. 3, dynamic cavity evolution under step changes in N with a permeable bed on the
downstream side of the smaller bed protrusion, with P = {4.64}. The solution indicated by arrows corresponds to negative forcing effective
pressure N and departs at t = 260 from the solution not indicated by arrows.

“measured” at the location marked M in panel (c). Note that
the fixed location of M corresponds to a sensor installed
at the glacier bed itself, which is unusual (Lefeuvre et al.,
2015): in most field installations, pressure sensors are placed
in boreholes and advected with the ice, corresponding to a lo-5

cation moving at velocity ū in our model. Vertical grey lines
in rows with labels (a) and (b) correspond to times at which
ice–bed contact is made or lost on the smaller bed protru-
sion upstream of M , while panels (a1)–(a3) show cavity end
points as in Fig. 3b.10

In column 1, a relatively small isolated cavity forms before
periodic behaviour is established. That cavity then remains
isolated throughout the pressure cycle. The effective pressure
NM in that isolated cavity is in antiphase with the forcing ef-
fective pressure N in the connected cavity. This behaviour15

is familiar from field observations in parts of the glacier bed
that are not hydraulically connected (Andrews et al., 2014;
Rada and Schoof, 2018). A simple way to interpret the an-
tiphase pressure variations is in terms of the portion of over-
burden supported by the isolated cavity (Murray and Clarke,20

1995; Lefeuvre et al., 2015): when forcing effective pressure
N is low, a larger fraction of overburden is supported by the
connected cavity, reducing normal stress on the isolated cav-
ity and therefore also reducing water pressure in the cavity,
which corresponds to a higher effective pressureNM (defined25

as overburden minus water pressure in the isolated cavity).
When the forcing oscillations have a somewhat lower fre-

quency (column 2), there are more significant changes in the
ice–bed contact area on the smaller bed protrusion. An iso-
lated cavity now forms during every other period of the forc-30

ing pressure oscillation (that is, the solution is periodic with
a periodicity twice that of the forcing). In each case, the cav-
ity roof makes contact with that protrusion after a maximum
in N (panel a). For most of the intervals in which there is no

contact on top of the smaller protrusion (see panel a2), the 35

two effective pressures are nearly equal: NM ≈N to a very
close approximation. There is, however, an extended interval
prior to contact being re-established, during which forcing
effective pressure N is high and the measured effective pres-
sure NM drops below N . Even though the two cavities are 40

connected across the top of the bed protrusion, there is a suf-
ficiently narrow constriction in the ice–bed gap to support
a significant pressure gradient. As the animation of cavity
shape evolution corresponding to Fig. 11 in video V2 in the
Supplement shows, that constriction is advected downstream 45

and eventually re-contacts with the bed. Once that happens,
the measured effective pressure rapidly increases and then
goes through an antiphase pressure oscillation while the cav-
ity around the point M is isolated. When the connection be-
tween the cavities is re-established once more, the effective 50

pressure at M rapidly equilibrates with that at P .
The forcing pressure oscillation in column 3 is even slower

and of larger amplitude than those in columns 1 and 2. Here,
the solution has the same periodicity as the forcing, with a
contact area forming on the smaller bed protrusion upstream 55

of M when forcing effective pressure N is large. A reduced
ice–bed gap size and consequent contact at the top of bed
protrusions might be expected at large N , but contrast with
the solution in column 2 for a higher forcing frequency. As
in column 2, NM ≈N when the cavities are connected, with 60

a brief interval around t = 15 during which NM is signifi-
cantly lower thanN after connection is re-established. Again,
this results from a narrow ice–bed gap across the top of the
smaller bed protrusion.

When the cavities become fully disconnected, NM does 65

not simply go through part of an antiphase pressure oscilla-
tion, unlike in column 2. After disconnection, NM initially
drops while N increases, with NM reaching negative values.
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Subsequently, however,NM rises again and relaxes to a near-
zero value while the forcing effective pressure N is still in-
creasing. It is tempting to ascribe the difference in behaviour
between columns 2 and 3 to the slower period of forcing os-
cillation in column 3; given the long timescale for relaxation5

to steady state evident in Fig. 3, it is unclear to what extent
that interpretation is appropriate.

