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Abstract. The scattered seismic waves of fractured porous rock are strongly affected by the wave-induced fluid pressure 11 

diffusion effects between the compliant fractures and the stiffer embedding background. To include these poroelastic effects 12 

in seismic modeling, we develop a numerical scheme for discrete distributed large-scale fractures embedded in fluid-saturated 13 

porous rock. Using Coates and Schoenberg’s local effective medium theory and Barbosa’s dynamic linear slip model 14 

characterized by complex-valued and frequency-dependent fracture compliances, we derive the effective viscoelastic 15 

compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The 16 

effective governing equations for fractured porous rocks are viscoelastic anisotropic and numerically solved by mixed-grid 17 

stencil frequency-domain finite-difference method. The main advantage of our proposed modeling scheme over poroelastic 18 

modeling schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be 19 

modeled using an elastic solid. We have tested the modeling scheme in a single fracture model, a fractured model, and a 20 

modified Marmousi model. The good consistency between the scattered waves off a single horizontal fracture calculated using 21 

our proposed scheme and the poroelastic modeling validates that our modeling scheme can properly capture the FPD effects. 22 

In the case of a set of aligned fractures, the scattered waves from the top and bottom of the fractured reservoir are strongly 23 

influenced by the FPD effects, and the reflected waves from the underlying formation can retain the relevant attenuation and 24 

dispersion information. The proposed numerical modeling scheme can also be used to improve migration quality and the 25 

estimation of fracture mechanical characteristics in inversion.  26 

1 Introduction 27 

Fluid saturated porous rocks in a reservoir, which are characterized by a heterogeneous internal structure consisting of a solid 28 

skeleton and interconnected fluid-filled voids, are often permeated by much more compliant and permeable fractures. Although 29 

the fractures typically occupy only a small volume, they tend to dominate the overall mechanical and hydraulic properties of 30 
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the reservoir (Liu et al., 2000; Gale et al., 2014). Thus, fracture detection, characterization, and imaging are of great importance 31 

for hydrocarbon exploration and production. Seismic waves are widely used for these purposes because their amplitude, phase, 32 

and anisotropy properties can be strongly affected by the fractures (Chapman, 2003; Gurevich, 2003; Brajanovski et al., 2005; 33 

Carcione et al., 2011; Rubino et al., 2014). Therefore, appropriate numerical modeling methods are required for the 34 

interpretation, migration and inversion of seismic data from porous media containing discrete distributed fractures. 35 

Biot’s poroelastic theory (Biot, 1956a; b) is the fundamental theory to describe elastic wave propagation in fluid porous media, 36 

including the dynamic interactions between rock and pore fluid. However, the original theory, assuming a macroscopically 37 

homogeneous porous media saturated by a single fluid phase, fails to explain the measured velocity dispersion and attenuation 38 

of seismic waves (Nakagawa et al., 2007). In recent decades, many researchers have found that if porous media contains 39 

mesoscale heterogeneity, a local fluid-pressure gradient will be induced at a scale comparable to the fluid pressure diffusion 40 

length at the seismic frequency band, thus causing significant velocity dispersion and attenuation (White et al., 1975; Dutta 41 

and Odé, 1979; Johnson, 2001; and Müller et al. 2008; Norris, 1993; Gurevich et al., 1997; Gelinsky and Shapiro, 1997; 42 

Kudarova et al., 2016). Fractures embedded in homogeneous porous background are special heterogeneities, exhibiting strong 43 

mechanical contrasts with background. When seismic waves travel through fluid saturated fractured porous rocks, local fluid 44 

pressure gradients will be induced between the fractures and the background in response to the strong compressibility contrast. 45 

To return the equilibrium state, fluid pressure diffusion (FPD) occurs between the fractures and the embedding background, 46 

which in turn changes the fluid stiffening effect on the fractures and thus their mechanical compliances depending on frequency 47 

