1	The higher relative concentration of K ⁺ to Na ⁺ in saline
2	water improves soil hydraulic conductivity, salt leaching
3	efficiency and structural stability

- 4 Sihui Yan^{a, b}, <u>Tibin Zhang^{a, c, *}</u>, Binbin Zhang^{a, b}, Tonggang Zhang^{a, b}, Yu Cheng^{a, b},
- 5 Chun Wang ^{a, b}, Min Luo ^{a, b}, Hao Feng ^{a, c}, Kadambot H.M. Siddique ^d

6 a. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid

- 7 Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100,
- 8 P. R. China
- 9 b. College of Water Resources and Architecture Engineering, Northwest A&F
- 10 University, Yangling, Shaanxi 712100, P. R. China
- 11 ^{c.} Institute of Soil and Water Conservation, Northwest A&F University, Yangling,
- 12 Shaanxi 712100, P. R. China
- 13 ^d The UWA Institute of Agriculture, The University of Western Australia, Perth, WA
- 14 6001, Australia
- 15 * Corresponding author at: Institute of Soil and Water Conservation, Northwest A&F
- 16 University, Yangling, Shaanxi 712100, China. Tel.: +86 29 87012871; fax: +86 29

1

17 87011354. E-mail: zhangtibin@163.com (T. Zhang)

18 Abstract

19 Soil salinity and sodicity caused by saline water irrigation are widely observed globally. Clay dispersion and swelling are influenced by sodium (Na⁺) concentration 20 21 and electrical conductivity (EC) of soil solution. Specifically, soil potassium (K⁺) also 22 significantly affects soil structural stability, but which concern was rarely addressed in 23 previous studies or irrigation practices. A soil column experiment was carried out to 24 examine the effects of saline water with different relative concentrations of K⁺ to Na[±] 25 (K⁺/Na⁺), including K⁺/Na⁺ of 0:1 (K0Na1), 1:1 (K1Na1), 1:0 (K1Na0) at a constant 26 EC (4 dS m⁻¹), and deionized water as the control (CK), on soil physicochemical 27 properties. The results indicated that at the constant EC of 4 dS m⁻¹, the infiltration rate 28 and water content were significantly (P < 0.05) affected by K⁺/Na⁺ values, K0Na1, 29 K1Na1 and K1Na0 significantly (P < 0.05) reduced saturated hydraulic conductivity by 30 43.62%, 29.04% and 18.06% respectively compared with CK. The volumetric water 31 content was significantly (P < 0.05) higher in K0Na1 than CK at both 15 and 30 cm soil depths. K1Na1 and K1Na0 significantly (P < 0.05) reduced the desalination time and 32 33 required leaching volume. K0Na1 and K1Na1 reached the desalination standard after 34 the fifth and second infiltration, respectively, as K1Na0 did not exceed the bulk 35 electrical conductivity required for desalination prerequisite throughout the whole 36 infiltration cycle at 15 cm soil layer. Furthermore, due to the transformation of macropores into micropores spurred by clay dispersion, soil total porosity in K0Na1 37 38 dramatically decreased compared with CK, and K1Na0 even increased the proportion

删除了:+,

40	of soil macropores. The higher relative concentration of K^+ to Na^+ in <u>saline</u> water was	
41	more conducive to soil aggregates stability, alleviating the risk of macropores reduction	
42	caused by sodicity.	
43	Keywords: Saline water; Cation composition; Hydraulic properties; Desalination; Pore	
44	structure.	

45 **1 Introduction**

46	Freshwater shortage resulted from elevated demand for water resources as well as
47	the irrational exploitation and use after economic and population growth (Zhang and
48	Xie 2019; Prajapati et al. 2021), constrains the sustainability of agricultural production
49	(Aparicio et al., 2019). Alternative water resources with variable water quality (such as
50	saline water) are being considered for agricultural irrigation in several desert and saline
51	areas (Singh et al. 2021; Liu et al. 2022a). Utilizing saline water could partly alleviate
52	the undersupply of freshwater for agricultural production (Yang et al., 2020). However,
53	the other side of the coin is that saline water irrigation could result in soil salinization
54	and/or sodicity. Once the soil is salinized and/or alkalized, soil hydraulic properties,
55	like infiltration rate, saturated hydraulic conductivity and permeability, will change
56	inevitably (Scudiero et al., 2017). And cations in the soil solution change the soil
57	structural characteristics through the soil clay particle dispersion and flocculation
58	(Bouksila et al. 2013; Hack-ten Broeke et al. 2016; Zhang et al. 2018). Therefore, in
59	order to optimize saline water utilization, the effects of saline water quality on the soil

删除了: applied

删除了: This disaster is related directly to soil pore size distribution, and in turn to the dispersion and swelling of the clay fraction (Bouksila et al.

64	hydraulic properties and pore structure characteristics should be paid more attention_		删除了
65	Saline water irrigation can increase the monovalent ions concentration in soil		
66	solution and affect soil structure (Qadir et al. 2007; Qadir et al. 2021). Excess sodium		
67	(Na ⁺) from <u>saline</u> irrigation water is adsorbed onto the clay, surface in salt-affected soils	$\langle ($	删除了
68	where sodium compounds predominate contributing to the disintegration of soil		删除了
69	structure (Marchuk and Rengasamy 2011; Belkheiri and Mulas 2013; Awedat et al.		
70	2021). As percolation progresses, the thickness of the diffusion double electron layers		
71	increases due to the relatively larger hydrated radius of Na ⁺ , and the repulsive force	(删除了
72	between adjacent diffusion double electron layers appears to increase, resulting in the		
73	dispersion and swelling of soil particles (Alva et al. 1991; Reading et al. 2015).		
74	Soil calcium (Ca ²⁺) and magnesium (Mg ²⁺) can alleviate soil dispersibility by		
75	replacing Na^+ in soil colloids, the outer <u>layers</u> of the Ca^{2+} and Mg^{2+} containing colloidal		删除了
76	particles do not adsorb water molecules, turning Na ⁺ qualitative hydrophilic colloid into		
77	Ca ²⁺ and Mg ²⁺ hydrophobic <u>colloids</u> (Marchuk and Rengasamy 2011; Tsai et al. 2012).		删除了
78	Colloidal particles <u>move closer</u> to each other, promoting soil particles forming water	(删除了
79	stable aggregates, thus improving soil structural stability (Gharaibeh et al. 2009;		
80	McKenna et al. 2019). Therefore, the concentration of Na^+ in relation to Mg^{2+} and Ca^{2+}		
81	(sodium adsorption ratio, SAR) (U.S. Salinity Laboratory Staff 1954) is a crucial	$\langle \langle$	删除了
82	criterion for soil structural stability and hydraulic conductivity (Rengasamy and		删除了
83	Marchuk 2011). Although SAR can be used to predict soil clay dispersion effect caused	l	<i>페</i>)际]
84	by cations, the controlling mechanism of dispersion in SAR is presumed to be		

删除了: (Scudiero et al., 2017).

