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1 Referee #1

Reviewer: I find the explanation of boundary conditions in section 2.1 after line 17 very difficult to
understand. You say there are two alternatives for closing the system of equations for the viscoelastic
fluid. What I understand is that these two alternatives are either (10), which you enforce on P
(or the whole bed when you consider a fully permeable bed), or (11e), which you enforce on the
complement of P. In the case of (11e), the water pressure is given by the equations for the water
column described previously. Is this correct? If so, I would consider rewriting this part of section
2.1 such that you first show the two alternatives (10) and (11e), and then explain how the water
pressure pw is modelled in the complement of P . I find this much clearer because what we need to
close the equations for the ice dynamics are normal velocity and normal stress boundary conditions.
Response: I have done a fairly major re-write of the boundary conditions, including the suggestion
above. In order to make the model for pw more self-contained, I first stated that pw is normal stress
at the bed as requested, and then deferred all the discussion surrounding large gap permeability K
as well as of what happens when h vanishes until after the model is complete. I have tried to give a
simple counting argument along the way to make clear that there is nothing missing, although this
hardly counts as a proof of existence of solutions (nor is it intended as such)
In full, the revised statement of boundary condiitons runs as follows;
To close the problem, I require one additional boundary condition. I consider two alternatives. First,
the standard assumption in dynamic models of subglacial cavity formation has been that the bed is
rigid yet highly permeable, with a prescribed water pressure p0w everywhere. That assumption is also
part of the steady state model by Fowler (1986) and Schoof (2005) that I previously generalized in
part 1. Normal stress cannot drop below that water pressure, as water forces its way between ice and
bed and opens a gap or cavity. A fully permeable bed gives a boundary condition on normal stress
in the following either-or form (Durand et al 2009, Stubblefield et al 2021, de Diego et al 2021)

−σijninj =p0w if h > 0 or

(
h = 0 and

∂h

∂t
> 0

)
(1a)

−σijninj ≥p0w if h =
∂h

∂t
= 0, (1b)

signifying the possibility that compressive normal stress can exceed water pressure where ice is in
contact with the bed, and a gap is not about to form: put more simply, in contact areas, normal ve-
locity is prescribed, while in areas with an ice-bed gap, normal stress is prescribed, and the inequality
constraints above serve to determine which boundary condition applies where (see also Stubblefield
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et al , 2021).
The boundary conditions above do not permit the formation of hydraulically isolated cavities, or of
underpressurized contact areas that remain hydraulically isolated as in part 1. As an alternative
to (1), I therefore consider a bed that is perfectly impermeable except in specific locations at which
water from an ambient drainage system can enter or exit the ice-bed gap. Specifically, I assume
that there is a (typically small) permeable portion P of the bed at which (1) holds, while for the
remainder, I assume that an active hydraulic system inside the ice-bed gap redistributes water.

Specifically, I assume that there is a water column of evolving height hw inside the ice-bed gap,
constrained by 0 ≤ hw ≤ h. Assuming negligible deviatoric normal stress in the water column, local
force balance demands that water pressure pw in that water column (not to be confused with the
prescribed ambient drainage system pressure p0w, which generally differs from pw) is given by normal
stress at the bed,

−σijninj = pw. (2a)

Outside of the permeable portion of the bed, there is no water supply, so pw is not prescribed a priori,
but the water column height satisfies a depth-integrated mass conservation equation of the form

∂hw
∂t

+∇h · q = 0 = 0, (2b)

which should be understood in weak form, permitting mass-conserving shocks where necessary.
Here q = (q1, q2) is a two-dimensional flux and ∇h = (∂/∂x1, ∂/∂x2) is the corresponding two-
dimensional divergence operator. I assume that the ice-bed gap is shallow (an assumption that I
formalize in the next section), and I therefore relate the depth-integrated water flux q to water
column height hw and an along-bed gradient in water pressure pw(x1, x2, t) as

q = −K (hw, |∇hpw|)∇hpw +
1

2
uhhw (2c)

where uh = (u1, u2) is the horizontal component of velocity at the base of the ice, and K is a two-
dimensional “gap permeability”, which I take to be give by Darcy-Weisbach or Manning-Gauckler
power law formulation (see e.g. Werder et al, 2013), of the generic form