(Barbosa et al., 2016a, b).  48 

When the fractures with spacing and length much smaller than the wavelengths are uniformly and regularly distributed, the 49 

properties of the fractured rocks are homogeneous at macroscopic scale and can be described by a representative elementary 50 

volume (REV). Various effective medium theories are available for estimating the fracture-induced anisotropy, attenuation, 51 

and dispersion in a poroelastic context (Hudson, 1981; Thomsen, 1995; Chapman, 2003; Brajanovski et al., 2005; Krzikalla et 52 

al. 2011; Galvin et al., 2015; Guo et al., 2017a; b). However, large-scale fractures with much larger spacing and length typically 53 

have a more complex discrete distribution rather than a regular one, therefore the properties of rocks containing such fractures 54 

cannot be modeled by the effective medium theory. In contrast, the linear slip model (LSM) (Schoenberg, 1980), which 55 

represents individual fractures as nonwelded interfaces with discontinuous displacement tensors, is not limited by the 56 

assumption of regular distribution and can be used to model the discretely distributed fractures. Due to the discrete distribution, 57 

the effects of large-scale fractures are not uniform and vary spatially, which mean that their effects cannot be represented by a 58 

single REV. In the framework of LSM, two numerical schemes are available to assess the seismic response of discrete 59 

distributed large-scale fractures, the local effective-medium schemes (Coates and Schoenberg, 1995; Igel et al., 1997; Vlastos 60 

et al., 2003; Oelke, et al., 2013) and the explicit interface scheme (Zhang, 2005; Cui et al., 2018; Khokhlov, et al., 2021). The 61 

local effective-medium scheme uses a very coarse mesh to discretize background media and incorporates the additional effects 62 
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of fractures within each discretized cell based on LSM, that is, it regards each discretized cell as a REV. The advantage is that 63 

it requires no special treatment of the displacement discontinuity conditions on the fractures, which means no additional 64 

memory and computation costs. The explicit interface scheme uses a very fine mesh to discretize fractures and directly treats 65 

the displacement discontinuity across each fracture without any equivalent treatment, resulting an expensive memory and 66 

computation costs. 67 

The common aspect of the aforementioned numerical modeling schemes is that they are all implemented in a purely elastic 68 

LSM with real-valued compliances boundary and represent both the embedding background and factures as elastic solids, thus 69 

the impact of FPD effects on seismic scattering can’t be accounted for. A dynamic linear slip model incorporating FPD effects 70 

should be considered when implementing numerical modeling of seismic wave propagating in fluid saturated porous rocks 71 

containing discrete distributed large-scale fractures. Nakagawa and Schoenberg (2007) developed an extended poroelastic 72 

LSM (PLSM) for a single fracture. The proposed model representing both the background and the fracture as poroelastic media 73 

can appropriately incorporate the frequency related effects, but it will also result in a higher computational consuming and 74 

more memory requirements. Rubino et al. (2015) proposed a frequency-dependent complex-valued normal compliance for a 75 

set of aligned fractures with a separation much smaller than the prevailing seismic wavelength. Despite the ability of including 76 

the FPD across the fractures, the model is not suitable for modeling discrete distributed fractures. In the context of 77 

viscoelasticity, Barbosa et al. (2016a) developed a viscoelastic linear slip model (VLSM) for an individual fracture with explicit 78 

complex-valued and frequency-dependent fracture compliances, to account for the impact of FPD on the fracture stiffness. 79 

That provides a viscoelasticity-based modeling algorithm for discrete distributed large-scale fractures with smaller 80 

computational costs and memory requirements than the poroelasticity based modeling. 81 

In this paper, we develop a viscoelastic numerical modeling scheme to simulate seismic wave propagation in fluid-saturated 82 

porous media containing discrete distributed large-scale fractures. To capture the FPD effects between the fractures and 83 

background, we use the local effective medium theory based on Barbosa’s VLSM to derive the effective anisotropic 84 

viscoelastic compliances in each numerical cell by superimposing the compliances of the background and the fractures. The 85 

effective anisotropic viscoelastic governing equations of the fractured porous rock are then numerically solved using mixed-86 

grid stencil frequency-domain finite-difference method (FDFD) (Hustedt, et al. 2004; Operto, et al. 2009; Liu et al., 2018). 87 