: saline **7**: exchange

删除了: raises

删除了: layer

删除了: colloid	
删除了: get close	

-[删除了: Sodium
	删除了: considered
-(删除了: in

95	exchangeable Na ⁺ . However, Na ⁺ does not alone cause soil dispersion since the
96	chemical component of clay structure integrity is mainly a function of ionic valence
97	and hydration radius (Marchuk et al., 2014). Potassium (K^+) has been overlooked
98	because salt-affected soils typically contain low amounts of K ⁺ . However, Li et al.
99	(2022) reported that under the continuous recycling use of underground saline water,
100	water-soluble and exchangeable $K^{\scriptscriptstyle +}$ is higher than Ca^{2+} and Mg^{2+} in the Hetao irrigation
101	district—one of the large irrigation districts in China. It is anticipated that the long-term
102	use of irrigation water with high K ⁺ concentrations may therefore create substantial
103	challenges in preserving good soil structure and adequate infiltration rates (Sposito et
104	al., 2016). $K^{\scriptscriptstyle +}$ is not as effective as $Na^{\scriptscriptstyle +}$ in generating soil particle dispersion and
105	swelling problems, yet Marchuk and Marchuk (2018) pointed out that $K^{\scriptscriptstyle +}$ could
106	substitute $\mathrm{Na}^{\scriptscriptstyle +}$ on exchange sites to encourage $\mathrm{Na}^{\scriptscriptstyle +}$ leaching and increase water
107	conductivity to some extent. A lower concentration of $K^{\scriptscriptstyle +}$ may have positive effects on
108	soil permeability due to the substitution of exchangeable $\mathrm{Na}^{\scriptscriptstyle +}$ by $\mathrm{K}^{\scriptscriptstyle +}$ with lower
109	dispersive potential, increasing aggregates stability and soil pore connectivity (Buelow
110	et al., 2015). Traditional SAR ignored the role of K ⁺ , a newly proposed equation, cation
111	ratio of soil structural stability (CROSS) could integrate the effects of Na^+ and K^+ in
112	soil, which is an important indicator for assessing the quality of saline water
113	(Rengasamy and Marchuk 2011).
114	Thus, we hypothesized that the amount of K^+ relative to Na^+ would certainly have
115	an effect on soil structural stability, which could be evaluated in a column experiment

	删除了: and these relationships
-	删除了: well
	删除了: by

119	under controlled conditions. The specific objectives of this study were to (1) ascertain
120	the effect of irrigation saline water with different relative concentrations of $K^{\!\!+}$ to $Na^{\!\!+}$
121	(K^+/Na^+) on transport and distribution of water and salt; (2) determine the effect on soil
122	pore structural characteristics; (3) predict these effects using a newly proposed index
123	(CROSS) rather than SAR.

124 2 Materials and methods

125 **2.1 Soil sampling location and properties**

126	The study soil was collected from a layer of 0_40 cm field in Yangling (108°04'E,		删除了:-
127	34°20'N), Shaanxi Province, China. After air-dried, the soil was grounded to pass		
128	through a 2-mm seize. Soil <u>'s</u> physical and chemical properties are listed in Table 1. Soil		
129	particle size distribution was measured by the Laser Mastersizer 2000 (Malvern		
130	Instruments, Malvern, UK), and according to the <u>international</u> classification system,		删除了: USDA
131	soil texture was classified as silty clay. Soil bulk density was calculated using the soil		删除了: is
132	core method. EC _e and pH were measured using conductivity meter (DDS-307, China)	$\backslash \downarrow$	删除了: loam
		\sum	删除了: by
133	and pH meter (PHS-3C, China), respectively. Total soluble salts refer to the total	$ \setminus $	删除了: was 1.35 g cm ⁻³ . The soil had a low salt
134	amount of soluble salts in soil-saturated paste extract. Flame photometry (6400A, China)		concentration with ECe (electrical conductivity of saturated extract) of 0.72 dS m ⁻¹ and pH of 7.66, respectively.
135	was used to measure soluble Na ⁺ and K ⁺ , <u>concentrations of CO_3^{2-} and HCO_3^{-} were</u>	ĺ	删除了: by
			<u> </u>
136	tested <u>using</u> the neutral titration method, Cl ⁻ was analyzed <u>using</u> the silver nitrate		删除了: concentrations
127	titration mathed and SO 2- was datamained using having pulfate turbidimetric mathed	\sum	删除了: by
137	was determined <u>using barum surface turbidimetric method</u> ,		删除了: by
138	Mg ²⁺ and Ca ²⁺ were specified using ethylene diamine tetraacetic acid (EDTA)		删除了: by

152	titrimetric method (Bao 2005).
1	

153	Table 1 The physicochemical properties of study soil.			删除了:
	Property	Value		
	Particle size distribution (%)		\setminus	
	Sand (> 0.05 mm)	8.10		松 式化 寿松
	Silt (0.05_0.002 mm)	60.62	(
	Clay (<_0.002 mm)	31.28		- · L 751610
	Texture EC (dS m ⁻¹)	Silty clay		删除了: loam
	EC_{e} (dS m)	0.72		
	pH	7.66		
	<u>Total soluble salts (g Kg⁻¹)</u>	<u>0.14</u>		
	Ion concentration (mmol L^{-1})	-	(格式化表格
	CO ₃ ²⁻ +HCO ₃ ⁻	0.60		
	Cl	0.23		
	SO_4^{2-}	2.18		
	Mg^{2+}	0.32		
	Ca^{2+}	0.54		
	Na ⁺	0.10		
	<u>K</u> +	< 0.01		
154	Note: ECe is electrical conductivity of soil-saturated	extract.		删除了: represents
				删除了:
155	2.2 Experimental design			删除了: Experiment
			Ň	
156	Soil columns were prepared using transparent	polyvinyl chloride cylinders, with		
157	an internal diameter of 20 cm and a height of 50 cm	(Fig. 1). Round and small holes (6		
158	mm diameter) were arranged equally at the bottom of each cylinder for drainage. A 5			删除了: equally
150	om denth quartz sand was laid at the bottom of the	coil column as a filter laver before	l	
139	9 cm depth quartz sand was faid at the bottom of the soft column as a filter layer before			
160	packing to prevent small soil particles from being washed away. After that, air-dried			
161	1 soil was packed at 40 cm height with a bulk density of 1.35 g cm ⁻³ (referring to the			
162	2 original level of the soil). The sieved dry soil was poured into each soil column in the			
	7			

173 5-cm sections for uniform compaction, and the layer's surface was roughened to ensure

174 a tight connection to the next layer. The soil column was then allowed to stand in the

175 laboratory for 24 hours before starting the experiments described herein. The constant

176 water head (2 cm, using a Mariotte bottle) infiltration experiment was conducted with

where <u>the</u> chemical element symbols denote charge concentrations ($mmol_c L^{-1}$). 186

删除了: three
<image/>
删除了:(
删除了:)