K(hw, |∇hpw|) = k0h
α
w |∇hpw|β−1 (2d)

with α > 1, β = 1/2 and κ0 > 0 constant. Note that the above also covers the case of laminar
Poiseuille flow if α = 3 and β = 1. The second term in equation (2c) is the contribution of shear
to water flux, which remains negigible in all computations reported here.
Note that equation (2b) ignores the compressibility of water, while ice is allowed to be elastically
compressible by equation (4), despite the bulk moduli being comparable (Neumaier, 2018). This is
standard practice in hydrofracture models, whose validity hinges on the assumption of a shallow
water layer: in that case, the displacement of the ice-water boundary that results from compression
of the water column is small compared with the displacements that result from compression in the
ice, simply because compressive strain in water is comparable to its counterpart in the ice, but the
resulting displacement (being an integral over strain) is much smaller than in the ice.
To avoide the negative fluid pressure singularities common to hydrofracture models (Spence et al
1985, Tsa and Rice2010, 2012), I permit a “fluid lag”, in the form of a vapour-filled space between
water and ice when water pressure drops to zero (or more strictly, the triple-point pressure of water,
which I treat as negligibly small compared with stresses in the ice). This means that fluid depth hw
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and ice-bed gap size h are related through one of the following two possibilities,

either 0 ≤ hw =h and pw > 0, (2e)

or 0 ≤ hw ≤h and pw = 0, (2f)

and pw cannot be negative.
The first possibility, condition (2e), states that there cannot be a vapour-filled gap between ice and
water (of thickness h− hw > 0) if fluid pressure is above the triple-point pressure, in the sense that
ice, water and vapour cannot then coexist. This is the default state and correspods to a completely
fluid-filled ice-bed gap, as is the case in the canonical picture of subglacial cavities. By the second
condition (2f), a water filled gap is possible but need not exist at the triple-point pressure; given the
substantial overburden pressure, this is only likely to be reached near the tips of cavities that are in
the process of expanding rapidly (e.g. Tsai and Rice, 2010).
As far field boundary conditions, I consider prescribed normal and shear stress, in the form

−σ33 → pi, σ13 → τb, σ23 → 0 (3)