Compare to poroelastic modeling scheme, the main advantage of our modeling scheme is that it uses VLSM-based viscoelastic 88 

modeling to account for FDP effects in the domain permeated by fractures, while in the rest fracture-free domain, it uses elastic 89 

modeling. To validate the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave 90 

scattering, we compare the scattered waves of a single horizontal fracture obtained using our proposed modeling scheme with 91 

poroelastic modeling scheme and elastic modeling scheme. Numerical examples of a fractured reservoir are presented to 92 

demonstrate that the proposed modeling scheme can properly simulate the wave attenuation and dispersion due to the FPD 93 

effects between the fracture system and background. A set of rock physics models were generated by the Marmousi model to 94 
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test the proposed modeling scheme and code. The scheme can be used not only to study the impact of mechanical and hydraulic 95 

of fracture properties on seismic scattering but can also to improve migration quality and the estimation of fracture mechanical 96 

characteristics in inversion. 97 

2 Review of the LSM 98 

The LSM was originally proposed by Schoenberg (1980) to represent a solid- or fluid-infilled fracture permeated in a pure 99 

solid background, and then extended by other researchers (e.g. Nakagawa, Barbosa) to represent a poroelastic fracture to 100 

include the FPD effects. We briefly review the original LSM and its poroelastic and viscoelastic extensions. 101 

2.1 The original LSM 102 

Schoenberg (1980) presented the original LSM in the context of elasticity, representing both the background and the fracture 103 

as elastic solids. The original LSM assumes that across a fracture surface the stresses are continuous while the displacements 104 

are discontinuous. The discontinuous displacement vector of a horizontal fracture is linearly related to the stress tensor through 105 

the fracture compliance, which can be written as: 106 
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where  iu are the discontinuous displacement components, 
ij are the stress components, NZ h H= and TZ h = are the 108 

normal and tangential compliance of the fracture, respectively. H and  are the P-wave and shear modulus of the fracture, 109 

and h is the thickness of the fracture. Due to the simple expression, the original LSM can be easily incorporated into the local 110 

effective medium theory to model seismic wave scattering off large-scale fractures. However, the original LSM was derived 111 

in a purely elastic context, only suitable for fractures filled with pure solids or fluids, thus it is not competent to describe the 112 

FPD effects. 113 

2.2 Nakagawa’s PLSM 114 

Nakagawa and Schoenberg (2007) presented a PLSM in the framework of poroelasticity, representing the fracture as a highly 115 

compliant and porous thin isotropic, homogeneous layer embedded in a much stiffer and much less porous background 116 

(Nakagawa et al., 2007, Barbosa et al., 2016a). Similar to the classic LSM, the PLSM assumes that across a fracture surface 117 

the stresses are continuous while the displacements are discontinuous. The discontinuous displacement components for a 118 

horizontal fracture are (Nakagawa and Schoenberg, 2007): 119 
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where
DN DZ h H= and TZ h = are the fracture’s drained normal compliance and tangential compliance, respectively, DH121 

and UH are the fracture’s drained and undrained P-wave modulus, respectively,  is the Biot’s effective stress coefficient of 122 

the fracture, UB M H= is the fracture’s uniaxial Skempton coefficient. Since the PLSM represents both the background 123 

and the fracture as poroelasticity, it is capable to describe the discontinuous displacement of the relative fluid in addition to 124 

the solid, implying that it can properly handle the FPD effects between the background and the fracture. Although it is difficult 125 

to incorporate the PLSM into the effective medium theory to obtain the effective moduli of the fractured porous rock, these 126 

boundary conditions can be easily incorporated into poroelastic finite-difference algorithm for modeling seismic wave 127 

scattering off large-scale fractures parallel to the coordinate axis. An alternative wavenumber domain method for modeling 128 

the scattered waves by poroelastic fractures is presented by Nakagawa and Schoenberg (2007) based on the PLSM. 129 