删除了: the initiation of

1	删除了: was
-	删除了: accordingly

删除了: and

删除了: different

8

196	Table 2 Sal	ine wa	ter setting	s with d	ifferent K ⁺	/Na ⁺ at a co	nstant EC.	
			Added sal	t/		Setting	Measured	CDOGG
	Treatment		(mmol L ⁻	¹)	K ⁺ /Na ⁺	EC	EC	CROSS
		KCl	NaCl	CaCl ₂	-	(dS m ⁻¹)	(dS m ⁻¹)	(mmol _c L ⁻¹) ^{0.5}
	K0Na1	0	34	3	0:1	4.00	4.25	27.76
	K1Na1	17	17	3	1:1	4.00	4.33	17.49
	K1Na0	34	0	3	1:0	4.00	4.40	7.22
	СК		Deionize	d water	/	0.00	0.02	/
97	Note: K0N	al, Kl	Na1 and	K1Na0	indicate tl	he saline wa	ater at EC of	f 4 dS m ⁻¹ with
98	K ⁺ /Na ⁺ of ():1, 1:1	and 1:0, r	espectiv	ely; CK, d	eionized wat	er; CROSS r	epresents cation
99	ratio of soi	l struct	ural stabil	ity.				
00	The ex	sperime	entimplei	nented a	lternate lea	aching, <u>as </u> th	e prolonged l	eaching process
01	of soil subs	strates	is more h	elpful in	illuminat	ing the func	tion of electr	olyte effect and
02	cation exchange (Shaygan et al., 2017). The next infiltration was performed two days							
.03	after the drainage of the previous infiltration was completed. Soil layers were regarded							
204	as reaching	desali	nation pre	erequisite	e when the	soil salt con	ntent came to	less than 0.3%,
05	which mea	nt that	bulk elect	trical cor	nductivity	was less tha	n 1.5 dS m ⁻¹	(transformation
06	from salt c	ontent	to bulk e	lectrical	conductiv	ity) (Yin et	al., 2022). W	ater application
07	was stoppe	ed when	n the bul	k electri	cal conduc	ctivity of al	treatments	at 15 cm depth
08	reached the	e prereo	quisite fo	r desalin	ation. Thi	s experimer	t was planne	ed to fill all the
09	pores in the	e soil co	olumn thr	oughout	the infiltra	ation cycle, t	herefore the	water applied at
210	the first inf	iltratio	n was des	cribed b	y the pore	volume equ	ation (Xu and	d Huang 2010):
11					$V_{\rm p} = V_{\rm s} \cdot 2$	ТР		(2)
12					$TP = \frac{ds - ds}{ds}$	BD		(3)

where V_p is the pore volume (cm³), V_s is the volume of filled soil (cm³), *TP* is the soil 213 9

删除了:was 删除了: in the form of **删除了:** proved 删除了: useful for

删除了:

删除了: Adding

total porosity (%), *ds* is the soil particle density (2.65 g cm⁻³) (Xu and Huang 2010), *BD* is the bulk density (g cm⁻³). According to Eq. (2) and Eq. (3), around 6 L of water
was required in the first infiltration. Required water volume for each subsequent
leaching was determined by the volume of leachate at the first infiltration, 0.5 L each
time.

225 2.3 Soil properties measurements

During the whole <u>experimental</u> period, soil volumetric water content and bulk electrical conductivity were real-time monitored at 15 and 30 cm soil depths from the soil surface by capacitance sensors (ECH2O 5TE, METER Group, USA) (Fig. 1). <u>Leachate</u> was collected in the leachate catcher below the soil column. Cumulative leachate volume was monitored over time to determine the saturated hydraulic conductivity (K_{sat} , cm min⁻¹) of each treatment by using a derivation of Darcy's approach (Sahin et al., 2011):

$$K_{sat} = \frac{V_l \cdot H}{A \cdot t \cdot (H+h)} \tag{4}$$

where V_1 is the leachate volume (cm³), *H* is the length of filled soil (cm), *A* is the surface area of soil column (cm²), *t* is the leaching time of measurement (min), *h* is the height of constant water head (cm).

237 <u>To determine the amount of salt released, we measured the volume and EC of the</u>
 238 <u>leachate. The leachate was collected at 3 h intervals when the leachate started to drain,</u>
 239 and leachate was stored in 100 ml wide-mouth polypropylene reagent bottles. The salt

删除了: Measurements

删除了: experiment

删除了: The leachate

243	accumulated in the soil column was determined by subtracting the salt in the leachate		
244	from the applied water, the salination rate $(Rs, \%)$ indicated the ratio of salt accumulated		
245	in the soil column at every time of infiltration to the salt content at the first applied		
246	water. Leaching efficiency (Le, g L ⁻¹) refers to the amount of desalination per unit of	删除了: referred	_
247	water volume in the desalination process. Rs and Le were calculated as follows:		
248	$Rs = m_s / m_w \tag{5}$		
249	$Le = (m_s - m_1) / w \tag{6}$		
250	Where m_s is the salt content accumulated in soil column at <u>each</u> infiltration (g), m_w is	删除了: every time	of
251	the salt content in the total water used for the first infiltration (g), m_1 is the mass of salts		
252	after the first infiltration (g), w is the total water volume used for leaching (L).		
253	Soil samples were collected from each soil column at 5-cm intervals with the 0_{\pm}	删除了:-	
254	40 cm soil layer three days after the final infiltration. Soil BD was calculated using the		
255	soil core method, and TP was calculated by Eq. (3) based on BD. Soil water		
256	characteristics curve was measured with the high velocity centrifugal method (CR21		
257	Hitachi, Japan), and calibrated by RETC software (PC Progress Inc., Prague, Czech		
258	Republic). Currently, several defining sizes of macropores are proposed, rather than a		
259	precise definition and pore size range (Cameira et al. 2003; Kim et al. 2010; Hu et al.		
260	2018; Budhathoki et al. 2022; Aldaz-Lusarreta et al. 2022). In this study, macropores		
261	were defined as the pores with diameters larger than 1 mm, whereas micropores were		
262	defined as smaller than 1 mm (Luxmoore 1981; Wilson and Luxmoore 1988). Based on		
263	the capillary pressure data, the relationship between pore diameter (d, mm) and water		

了: referred

suction (*S*, Pa) was described according to the capillary bundle model (Jury et al., 1991):

d

268

$$=\frac{300}{S}$$
(7)

269 2.4 Statistical analysis

270 Statistical analysis among all treatments with different K⁺/Na⁺ was performed in 271 SPSS 22.0 software, using one-way analysis of variance (ANOVA) based on the least 272 significant difference (LSD) test at 95% significance level (P < 0.05). All figures were 273 created through Origin 2022b.

274 3 Results

275 3.1 Soil saturated hydraulic conductivity (Ksat)

The K0Na1, K1Na1 and K1Na0 significantly (P < 0.05) reduced K_{sat} by 43.62%, 277 29.04% and 18.06% compared with CK, respectively (Fig. 2). Additionally, K_{sat} was 278 negatively correlated with CROSS of saline water, increasing the CROSS of the applied 279 saline water generally reduced K_{sat} .

删除了:

Fig. 2. Saturated hydraulic conductivity (K_{sat}) under different treatments. K0Na1, K1Na1 and K1Na0 indicate the saline water at EC of 4 dS m⁻¹ with K⁺/Na⁺ of 0:1, 1:1 and 1:0, respectively; CK, deionized water; Different letters after means of K_{sat} indicate statistical differences (P < 0.05) among treatments based on LSD. Bars indicate standard deviations of means.

286 3.2 Soil water content

287 Water content increased immediately after each infiltration in all treatments, then 288 gradually decreases and the degree of variation tends to stabilize (Fig. 3). And water 289 content at deeper soil depths was greater than at shallow soil depths at the same time 290 during the whole infiltration period. The water content ranged from 0.39-0.41 and 0.40_0.42 cm³ cm⁻³ at 15 and 30 cm soil depths, respectively. K0Na1 had the highest 291 292 water content at both 15 and 30 cm soil depths. K1Na1 and K1Na0 were greater than 293 CK at 15 cm soil depth and lower than CK at 30 cm soil depth, and the water content 294 of K1Na1 was higher than K1Na0 at both 15 and 30 cm soil layers.