4 Discussion

4.1 Subglacial hydrology

In Part 1, I showed that for a steady-state model, connections10

between cavities are created and destroyed at critical values
of N and that the critical value for connection to a previ-
ously uncavitated part of the bed is lower than the critical
value at which that connection is closed or at which a connec-
tion to a previously isolated cavity is established. The results15

in the present paper are consistent with these observations:
Fig. 2 demonstrates that at N = 1.053, hydraulic isolation of
the downstream side of the smaller bed bump can be main-
tained in steady state (panel a). However, a single larger cav-
ity can equally extend across the top of the smaller bed bump20

at the same effective pressure (panel b), and the lee side of
the smaller bed bump only becomes hydraulically isolated at
higher effective pressures as in panel (c). A careful inspec-
tion of the final steady states in Figs. 3 and 4 also confirms
that connection to a previously uncavitated part of the bed25

happens at lower effective pressure (shortly after t = 78 in
Fig. 4 atN = 0.70) than either subsequent isolation of part of
the newly extended cavity (shortly after t = 638 in the same
figure at N = 1.58) or reconnection (shortly after t = 40 in
Fig. 4 at N = 1.05).30

One might therefore be tempted to parameterize cavity
connection in large-scale drainage models in terms of effec-
tive pressureN reaching a threshold value. The insights from
steady-state calculations are, however, misleading in a dy-
namic situation: Fig. 7 shows that it is not the instantaneous35

drop in N below some critical value that causes a hydraulic
connection to be established. Instead, a drop in N causes
mean cavity depth h̄ and cavitation ratio θ (the fraction of the
bed that is cavitated) to grow. That growth eventually allows
hydraulic connection as a bed protrusion on the downstream40

side is “drowned”. In fact, θ reaching a critical value appears
to be the best predictor for connection, though mean cavity
depth h̄ at connection varies by a relatively small amount,
and it is plausible that a critical value hc could be defined.

This result is at least consistent with the previous mod-45

elling approach of Rada and Schoof (2018). Beyond that,
matters become significantly more complicated: Fig. 7 per-
tains to a hydraulic connection being made by a cavity
rapidly extending past the top of a smaller bed bump into a
portion of the bed that was previously at low pressure but un-50

cavitated. If that region subsequently becomes isolated again

due to the cavity roof being lowered at increasedN , the mean
cavity depth h̄ will remain larger than at the time the original
connection was made, precisely because there is now a sec-
ond cavity on the downstream side of the smaller bed bump 55

(see Fig. 3a). In any case, it is not possible to use the same
critical value hc to determine whether there is a connection
or not.

A plausible alternative to having a simple critical value hc
for cavity connection in a large-scale model is to recognize 60

that θ has also increased, and the definition of a critical value
for connection should involve not only h̄ but also θ . Doing
so must then also reflect the observation in Part 1, namely
that connection to a previously uncavitated part of the bed
happens at a lower critical effective pressure N than recon- 65

nection to a pre-existing isolated cavity: however, the steady
states of h̄ and θ depend onN , and the critical combination of
h̄ and θ that defines connection must be such that reconnec-
tion happens more easily than connection to an uncavitated
part of the bed. 70

These observations point to a need to extend drainage
models to describe the evolution of not only h̄, but also of
at least one more independent state variable like θ . Note that
h̄ and θ are not simply proxies for each other (Gilbert et al.,
2022): during the cavity connection events in Fig. 7, θ in- 75

creases much faster than h̄ initially, as a narrow ice–bed gap
is formed (see also Fig. 8d), and θ is clearly the more impor-
tant measure of connectedness here.

Any attempt to amend subglacial hydrology models along
these lines, however, faces another conundrum: as currently 80

formulated, existing subglacial drainage models use an evo-
lution equation for h̄ of the generic first-order form (2),
which is essentially a local ordinary differential equation
(there being no spatial derivatives). The equation being first-
order in time, h̄ should then monotonically relax to a stable 85

steady-state solution under conditions of constant sliding ve-
locity ub and effective pressure N .

Figures 3, 4, 5, and 10, however, all show h̄ overshooting
its steady-state solution with an oscillatory approach to equi-
librium. This is incompatible with Eq. (2): any dimensionally 90

reduced representation of cavity evolution (relative to the full
dynamic model developed in this paper) must involve more
than one state variable. In a similar vein, the solution with
time-dependent forcing in Fig. 11b shows a period doubling
of the solution relative to the forcing. This is not necessarily 95

incompatible with a model of the form (2), but in typical im-
plementations such as Werder et al. (2013), Eq. (2) is linear
in h̄, which does preclude period doubling.