2.3 Barbosa’s VLSM 130 

Barbosa et al. (2016a) derived a VLSM that account for the FPD effects between a fracture and background and the resulting 131 

stiffening effect impact on the fracture. The background is assumed to be not impacted by the FPD and can be represented by 132 

an elastic solid, whose properties are computed according to Gassmann’s equation. By representing fractures as extremely thin 133 

viscoelastic layers, the poroelastic effects were incorporated into the classical LSM through complex-valued and frequency-134 

dependent compliances. These compliances characterize the mechanical properties of the fluid-saturated fracture. 135 

The discontinuous displacement components of the VLSM (Barbosa et al., 2016a) for a horizontal fracture are 136 
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where NZ and TZ are generalized normal and tangential compliances of the fracture respectively, and XZ is a dimensionless 138 

parameter that related to the coupling between horizontal and vertical deformation of the fracture. The normal compliance NZ139 

and additional parameter XZ are complex-valued and frequency-dependent, while the tangential compliance TZ h = is the 140 

same as for elastic and poroelastic models. The two frequency-dependent and complex-valued compliances are: 141 
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where
UN UZ h H=  and

DN DZ h H=  are the fracture’s undrained and drained normal compliance respectively, 𝜔  is the 143 

angular frequency. The four real-valued parameters 1G , 2G , 3G and 4G are defined as  144 
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where is the permeability, is the viscosity of the fluid, D

U

H M
D

H




= is the diffusivity, the other parameters are defined in 146 

the same way as in poroelasticity. The parameters in Eq. (5) with superscripts b correspond to background properties and the 147 

parameters with superscripts c correspond to fracture parameters.  148 

In the low-frequency limit, the two frequency-dependent and complex-valued parameters become: 149 
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The frequency-independent and real-valued parameters in Eq. (6) indicate the elastic behavior of the fracture, which is expected, 151 

since the fluid pressure between the fracture and background at low frequencies has enough time to equilibrate within a half-152 

wave period (i.e. the fracture is softest), resulting in no dispersion and attenuation of the seismic waves.  153 

In the high-frequency limit, the two frequency-dependent and complex-valued parameters become: 154 
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Equation (7) indicates that the fracture model collapses to an elastic thin layer model in the high-frequency limit, which is 156 

consistent with the original LSM that computes the properties of both fracture and background using Gassmann’s equations. 157 

This because at high frequencies, the fluid pressure between the fracture and background has no time to equilibrate within a 158 

half-wave period, i.e. the fracture is hardest and behaves as being sealed. The VLSM considering FPD effects can be 159 

incorporated into the local effective medium theory to simulate the poroelastic seismic response of large-scale fractures, while 160 

its low- and high-frequency limits can be used to model the elastic seismic response. 161 

In the VLSM, according to Barbosa et al. (2016a), there are two distinct frequency regimes frequency-dependent fracture 162 

compliance due to FPD, and the characteristic frequency for the transition between the two regimes is: 163 
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where h is the thickness of the fracture, D is the diffusivity, e D = , the superscripts b and f correspond to background 165 

fracture parameters, respectively. 166 

3 Seismic modeling of fractured porous rock  167 
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In this section, we focus on the implementation of seismic modeling of fluid-saturated porous media containing discrete 168 

distributed large-scale fractures in 2D case. We develop a viscoelastic modeling scheme based on the VLSM and local effective 169 

medium theory (Coates and Schoenberg, 1995) to incorporate the FPD effects between fractures and background. To validate 170 

that the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave scattering of fractures, 171 

we outline the implementation of poroelastic modeling scheme using an explicit application of the PLSM. 172 