_	删除了: for
	删除了: and
	删除了: declined
	删除了: a constant level
-	删除了:-
_	删除了:-
	删除了: gained

308 **3.3 Soil salination rate (***Rs***) and leaching efficiency (***Le***)**

The *Rs* and *Le* under CK were not shown in Fig. 4, because deionized water was used as the control and there was almost no salt contained in the study soil, CK was considered negligible for salt accumulation and leaching. *Rs* peaked at the first infiltration, and approximately 70^{26} –80% of the salt in the saline water was retained in the soil column, after which the subsequent leaching had lower *Rs* values (Fig. 4). The lower the <u>relative concentration</u> of K⁺ to Na⁺, the larger soil *Rs*. Among the three saline

删除了:%-

-	删除了: ratio	
	删除了: ⁺ /)

318 water treatments, K1Na0 had the lowest *Rs* and highest *Le* at five infiltrations.

Fig. 4. Salination rate (*Rs*) (a) and leaching efficiency (*Le*) (b) at five infiltrations under all saline water treatments. K0Na1, K1Na1 and K1Na0 indicate the saline water at EC of 4 dS m⁻¹ with K⁺/Na⁺ of 0:1, 1:1 and 1:0, respectively; Different lowercase letters followed means of *Rs* indicate statistical differences (P < 0.05) among treatments based on LSD, and different <u>uppercase</u> letters followed means of *Le* indicate statistical differences (P < 0.05) among treatments based on LSD. Bars indicate standard deviations of means.

删除了: capital

327 3.4 Soil bulk electrical conductivity

Bulk electrical conductivity of K0Na1, K1Na1 and K1Na0 ranged from 1.0_2.0

dS m⁻¹ at 15 cm, 1.5₂2.5 dS m⁻¹ at 30 cm soil depth (Fig. 5). After the first infiltration,

bulk electrical conductivity in 15 cm soil <u>depth peaked</u>, and then exhibited a general

331 downward trend in the following infiltrations. However, more salts were leached to

15

删除了: to	
删除了: to	

336 deeper layers, where salt began to accumulate instead of desalination, and bulk

337 electrical conductivity at 30 cm soil depth gradually increased following the infiltration

338 events. Overall, K0Na1 had the highest bulk electrical conductivity among all

339

341 Fig. 5. Variation of bulk electrical conductivity over time under treatments with 342 different K⁺/Na⁺ at constant EC at 15 (a) and 30 cm (b) soil depths in the period of five times of infiltration. K0Na1, K1Na1 and K1Na0 indicate the saline water at EC of 4 dS 343 m⁻¹ with K⁺/Na⁺ of 0:1, 1:1 and 1:0, respectively; CK, deionized water. 344

340

345 At 15 cm soil depth, K0Na1 reached the soil desalination prerequisite after the fifth infiltration, while K1Na1 reached the desalination prerequisite after the second 346 infiltration, and K1Na0 did not exceed desalination prerequisite during the whole 347 16

删除了: At both 15 and 30 cm soil layers,

删除了: of K0Na1 was considerably greater than K1Na1

infiltration period. Among all saline water treatments, K1Na0 <u>reduced</u> the desalination
time and required leaching volume to reach the standard of desalination. K0Na1,
K1Na1 and K1Na0 did not meet the desalination prerequisite at 30 cm soil depth, and
the increased volume of infiltration water also increased the bulk electrical conductivity.

354 **3.5** Soil bulk density (*BD*) and total porosity (*TP*)

355 Soil BD varied from 1.30-1.40 g cm⁻³ across all treatments, and BD was below 1.35 g cm⁻³ at 0_{-10} and 35_40 cm soil layers, however, over 1.35 g cm⁻³ at 10_35 cm 356 357 soil depth (Fig. 6). K0Na1 significantly (P < 0.05) enhanced soil BD throughout the soil column profile compared with CK. TP first diminished with soil depth to reach a 358 359 minimum at about 30-35 cm, and then slightly increased at 35-40 cm. The TP of 360 K1Na1 and K1Na0 slightly improved after five times of infiltration, and only K0Na1 showed a decline compared with CK. Overall, over the whole infiltration period, 361 362 K1Na0 was most conducive to the formation of soil pore structure and increasing the total pore volume. The saline water with lower CROSS was beneficial for reducing soil 363 BD and increasing TP. 364

 删除了: between

 删除了: and

 删除了: for

 删除了:

 删除了:

 删除了:

 删除了:

 删除了:

 删除了:

删除了: saved

Fig. 6. Soil bulk density (BD) and total porosity (TP) throughout the soil column profile 375 376 under different treatments. K0Na1, K1Na1 and K1Na0 indicate the saline water at EC of 4 dS m⁻¹ with K⁺/Na⁺ of 0:1, 1:1 and 1:0, respectively; CK, deionized water; The 377 378 blue horizon columns represent BD, while the green horizon columns represent TP; 379 Different lowercase letters followed means of BD indicate statistical differences (P < 380 0.05) among treatments based on LSD, and different uppercase letters followed means 381 of TP indicate statistical differences (P < 0.05) among treatments based on LSD. Bars 382 indicate standard deviations of means.

383 **3.6 Proportion of micropores and proportion of macropores**

Micropores were the dominant pores for all treatments, the proportion of micropores accounting for more than 40% of the total soil volume, however, the proportion of macropores <u>did not exceed 8%</u> (Fig. 7). <u>The 0</u>_5 cm soil layer had the lowest proportion of macropores and retained the largest proportion of micropores compared with other depths. K0Na1 had the highest proportion of micropores and the 删除了:

删除了: capital

删除了: made up no more than
删除了: -

393 lowest proportion of macropores. K1Na0 had a greater proportion of macropores in the

删除了: compared with

396 Fig. 7. Proportion of micropores and proportion of macropores in total soil volume 397 throughout the soil column profile under different treatments. K0Na1, K1Na1 and 398 K1Na0 indicate the saline water at EC of 4 dS m⁻¹ with K⁺/Na⁺ of 0:1, 1:1 and 1:0, 399 respectively; CK, deionized water; The blue horizon columns represent proportion of 400 micropores, while the green horizon columns represent proportion of macropores; 401 Different lowercase letters followed means of proportion of micropores indicate 402 statistical differences (P < 0.05) among treatments based on LSD, and different 403 uppercase letters followed means of proportion of macropores indicate statistical 404 differences (P < 0.05) among treatments based on LSD. Bars indicate standard 405 deviations of means.