as x3 → ∞, where pi is overburden and τb is the usual ‘basal shear stress’ of the theory of basal
sliding (Fowler, 1981). In addition, I assume the domain is laterally periodic, with period a in both
horizontal directions.
The basal boundary conditions for the classical caviation problem with a permeable bed consist of
(13d), (13f) and (1). The stress and normal velocity conditions in (13d) and (1) are sufficient
to close the force balance problem (13c) (see de Diego et al 2021,2022 , Stubblefield, 2021, for the
equivalent purely viscous problem), while the kinematic boundary condition (13f) serves to determine
the gap width variable h that appears in the contact conditions (1).
By contrast, the equivalent set of boundary conditions for an impermeable bed given above introduces
local fluid pressure pw and fluid depth hw as variables defined at the boundary, in addition to the gap
width h. A simple counting argument shows that the equations (13d) and (13f) combined with (2b)–
(2f) close the problem: the force balance relation (13c) requires three boundary conditions, which
are supplied by equations (13d) and (2a). The fluid pressure pw that features in equation (2a) is
determined through the mass conservation problem (2b)–(2c). The latter constitute a single equation
in fluid depth hw and pressure pw, where hw and gap width are determined through the kinematic
boundary condition (13f) and whichever one of the two conditions (2e)–(2f) applies, leading to a
total of three equations to specify the three variables pw, hw and h.
The counting argument of the previous paragraph is of course simplistic: the determination of pw,
hw and h couples back to the force balance problem through the velocity components in the kinematic
boundary condition. Note also that isolated cavities (the object of our study) are only present if the
gap width h is either zero or extremely small between those cavities and the premeable bed portion
P . The formulation above incorporates such regions provided the permeability K vanishes when
fluid depth hw does (as it must where the gap vanishes, since hw ≤ h). In the interior of a region
where the ice-bed gap vanishes (that is, where ice is in contact with the bed), water flux vanishes and
hence ∂hw/∂t = 0 from equation (2b). Note that, since there is no water column present in that
case, the variable pw does not represent an actual fluid pressure in such regions, but simply equals
the compressive normal stress.
From the gap width relations (2e)–(2f), there are then two possibilities in the interior of regions
where hw = 0: either h remains at zero and the kinematic boundary condition (13f) reduces to
condition of vanishing normal velocity, so u3 = u1∂b/∂x1 + u2∂b/∂x2 and ice remains in contact
with hte bed, or alternatively normal stress drops to the triple-point pressure and a vapour-filled
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cavity forms. The combination of equations (13d), (13f) and (15)–(2f) can therefore describe not
only the physics of a water layer separating ice and bed, but also the physics of ice-bed contact areas
as required.
In practice, only very small pressure gradients should be required in order to move water fast enough
to fill the ice-bed gap as the latter evolves due to ice flow. That situation corresponds to the limit of
a large gap permeability K (or better still, of large k0): the flux relation (2c) then simply serves at
leading order to impose a spatially uniform water pressure in each basal cavity, as is also the case for
the classical cavity model using the permeable bed boundary conditions (1). In that case, shear in the
water column also plays an insignificant role, and I retain the second term uhhw/2 in the definition
of flux in equation (2c) here simply to make the switch to a moving coordinate frame employed in
section 2.3 more self-consistent (since an advective term will automatically appear under the change
to a moving frame).
referee I also have trouble understanding part of section 2.2, between lines 11 and 21. In line 14
you write: ”imposes the boundary condition (14) only when (x1, x2) ∈ P is in a part of the bed to
which the ambient drainage system has access”. Does (x1, x2) ∈ P already imply that that point
is on a permeable point and therefore has access to the ambient drainage system? I also see that
condition (11e) is written as (13e) in the non-dimensional system. However, this is in conflict with
condition (14). Shouldn’t you include (13e) in (15)?
Response: Yes, (x1, x2) ∈ P says that the point (x1, x2) is in the permeable part P of the bed.
I’ve reworded this bit as
The second, which I refer to as an impermeable bed, imposes the boundary conditions (14) only for
points (x1, x2) ∈ P (that is, for points that lie in a part of the bed to which the ambient drainage
system has access). Flow of water occurs only through the ice-bed gap otherwise, satisfying. . .
Technically I don’t think (13e) in the original paper was not in conflict with (14), if you go with
the interpretation of pw in contact areas defined in section 2.1 (“I continue to interpret pw with
compressive normal stress at the bed [. . . ] even if no water is present”, equaion (11c) of the original
paper — meaning, pw is then not to be understood as a water pressure. The upshot is that pw
can then differ from the ambient drainage pressure even in P if there is a contact area. This is
clearly confusing (the other referee raised the same point), and I would attribute that confusion to
the notation used as well as the original description of p∗w given below the (originallu unnumbered)
equations defining the dimensionless variables.
In the updated manuscript, I have defined the dimensionless reduced normal stress (reduced in
the sense of having removed overburden) by pn as a more common symbol for compressive normal
stress, that is

p∗n =
pw − pi

[σ]
.

I have changed the verbal definition of p∗n below equation (15) to the following
N∗ is the usual (but scaled) effective pressure defined as the difference between overburden and
the water pressure in the ‘ambient’ drainage system to which the bed is connected in the permeable
regions P , while p∗n is a reduced normal stress, defined as the difference between local normal stress pw
(the latter being equal to water pressure where water is present between ice and bed) and overburden.
Where water is present, p∗n is then the negative of the effective pressure defined in terms of local
rather than ambient drainage system water pressure. I’ve written the conditions on P in equations
(17) (of the revised manuscript) explicitly in terms of pn, as well as writing the water flux in
terms of pn. The reason for retaining pn is that it makes the numerical implementation of the
inequality constraints in both (17) and (18c–d) simple, playing the same role as de Diego et al’s
(2022) Lagrange multiplier λ.

