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1 Referee #1

Reviewer: 1. Oscillations in h (Sec. 3.2 onward; Figs. 3-5): you describe the “overshoot” and
“undershoot” oscillations and analyse the observed factors behind their amplitude and decay rate
with a good level of detail. Also you refer to the role of changing bed slope of contact areas (p. 15)
and later discuss the implications of the oscillations (p. 24). However, I think that the physical
cause of these oscillations is really never made clear or properly discussed in this manuscript. The
sentence on p. 15 “These variations in normal velocity are presumably the reason for the significant
oscillations in h-bar” doesn’t satisfactorily address the cause. Can you please fill this gap by adding
a passage or paragraph — at least to discuss candidate mechanisms if the correct one is difficult
to determine? (Probably what looks like ‘propagating waves’ on the ice-base topography in Fig. 7
can aid the discussion.)
Response: I have had a stab at this in two places, the first being five paragraphs from the end of
section 3.2
These variations in vertical velocity are presumably the reason for the significant oscillations in h̄:
when v3 is larger, this causes uplift of the cavity roof downstream of the contact area, and that uplifted
cavity roof causes the contact point to migrate downstream too, causing the contact area to move
over time to a flatter location, thereby reducing the amount of uplift. That in turn causes reduced
uplift of the cavity roof, so the contact area moves again to a steeper part of the bed, restarting the
cycle (albeit with a smaller amplitude on each cycle). I illustrate the interactions between congact
slope angle and growth of the cavity further in section 3.3, in particular in figures 8–9, and in the
supplementary video V1, which shows an animation of the evolving cavity shape corresponding to
figure 3.
In its simplest form, this mechanism is what happens if one rigid corrugated surface is dragged over
another (imagine two pieces of corrugated sheet roofing moving relative to each other); in the present
case, the ability of the ice to deform is significant, and the lower surface of the ice does change shape
to adapt to the rigid bed underneath, which accounts for the approach to a steady state. It is then
perhaps not surprising that low effective pressure N gives rises to the most sustained oscillations:
deviatoric stresses in the ice are then small, leading to less rapid deformation of the ice as it moves
over the bed, and adjustment to a new steady state is slower than when stresses are larger. This is
particularly evident in suplementary video V1. .
I confess that the verbal explanation is a bit simplistic as the problem determining velocity is elliptic
and a change in contact area slope will have an effect on uplift everywhere: I simply expect that
effect to be strongest near the contact area in question, but I did not think it was wise to go into
detail in the text.
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As advertised, I return to the topic of oscillations at the end of section 3.3,
Note tha panels (f–j) illustrate the mechanism for overshoot oscillations described in section 3,2:
the contact area on the more prominent upstream bump migrates downstream between panels (f)
and (h), causing a reduced vertical velocity and subsequently a reduced cavity height being advected
downstream as shown in panel (i). In fact, contact area undergoes much more significant change
in size and location than in later oscillations: in panel (g), there are two contact areas, one on
the larger bed protrusion upstream, and one on the smaller one downstream, while in panel (h),
there is a water-filled gap with thickness above the threshold for contact identification everywhere.
The main contact area on the larger bed protrusion subsequently migrates upstream again as a
result of the reduction in cavity height, with a steeper average contact angle in panel (i) than (g),
leading to larger vertical velocities. These in turn cause increased uplift once more, and therefore
the subsequent increase in cavity height in panel (j).
I illustrate the oscillation mechanism further in figure 9, where I plot the mean contact angle of
all contact areas against time in the same plot as mean cavity roof height h̄ and cavitation ratio
θ. The oscillation mechanism is most clearly seen later in the interval shown: here, the contact
angle shown in red peaks when H̄ is increasing most rapidly, and the steadily decreases around the
maximum of h̄, as advection causes the downstream end of the cavity to enlarge and the re-contact
point to migrate downstream. In time, that downstream migration and reduction in contact angle
causes h̄ to decrease again.
Reviewer: 2. In Section 3.2, which presents the highly interesting ”dynamic” run results in Fig.
3, it would help readers if you add a Supplementary Movie to accompany the figure and its textual
analyses, such as those on p. 15. Since you made Fig. 2, going further to make a movie shouldn’t
be much more difficult. I leave this choice to you but I think that a movie will embellish the study.
Response: I’ve tried to create a movie of the kind suggested above,(presumably illustrating cavity
shape as time progresses along the interval shown in Figure 3 (?); I hope this is instructive. For the
sheet fun of it, I have repeated the exercise for figure 11 (forced oscillations in cavity size)
Reviewer: p1, line 13, ”pressureized”
Response: corrected
Reviewer: p1, line 17, ”possibly other variables that can be computed by a large-scale model”.
This is vague. At least give an example.
Response: added “. . . (such as mean cavity size, see e.g. Hewitt (2013) and Gilbert et al (2022)).”
Reviewer: p1, line 21, change “an average” to “a spatial average”? I think this helps contextualise
your subject
Response: added ”. . . a local spatial average”
Reviewer: p1, line 23-24: the context is clearer if you insert the phrase ”in the friction law ” in
the sentence ”By contrast, basal water pressure is generally not assumed to be heterogeneous.”
Response: done
Reviewer: p2, lines 7-8. ”pr”? Suggestion: “The model *of* Rada and Schoof”
Response: changed to “or”. Changed to “of”
Reviewer: Eqn (2): correct the punctuation
Response: done
Reviewer: p2, line 24-26: “. . . study instead how cavities can expand dynamically along the ice-bed
interface from an access point where water is injected at prescribed pressure by an ambient drainage
system”. Clarify whether you’re thinking in two or three dimensions. The next sentence specifies
the number of dimensions, but that doesn’t help us picture the idea of the current sentence.
Response: I am a little hesitant to restrict myself to a particular dimensionality at this point
because the model that I formulate is in principle three-dimensional, although I end up solving it
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only in two dimensions. If I say the former, the reader will be sorely disappointed ice there are
no 3-D results, if I state the latter, the casual reader may come to the premature conclusion that
the model is intrinsically 2-D and therefore equally intrinsically unrealistic. I have reworded this
slightly, first by saying that there can be multiple access points at which water is injected through
the bed (which may otherwise be a source of confusion, as per the review of part 1), and then by
stating that the two dimensions in part 1 equate to one horizontal dimension. Discussion of the
actual dimensionality of the model in part 2 is still deferred to third-to-last paragraph of section 1,
where I describe the main features of the model.
The altered text for the present passage is as follows: The present paper is part of an effort to
dispense with that assumption of a perfectly permeable bed, and study instead how cavities can expand
dynamically along the ice-bed interface from a access point or set of access points where water is
injected through the bed at prescribed pressure by an ambient drainage system. In a companion paper
(Schoof, submitted), henceforth referred to as part 1, I have used a modification of existing steady
state cavity models in two dimensions (that is, with only one horizontal dimension) to study cavity
expansion under quasi-steady conditions. That is, part 1 assumes an ambient drainage system with
a prescribed effective pressure N that varies slowly enough for the cavity roof to be always in a
steady state.
Reviewer: p2, line 29: ”varies slowly enough *in time*” – this addition would make it clearer
Response: Done
Reviewer: p2, lines 30-34: your recount of the key findings of Part 1 here comes across as rather
imprecise or vague, e.g.,

• line 30 “If cavity enlargement has occurred previously and cavity size has shrunk subse-
quently”. I can imagine that a cavity on a connected lee side that grows slightly and shrinks
slightly, without extending over a bump top, also falls within this description.

• line 34 “reconnecting to an existing cavity is easier than creating a new cavity”. You probably
mean a particularly kind of new cavity, not a new cavity that grows on a connected lee side
as N decreases to below some *high* threshold value (e.g. N* = 8 in Part 1).