删除了: capital

408 4 Discussion

409 4.1 Effects of saline water on soil water movement and redistribution

410 As a crucial soil hydraulic characteristic, K_{sat} reflects the transportation ability of 411 water and solutes (Braud et al. 2001; Maillard et al. 2011; Albalasmeh et al. 2022). The 412 cation composition and EC of soil solution affect K_{sat} by controlling electrostatic 413 repulsive pressure through surface potential and midpoint potential between adjacent 414 particles, and consequently influence water movement (Fares et al. 2000; Liu et al., 415 2022b). Specifically, the relative concentration of K⁺ to Na⁺ in saline water was related 416 to the swelling and dispersion of soil particles (Yu et al. 2016; Zhu et al. 2019). 417 Dispersed clay particles clogged soil macropores to subsequently restrict water 418 transport (Awedat et al., 2021). The Na⁺ has a relatively higher ionicity index than K⁺, 419 as a result, the low relative concentration of K⁺ to Na⁺ decreased the degree of 420 covalency in clay-cation bonds, which was detrimental to clay particles aggregation 421 (Marchuk and Rengasamy 2011). Therefore, in our study, the high relative 422 concentration of K_{\star}^{+} to Na⁺, promoted the flocculation and stabilization of soil clay 423 particles, resulting in an increased water hydraulic conductivity (Fig. 2). 424 After a certain period of irrigation, soil moisture redistributed at different depths 425 of soil column, (Fig. 3). Soil water moved further down during the phase of water redistribution soon after each irrigation, reducing the water content in the upper soil 426 layers. As the upper soil layers drained, the lower soil layers still had water inflow 427

删除了: represents

删除了: */ 删除了: ratio

删除了: K⁺/Na⁺ ratio

1	删除了: +/
1	删除了: ratio
1	删除了: infiltration rate.
1	删除了: water supply
1	删除了:

437	(Kargas et al., 2021), increasing the water content in the lower soil layers. The results
438	also implicated that the retention of soil water by Na^+ was stronger than that by K^+ , the
439	cause may be that Na ⁺ can increase the thickness of the diffuse-double layers around
440	soil colloids theoretically due to its larger hydrated radius and lower charge than K^+ ,
441	and the adjacent double layers overlapped to provide more space between layers. (He et
442	al., 2015), where, subsequently, more water can be retained (Fig. 3).
443	Additionally, our study showed that $K1Na1$ was even more beneficial than
444	deionized water for water downward transport, (Fig. 3), which was due to that deionized
445	water (CK) (below 0.2 dS m ⁻¹) tended to leach soluble minerals and salts, especially
446	Ca^{2+} , from the surface soil layers. This would lead to the reduction of its original solid
447	soil structural stability. In the absence of salt and Ca^{2+} , the dispersed tiny particles filled
448	the smaller pore spaces in soil, reducing even more channels for water flow and
449	exacerbating water retention in deeper soil layers (Ayers and Westcot 1985). However,
450	a lower concentration of soluble salts could increase colloid flocculation, and thereby,
451	improving soil aeration and water conductivity (Tang and She 2016).
I	

452 **4.2 Effects of saline water on soil salination and desalination process**

Numerous factors influence <u>soil salt leaching efficiency</u>; for example, increasing
EC and reducing SAR definitely improve clay flocculation, which can enhance salt
leaching (Ebrahim Yahya et al., 2022). Na⁺ is more likely to trigger soil clay dispersion
and swelling than K⁺, thus Na⁺ generally inhibits water infiltration, which is detrimental

-	删除了:,
1	删除了: He et al., 2015).
-	删除了: an appropriate concentration of K ⁺ /Na ⁺
1	删除了: ,
1	删除了: could be because the

删除了: improve

1	删除了: the	
1	删除了: of soil salts)

to salt leaching (Smiles and Smith 2004). Adding K⁺ could promote displacement of
the adsorbed Na⁺, and then decrease Na⁺ concentration and salt accumulation in soil
solute through leaching.

468 A greater reduction in Na⁺ concentration was associated with a higher rate of 469 cation exchange rate, and the slow rate of solute leaching from aggregates reduced the 470 total leaching efficiency (Shaygan et al., 2017). During the leaching process, water flow 471 preferentially passed through the macropores rather than aggregates. The slow water 472 transportation through aggregates induced the slow removal of solutes from the 473 aggregates, leading to a reduced leaching efficiency. In our study, the alternate leaching 474 was implemented to improve solute leaching (Figs. 4 and 5). The soil solutes diffused 475 into the aggregates surface during the rest period, improving salt leaching due to the 476 water flow in macropores (Al-Sibai et al., 1997). <u>Saline water with more K^+ could</u> 477 increase the magnitude of cation exchange due to the substitution of Na⁺ on exchange sites by K⁺ with lower dispersive potential (Shaygan et al., 2017), the intensive release 478 479 of cations from the soil further improved salt's leaching efficiency. In addition, the 480 integrity of soil aggregates created by combining clay particles and the other soil 481 components enhanced by K⁺ can benefit solute transportation (Marchuk and 482 Rengasamy 2011).

483 **4.3 Effects of saline water on soil pore structure characteristics**

484

删除了:.

删除了: Increasing K⁺/Na⁺ ratio

The upper soil was longer exposed to water due to the long-term continuous

487	irrigation, causing the particles to swell and the surface layer to loosen (Vaezi et al.	
488	2017; Håkansson and Lipiec 2000), and also the decreased BD in the surface layer of	
489	soil column, (Fig. 6). The subsoil BD increased with depth under the impact of water	
490	pressure and self-weight due to the declining pore diameter and pore branching closure	
491	(Schjønning et al., 2013). And for soil at the bottom, the loss of soil particles from small	
492	holes was responsible for the abrupt reduction in BD_{\bullet} (Fig. 6). The value of CROSS in	
493	saline water could reflect changes in soil BD and TP, in agreement with the result of	
494	Marchuk and Marchuk (2018). The high CROSS implied an increase in the proportion	
495	of monovalent exchangeable cations, thickening the double layer at the interface	
496	between the clay surface and soil solution. Hence, soil swelling occurred at the expense	
497	of water-conducting pores. Additionally, aggregates slaking and subsequent clay	
498	dispersion and deposition of clay particles within the pore space contributed to the	
499	reduction in TP (Marchuk and Marchuk 2018).	
500	Soil macropores play a crucial role in water and solute transport, accounting for	
501	85% of the total infiltration volume (Wilson and Luxmoore 1988; Weiler and Naef 2003;	
502	Kotlar et al. 2020). For saline water with the same EC, a decrease in K ⁺ concentration	
503	may enhance soil clay dispersion, resulting in the loosening of clay particles from the	
504	aggregates. This, in turn, dispersed clay particles moved with water caused the	
505	macropores to become blocked, converting them into micropores (Cameira et al., 2003),	
506	thus leading to a decrease in the volume of soil macropores. (Fig. 7).	

删除了:.

删除了:

删除了: plays

删除了: Fewer soil

删除了:

删除了: The lower the K^+/Na^+ ratio, the more it enhanced

23

513 5 Conclusion

514	We explored the <u>effects of the relative ratio</u> of K_{e}^{+} to Na ⁺ in saline water on soil
515	hydraulic characteristics and structural stability via a soil column experiment. <u>Irrigation</u>
516	with saline water of K^+/Na^+ of 1:0 caused fewer pore blockages due to soil clay particle
517	dispersion than 0:1, which increased soil saturated hydraulic conductivity. The presence
518	of K^+ accelerated the sustained Na ⁺ replacement and leaching, alleviating salt
519	accumulation and enhancing leaching efficiency K^+ positively affected the
520	astablishment of soil structure due to the transformation of microacrossinte macroacros
520	establishment of son structure due to the transformation of micropores into macropores,
521	and the ever-increasing unobstructed water-conducting channels sped up water and
522	solute transport. The rational use of saline water with adequate K ⁺ could help mitigate
523	the structural deterioration caused by Na ⁺ . Appropriate adjustment of the relative
524	concentration of K ⁺ to Na ⁺ in saline water during infiltration could ameliorate soil
525	structural properties. In addition to Ca ²⁺ and Mg ²⁺ (primary concerns in earlier studies),
526	the relative concentration of $K^{\scriptscriptstyle +}$ to $Na^{\scriptscriptstyle +}$ is an essential indicator for assessing the
527	suitability of saline water quality for irrigation and should be considered when using
528	saline water.