4



Reviewer: In equation (12) of page 8, you write far-field conditions for the basal shear stress.
Previously, in Schoof (2005), you enforced far-field conditions for the velocity. Why do include this
new far field boundary condition here? I think it could be interesting to include an explanation for
this choice of boundary condition in the paper.
On this note, I am also confused about the sliding velocity variable ub. You compute horizontal
velocity perturbations u to this horizontal motion, yet you do not enforce the far field condition
that u→ 0, right? In this case, the actual sliding velocity is ub + u as x3 →∞. I think it would be
clarifying to mention this.
Response: It turns out that the two conditions σ13 → 0 and u → 0 give the same answer in the
model of Schoof (2005). I have tried to make this clear in a new paragraph after equation (16):
Note that the condition σ13 → 0 imposed here does not conflict with the alternative condition u1 → 0
used for instance in Schoof (2005): in the purely viscous model in the latter paper, σ13 behaves as
∂u1/∂x3 in our present notation, and σ13 → 0 implies u1 → constant. Setting that constant to zero
simply removes the indeterminacy of u1 in the model above (consisting of equations (13)–(16), which
arises because the latter remains invariant under adding a constant to u1: that indeterminacy needs
to be resolved by going to higher order, but does not affect the leading order sliding velocity since u1
is a small correction to the sliding velocity ū since [u]/ub = ε � 1: the total velocity is ub + εu1,
and therefore remains equal to ub at leading order regardless of what finite value u1 approaches as
x3 →∞.
Reviewer: In the numerical method, do you solve for velocity, stress, water pressure, cavity height
and water height simultaneously? Or do you use any staggering of variables in time? I think it
could help future researchers who wish to rexamine this problem to have access to the code you
used.
Response: I use “backward Euler step” in the usual sense of a fully implicit time step. There is
a minor caveat, namely that conservation of water along the bed is solved using an upwind scheme
(to avoid extracting water from finite volume cells that contain no water). Simple upwinding is
discontinuous and therefore not realistically possible to combine with a backward time step, so the
upwind direction is inferred from the previous time step (and I hope that in future there will be
better ways of doing this! — since the scheme I use often requires quite small time steps to prevent
the upwind direction from flipping back and forth. I make this explicit in the following additional
sentence in the second paragraph of section 2.3,
The time step is fully implicit except for the use of upwinding in the discretization of the mass
balance equation (18a), in which we define the upwind direction based on the direction of ∇hpw
after the previous time step. I am happy to make the code available.
Reviewer: The overshoot in the mean cavity size h in e.g. Figure 3 is extensively commented
throughout the paper. At some points you suggest it could be a numerical artifact, yet you refer to
it to argue that cavitation ratio and ice-bed gap are not good proxies for each other (page 15, line
20). Therefore, it seems important to explore whether such oscillations are physical or numerical.
This is obviously a difficult task and a full analysis of this phenomenon is out of the scope of this
paper. However, a simple computational test would be to compute the cavity height after a step
change in effective pressure for different meshes and time steps. If these oscillations were physical,
we would expect the cavity height evolution to converge for decreasing mesh size and time steps.
I suggest these computations be included in the paper, perhaps in an appendix. It would be very
interesting to see this comparison for a case where dramatic oscillations occur, as in Figure 3 at
t = 78.
textbfResponse: This is a very good point, though the proposed numerical test is simple at face
value, but turns out not to be so simple in practice, if you’re foolish enough to have coded the
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problem in MATLAB. I have managed to run an abbreviated version of the of the computation
in figure 5 having halves the cell size along the bed (the fully permeable bed case of figure 5 is
easier to solve, and exhibits what appear to be the same kind of oscillations in h̄ as are evident