Response: I have changed the text in this paragraph to
. . . If cavity enlargement past a bed protrusion on its downstream side has occurred previously and
cavity size has shrunk subsequently due to an increase in ambient effective pressure, then reconnec-
tion to the now isolated pre-existing cavities happens at a different set of higher effective pressure:
reconnecting to an existing downstream cavity is easier than creating that downstream cavity by
enlarging the upstream cavity past the bed protrusion separating the two.
Reviewer: Fig. 1: (i) improve size of the arrow for hw and the placement of hw; (ii) in the caption,
you should add a third sentence to say something along the line of ”In this figure, the large cavity
meets/overlaps with the stretch P , so it is connected to ambient drainage and its effective pressure
is equal to ... [and so on]”.
Response: Changed figure. Added the following to the caption:
In this figure, the large cavity overlaps with the connected bed portion P : water freely enters or
leaves the cavity at a pressure prescribed by the ambient drainage system through P .
Reviewer: p4, nu is used here for Poisson’s ratio but also later (p8 onward) for the small parameter
in the shallow approximation
Response: Thank you for spotting that. Changed aspect ratio to ε
Reviewer: p4, around Eqn (3): I think that adding one or more suitable reference for this rheology
(chosen for the ice) is necessary
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Response: Reviewer: p4, equation (3): I think some readers might not be familiar with the
mathematical description of an elastically compressible upper-convected Maxwell fluid. Adding a
citation where equation (3) is derived/explained would be very helpful.
Response: I have added a reference to the Bird (1976) Ann. Rev. paper that provides fairly
comprehensive references for covariant, objective tensor derivatives in the context of finite strain
viscoelasticity models.
Reviwer: Sec 2: To assure readers that the choices of rheology are sensible for the physical problem,
I suggest that somewhere in this section you briefly explain why water compressibility (bulk elastic
modulus about 2 GPa) can be ignored, while a compressible rheology is assumed for ice (bulk elastic
modulus of 8-9 GPa; e.g. Table 1 of Neumeier (2018)), despite the stress coupling across ice–water
interfaces. The reason probably is trivial and involves the very different dimensionless Maxwell
times of the materials (i.e. when accounting for viscosities), but there may be other reasons.
Response: I have added the following paragraph after eq (11d): Note that equation (11b) ignores
the compressibility of water, while ice is allowed to be elastically compressible by equation (4), de-
spite the bulk moduli being comparable (Neumaier, 2018). This is standard practice in hydrofracture
models, whose validity hinges on the assumption of a shallow water layer: in that case, the displace-
ment of the ice-water boundary that results from compression of the water column is small compared
with the displacements that result from compression in the ice, simply because compressive strain in
water is comparable to its counterpart in the ice, but the resulting displacement (being an integral
over strain) is much smaller than in the ice.
Reviewer: p5, line 9, lower boundary *of the ice* (useful clarification, since b + h locates the
upper of the two interfaces in Fig. 1)
Response: Done
Reviewer: p5, line 20-21: ”Normal stress... , as water forces its way...”. I suggest rewording this
sentence because it isn’t clear whether the ”as”-phrase presents a scenario or reason.
Response replaced ”as” with “since” to clarify this is a causal relationship
Reviewer: p6, line 1: ”impermeable except in specific locations at which water from an ambient
drainage system can enter or exit the ice-bed gap”. It would be useful if you describe explicitly
(give actual examples of) what such entry/exit routes entail in this three-dimensional formulation.
It is hard to picture a connection without knowing which direction or what materials are involved.
p6, lines 2-3, ”for the remainder” isn’t clear and you should ”outside P” is that meaning is intended
Response: I have reworded the paragraph as follows:
The boundary conditions above do not permit the formation of hydraulically isolated cavities, or of
underpressurized contact areas that remain hydraulically isolated as in part 1. As an alternative to
(10), I therefore consider a bed that is perfectly impermeable except in specific locations at which
water from an ambient drainage system can enter or exit the ice-bed gap. As in part 1, I assume
that there is a (typically small) highly permeable portion P of the bed through which eater can freely
flow while remaining at the pressure of the ambient drainage system. Consequently, the conditions
(10) hold on P (or strictly speaking, at the upper boundary of P , but since I do not model water flow
through the bed, I will continue to state conditions “on P”, meaning the interface of the permeable
bed with a cavity or the lower boundary of the ice). For the remainder of the bed outside of P , I
assume that an active hydraulic system inside the ice-bed gap redistributes water.
Following from the review of part 1, I assume the potential for confusion arises from the fact that
access is through the bed — I mean, I could put a line through the domain and call that a “channel”
on which I prescribe pw, but that gets a bit awkward, something for a future effort in this direction?
Reviewer: p6, line 17 and Eqn (11d): is the correct symbol k or kappa?
Response: k apparently. Corrected.
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Reviewer: p7, line 29, physics *of* (?) ice-bed contact areas
Response: “of” would have been corrected. The sentence has gone as the result of a re-write
motivated by the other reviewer.
Reveiwer: p7 (Eqns 11 e, f & g & Eqn 12): all sigma’s and p’s in this formulation differ from those
in Part 1 where they had cryostatic overburden subtracted. I think that you should point this out
in this section (even if any of the later analysis employs the subtracted version).
Response: I have added the following note below equations (10), where the issue should first
become apparent:
(Note also that the model here is formulated in terms of total Cauchy stress, while part 1 uses a
reduced pressure, from which overburden has been subtracted. I introduce that reduction of stress in
the next section.)
Reviewer: p8, the equations on this page lack numbering. Is this deliberate? Please check the
journal’s formatting guidelines.
Response: I suppose it was deliberate, with these equations playing a different role, but I’ve added
numbering in order not to cause trouble.
Reviewer: p8, in the final scaling relation, it may be better to symbolise the water thickness scale
by [hw], as h symbolises the interfacial elevation (which is treated in the second-last scale relation).
Response: I think this was deliberate, since there is no separate scale for the two (unless hw is
intrinsically small compared with h, but that would only occur if all cavities are “dry” and at the
triple point pressure). It seems preferable to me to introduce only one scale rather than a second
redundant one, for which I would simply end up defining [hw] = [h] somewhere later. Note that
I’ve likewise only defined one scale for the three different velocity components and coordinates.
Reviewer: p8, line 13: ”defined” (towards end of line)
Response: corrected.
Reviewer: p8, line 14: by ”forcing”, do you mean ”ambient”? Consider writing “ambient water
water (which is used in this study as a forcing factor).
Response: replaced with “ambient drainage system water pressure”
Reviewer: p9, Eqn 13a and preceding line: as mentioned for page 4, here you seem to be using nu
for both Poisson’s ratio and the small ”shallow” parameter
Response: Replaced (see above)
Reviewer: p9, Eqn 13f: my attempt to derive this gives u-bar and v-bar instead of u1 and v1 in
front of the derivatives. Please check.
Response: That is correct. The other reviewer also flagged this (in the context of the moving
frame transform removing advection terms). I’ve corrected the text; the code does not contain this
error, which I suspect was the result of cutting-and-pasting from equation (9)
Reviewer: p9, is there an Eqn 13g?
Response: No, just an errant pair of backslashes. I’ve removed them (note however that hte
equation numbering has changed anyway, so this refers to the new equations (16))
Reviewer: p9, Eqns 15c and 15d and next line: the conditions here seem to switch back into
dimensional terms (for pw at least), which comes across as confusing; that is, the pw here doesn’t
seem to be the pw in (13e), which I think is dimensionless. Please check.
Response: I think this is an unfortunate result of the convention of dropping asterisks on dimen-
sionless quantities, pi here was actually the dimensionless p∗i , and equations )15c–d) (now (18d–e)
were actually dimensionless. To avoid that notational pitfall, I have replaced p∗i by Σ0

Reviewer: p9, Eqn (13e) for sigma33 at x3 = 0 seems to conflict/overlap with Eqn (14) (applied
also at x3 = 0). Perhaps (13e) is replaced by (14) and/or it doesn’t apply everywhere along x3 = 0?
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Response: Technically I don’t think (13e) in the original paper was not in conflict with (14), if you
go with the interpretation of pw in contact areas defined in section 2.1 (“I continue to interpret pw
with compressive normal stress at the bed [. . . ] even if no water is present”, equation (11c) of the
original paper — meaning, pw is then not to be understood as a water pressure. The upshot is that
pw can then differ from the ambient drainage pressure even in P if there is a contact area. This is
clearly confusing (the other referee raised the same point), and I would attribute that confusion to
the notation used as well as the original description of p∗w given below the (originally unnumbered)
equations defining the dimensionless variables.
In the updated manuscript, I have defined the dimensionless reduced normal stress (reduced in
the sense of having removed overburden) by pn as a more common symbol for compressive normal
stress, that is

p∗n =
pw − pi

[σ]
.