529 Author contributions

Sihui Yan and Tibin Zhang conceived and designed the experiments. Sihui Yan,
Binbin Zhang and Tonggang Zhang led the data processing and statistical analysis,
Sihui Yan, Yu Cheng, Chun Wang and Min Luo performed the experiments. Sihui Yan

	删除了: effect
	删除了: +/
	删除了: The higher
-	删除了: ratio
-	删除了: lower K ⁺ /Na ⁺ ,

删除了: Increasing K⁺/Na

删除了: K⁺/Na⁺

- 540 wrote the initial draft. Hao Feng and Kadambot H.M. Siddique contributed to review
- 541 and editing of the paper.

542 Acknowledgments

- 543 This work was supported by the National Key R&D Program of China (Grant No.
- 544 2021YFD1900700), the Innovation Capability Support Program of Shaanxi (Grant no.
- 545 2022PT-23), the Key R&D Program of Shaan xi (Grant no. 2023-ZDLNY-53), and

546 <u>China 111 project (B12007</u>).

删除了:) and National Natural Science Foundation

删除了: China

删除了: No. 51879224, 51509238

550 References

- 551 Albalasmeh, A., Mohawesh, O., Gharaibeh, M., Deb, S., Slaughter, L., El Hanandeh, A.: Artificial
- 552 neural network optimization to predict saturated hydraulic conductivity in arid and semi-arid
- 553 regions, Catena, 217, 106459, <u>http://dx.doi.org/10.1016/J.CATENA.2022.106459</u>, 2022.
- 554 Aldaz-Lusarreta, A., Giménez, R., Campo-Bescós, M.A., Arregui, L.M., Virto, I.: Effects of
- 555 innovative long-term soil and crop management on topsoil properties of a Mediterranean soil
- based on detailed water retention curves, SOIL, 8, 655-671, <u>http://dx.doi.org/10.5194/SOIL-8-</u>
- 557 <u>655-</u>2022, 2022.
- Al-Sibai, M., Adey, M.A., Rose, D.A.: Movement of solute through a porous medium under
 intermittent leaching, Eur. J. Soil Sci., 48, 711-725, <u>http://dx.doi.org/10.1046/j.1365-</u>
 2389.1997.00126.x, 1997.
- Alva, A.K., Sumner, M.E., Miller, W.P.: Relationship between ionic strength and electrical
 conductivity for soil solutions, Soil Sci., 152, 239-242, https://doi.org/10.1097/00010694-
- 563 199110000-00001, 1991.
- Aparicio, J., Tenza-Abril, A.J., Borg, M., Galea, J., Candela, L.: Agricultural irrigation of vine crops
 from desalinated and brackish groundwater under an economic perspective. A case study in
- 566 Siggiewi, Malta, Sci. Total Environ., 650, 734-740,
- 567 https://doi.org/10.1016/j.scitotenv.2018.09.059, 2019.
- 568 Awedat, A.M., Zhu, Y., Bennett, J.M., Raine, S.R.: The impact of clay dispersion and migration on
- soil hydraulic conductivity and pore networks, Geoderma, 404, 115297,
- 570 <u>http://dx.</u>doi.org/10.1016/<u>J.GEODERMA</u>.2021.115297, 2021.

删除了: https://doi.org/10.1016/j.catena.2022.106459,

1	删除了: https://
ſ	删除了: egusphere-2022-1092,

删除了: https://

删除了: https:// 删除了: j.geoderma

577	Ayers, R.S., Westcot, D.W.: Water Quality for Agriculture, FAO Irrigation and Drainage Paper 29	
578	Rev 1, Rome, Italy.	
579	Bao, S.D.: Soil Analysis in Agricultural Chemistry, China Agricultural Press, Beijing, China, 2005	
580	(in Chinese).	
581	Belkheiri, O., Mulas, M.: The effects of salt stress on growth, water relations and ion accumulation	
582	in two halophyte Atriplex species, Environ. Exp. Bot., 86, 17-28,	
583	http://dx.doi.org/10.1016/j.envexpbot.2011.07.001, 2013.	删除了: https://
584	Bouksila, F., Bahri, A., Berndtsson, R., Persson, M., Rozema, J., Van der Zee, S.E.A.T.M.:	
585	Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia,	
586	Environ. Exp. Bot., 92, 176-185, <u>http://dx.</u> doi.org/10.1016/j.envexpbot.2012.06.002, 2013.	删除了: https://
587	Braud, I., Vich, A.I.J., Zuluaga, J., Fornero, L., Pedrani, A.: Vegetation influence on runoff and	
588	sediment yield in the Andes region: observation and modelling, J. Hydrol., 254, 124-144,	
589	http://dx.doi.org/10.1016/S0022-1694(01)00500-5, 2001.	删除了: https://
590	Budhathoki, S., Lamba, J., Srivastava, P., Malhotra, K., Way, T.R., Katuwal, S.: Using X-ray	
591	computed tomography to quantify variability in soil macropore characteristics in pastures, Soil	
592	Tillage Res., 215, 105194, <u>http://dx.</u> doi.org/10.1016/ <u>J.STILL</u> .2021.105194, 2022.	删除了: https://
593	Buelow, M.C., Steenwerth, K., Parikh, S.J.: The effect of mineral-ion interactions on soil hydraulic	删除了: j.still
594	conductivity, Agric. Water. Manag., 152, 277-285,	
595	http://dx.doi.org/10.1016/j.agwat.2015.01.015, 2015.	删除了: https://
596	Cameira, M.R., Fernando, R.M., Pereira, L.S.: Soil macropore dynamics affected by tillage and	
597	irrigation for a silty loam alluvial soil in southern Portugal, Soil Tillage Res., 70, 131-140,	