in figure 3, although not the extreme ones associated with rapid cavity expansion past a lee-side
obstacle). The comparison between the solution with standard and double resolution is shown in
the new figure 6, and described in the last paragraph of section 3.2 (for the sake of a better flow of
the text, I also moved the material in the sixth paragraph of section 3.2 (starting with “Repetition
of an earlier note of caution. . . ”) to the penultimate paragraph. The final two paragraphs of the
updated section 3.4 state
The cavitation ratio is very close to unity (typically around 0.96–0..98) for the long-lasting oscil-
lations at low N identified above (between t = 258 – 420 and t = 200 – 260 in figures 3 and 5,
respectively). With such a small contact area, only about 3–6 nodes in the finite element mesh are
in contact with the bed. (Note also that the numerical method treats a bed cell as either separated
from the bed with h > 0, or in contact with h = 0, and the cavity end point location therefore jumps
in increments of a single cell size, giving the plots of θ and of cavity end point location against t a
non-smooth appearance, while the mean ice-bed separation h̄ is much smoother.)
A very small number of nodes in contact with the bed raises the question of numerical artifacts. A
comprehensive study of mesh size effects is beyond the scope of the work presented here. Due to the
limitations of working in a MATLAB coding environment, it is difficult to refine the mesh signfi-
icantly beyond what is used in the computations reported above. For the case of a fully permeable bed
(which typically permits larger time steps), I have been able to refine the mesh to double the number
of nodes on the bed for a relatively short computation. A comparison for a shortened version of the
computation in figure 5 is shown in figure 6. While there are differences, these are mostly in the
detail: the cavitation ratio time series is significantly smoother for the higher resolution results (as
might be expected), and the oscillations in h̄ are also somewhat smoother. There are however no
dramatic changes of the kind that one might expect for a mesh that is effectively very coarse around
the contact area, lending confidence to the conclusion that the sustained oscillations in h̄ at low
effective pressure are a robust feature of the solution.
Reviewer:, p1, line 13: ”pressureized” ¿ ”pressurized”
Response: Corrected
Reviewer: p2, line 7: Unclear about meaning of ”pr”. Do you mean ”i.e.”?
Response: I meant “or”, apparently. Corrected.
Reviewer: p2, equation (2): Add full stop.
Response: Done.
Reviewer: p3, line 10: ”practical computational reasons” - What does this mean exactly? Exces-
sive computational cost, unsuitable numerical model for 3D, difficulties in formulating/implementing
computational tests? This should be clarified here.
Response: I have reworded this as
Because the MATLAB code I have written is not suitable for full parallelization, I have however not
been able to run the model in three dimensions except for very coarse meshes, leaving an obvious
avenue for future research.
In plain text, I have been able to run the code in a multithreading mode, using available processors
and RAM on a single node, but that is insufficient for useful computation in 3D. It may be possible
to make this work in MATLAB, but I haven’t gotten there, and it may be plain better to recode in
something more suitable.
Reviewer: p4, equation (3): I think some readers might not be familiar with the mathematical
description of an elastically compressible upper-convected Maxwell fluid. Adding a citation where
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equation (3) is derived/explained would be very helpful.
Response: I have added a reference to the Bird (1976) Ann. Rev. paper that provides fairly
comprehensive references for covariant, objective tensor derivatives in the context of finite strain
viscoelasticity models.
Reviewer‘: p4, line 13: close brackets.
Response: Done
Reviewer: p4, line 19: ”then with the change in stress related to the corresponding linearized
strain as (eq)”. Rephrase this clause, it is phrased incorrectly.
Response: Reworded as
. . . then the change in stress is related to the corresponding linearized strain as . . .
Reviewer: p4, line 28: Avoid initiating sentence with mathematical symbol.
Response: Moved “here” to the start of the sentence.
Reviewer: p5, line 11: ”ensures ensure” ¿ ”ensures”