I have changed the verbal definition of p∗n below equation (15) to the following
N∗ is the (scaled) usual effective pressure defined as the difference between overburden and the water
pressure in the ‘ambient’ drainage system to which the bed is connected in the permeable regions
P , while p∗n is a reduced normal stress, defined as the difference between local normal stress pw (the
latter being equal to water pressure where water is present between ice and bed) and overburden.
Where water is present, p∗n is then the negative of the effective pressure defined in terms of local
rather than ambient drainage system water pressure. I’ve written the conditions on P in equations
(17) (of the revised manuscript) explicitly in terms of pn, as well as writing the water flux in
terms of pn. The reason for retaining pn is that it makes the numerical implementation of the
inequality constraints in both (17) and (18c–d) simple, playing the same role as de Diego et al’s
(2022) Lagrange multiplier λ.
Reviewer: p9, line 24, τ ∗b — you wrote earlier that asterisks are dropped
Response: Changed to plain τb
Reviewer: p10, awkward on lines 22 and 32 where the text switches back to referring to dimensional
quantities when describing the numerical method of solving the dimensionless model of the last page
Response: I will defend line 22 on the basis that the structure after semi-discretization is that of a
generic compressible elastic problem, for which there is no good dimensionless template in the text
but there is in the later citation to Kikuchi and Odean. I have rephrased this slightly as
. . . takes the mathematical form of a compressible linear elasticity problem, with velocity taking the
place of displacement, and “elastic” moduli that differ from the usual E and ε (which would become
1 and ν in dimensionless terms): the effective moduli in fact depend on step size δt as well as τM
and ν.
On line 32, I have changed the text to . . . I use an upwind scheme for q, which would have been
the correct thing to say to begin with.
Reviewer: p11, line 14: the description here ”code is implemented for both two- and three-
dimensional domains” is a little confusing as the next line indicates that the code isn’t used for
three dimensions. The difference between ”implementation” and ”use” isn’t clear.
Response: Changed “implemented” to “written so it can be used in both two- and three-dimensional
domains”
Reviewer: p11 line 22: on declaring these choices for a and h0, it is useful to say that they make
the N (dimensionless) in this manuscript directly comparable to N* in the Part 1 manuscript, as
the effective pressure scalings are then the same. Section 3.1 later doesn’t clarify this matter when
comparing Part 1 and Part 2 results.
Response: changed to
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. . . which is identical to equation (10) of part 1 with h0 = 1, a = 2π, and therefore makes the
dimensionless parameter N here be the direct equivalent of N∗ in part 1.
Reviewer: p11, line 23: hiccup after ”In that”
Response: Changed to “In that case,. . . ”
Reviwer: p12, line 2: if I have guessed the intended sense here correctly, I would expect to read
”highest” rather than ”lowest” in this phrase. Please check.
Response: Quite so. Changed to “highest”
Reviewer: p12 line 12, spurious curly bracket [note: I’m counting downward from line 5]
Response: Corrected.
Reviewer: p12, line 13: this lead phrase (“As measures. . . that . . . “)doesn’t seem grammatical
[ Again counting downward from line 5 ]
Response: In my defense, if I had written “As measures of cavity size, I compute cavitation ratio
and mean water depth. . . ”, you might have been less perturbed. I’ve changed this passage to
. . . two commonly used measure of cavity size are mean cavity size h̄ and cavitation ratio θ (Thøgersen
et al, 2019). I compute both of these from the following formulae,

h̄(t) =
1

a

∫ a

0

h(x, t)dx, θ(t) =
1

a

∫ a

0

H(h(x, t) − hε)dx

where H is the usual Heaviside function.Note that θ is simply the fraction of the bed that is cavitated,
since θ = a−1

∑
(cj − bj), the sum being taken over all cavities in one bed period. Both θ and h̄