604	<u>http://dx.</u> doi.org/10.1016/S0167-1987(02)00154-X, 2003.	 删除了: https://
605	Ebrahim Yahya, K., Jia, Z., Luo, W., Yuanchun, H., Ame, M.A.: Enhancing salt leaching efficiency	
606	of saline-sodic coastal soil by rice straw and gypsum amendments in Jiangsu coastal area, Ain	
607	Shams Eng. J., 13, 101721, http://dx.doi.org/10.1016/J.ASEJ.2022.101721, 2022.	 删除了: https://
608	Fares, A., Alva, A.K., Nkedi-Kizza, P., Elrashidi, M.A.: Estimation of soil hydraulic properties of a	删除了: j.asej
609	sandy soil using capacitance probes and Guelph Permeameter, Soil Sci. Soc. Am. J., 165, 768-	
610	777, https://doi.org/10.1097/00010694-200010000-00002, 2000.	
611	Gharaibeh, M.A., Eltaif, N.I., Shunnar, O.F.: Leaching and reclamation of calcareous saline-sodic	
612	soil by moderately saline and moderate-SAR water using gypsum and calcium chloride, J. Plant	
613	Nutr. Soil Sci., iZ. Pflanzenernahr. Bodenkd., 172, 713-719,	
614	http://dx.doi.org/10.1002/jpln.200700327, 2009.	
615	Hack-Ten Broeke, M.J.D., Kroes, J.G., Bartholomeus, R.P., Van Dam, J.C., De Wit, A.J.W., Supit,	
616	I., Walvoort, D.J.J., Van Bakel, P.J.T., Ruijtenberg, R.: Quantification of the impact of	
617	hydrology on agricultural production as a result of too dry, too wet or too saline conditions,	
618	SOIL, 2, 391-402, <u>http://dx.doi.org/10.5194/soil-2-391-2016, 2016</u> .	 删除了: https://
619	Håkansson, I., Lipiec, J.: A review of the usefulness of relative bulk density values in studies of soil	
620	structure and compaction, Soil Tillage Res., 53, 71-85, http://dx.doi.org/10.1016/S0167-	 删除了: https://
621	1987(99)00095-1, 2000.	
622	He, Y.B., Desutter, T.M., Casey, F., Clay, D., Franzen, D., Steele, D.: Field capacity water as	
623	influenced by Na and EC: Implications for subsurface drainage, Geoderma, 245, 83-88,	
624	<u>http://dx.</u> doi.org/10.1016/j.geoderma.2015.01.020, 2015.	 删除了: https://

631	Hu, X., Li, Z.C., Li, X.Y., Wang, P., Zhao, Y.D., Liu, L.Y., LÜ, Y.L: Soil macropore structure	
632	characterized by X-Ray computed tomography under different land uses in the Qinghai Lake	
633	watershed, Qinghai-Tibet plateau., Pedosphere, 28, 478-487, http://dx.doi.org/10.1016/S1002-	 删除了: https://
634	0160(17)60334-5, 2018.	
635	Jury, W., Gardner, W.R., Gardner, W.H.: Soil Physics, John Wiley and Sons, New York, USA, 1991.	
636	Kargas, G., Soulis, K.X., Kerkides, P.: Implications of hysteresis on the horizontal soil water	
637	redistribution after infiltration, Water, 13, 2773-2773, http://dx.doi.org/10.3390/W13192773,	 删除了: https://
638	2021.	
639	Kim, H., Anderson, S.H., Motavalli, P.P., Gantzer, C.J.: Compaction effects on soil macropore	
640	geometry and related parameters for an arable field, Geoderma, 160, 244-251,	
641	http://dx.doi.org/10.1016/j.geoderma.2010.09.030, 2010.	 删除了: https://
642	Kotlar, A.M., de Jong van lier, Q., Andersen, H.E., Nørgaard, T., Iversen, B.V.: Quantification of	
643	macropore flow in Danish soils using near-saturated hydraulic properties, Geoderma, 375,	
644	114479, http://dx.doi.org/10.1016/j.geoderma.2020.114479, 2020.	删除了: https://
645	Li, Z.Y., Cao, W.G., Wang, Z.R., Li, J.C., Ren, Y.: Hydrochemical characterization and irrigation	
646	suitability analysis of shallow groundwater in Hetao Irrigation District, Inner Mongolia.,	
647	Geoscience, 36, 418-426, https://doi.org/10.19657/j.geoscience.1000-8527.2022.012, 2022 (in	
648	Chinese).	
649	Liu, B.X., Wang, S.Q., Liu, X.J., Sun, H.Y.: Evaluating soil water and salt transport in response to	
650	varied rainfall events and hydrological years under brackish water irrigation in the North China	
651	Plain, Geoderma, 422, 115954, <u>http://dx.</u> doi.org/10.1016/ <u>J.GEODERMA</u> .2022.115954, 2022a.	删除了: https:// 删除了: i.geoderma

658	Liu, X.M., Zhu, Y.C., Mclean Bennett, J., Wu, L.S., Li, H.: Effects of sodium adsorption ratio and		
659	electrolyte concentration on soil saturated hydraulic conductivity, Geoderma, 414, 115772,		
660	http://dx.doi.org/10.1016/J.GEODERMA.2022.115772, 2022b.		删除了: https://
661	Luxmoore, R.J.: Micro-, meso-, and macroporosity of soils., Soil Sci. Soc. Am. J., 45, 671-672,		删除了: j.geoderma
662	http://dx.doi.org/10.2136/sssaj1981.03615995004500030051x, 1981.		删除了: https://
663	Maillard, E., Payraudeau, S., Faivre, E., Grégoire, C., Gangloff, S., Imfeld, G.: Removal of pesticide	(
664	mixtures in a stormwater wetland collecting runoff from a vineyard catchment, Sci. Total		
665	Environ., 409, 2317-2324, http://dx.doi.org/10.1016/j.scitotenv.2011.01.057, 2011.		删除了: https://
666	Marchuk, A., Marchuk, S.A., Bennett, J.A., Eyres, M.A., Scott, E.: An alternative index to ESP to		
667	explain dispersion occurring in Australian soils when Na content is low, National Soils		
668	Conference: Proceedings of the 2014 National Soils Conference Soil Science Australia		
669	Melbourne, Australia, 2014.		
670	Marchuk, A., Rengasamy, P.: Clay behaviour in suspension is related to the ionicity of clay-cation		
671	bonds, Appl. Clay Sci., 53, 754-759, <u>http://dx.</u> doi.org/10.1016/j.clay.2011.05.019		删除了: https://
672	Marchuk, S., Marchuk, A.: Effect of applied potassium concentration on clay dispersion, hydraulic		删除了: ,2011
673	conductivity, pore structure and mineralogy of two contrasting Australian soils., Soil Tillage		
674	Res., 182, 35-44, <u>http://dx.</u> doi.org/10.1016/j.still.2018.04.016, 2018.		删除了: https://
675	Mckenna, B.A., Kopittke, P.M., Macfarlane, D.C., Dalzell, S.A., Menzies, N.W.: Changes in soil		
676	chemistry after the application of gypsum and sulfur and irrigation with coal seam water,		
677	Geoderma, 337, 782-791, <u>http://dx.</u> doi.org/10.1016/j.geoderma.2018.10.019, 2019.		删除了: https://
678	Prajapati, M., Shah, M., Soni, B.: A review of geothermal integrated desalination: A sustainable		