Response: Corrected.
Reviewer: p5, line 17: Consider rephrasing the sentence ”First, the standard assumption in
dynamic models of subglacial cavity formation (references) has been ...”. Perhaps write ”First, we
consider the standard assumption in dynamic models of subglacial cavity formation (references),
which has been ...”
Response: Changed to
First, I consider the standard assumption in dynamic models of subglacial cavity formation, namely
that the bed is rigid yet highly permeable, with a prescribed water pressure p0w everywhere.
Reviewr: p5, line 26: ”in contact areas, normal velocity is prescribed”. If by contact areas you
mean areas where h = 0 (which is the most intuitive definition), this sentence is not correct. We
will also have contact areas which are about to detach, ∂h/∂t >= 0. In this case we prescribe the
normal stress and compute the normal velocity.
Response: That is indeed correct; in fact the passage decribing the role of inequality constraints
was also misplaced. I have reworded the relevant bit to say
put more simply, in contact areas, normal velocity is prescribed so long as compressive normal
stress exceeds water pressure, or else, normal stress is prescribed if the ice is about to detach from
the bed, and the inequality constraint serve to determine which boundary condition applies where
(see also Stubblefield et al, 2021). By contrast, in areas with an ice-bed gap, normal stress is always
prescribed.
Reviewer: p6, equation (11b): Add comma.
Response: Done.
Reviewwer: p6, line 21: ”flux q” ¿ ”the flux q”
Response: I think we agreed on this in part 1 as well. I’m still going to argue that, flux being
uncountable, leaving out the article as legitimate here. No doubt the copy editor will have their
say if the paper makes it that far.
Reviewer: p6, line 21: Consider rewriting ”... by the first, pressure-gradient-driven term”. Perhaps
”... by the first component of the flow, the pressure-gradient-driven term”.
Response: This passage has disappeared as part of the larger re-write of the text on boundary
conditions.
Reviewer: p 7, line 9: ”implying that a source term that is omitted in (11a)” - this clause does
not make sense, please correct.
Response: Ditto.
Reviewer: p7, line 29: ”also capture the physics ice-bed contact areas” - Typo?
Response: Ditto
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Reviewer: p8, line 23: ”N* is the (scaled)...” - Avoid starting sentence with mathematical symbol
Response: Merged with previous sentence to say
while N∗ is the usual (but scaled) effective pressure
Reviewer: p9, equation (15b): Add comma.
Response: Done.
Reviewer: p10, line 13: Specify that the mixed finite element method is used to solve for the
velocity and stress variables. A mixed FEM is used in Stubblefield2021 and deDiego2022 to solve
for the velocity and pressure and the velocity, pressure and normal stress at the bed, respectively.
Response: I have added a note to say
(There is a technical difference here in the sense that the latter authors use mixed finite elements
in velocity, pressure and normal stress at the bed, whereas the compressible problem considered here
naturally calls for mixed finite elements in velocity and the full Cauchy stress tensor; key to handling
the boundary conditions is the use of mixed elements for normal stress at the bed.)
and removed the Stubblefield et al reference in this single place, since that decomposition appears
to be unique to the de Diego et al work.
Reviewer: p10, line 19: I can see how a moving frame eliminates the advection terms in (13a),
since these are advected by (u, 0). However, I do not see how the advection terms disappear in
(13f). Do you mean (13b)?
Response: I think this has been deal with above; (13f) was stated incorrectly, and the correct
advection velocity is (ū, v̄) as in all the other advection operators. As a result, the advection does
disappear under the change in coordinate system. I have corrected (13f) in the updated manuscript.
Reviewer: p11, line 19: ”transverse normal stress” ¿ ”the transverse normal stress”
Response: See above for our disagreement re: definite articles.
Reviewer: p11, line 24: How small are the intervals around xP ?
Response: a single cell size. I have added a note saying “(the small interval being a single cell /
element)”
Reviewer: p12, line 11: Indicate which endpoint is upstream and downstream for each cavity.
Response: I have clarified this in the second sentence of this paragraph, to say