could be used to parameterize cavity geometry in a large scale subglacial drainage model (the scale
of individual cavities being “microscopic” in these models, see . . . )
Reviewer: p13, lines 3-4, while I understand this opening sentence, it would help readers if you
add a sentence or insert a phrase to clarify whether Fig. 2 shows solutions in the moving or absolute
frame of reference
Response: Changed to
The solutions of the dynamic model (plotted against the original, as opposed to moving, coordinate
x in figure 2). . .
Reviewer: p13, line 11, unclear what ”the latter” refers to; clarify
Response: My understanding was that “the latter” would refer to the last noun used (“cavity”)
in an effort to avoid recycling that noun. I’ve changed this to
At the instant when a cavity becomes isolated, that cavity is generally not in steady state . . .
Review: Fig 2 caption, line 2, the phrase ”the bed b is shown in grey” confuses b (the bed surface)
with the bed interior (described as grey in colour)
Response: Thank you for forcing me to be consistent. I have taken out the “b” here.
Reviewer: p15 & Fig 3: perhaps this will be said later, or I’ve missed it. Although your focus
on p15 is on the oscillations, it is useful to point out that the asymmetric response in Fig. 3 (h-
bar doesn’t stabilise towards the same final value when N is step-changed to a certain value from
different directions in this run) is related to the ”irreversibility” of new cavity formation reported
in Part 1 for the partially permeable case. This is in contrast to the reversible behaviour in Fig. 5
(fully permeable).
Response: I have added the following paragraph towards the end of section 3.2
While the dynamic behaviour of the fully permeable bed case is similar to the impermeable bed, there
are two notable differences. First, as in the case of reconnection of a previously isolated cavity for
the impermeable bed case in figure 4, drowning of the smaller bed protrusion for the permeable bed
does not cause the significant overshoot oscillation that is apparent at t = 78 in figure 3. Second, the
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irreversible nature of cavity expansion at that point in time in figure 3 is absent for the permeable
bed case in figure 5, confirming the steady state results of part 1.
Reviewer: p15 last paragraph: you caution about the nature of the simulated oscillations at
lowest N. But elsewhere in this section, you don’t explicitly say whether you interpret the simulated
oscillations at higher N (in fig. 3 and later figures) to be ’real’, not dominated by numerical artifact
— although the writing seems to imply ’real’. Please clarity as a suitable place.
Response: I have rearranged the relevant material and added an additional figure to address this
(prompted by similar comments from the other referee). I have managed to run an abbreviated
version of the of the computation in figure 5 having halves the cell size along the bed (the fully
permeable bed case of figure 5 is easier to solve, and exhibits what appear to be the same kind of
oscillations in h̄ as are evident in figure 3). The comparison between the solution with standard
and double resolution is shown in the new figure 6, and described in the last paragraph of section
3.2 (for the sake of a better flow of the text, I also moved the material in the sixth paragraph of the
original section 3.2 (starting with “Repetition of an earlier note of caution. . . ”) to the penultimate
paragraph. The final two paragraphs of the updated section 3.4 state
The cavitation ratio is very close to unity (typically around 0.96–0..98) for the long-lasting oscil-
lations at low N identified above (between t = 258 – 420 and t = 200 – 260 in figures 3 and 5,
respectively). With such a small contact area, only about 3–6 nodes in the finite element mesh are
in contact with the bed. (Note also that the numerical method treats a bed cell as either separated
from the bed with h > 0, or in contact with h = 0, and the cavity end point location therefore jumps
in increments of a single cell size, giving the plots of θ and of cavity end point location against t a
non-smooth appearance, while the mean ice-bed separation h̄ is much smoother.)
A very small number of nodes in contact with the bed raises the question of numerical artifacts. A
comprehensive study of mesh size effects is beyond the scope of the work presented here. Due to the
limitations of working in a MATLAB coding environment, it is difficult to refine the mesh signifi-
cantly beyond what is used in the computations reported above. For the case of a fully permeable bed
(which typically permits larger time steps), I have been able to refine the mesh to double the number
of nodes on the bed for a relatively short computation. A comparison for a shortened version of the
computation in figure 5 is shown in figure 6. While there are differences, these are mostly in the
detail: the cavitation ratio time series is significantly smoother for the higher resolution results (as
might be expected), and the oscillations in h̄ are also somewhat smoother. There are however no
dramatic changes of the kind that one might expect for a mesh that is effectively very coarse around
the contact area, lending confidence to the conclusion that the sustained oscillations in h̄ at low
effective pressure are a robust feature of the solution.
Reviewer: p16, lines 10-12 (irrelevance of viscoelasticity in Fig. 5): I have been wondering about
this when reading p13-15. Can you please clarify whether viscoelasticity is also insignificant in the
runs in Figs. 3 and 4 (besides 5) — in causing the oscillations — if that is true?
Response: I have tried to address this in the fourth paragraph of the updated section 3.3, because
I think the issue fits most naturally there:
Importantly, this initial “hydrofracture” (which is not hydrofracture in the true sense, as it corre-
sponds to a pre-existing fracture being re-opened) has very limited extent. In fact, the same initial
fact occurs every time that N goes through a step change, regardless of whether the cavity expands
significantly afterwards. For step changes in N that do not lead to large-scale expansion by drowning
of a smaller lee side protrusion, that brief “hydrofracture”episode is the only part in the process of
cavity enlargement that involves elastic effects (in the sense of occuring over a shorter interval than
the Maxwll time).
Reviewer: Fig 4b panel: to help readers, please add the labels ”cavity” and ”contact”, as done in
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fig 3; one or two places would do.
Fig 5b panel: to help readers, please add the labels ”cavity” and ”contact”, as done in fig 3
Response: Done.
Reviewer: Fig 6 caption, line 2: is ”18” a typo?
Response: Yes. it looks like this was an unintiontial cut-and-paste of an equation reference.
Reviewer: p19, lines 5-7 (delayed/final rapid increase in h̄): Unlike the earlier phases of the
evolution, for this final phase/part of h̄ rising, you don’t give or hint at any physical mechanism.
What controls or causes it? Or what delayed it, causing it to lag behind the rapid rise in theta-bar
in Fig. 6a? Does the cause involve water transfer?
Response: The initial rapid growth in θ while h̄ only changes by a small amount is an example of
hydrofracture, with an associated time scale controlled by water flow (as described in the context
of the first hydrofracture “event”). The slower expansion thereafter is viscous. I’ve tried to clarify
this in the eighth paragraph of section 3.3:
. . . It is only during this slower expansion that the cavity depth h̄ increases more rapidly this phase
is much longer than a single Maxwell time and is again associated with viscous deformation of the
ice.
Reviewer: p19, line 14: in this passage it is worth pointing out also the brief recontact seen in
panels g and h
Response: I have already addressed this in the context of changing the text in response to the
first main point in this review, see above.
Reviewer: Fig 8d: most steps in N have vertical lines. Add vertical line for the step at t = 260?
Reviewer: This is a little odd; in my copy, a vertical line does show up at t = 260
Reviewer: Fig 8 caption, line 2: hiccup in P value. Last line: I suggest moving ”at t = 260” to
elsewhere in the sentence
Response: Corrected P . Moved t = 260 to say “. . . and departs at t = 260 from the solution not
indicated by arrows”
Reviewer: p20, line 1: columns of 9? figure 9?
Response: Corrected.
Reviewer: Paragraph across p20-21: this description seems brief for the interesting result in
column 1 of figure 9. If I’m reading Fig. 9a correctly, the connected cavity is longer (larger?) when
water pressure (effective pressure N) is lower (higher)? Is this phase relation due to a time delay
originating from viscous flow? Can you venture to say more?
Response: I think (based on having previously commented out the passage I have now reinserted)
that I had not gone deeply into this because the mechanism had been briefly identified in the
literature. I have re-inserted the omitted passage (with appropriate referencing) to say
In column 1, a relatively small isolated cavity forms before periodic behaviour is established. That
cavity then remains isolated throughout the pressure cycle. The effective pressure NM in that isolated
cavity is in antiphase with the forcing effective pressure N in the connected cavity. This behaviour
is familiar from field observations in parts of the glacier bed that are not hydraulically connected
(Andrews et al, 2014,Rada and Schoof, 2018). A simple way to interpret the antiphase pressure
variations is in terms of the portion of overburden supported by the isolated cavity (Murray and
Clarke, 1995, Lefeuvre et al 2015): when forcing effective pressure N is low, a larger fraction of
overburden is supported by the connected cavity, reducing normal stress on the isolated cavity, and
therefore also reducing water pressure in the cavity, which corresponds to a higher effective pressure
NM (defined as overburden minus water pressure in the isolated cavity)
Reviewer: p23, line 6, the value here (1.0653) differs from that in Fig. 2a-b
Response: The digit “6” appears to be a typo here. Corrected.
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Reviewer: p23, line 10, ”will also”; ”will” seems redundant
Response: Changed to “also confirms”
Reviewer: p23, line 14-15, the message delivered here is ”the subsequent growth of mean cavity
depth h-bar... and of the cavitation ratio theta-bar ... causes a hydraulic connection to be estab-
lished”, but I don’t think that it makes physical sense to consider these as cause and effect. (The
next sentence seems to be fine as it uses the word ”predictor”, which conveys a correlation, not
physical causation.)
Response: This is hopefully just awkward wording: the growth in h̄ and θ does correspond to an
enlargement of the cavity to the point where it is no longer confined by high normal stresses around
it (see part 1) and grows past the lee-side bed protrusion. I’ve changed the paragraph to say
. . . These insights are however misleading in a dynamic situation: figure 2 shows that the it is
not the instantaneous drop in N below some critical value that causes a hydraulic connection to
be established. Instead, a drop in N causes mean cavity depth h̄ and cavitation ratio θ to grow.
That growth eventually allows hydraulic connection as a bed protrusion on the downstream side is
“drowned”.
Reviewer: p23, 2nd and 3rd paragraphs: these paragraphs seem to be written to address the
context that (/the question whether) a specific variable threshold can be used (in macroscopic
drainage models) as proxy for connection. These paragraphs will work better if you outline or
remind us of the context at their start; doing this will serve to help the whole section. Currently
this context emerges slowly, and I have long forgotten it since Sec. 1.
Response: I have changed the start of the second paragraph of section 4.1 to
One might therefore be tempted to parameterize cavity connection in large-scale drainage models in
terms of effective pressure N reaching a threshold value. The insights from steady state calculations
are however misleading in a dynamic situation: . . .
Reviewer: p23, line 25: ”having a simple critical value hc” – for what purpose?
Response: Reworded to
A plausible alternative to having a simple critical value hc for cavity connection in a large-scale
model is to recognize that. . .
Reviewer: p23-24: on these pages, you should highlight that here you’re attempting to derive
insights for drainage modelling in (I presume) three-dimensions from simulated behaviour in two
dimensions. I am not sure that this translation from one to the other necessarily applies; the text
on these pages conveys it as automatically valid for all aspects being considered. (This issue is
linked to – but not the same as – the general limitations of using a two-dimensional model.)
Response: I agree with all but the last sentence here (in parentheses) — presumably if I had a
local 3-D model, I would learn about issues of connectivity in two horizontal dimensions. I suppose
you could argue that I might find that connectivity is anisotropic, so the permeability of large-scale
drainage models would have to be a tensor, with more complicated criteria for connectivity along
different principal axes. I think that would be a very speculative thing to bring up here. Either
way, I was hoping to defer discussion of 3D models and the difference that you might see in them
to section 4.3; I don’t think I have much to add to what I wrote there, certainly not in a way that
isn’t confusing.
Reviewer: p25, line 9, here you refer to the shape and volume of an ”isolated” borehole. Do
shape and volume matter because we are considering a borehole that has closed at the top by ice
deformation? Please clarify in the text
Response: In my experience, boreholes usually freeze shut before they close due to creep, but then
I work on relatively shallow polythermal glaciers. I have changed the wording here to
which itself is of unknown shape and must preserve its volume (assuming the borehole has closed,
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as is typically the case, see e.g. Rada and Schoof 2018) while subject to non-uniform stress field at
the bed.
Reviewer: p26, lines 4-6: in this passage, what end-to-end connectivity means is obscure to me.
Response: I have clarified this (hopefully) by adding text to say
end-to-end connectivity (meaning, water is free to flow from one side of the domain to the other)
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The evolution of isolated cavities and hydraulic connection
at the glacier bed. Part 2: a dynamic viscoelastic model