687	solution to overcome potential freshwater shortages, J. Clean. Prod., 326, 129412,		
688	http://dx.doi.org/10.1016/J.JCLEPRO.2021.129412, 2021.		删除了: https://
689	Qadir, M., Oster, J.D., Schubert, S., Noble, A.D., Sahrawat, K.L.: Phytoremediation of Sodic and		删除了: j.jclepro
690	Saline - Sodic Soils, Adv. Agron., 96, 197-247, http://dx.doi.org/10.1016/S0065-		删除了: https://
691	2113(07)96006-X, 2007.		
692	Qadir, M., Sposito, G., Smith, C.J., Oster, J.D.: Reassessing irrigation water quality guidelines for		
693	sodicity hazard, Agric. Water. Manag., 255, 107054,		
694	http://dx.doi.org/10.1016/J.AGWAT.2021.107054, 2021.	$\langle $	删除了: https://
695	Reading, L.P., Lockington, D.A., Bristow, K.L., Baumgartl, T.: Are we getting accurate		删除了: j.agwat
696	measurements of Ksat for sodic clay soils? Agric. Water. Manag., 158, 120-125,		
697	http://dx.doi.org/10.1016/j.agwat.2015.04.015, 2015.	(删除了: https://
698	Rengasamy, P., Marchuk, A.: Cation ratio of soil structural stability (CROSS), Soil Res., 49, 280-		
699	285, <u>http://dx.</u> doi.org/10.1071/SR10105, 2011.		删除了: https://
700	Sahin, U., Eroğlu, S., Sahin, F.: Microbial application with gypsum increases the saturated hydraulic		
701	conductivity of saline-sodic soils, Appl. Soil Ecol., 48, 247-250,		
702	http://dx.doi.org/10.1016/j.apsoil.2011.04.001, 2011.	(删除了: https://
703	Schjønning, P., Lamandé, M., Berisso, F.E., Simojoki, A., Alakukku, L., Andreasen, R.R.: Gas		
704	diffusion, non-darcy air permeability, and computed tomography images of a clay subsoil		
705	affected by compaction, Soil Sci. Soc. Am. J., 77, 1977-1990,		
706	http://dx.doi.org/10.2136/sssaj2013.06.0224, 2013.		删除了: https://
707	Scudiero, E., Skaggs, T.H., Corwin, D.L.: Simplifying field-scale assessment of spatiotemporal		

717		
/1/	changes of soil salinity, Sci. lotal Environ., 58/-588, 2/3-281,	
718	http://dx.doi.org/10.1016/j.scitotenv.2017.02.136, 2017.	删除了: https://
719	Shaygan, M., Reading, L.P., Baumgartl, T.: Effect of physical amendments on salt leaching	
720	characteristics for reclamation, Geoderma, 292, 96-110,	
721	http://dx.doi.org/10.1016/j.geoderma.2017.01.007, 2017.	删除了: https://
722	Singh, G., Mavi, M.S., Choudhary, O.P., Gupta, N., Singh, Y.: Rice straw biochar application to soil	
723	irrigated with saline water in a cotton-wheat system improves crop performance and soil	
724	functionality in north-west India, J. Environ. Manage., 295, 113277,	
725	http://dx.doi.org/10.1016/J.JENVMAN.2021.113277, 2021.	删除了: https://
726	Smiles, D.E., Smith, C.J.: A survey of the cation content of piggery effluents and some consequences	删除了: j.jenvman
727	of their use to irrigate soils, Soil Res., 42, 231-246, <u>http://dx.doi.org/10.1071/SR03059, 2004.</u>	删除了: https://
728	Smith, C.J., Oster, J.D., Sposito, G.: Potassium and magnesium in irrigation water quality assessment,	
729	Agric. Water. Manag., 157, 59-64, <u>http://dx.</u> doi.org/10.1016/j.agwat.2014.09.003, 2015.	删除了: https://
730	Sposito, G., Oster, J.D., Smith, C.J., Assouline, S.: Assessing soil permeability impacts from	
731	irrigation with marginal-quality waters, AB Reviews: Perspectives in Agriculture, Veterinary	
732	Science, Nutrition and Natural Resources. 11, 15,	
733	http://dx.doi.org/10.1079/PAVSNNR201611015, 2016.	删除了: https://
734	Tang, S.Q., She, D.L.: Influence of water quality on soil saturated hydraulic conductivity and	
735	infiltration properties, Transactions of the Chinese Society for Agricultural Machinery, 47, 108-	
736	114, https://doi.org/10.6041/j.issn.1000-1298.2016.10.015, 2016 (in Chinese).	
737	Tsai, W.T., Liu, S.C., Chen, H.R., Chang, Y.M., Tsai, Y.L.: Textural and chemical properties of	

745	swine-manure-derived biochar pertinent to its potential use as a soil amendment, Chemosphere,	
746	89, 198-203, https://doi.org/10.1016/j.chemosphere.2012.05.085, 2012.	
747	Vaezi, A.R., Ahmadi, M., Cerdà, A.: Contribution of raindrop impact to the change of soil physical	
748	properties and water erosion under semi-arid rainfalls, Sci. Total Environ., 583, 382-392,	
749	http://dx.doi.org/10.1016/j.scitotenv.2017.01.078, 2017.	删除了: https://
750	Weiler, M., Naef, F.: Simulating surface and subsurface initiation of macropore flow, J. Hydrol.,	
751	273, 139-154, http://dx.doi.org/10.1016/S0022-1694(02)00361-X, 2003.	删除了: https://
752	Wilson, G.V., Luxmoore, R.J.: Infiltration, macroporosity, and mesoporosity distributions on two	
753	forested watersheds, Soil Sci. Soc. Am. J., 52, 329-335,	
754	http://dx.doi.org/10.2136/sssaj1988.03615995005200020005x, 1988.	删除了: https://
755	Xu, J., Huang, P.M.: Soil Science, China Agriculture Press, Beijing, China, 2010 (in Chinese).	
756	Yang, G., Li, F., Tian, L., He, X., Gao, Y., Wang, Z., Ren, F.: Soil physicochemical properties and	
757	cotton (Gossypium hirsutum L.) yield under brackish water mulched drip irrigation, Soil	
758	Tillage Res., 199, 104592, https://doi.org/10.1016/j.still.2020.104592, 2020.	
759	Yin, C.Y., Zhao, J., Chen, X.B., Li, L.J., Liu, H., Hu, Q.L.: Desalination characteristics and	
760	efficiency of high saline soil leached by brackish water and Yellow River water, Agric. Water.	
761	Manag., 263, 107461, http://dx.doi.org/10.1016/J.AGWAT.2022.107461, 2022.	删除了: https://
762	Yu, Z.H., Liu, X.M., Xu, C.Y., Xiong, H.L., Li, H.: Specific ion effects on soil water movement,	删除了: j.agwat
763	Soil Tillage Res., 161, 63-70, <u>http://dx.</u> doi.org/10.1016/j.still.2016.03.004, 2016.	删除了: https://
1 764	Zhang, H.X., Xie, Y.Z.: Alleviating freshwater shortages with combined desert-based large-scale	
765	renewable energy and coastal desalination plants supported by Global Energy Interconnection,	

772	Glob. Energy Interconnec., 2, 205-213, <u>http://dx.</u> doi.org/10.1016/j.gloei.2019.07.013, 2019.	删除了: https://
773	Zhang, T.B., Zhan, X.Y., He, J.Q., Feng, H., Kang, Y.H.: Salt characteristics and soluble cations	
774	redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip	
775	irrigation, Agric. Water. Manag., 197, 91-99, https://doi.org/10.1016/j.agwat.2017.11.020,	
776	2018.	
777	Zhu, Y., Bennett, J.M., Marchuk, A.: Reduction of hydraulic conductivity and loss of organic carbon	
778	in non-dispersive soils of different clay mineralogy is related to magnesium induced	
779	disaggregation, Geoderma, 349, 1-10, <u>https://doi.org/10.1016/j.agwat.2017.11.020, 2019.</u>	删除了: https://doi.org/10.1016/j.geoderma.2019.04.019,

2019.

34