It is conceivable that a model of the form (2) could still
be appropriate in many situations: the marked oscillations 100

in Figs. 3, 4, and 5 are all associated with a single contact
area per bed wavelength in a periodic bed, and it is unclear
whether similar behaviour would result on an aperiodic bed
(or a bed with a very long period, in which case multiple con-
tact areas would remain even at low N ; see Schoof, 2002, 105

Chap. 2). Similarly, the solution in Fig. 11b involves contact
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Figure 11. Using the same plotting scheme as in Fig. 3, dynamic cavity evolution under oscillatory forcing. (a) Time series of upstream (red)
and downstream (blue) cavity end points. Vertical lines indicate when contact is made and lost with the smaller bed protrusion. (b) Corre-
sponding bed geometry, with the permeable portion P indicated in beige. The circular black markerM indicates location where the effective
pressure NM is measured. (c) Time series of effective pressure N (black) and locally measured effective pressure (in green, given by the
dimensionless variable −pw in the model) at the location of the black marker in panel (b).

areas shrinking to very small sizes during the pressure cycles.
The fact that the oscillations are minor when there is signif-
icant ice–bed contact or multiple contact areas and that the
overshoot in h̄ past its steady-state value is generally small
then suggests that the simple model (2) could capture cavity5

evolution well in the more realistic setting of an aperiodic
bed. Further research using a more sophisticated approach to
solving the model equations on larger domains with irregular
beds would be needed to address this question.

If, on the other had, the overshoot oscillations are an im-10

portant part of the evolution of the drainage system, then the
set of variables that an extended model needs to consider is
most likely larger than simply (h̄,θ). As observed in Figs. 3
and 4, the oscillations in h̄ seem to involve the contact area
moving back and forth across the top of the most prominent15

bed bump while remaining of approximately constant size.
That is, θ remains nearly constant during the oscillations.
The addition of a dynamic variable θ while making vo or
vc depend on θ is therefore unlikely to reproduce oscillatory
behaviour, since θ should be nearly constant during the oscil-20

lations: a proxy for contact position rather than size appears
to be necessary.

The ad hoc addition of dynamical variables is clearly a
disturbing prospect in the absence of a clear roadmap for
how closure should be achieved. Once a set of such dynami-25

cal variables is identified, then perhaps the obvious next step
would be to try to arrive at a closed set of equations for the
evolution of these dynamical variables not by means of qual-
itative physical insight and subsequent parameter fitting, but

by treating their evolution as being governed by a dynamical 30

system that can be represented by a neural network, which
in turn can be trained on output from a detailed process-
scale model such as that described here (e.g. Brenowitz and
Bretherton, 2018, 2019). That procedure, however, still in-
volves an expert choice of dynamical variables to use in the 35

large-scale model, and one would hope for something better:
a method of optimally choosing these dynamical variables.

4.2 Interpretation of field measurements

The discussion above has focused on the implications of the
local-scale model results in the present paper for large-scale 40

subglacial models. The same results also have implications
for the interpretation of field observations: a perhaps obvious
consequence of hydraulic isolation of the bed is that the usual
basal water pressure may no longer be smoothly varying in
space and in fact has no physical meaning in areas of ice–bed 45

contact. For a highly permeable bed, a pressure sensor in a
borehole that terminates on an ice–bed contact still measures
the water pressure in any surrounding cavities, since water
from those cavities can readily access the borehole through
the bed. This is no longer true for an impermeable bed. Mea- 50

suring borehole water pressure where a borehole terminates
on an ice–bed contact area then records the peculiarities of
pressure evolution in the isolated borehole, which itself is of
unknown shape and must preserve its volume (assuming the
borehole has closed, as is typically the case; see e.g. Rada 55

and Schoof, 2018) while subject to a non-uniform stress field
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at the bed. The measurement in that situation no longer re-
flects conditions at the bed in a simple way.

By contrast, when a sensor is connected to an isolated cav-
ity, the pressure measurement records the water pressure in
the cavity. The latter again needs to preserve its own vol-5

ume as modelled in the present paper. The pressure response
of isolated cavities to temporally varying forcing pressures
is sensitive to the timescales involved. For high-frequency
oscillations in forcing (faster than the deformation timescale
a/ū), the pressure response in isolated cavities is in antiphase10

with the forcing (Fig. 11a1), reflecting variations in the frac-
tion of overburden supported by connected and isolated cav-
ities. When forcing effective pressure N is low, a larger frac-
tion of overburden is supported by the connected cavity, re-
ducing normal stress on the isolated cavity and therefore also15

reducing water pressure in the cavity, which corresponds to
a higher effective pressure NM (defined as overburden minus
water pressure in the isolated cavity). Antiphase pressure os-
cillations of this type are familiar from observational records
(Murray and Clarke, 1995; Lefeuvre et al., 2015; Rada and20

Schoof, 2018) and, as shown by my results, do not require
variations in ice velocity caused by the forcing effective pres-
sure, since I have set sliding velocity to a constant (see also
Lefeuvre et al., 2018).