Christian Schoof

June 15, 2023

1 Referee #2

Reviewer: I find the explanation of boundary conditions in section 2.1 after line 17 very difficult to
understand. You say there are two alternatives for closing the system of equations for the viscoelastic
fluid. What I understand is that these two alternatives are either (10), which you enforce on P
(or the whole bed when you consider a fully permeable bed), or (11e), which you enforce on the
complement of P. In the case of (11e), the water pressure is given by the equations for the water
column described previously. Is this correct? If so, I would consider rewriting this part of section
2.1 such that you first show the two alternatives (10) and (11e), and then explain how the water
pressure pw is modelled in the complement of P . I find this much clearer because what we need to
close the equations for the ice dynamics are normal velocity and normal stress boundary conditions.
Response: I have done a fairly major re-write of the boundary conditions, including the suggestion
above. In order to make the model for pw more self-contained, I first stated that pw is normal stress
at the bed as requested, and then deferred all the discussion surrounding large gap permeability K
as well as of what happens when h vanishes until after the model is complete. I have tried to give a
simple counting argument along the way to make clear that there is nothing missing, although this
hardly counts as a proof of existence of solutions (nor is it intended as such)
In full, the revised statement of boundary conditions runs as follows;
To close the problem, I require one additional boundary condition. I consider two alternatives. First,
the standard assumption in dynamic models of subglacial cavity formation has been that the bed is
rigid yet highly permeable, with a prescribed water pressure p0w everywhere. That assumption is also
part of the steady state model by Fowler (1986) and Schoof (2005) that I previously generalized in
part 1. Normal stress cannot drop below that water pressure, as water forces its way between ice and
bed and opens a gap or cavity. A fully permeable bed gives a boundary condition on normal stress
in the following either-or form (Durand et al 2009, Stubblefield et al 2021, de Diego et al 2021)

−σijninj =p0w if h > 0 or

(
h = 0 and

∂h

∂t
> 0

)
(1a)

−σijninj ≥p0w if h =
∂h

∂t
= 0, (1b)

signifying the possibility that compressive normal stress can exceed water pressure where ice is in
contact with the bed, and a gap is not about to form: put more simply, in contact areas, normal ve-
locity is prescribed, while in areas with an ice-bed gap, normal stress is prescribed, and the inequality
constraints above serve to determine which boundary condition applies where (see also Stubblefield
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et al , 2021).
The boundary conditions above do not permit the formation of hydraulically isolated cavities, or of
underpressurized contact areas that remain hydraulically isolated as in part 1. As an alternative
to (1), I therefore consider a bed that is perfectly impermeable except in specific locations at which
water from an ambient drainage system can enter or exit the ice-bed gap. Specifically, I assume
that there is a (typically small) permeable portion P of the bed at which (1) holds, while for the
remainder, I assume that an active hydraulic system inside the ice-bed gap redistributes water.

Specifically, I assume that there is a water column of evolving height hw inside the ice-bed gap,
constrained by 0 ≤ hw ≤ h. Assuming negligible deviatoric normal stress in the water column, local
force balance demands that water pressure pw in that water column (not to be confused with the
prescribed ambient drainage system pressure p0w, which generally differs from pw) is given by normal
stress at the bed,

−σijninj = pw. (2a)

Outside of the permeable portion of the bed, there is no water supply, so pw is not prescribed a priori,
but the water column height satisfies a depth-integrated mass conservation equation of the form

∂hw
∂t

+∇h · q = 0, (2b)

which should be understood in weak form, permitting mass-conserving shocks where necessary.
Here q = (q1, q2) is a two-dimensional flux and ∇h = (∂/∂x1, ∂/∂x2) is the corresponding two-
dimensional divergence operator. I assume that the ice-bed gap is shallow (an assumption that I
formalize in the next section), and I therefore relate the depth-integrated water flux q to water
column height hw and an along-bed gradient in water pressure pw(x1, x2, t) as

q = −K (hw, |∇hpw|)∇hpw +
1

2
uhhw (2c)

where uh = (u1, u2) is the horizontal component of velocity at the base of the ice, and K is a two-
dimensional “gap permeability”, which I take to be give by Darcy-Weisbach or Manning-Gauckler
power law formulation (see e.g. Werder et al, 2013), of the generic form

K(hw, |∇hpw|) = k0h
α
w |∇hpw|β−1 (2d)

with α > 1, β = 1/2 and κ0 > 0 constant. Note that the above also covers the case of laminar
Poiseuille flow if α = 3 and β = 1. The second term in equation (2c) is the contribution of shear
to water flux, which remains negigible in all computations reported here.
Note that equation (2b) ignores the compressibility of water, while ice is allowed to be elastically
compressible by equation (4), despite the bulk moduli being comparable (Neumaier, 2018). This is
standard practice in hydrofracture models, whose validity hinges on the assumption of a shallow
water layer: in that case, the displacement of the ice-water boundary that results from compression
of the water column is small compared with the displacements that result from compression in the
ice, simply because compressive strain in water is comparable to its counterpart in the ice, but the
resulting displacement (being an integral over strain) is much smaller than in the ice.
To avoide the negative fluid pressure singularities common to hydrofracture models (Spence et al
1985, Tsai and Rice2010, 2012), I permit a “fluid lag”, in the form of a vapour-filled space between
water and ice when water pressure drops to zero (or more strictly, the triple-point pressure of water,
which I treat as negligibly small compared with stresses in the ice). This means that fluid depth hw
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and ice-bed gap size h are related through one of the following two possibilities,

either 0 ≤ hw =h and pw > 0, (2e)

or 0 ≤ hw ≤h and pw = 0, (2f)

and pw cannot be negative.
The first possibility, condition (2e), states that there cannot be a vapour-filled gap between ice and
water (of thickness h− hw > 0) if fluid pressure is above the triple-point pressure, in the sense that
ice, water and vapour cannot then coexist. This is the default state and correspods to a completely
fluid-filled ice-bed gap, as is the case in the canonical picture of subglacial cavities. By the second
condition (2f), a water filled gap is possible but need not exist at the triple-point pressure; given the
substantial overburden pressure, this is only likely to be reached near the tips of cavities that are in
the process of expanding rapidly (e.g. Tsai and Rice, 2010).
As far field boundary conditions, I consider prescribed normal and shear stress, in the form