3.1 viscoelastic modeling based on VLSM 173 

To incorporate the VLSM into viscoelastic finite-difference modeling algorithms, we adopt Coates and Schoenberg’s local 174 

effective media theory (1995) to account for the property of each fracture. We first provide the specific derivation of the 175 

effective viscoelastic-anisotropic stiffness matrix of the numerical cell by superimposing the compliances of the background 176 

and the fractures. The porous background is assumed to be unaffected by the FPD in the presence of fractures because of the 177 

small amount of diffusing fluid and large compliance contrast between background and fluid. Thus, the rock background can 178 

be represented by an elastic homogeneous solid and its strain tensor
b
ε can be expressed as 179 

( ),    , , ,b b

ij ijkl kls i j x y z = =   (9) 180 

where the compliance tensor
b

s is computed according to Gassmann’s equation (Rubino et al., 2015), and σ is the average stress 181 

tensor. The exceed strain tensor
c
ε induced by a single fracture with surface S in a representative volumeV (e.g. the volume of 182 

numerical cell) is given by (Hudson and Knopoff, 1989; Sayers and Kachanov, 1995; Liu, et al., 2000)  183 
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where
c

s  is the extra compliance tensor resulting from the fractures,  iu  is the 𝑖 th component of the displacement 185 

discontinuity on S , in is the thi component of the fracture normal. Note that Eq. (10) is applicable to finite, nonplanar fractures 186 

in the long wavelength limit, i.e., the applied stress is assumed to be constant over the representative volume.  187 

If we assume that the interface of the fracture is normal to the z-axis (fracture normal vector n is (0,0,1)), substituting Eq. (3) 188 

into Eq. (10), we can obtain the nonzero element of the exceed fracture strain tensor: 189 
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For simplicity, we use an abbreviated Voigt notation for the stresses, strains, and stiffness and compliance tensors, and rewrite 191 

the Eq. (9) and Eq. (11) as: 192 

ˆˆ ˆ,b b=ε S σ    (12) 193 
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S is the 195 

compliance matrix of background. Note that in this paper the " " symbol is used to indicate matrices to distinguish them 196 

from tensors, which is used to distinguish a tensor. The 6 × 6 fracture compliance matrix I
Ẑ and additional dimensionless 197 

matrix II
Ẑ according to the Voigt notation are defined as 198 
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The average strain in a homogeneous porous rock containing single fracture can be expressed as the sum of the strains of 200 

background and the fractures 201 

ˆ ˆ ˆ .b c= +ε ε ε   (15) 202 

Substituting Eq. (12) and Eq. (13) into Eq. (15), we can obtain the average strain matrix 203 
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Thus, the effective stiffness matrix C can be expressed as 205 
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The effective stiffness matrix of case of an inclined fracture can be obtained by rotating the coordinate axis to keep z-axis 207 

perpendicular to fracture interface. We define the inclined fracture have an angle  and an azimuth angle  , and then the 208 

rotation matrix can be obtained: 209 
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as well as the corresponding stress Bond matrix ( )ˆ ˆ
A R and strain Bond matrix ( )ˆ ˆ

A R . The new stress matrix ˆε and strain 211 

matrix ˆ σ can be expressed as: 212 

ˆ ˆˆ ˆ,    . 
   = =ε A ε σ A σ     (19) 213 

By substituting Eq. (19) into Eq. (13), the new exceed fracture strain matrix can be obtained 214 

( )I IIˆ ˆ ˆˆ ˆˆ ˆ ,c b TS

V
 = +ε A Z Z S A σ   (20) 215 

Finally, substituting Eq. (12) and Eq. (20) into Eq. (15), the average strain matrix of each numerical cell containing discrete 216 

distributed fractures with the same arbitrary direction can be expressed as 217 
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and the corresponding effective stiffness matrix C is 219 
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If the background media is isotropic, the C can be simplified as 221 
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If we ignore the interaction between different fractures and the FPD along the fracture interfaces, the result can be easily 223 

extended to the case of multiple sets of discrete distributed large-scale fractures with arbitrary orientation: 224 