identify cavity end points bj and cj respectively as the the upstream and downstream end points of
any finite intervals above a minimum threshold size . . .
Reviewer: p13, line 1: ”the inherent heterogeneity involved in an unstructured mesh” ¿ In what
way does the degree of uniformity of a mesh influence possible oscillations in the cavity shape?
Response: I have added my reasoning for this at the end of the paragraph by saying
. . . an underlying steady state solution in the original coordinate system becomes a travelling wave
solution in the travelling frame used for computation. Any grid effects (small or large) are then
bound to be periodic, including those involved in the contact area moving relative to the mesh (which
presumably account for uplift and therefore cavity shape).
Reviewer: p13, line 5: ”at least for the moderate values of N for which the dynamic model
produces a recognizable near-steady state within a reasonable time span” ¿ Does this mean that
for smaller values of N, the difference between the cavity shapes produced with both models start
to differ visibly? If so, I suggest that an additional panel be added to figure 2 for a value of N for
which the models in part 1 and 2 start to differ. If future work is to be produced on this topic,
researchers should have an idea of the ways in each the numerical model you propose produces
potential inconsistencies. Figure 2 as it stands now indicates an almost perfect consistency between
both models, yet what you write suggests the contrary.
Response: That is not what I mean to say; instead, the numerical results for lower values never
approach what looks like close to a steady state to the naked eye over the time periods of compu-
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tation, as indicated by the wiggly lines for h̄ in figure 3. I’d be happy to add an extra panel but
would need guidance on which non-steady profile to use.
Reviewer: p13, line 17: ”steady state mean water depth h” - h refers to the mean cavity size,
which coincides with the mean water depth in the cases considered here. I suggest you avoid refering
to h as the mean water depth here because it could be confusing for the reader.
Response My apologies. I’ve changed the wording to “mean cavity size”, except in the abstract
(which references water sheet thickness). However, in that instance I do not reference h̄.
Reviewer: p14, Figure 3: It could be interesting to show values for e.g. h at the steady states
obtained with the model from part 1 if the same time history for N was followed (allowing for
quasi-steady states to be achieved by small changes in N, as opposed to the step jumps we see in
Figure 3). This would give a valuable insight into how the dynamic evolution of cavities differs from
its steady counterpart, which is one of the main goals of this paper.
Response: I have added this to figure 3, along with the cavity end points predicted by part 1,
combined with a brief discussion at the end of section 3.2, stating
Figure 3 provides further comparison between results of the dynamic model of the present paper
and the steady state solutions of part 1, in the form of green lines showing mean cavity depth h̄ in
panel a and cavity end point positions in panel b, computed as in part 1. Panel a shows that, for
small N and for the time intervals over which N is held steady, there are continued oscillations
of non-negligible size, which I discuss further in the next section. These have time-averaged cavity
depths h̄ that are somewhat smaller than the predicted steady state results. For larger N , the residual
oscillations discussed above are of much smaller amplitude, and have time-averaged h̄ that agrees
closely with the steady state results, but also remains slightly smaller. This is true except once an
isolated cavity forms at t = 636: the steady state results as computed using the method from part
1 predict a smaller isolated cavity than that which is trapped in the dynamic solution as discussed
above. In all cases, cavity end point positions late in each interval of fixed N agree closely with
those predicted by the part 1 steady state solver, although upstream cavity end points computed by
the dynamic model (shown in red) are systematically located slightly downstream of the locations
predicted by part 1. This may in part occur because caviies are very shallow at their upstream ends,