−σ33 → pi, σ13 → τb, σ23 → 0 (3)

as x3 → ∞, where pi is overburden and τb is the usual ‘basal shear stress’ of the theory of basal
sliding (Fowler, 1981). In addition, I assume the domain is laterally periodic, with period a in both
horizontal directions.
The basal boundary conditions for the classical caviation problem with a permeable bed consist of
(13d), (13f) and (1). The stress and normal velocity conditions in (13d) and (1) are sufficient
to close the force balance problem (13c) (see de Diego et al 2021,2022 , Stubblefield, 2021, for the
equivalent purely viscous problem), while the kinematic boundary condition (13f) serves to determine
the gap width variable h that appears in the contact conditions (1).
By contrast, the equivalent set of boundary conditions for an impermeable bed given above introduces
local fluid pressure pw and fluid depth hw as variables defined at the boundary, in addition to the gap
width h. A simple counting argument shows that the equations (13d) and (13f) combined with (2b)–
(2f) close the problem: the force balance relation (13c) requires three boundary conditions, which
are supplied by equations (13d) and (2a). The fluid pressure pw that features in equation (2a) is
determined through the mass conservation problem (2b)–(2c). The latter constitute a single equation
in fluid depth hw and pressure pw, where hw and gap width are determined through the kinematic
boundary condition (13f) and whichever one of the two conditions (2e)–(2f) applies, leading to a
total of three equations to specify the three variables pw, hw and h.
The counting argument of the previous paragraph is of course simplistic: the determination of pw,
hw and h couples back to the force balance problem through the velocity components in the kinematic
boundary condition. Note also that isolated cavities (the object of our study) are only present if the
gap width h is either zero or extremely small between those cavities and the permeable bed portion
P . The formulation above incorporates such regions provided the permeability K vanishes when
fluid depth hw does (as it must where the gap vanishes, since hw ≤ h). In the interior of a region
where the ice-bed gap vanishes (that is, where ice is in contact with the bed), water flux vanishes and
hence ∂hw/∂t = 0 from equation (2b). Note that, since there is no water column present in that
case, the variable pw does not represent an actual fluid pressure in such regions, but simply equals
the compressive normal stress.
From the gap width relations (2e)–(2f), there are then two possibilities in the interior of regions
where hw = 0: either h remains at zero and the kinematic boundary condition (13f) reduces to
condition of vanishing normal velocity, so u3 = u1∂b/∂x1 + u2∂b/∂x2 and ice remains in contact
with hte bed, or alternatively normal stress drops to the triple-point pressure and a vapour-filled
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cavity forms. The combination of equations (13d), (13f) and (15)–(2f) can therefore describe not
only the physics of a water layer separating ice and bed, but also the physics of ice-bed contact areas
as required.
In practice, only very small pressure gradients should be required in order to move water fast enough
to fill the ice-bed gap as the latter evolves due to ice flow. That situation corresponds to the limit of
a large gap permeability K (or better still, of large k0): the flux relation (2c) then simply serves at
leading order to impose a spatially uniform water pressure in each basal cavity, as is also the case for
the classical cavity model using the permeable bed boundary conditions (1). In that case, shear in the
water column also plays an insignificant role, and I retain the second term uhhw/2 in the definition
of flux in equation (2c) here simply to make the switch to a moving coordinate frame employed in
section 2.3 more self-consistent (since an advective term will automatically appear under the change
to a moving frame).
referee I also have trouble understanding part of section 2.2, between lines 11 and 21. In line 14
you write: ”imposes the boundary condition (14) only when (x1, x2) ∈ P is in a part of the bed to
which the ambient drainage system has access”. Does (x1, x2) ∈ P already imply that that point
is on a permeable point and therefore has access to the ambient drainage system? I also see that
condition (11e) is written as (13e) in the non-dimensional system. However, this is in conflict with
condition (14). Shouldn’t you include (13e) in (15)?
Response: Yes, (x1, x2) ∈ P says that the point (x1, x2) is in the permeable part P of the bed.
I’ve reworded this bit as
The second, which I refer to as an impermeable bed, imposes the boundary conditions (14) only for
points (x1, x2) ∈ P (that is, for points that lie in a part of the bed to which the ambient drainage
system has access). Flow of water occurs only through the ice-bed gap otherwise, satisfying. . .
Technically I don’t think (13e) in the original paper was not in conflict with (14), if you go with
the interpretation of pw in contact areas defined in section 2.1 (“I continue to interpret pw with
compressive normal stress at the bed [. . . ] even if no water is present”, equation (11c) of the original
paper — meaning, pw is then not to be understood as a water pressure. The upshot is that pw
can then differ from the ambient drainage pressure even in P if there is a contact area. This is
clearly confusing (the other referee raised the same point), and I would attribute that confusion to
the notation used as well as the original description of p∗w given below the (originally unnumbered)
equations defining the dimensionless variables.
In the updated manuscript, I have defined the dimensionless reduced normal stress (reduced in
the sense of having removed overburden) by pn as a more common symbol for compressive normal
stress, that is

p∗n =
pw − pi

[σ]
.