For slower forcing oscillations, temporary connections be-25

tween cavities can be established, corresponding to “switch-
ing events” observed in borehole pressure records (Murray
and Clarke, 1995; Hubbard et al., 1995; Rada and Schoof,
2018). During intervals of disconnection, the pressure re-
sponse of the isolated cavity may again be in antiphase with30

forcing (Fig. 11a2), which is somewhat similar to the “al-
ternating borehole” record in Fig. 5 of Murray and Clarke
(1995) and Fig. 7 of Rada and Schoof (2018). This ceases to
be the case during pressure oscillations that are significantly
longer than the deformation timescale a/ū (Fig. 11a3): in35

that case, the effective pressure during hydraulic disconnec-
tion does not satisfy any simple relationship with the forc-
ing effective pressure, making interpretation of the recorded
“data” challenging. Hydraulic connections between cavities
can also be poor but not fully closed for extended intervals40

as a result of small ice–bed gaps: these intervals most likely
would not be interpreted as representing a hydraulic connec-
tion in observational data, and it is difficult to determine from
the observed pressure time series when complete disconnec-
tion occurs.45

4.3 Model improvements

There are likely to be many areas in which the model de-
scribed here can be improved, ranging from a careful analy-
sis of the numerical method used to practical implementation
issues such as the use of a potentially more suitable finite-50

element basis, adaptive time stepping, and adaptive meshing
as well effective parallelization. In addition, there are phys-

ical processes that the present work has been unable to con-
sider.

The most obvious among the latter is the effective solu- 55

tion of the model in three dimensions to capture changes in
hydraulic connectivity: in a two-dimensional model, it is im-
possible to establish connectivity from one end of the domain
to the other unless ice–bed contact is lost everywhere, which
is not a physically reasonable situation. It is only in three di- 60

mensions that full end-to-end connectivity (meaning water is
free to flow from one side of the domain to the other) can
coexist with continuing ice–bed contact. Similarly, I have fo-
cused purely on the hydrological aspects of dynamic cavity
evolution and do not attempt to address the question of a fric- 65

tion law for dynamically evolving subglacial cavities, which
would be a worthwhile addition in its own right (de Diego
et al., 2022; Gilbert et al., 2022), as would a consideration of
non-constant viscosity in the ice. Lastly, the ability to cap-
ture flowing water through linked cavities in three dimen- 70

sions would make the model a tempting test bed for studying
spontaneous channelization at the process scale by adding
a term representing roof melting to the kinematic boundary
conditions (9) or (16f) (see also Kamb, 1987, and Dallaston
and Hewitt, 2014). To avoid spuriously localized feedbacks 75

between water depth and dissipation-driven melting, it may
then be necessary to dispense with the simple local formula
for water flux in terms of water depth as in Eq. (11c) by con-
sidering a horizontal turbulent viscosity (see also Creyts and
Schoof, 2009). 80

5 Conclusions

In this paper, I have formulated a viscoelastic model for ice
sliding over a rigid and mostly impermeable bed, allowing
for the formation of cavities in which water is dynamically
redistributed by an active local drainage system. The model 85

is capable of describing the dynamic extension of subglacial
cavities as bed obstacles progressively become submerged
by water sourced from a localized water supply connected
to an ambient drainage system at prescribed effective pres-
sure. In the same vein, the model is capable of capturing the 90

formation and evolution of isolated subglacial cavities that
trap a fixed water volume after becoming isolated. Its steady-
state results agree well with the results of a simpler, two-
dimensional, and purely viscous steady-state model that is
solved by an entirely different numerical method. 95

The model lends some credence to existing approaches to
modelling hydraulic isolation of the glacier bed in large-scale
models using a threshold in mean cavity size to define con-
nectivity, but it also suggests that significant modifications
to those models may be required. For instance, it suggests 100

that the cavitation ratio measuring the horizontal extent of
ice–bed separation needs to be considered separately from
the mean ice–bed gap thickness, especially when modelling
the rapid expansion of cavities as previously uncavitated low-
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pressure regions of the bed are flooded by water: the cavita-
tion ratio evolves faster and is a better predictor of subglacial
connectivity than ice–bed gap thickness, and the two vari-
ables are not simple proxies for one another (see also Gilbert
et al., 2022). Adding the relevant physics to a large-scale5

subglacial drainage model, however, requires the addition of
model variables whose evolution is not described by an exist-
ing simple parameterization, and future research needs to be
directed towards constructing such parameterizations based
on process model output.10
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