and the postprocessing of the dynamic model results uses a theshold value of h ≥ 5× 1−4 to identify
one of the finite volume cells at the bed as part of a cavity.
Reviewer: p14, Figure 3: This figure would be more readable if the ticks of the x axis were aligned
with the vertical grid lines. Throughout the paper you refer to the times where jumps in the effective
pressure take place (e.g. t = 78) and its not entirely obvious which points these are. The same goes
for the remaining figures in this paper of a similar type.
Response: I absolutely see the rationale for this. However, in practice, with the uneven intervals
on which N is changes, this becomes not just unsightly but quite hard to read where N is changed
more rapidly (towards both ends of the time domain shown) — where I assume you don’t just want
the tick marks aligned, but the tick mark labels.
Reviewer: p15, line 24: ”That contact area motions occurs around the top of the prominent bed
protrusion at x = 0.8.” - This sentence does not make sense, change ”that” ¿ ”these”?
Response: Changed to “That contact area motion. . . ”
Reviewer: p17, Figure 5: As I wrote above for Figure 5, it would be very nice to include results
for the steady solution here too, in order to see for example whether the oscillations in h occur
around the steady states predicted in part 1.
Response: Done.
Reviewer: p19, Figure 6: ”bed 18” ¿ ”bed given by (18)”
Response: I’ve already removed the reference to equation (18) at the behest of the other reviewer.
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Given all comutations are done with the same bed shape, that should be ok, I hope.
Reviewer: p19, line 16: ”the a less-advanced” ¿ ”a less-advanced”?
Response: Corrected.
Reviewer: p19, line 1: ”an initial advance of the cavity end point from c4.1 to c4.5 over a time
interval around 10−2” - I do not see this in figure 6. Over a time interval of 0.01 I see an advance
from around 3.9 to around 4.1.
Response: I think this a misunderstanding due to poor wording on my part: I mean the rapid ex-
pansion after the cavity first expans rapidly but only by a small amount, and then grows “viscously”
for a while, and then experiences a second episode of rapid growth (at different times following the
change in N , depending on how larger that change in N was). I’ve changed the beginning of this
paragraph to clarify:
The subsequent rapid expansion of the cavity (folowing the second phase of slower cavity growth,
and corresponding to the “drowning” of the smaller bed protrusion) can be separated into two parts:
an initial advance of the cavity end point from c ≈ 4.1 to c ≈ 4.5 over a time interval around 10−2,
somewhat shorter than a single Maxwell time. This part of the cavity expansion is marked with
“rapid connection” in figure 7(b), and is effectively another example of hydrofracture. . . .
Reviewer: p19, line 4: ”htis” - ”this”
Response: Corrected.
Reviewer: p19, line 13: ”leading oscillatory” ¿ ”leading to oscillatory”
Response: Corrected (the text here has been amended more substantially due to a comment from
the other reviewer)
Reviewer: p20, Figure 7: This figure could be improved by adding visible marks indicating the
endpoints of the cavities.
Response: Done.
Reviewer: p20, line 1: ”9” 7→ ”figure 9”
Response: Corrected
Reviewer: p20, line 6: ”the smaller bed protrusion upstream of N” - Do you mean M?
Response: Yes. I have corrected this.
Reviewer: p21, Figure 8, caption: ”P = {./65}” 7→ ”P = {.65}”
Response: Corrected to say P = {4.64}
Reviewer: p21, line 8: ”a extended” ¿ ”an extended”
Response: Corrected.
Reviewer: p22, line 9: ”the greater ability of the solution to relax towards a steady state” - The
reader could judge the validity of this statement if information on the steady states was included
in Figure 9. I suggest values for NM and x associated to steady states be included in Figure 9.
Response: I think steady states would perhaps be a bit contrived here, so I’ve taken the offending
sentence out (especially as the next little bit argues that relaxation to a steady state is perhaps not
a likely scenario).
Reviewer: p22, line 10: ”what the extent” 7→ ”what extent”
Response: Corrected.
Reviewer: p23, line 17: ”it is plausible a critical value hc could plausibly be defined” ¿ Avoid
repetition of plausible/plausibly?
Response: Indeed. I’ve removed “plausibly” here.
Reviewer: p 24, line 27: ”Once a a set” 7→ ”Once a set”
Response: Corrected
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