I have changed the verbal definition of p∗n below equation (15) to the following
N∗ is the usual (but scaled) effective pressure defined as the difference between overburden and
the water pressure in the ‘ambient’ drainage system to which the bed is connected in the permeable
regions P , while p∗n is a reduced normal stress, defined as the difference between local normal stress pw
(the latter being equal to water pressure where water is present between ice and bed) and overburden.
Where water is present, p∗n is then the negative of the effective pressure defined in terms of local
rather than ambient drainage system water pressure. I’ve written the conditions on P in equations
(17) (of the revised manuscript) explicitly in terms of pn, as well as writing the water flux in
terms of pn. The reason for retaining pn is that it makes the numerical implementation of the
inequality constraints in both (17) and (18c–d) simple, playing the same role as de Diego et al’s
(2022) Lagrange multiplier λ.
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Reviewer: In equation (12) of page 8, you write far-field conditions for the basal shear stress.
Previously, in Schoof (2005), you enforced far-field conditions for the velocity. Why do include this
new far field boundary condition here? I think it could be interesting to include an explanation for
this choice of boundary condition in the paper.
On this note, I am also confused about the sliding velocity variable ub. You compute horizontal
velocity perturbations u to this horizontal motion, yet you do not enforce the far field condition
that u→ 0, right? In this case, the actual sliding velocity is ub + u as x3 →∞. I think it would be
clarifying to mention this.
Response: It turns out that the two conditions σ13 → 0 and u → 0 give the same answer in the
model of Schoof (2005). I have tried to make this clear in a new paragraph after equation (16):
Note that the condition σ13 → 0 imposed here does not conflict with the alternative condition u1 → 0
used for instance in Schoof (2005): in the purely viscous model in the latter paper, σ13 behaves as
∂u1/∂x3 in our present notation, and σ13 → 0 implies u1 → constant. Setting that constant to zero
simply removes the indeterminacy of u1 in the model above (consisting of equations (13)–(16), which
arises because the latter remains invariant under adding a constant to u1: that indeterminacy needs
to be resolved by going to higher order, but does not affect the leading order sliding velocity since u1
is a small correction to the sliding velocity ū since [u]/ub = ε � 1: the total velocity is ub + εu1,
and therefore remains equal to ub at leading order regardless of what finite value u1 approaches as
x3 →∞.
Reviewer: In the numerical method, do you solve for velocity, stress, water pressure, cavity height
and water height simultaneously? Or do you use any staggering of variables in time? I think it
could help future researchers who wish to re-examine this problem to have access to the code you
used.
Response: I use “backward Euler step” in the usual sense of a fully implicit time step. There is
a minor caveat, namely that conservation of water along the bed is solved using an upwind scheme
(to avoid extracting water from finite volume cells that contain no water). Simple upwinding is
discontinuous and therefore not realistically possible to combine with a backward time step, so the
upwind direction is inferred from the previous time step (and I hope that in future there will be
better ways of doing this! — since the scheme I use often requires quite small time steps to prevent
the upwind direction from flipping back and forth. I make this explicit in the following additional
sentence in the second paragraph of section 2.3,
The time step is fully implicit except for the use of upwinding in the discretization of the mass
balance equation (18a), in which we define the upwind direction based on the direction of ∇hpw
after the previous time step. I am happy to make the code available.
Reviewer: The overshoot in the mean cavity size h in e.g. Figure 3 is extensively commented
throughout the paper. At some points you suggest it could be a numerical artifact, yet you refer to
it to argue that cavitation ratio and ice-bed gap are not good proxies for each other (page 15, line
20). Therefore, it seems important to explore whether such oscillations are physical or numerical.
This is obviously a difficult task and a full analysis of this phenomenon is out of the scope of this
paper. However, a simple computational test would be to compute the cavity height after a step
change in effective pressure for different meshes and time steps. If these oscillations were physical,
we would expect the cavity height evolution to converge for decreasing mesh size and time steps.
I suggest these computations be included in the paper, perhaps in an appendix. It would be very
interesting to see this comparison for a case where dramatic oscillations occur, as in Figure 3 at
t = 78.
Response: This is a very good point, though the proposed numerical test is simple at face value,
but turns out not to be so simple in practice, if you’re foolish enough to have coded the problem
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in MATLAB. I have managed to run an abbreviated version of the of the computation in figure
5 having halves the cell size along the bed (the fully permeable bed case of figure 5 is easier to
solve, and exhibits what appear to be the same kind of oscillations in h̄ as are evident in figure
3, although not the extreme ones associated with rapid cavity expansion past a lee-side obstacle).
The comparison between the solution with standard and double resolution is shown in the new
figure 6, and described in the last paragraph of section 3.2 (for the sake of a better flow of the text,
I also moved the material in the sixth paragraph of section 3.2 (starting with “Repetition of an
earlier note of caution. . . ”) to the penultimate paragraph. The final two paragraphs of the updated
section 3.4 state
The cavitation ratio is very close to unity (typically around 0.96–0..98) for the long-lasting oscil-
lations at low N identified above (between t = 258 – 420 and t = 200 – 260 in figures 3 and 5,
respectively). With such a small contact area, only about 3–6 nodes in the finite element mesh are
in contact with the bed. (Note also that the numerical method treats a bed cell as either separated
from the bed with h > 0, or in contact with h = 0, and the cavity end point location therefore jumps
in increments of a single cell size, giving the plots of θ and of cavity end point location against t a
non-smooth appearance, while the mean ice-bed separation h̄ is much smoother.)
A very small number of nodes in contact with the bed raises the question of numerical artifacts. A
comprehensive study of mesh size effects is beyond the scope of the work presented here. Due to the
limitations of working in a MATLAB coding environment, it is difficult to refine the mesh signifi-
cantly beyond what is used in the computations reported above. For the case of a fully permeable bed
(which typically permits larger time steps), I have been able to refine the mesh to double the number
of nodes on the bed for a relatively short computation. A comparison for a shortened version of the
computation in figure 5 is shown in figure 6. While there are differences, these are mostly in the
detail: the cavitation ratio time series is significantly smoother for the higher resolution results (as
might be expected), and the oscillations in h̄ are also somewhat smoother. There are however no
dramatic changes of the kind that one might expect for a mesh that is effectively very coarse around
the contact area, lending confidence to the conclusion that the sustained oscillations in h̄ at low
effective pressure are a robust feature of the solution.
Reviewer:, p1, line 13: ”pressureized” ¿ ”pressurized”
Response: Corrected
Reviewer: p2, line 7: Unclear about meaning of ”pr”. Do you mean ”i.e.”?
Response: I meant “or”, apparently. Corrected.
Reviewer: p2, equation (2): Add full stop.
Response: Done.
Reviewer: p3, line 10: ”practical computational reasons” - What does this mean exactly? Exces-
sive computational cost, unsuitable numerical model for 3D, difficulties in formulating/implementing
computational tests? This should be clarified here.
Response: I have reworded this as
Because the MATLAB code I have written is not suitable for full parallelization, I have however not
been able to run the model in three dimensions except for very coarse meshes, leaving an obvious
avenue for future research.
In plain text, I have been able to run the code in a multithreading mode, using available processors
and RAM on a single node, but that is insufficient for useful computation in 3D. It may be possible
to make this work in MATLAB, but I haven’t gotten there, and it may be plain better to recode in
something more suitable.
Reviewer: p4, equation (3): I think some readers might not be familiar with the mathematical
description of an elastically compressible upper-convected Maxwell fluid. Adding a citation where
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equation (3) is derived/explained would be very helpful.
Response: I have added a reference to the Bird (1976) Ann. Rev. paper that provides fairly
comprehensive references for covariant, objective tensor derivatives in the context of finite strain
viscoelasticity models.
Reviewer‘: p4, line 13: close brackets.
Response: Done
Reviewer: p4, line 19: ”then with the change in stress related to the corresponding linearized
strain as (eq)”. Rephrase this clause, it is phrased incorrectly.
Response: Reworded as
. . . then the change in stress is related to the corresponding linearized strain as . . .
Reviewer: p4, line 28: Avoid initiating sentence with mathematical symbol.
Response: Moved “here” to the start of the sentence.
Reviewer: p5, line 11: ”ensures ensure” ¿ ”ensures”
Response: Corrected.
Reviewer: p5, line 17: Consider rephrasing the sentence ”First, the standard assumption in
dynamic models of subglacial cavity formation (references) has been ...”. Perhaps write ”First, we
consider the standard assumption in dynamic models of subglacial cavity formation (references),
which has been ...”
Response: Changed to
First, I consider the standard assumption in dynamic models of subglacial cavity formation, namely
that the bed is rigid yet highly permeable, with a prescribed water pressure p0w everywhere.
Reviewr: p5, line 26: ”in contact areas, normal velocity is prescribed”. If by contact areas you
mean areas where h = 0 (which is the most intuitive definition), this sentence is not correct. We
will also have contact areas which are about to detach, ∂h/∂t >= 0. In this case we prescribe the
normal stress and compute the normal velocity.
Response: That is indeed correct; in fact the passage describing the role of inequality constraints
was also misplaced. I have reworded the relevant bit to say
put more simply, in contact areas, normal velocity is prescribed so long as compressive normal
stress exceeds water pressure, or else, normal stress is prescribed if the ice is about to detach from
the bed, and the inequality constraint serve to determine which boundary condition applies where
(see also Stubblefield et al, 2021). By contrast, in areas with an ice-bed gap, normal stress is always
prescribed.
Reviewer: p6, equation (11b): Add comma.
Response: Done.
Reviewwer: p6, line 21: ”flux q” ¿ ”the flux q”
Response: I think we agreed on this in part 1 as well. I’m still going to argue that, flux being
uncountable, leaving out the article as legitimate here. No doubt the copy editor will have their
say if the paper makes it that far.
Reviewer: p6, line 21: Consider rewriting ”... by the first, pressure-gradient-driven term”. Perhaps
”... by the first component of the flow, the pressure-gradient-driven term”.
Response: This passage has disappeared as part of the larger re-write of the text on boundary
conditions.
Reviewer: p 7, line 9: ”implying that a source term that is omitted in (11a)” - this clause does
not make sense, please correct.
Response: Ditto.
Reviewer: p7, line 29: ”also capture the physics ice-bed contact areas” - Typo?
Response: Ditto
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Reviewer: p8, line 23: ”N* is the (scaled)...” - Avoid starting sentence with mathematical symbol
Response: Merged with previous sentence to say
while N∗ is the usual (but scaled) effective pressure
Reviewer: p9, equation (15b): Add comma.
Response: Done.
Reviewer: p10, line 13: Specify that the mixed finite element method is used to solve for the
velocity and stress variables. A mixed FEM is used in Stubblefield2021 and deDiego2022 to solve
for the velocity and pressure and the velocity, pressure and normal stress at the bed, respectively.
Response: I have added a note to say
(There is a technical difference here in the sense that the latter authors use mixed finite elements
in velocity, pressure and normal stress at the bed, whereas the compressible problem considered here
naturally calls for mixed finite elements in velocity and the full Cauchy stress tensor; key to handling
the boundary conditions is the use of mixed elements for normal stress at the bed.)
and removed the Stubblefield et al reference in this single place, since that decomposition appears
to be unique to the de Diego et al work.
Reviewer: p10, line 19: I can see how a moving frame eliminates the advection terms in (13a),
since these are advected by (u, 0). However, I do not see how the advection terms disappear in
(13f). Do you mean (13b)?
Response: I think this has been deal with above; (13f) was stated incorrectly, and the correct
advection velocity is (ū, v̄) as in all the other advection operators. As a result, the advection does
disappear under the change in coordinate system. I have corrected (13f) in the updated manuscript.
Reviewer: p11, line 19: ”transverse normal stress” ¿ ”the transverse normal stress”
Response: See above for our disagreement re: definite articles.
Reviewer: p11, line 24: How small are the intervals around xP ?
Response: a single cell size. I have added a note saying “(the small interval being a single cell /
element)”
Reviewer: p12, line 11: Indicate which endpoint is upstream and downstream for each cavity.
Response: I have clarified this in the second sentence of this paragraph, to say
identify cavity end points bj and cj respectively as the the upstream and downstream end points of
any finite intervals above a minimum threshold size . . .
Reviewer: p13, line 1: ”the inherent heterogeneity involved in an unstructured mesh” ¿ In what
way does the degree of uniformity of a mesh influence possible oscillations in the cavity shape?
Response: I have added my reasoning for this at the end of the paragraph by saying
. . . an underlying steady state solution in the original coordinate system becomes a travelling wave
solution in the travelling frame used for computation. Any grid effects (small or large) are then
bound to be periodic, including those involved in the contact area moving relative to the mesh (which
presumably account for uplift and therefore cavity shape).
Reviewer: p13, line 5: ”at least for the moderate values of N for which the dynamic model
produces a recognizable near-steady state within a reasonable time span” ¿ Does this mean that
for smaller values of N, the difference between the cavity shapes produced with both models start
to differ visibly? If so, I suggest that an additional panel be added to figure 2 for a value of N for
which the models in part 1 and 2 start to differ. If future work is to be produced on this topic,
researchers should have an idea of the ways in each the numerical model you propose produces
potential inconsistencies. Figure 2 as it stands now indicates an almost perfect consistency between
both models, yet what you write suggests the contrary.
Response: That is not what I mean to say; instead, the numerical results for lower values never
approach what looks like close to a steady state to the naked eye over the time periods of compu-
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tation, as indicated by the wiggly lines for h̄ in figure 3. I’d be happy to add an extra panel but
would need guidance on which non-steady profile to use.
Reviewer: p13, line 17: ”steady state mean water depth h” - h refers to the mean cavity size, which
coincides with the mean water depth in the cases considered here. I suggest you avoid referring to
h as the mean water depth here because it could be confusing for the reader.
Response My apologies. I’ve changed the wording to “mean cavity size”, except in the abstract
(which references water sheet thickness). However, in that instance I do not reference h̄.
Reviewer: p14, Figure 3: It could be interesting to show values for e.g. h at the steady states
obtained with the model from part 1 if the same time history for N was followed (allowing for
quasi-steady states to be achieved by small changes in N, as opposed to the step jumps we see in
Figure 3). This would give a valuable insight into how the dynamic evolution of cavities differs from
its steady counterpart, which is one of the main goals of this paper.
Response: I have added this to figure 3, along with the cavity end points predicted by part 1,
combined with a brief discussion at the end of section 3.2, stating
Figure 3 provides further comparison between results of the dynamic model of the present paper
and the steady state solutions of part 1, in the form of green lines showing mean cavity depth h̄ in
panel a and cavity end point positions in panel b, computed as in part 1. Panel a shows that, for
small N and for the time intervals over which N is held steady, there are continued oscillations
of non-negligible size, which I discuss further in the next section. These have time-averaged cavity
depths h̄ that are somewhat smaller than the predicted steady state results. For larger N , the residual
oscillations discussed above are of much smaller amplitude, and have time-averaged h̄ that agrees
closely with the steady state results, but also remains slightly smaller. This is true except once an
isolated cavity forms at t = 636: the steady state results as computed using the method from part
1 predict a smaller isolated cavity than that which is trapped in the dynamic solution as discussed
above. In all cases, cavity end point positions late in each interval of fixed N agree closely with
those predicted by the part 1 steady state solver, although upstream cavity end points computed by
the dynamic model (shown in red) are systematically located slightly downstream of the locations
predicted by part 1. This may in part occur because cavities are very shallow at their upstream ends,
and the post-processing of the dynamic model results uses a threshold value of h ≥ 5×1−4 to identify
one of the finite volume cells at the bed as part of a cavity.
Reviewer: p14, Figure 3: This figure would be more readable if the ticks of the x axis were aligned
with the vertical grid lines. Throughout the paper you refer to the times where jumps in the effective
pressure take place (e.g. t = 78) and its not entirely obvious which points these are. The same goes
for the remaining figures in this paper of a similar type.
Response: I absolutely see the rationale for this. However, in practice, with the uneven intervals
on which N is changes, this becomes not just unsightly but quite hard to read where N is changed
more rapidly (towards both ends of the time domain shown) — where I assume you don’t just want
the tick marks aligned, but the tick mark labels.
Reviewer: p15, line 24: ”That contact area motions occurs around the top of the prominent bed
protrusion at x = 0.8.” - This sentence does not make sense, change ”that” ¿ ”these”?
Response: Changed to “That contact area motion. . . ”
Reviewer: p17, Figure 5: As I wrote above for Figure 5, it would be very nice to include results
for the steady solution here too, in order to see for example whether the oscillations in h occur
around the steady states predicted in part 1.
Response: Done.
Reviewer: p19, Figure 6: ”bed 18” ¿ ”bed given by (18)”
Response: I’ve already removed the reference to equation (18) at the behest of the other reviewer.
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Given all comutations are done with the same bed shape, that should be ok, I hope.
Reviewer: p19, line 16: ”the a less-advanced” ¿ ”a less-advanced”?
Response: Corrected.
Reviewer: p19, line 1: ”an initial advance of the cavity end point from c4.1 to c4.5 over a time
interval around 10−2” - I do not see this in figure 6. Over a time interval of 0.01 I see an advance
from around 3.9 to around 4.1.
Response: I think this a misunderstanding due to poor wording on my part: I mean the rapid
expansion after the cavity first expands rapidly but only by a small amount, and then grows
“viscously” for a while, and then experiences a second episode of rapid growth (at different times
following the change in N , depending on how larger that change in N was). I’ve changed the
beginning of this paragraph to clarify:
The subsequent rapid expansion of the cavity (following the second phase of slower cavity growth,
and corresponding to the “drowning” of the smaller bed protrusion) can be separated into two parts:
an initial advance of the cavity end point from c ≈ 4.1 to c ≈ 4.5 over a time interval around 10−2,
somewhat shorter than a single Maxwell time. This part of the cavity expansion is marked with
“rapid connection” in figure 7(b), and is effectively another example of hydrofracture. . . .
Reviewer: p19, line 4: ”htis” - ”this”
Response: Corrected.
Reviewer: p19, line 13: ”leading oscillatory” ¿ ”leading to oscillatory”
Response: Corrected (the text here has been amended more substantially due to a comment from
the other reviewer)
Reviewer: p20, Figure 7: This figure could be improved by adding visible marks indicating the
endpoints of the cavities.
Response: Done.
Reviewer: p20, line 1: ”9” 7→ ”figure 9”
Response: Corrected
Reviewer: p20, line 6: ”the smaller bed protrusion upstream of N” - Do you mean M?
Response: Yes. I have corrected this.
Reviewer: p21, Figure 8, caption: ”P = {./65}” 7→ ”P = {.65}”
Response: Corrected to say P = {4.64}
Reviewer: p21, line 8: ”a extended” ¿ ”an extended”
Response: Corrected.
Reviewer: p22, line 9: ”the greater ability of the solution to relax towards a steady state” - The
reader could judge the validity of this statement if information on the steady states was included
in Figure 9. I suggest values for NM and x associated to steady states be included in Figure 9.
Response: I think steady states would perhaps be a bit contrived here, so I’ve taken the offending
sentence out (especially as the next little bit argues that relaxation to a steady state is perhaps not
a likely scenario).
Reviewer: p22, line 10: ”what the extent” 7→ ”what extent”
Response: Corrected.
Reviewer: p23, line 17: ”it is plausible a critical value hc could plausibly be defined” ¿ Avoid
repetition of plausible/plausibly?
Response: Indeed. I’ve removed “plausibly” here.
Reviewer: p 24, line 27: ”Once a a set” 7→ ”Once a set”
Response: Corrected
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