( )
1

I II

1

ˆ ˆˆ ˆ .
cN

iso iso Tr

r r r r

r

S

V
 

−

=

 
= + + 

 
C C I A Z C Z A     (24) 225 

where cN is total number of the fracture directions and the subscript r denotes the thr direction. The derived effective stiffness 226 

matrix is to be employed in the viscoelastic finite-difference modeling of discrete distributed large-scale fractures in porous 227 

rock.  228 

Since the local effective medium theory assumes that the real structure of the fractured porous rock is substituted by ideal 229 

continua, the balance equations of classical continuum mechanics can be applied without considering the discontinuity at the 230 

fracture interfaces, and the constitutive equations can be characterized by the effective viscoelastic stiffness. Combined with 231 

the effective complex-valued and frequency-dependent TTI viscoelastic stiffness, the 2-D frequency-domain second-order 232 

heterogeneous governing equations with PML of fractured porous rock can be expressed as: 233 
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  (25) 234 

where xu and zu are the horizontal and vertical components of particle displacement vector,  is the effective density, and
ijc235 

are the components of complex-valued and frequency-dependent effective stiffness matrix, x and z are the frequency domain 236 

PML damping functions.  237 

In time domain, the governing equations are integral differential equations, which require special processing for the 238 

convolution operations, resulting in high computational costs. Although the problem can be relieved by memory functions, it 239 

still requires high memory requirements. Instead, the governing equations can be straightforwardly solved using FDFD. To 240 

efficiently and accurately modelling of seismic wave propagation in fluid saturated fractured porous rock, we solve the second-241 

order heterogeneous governing equations with mixed-grid stencil FDFD method (Jo et al., 1996; Hustedt et al. 2004). The 242 

mixed system of governing equations is formulated by combining the classical Cartesian coordinate system (CS) and the 45◦-243 

rotated coordinate system (RS): 244 
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( ) ( )( )

( ) ( )( )

2

1 1

2

1 1

1 0,

1 0,

x c x c z r x r z

z c x c z r x r z

u w A u B u w A u B u

u w C u D u w C u D u

 

 

+ + + − + =

+ + + − + =
   (26) 245 

where the optimal averaging coefficient 1 0.5461w = (Jo et al., 1996). The coefficients cA , cB , cC , cD and rA , rB , rC , rD  are 246 

functions of the damping functions, effective stiffness coefficients and spatial derivative operators and the detailed expressions 247 

are given in Appendix A. We follow Hustedt et al., (2004) and Liu et al., (2018) to discretize the derivative operation on the 248 

mixed systems using mixed grid stencil. After discretization and arrangement, the mixed system of governing equations can 249 

be written in matrix from as 250 

( ) ( )

( ) ( )
1 1 1 1

1 1 1 1

1 1
,

1 1

c r c r x

c r c r z

w w w w

w w w w

 + + − + −     
=     

+ − + + −    

M A A B B u 0

C C M D D u 0
   (27) 251 

where M  denotes the diagonal mass matrix of coefficients 𝜔2𝜌 , and blocks cA  , cB  , cC  , cD  and rA  , rB  , rC  , rD  form the 252 

stiffness matrices for the CS and RS stencils, respectively, and the corresponding coefficients of submatrices are given in 253 

Appendix B.  254 

To improve the modelling accuracy of mixed-grid stencil, the acceleration term 𝜔2𝜌 are approximated using a weighted 255 

average over the mixed operator stencil nodes: 256 

( ) ( )2 2

1 i,j 2 i 1, j i 1, j i, j 1 i, j 1 3 i 1, j 1 i 1, j 1 i 1, j 1 i 1j 1i,j
,m m mw w w           + − + − + + − − − + + −

    + + + + + + + +   
  (28) 257 

where the optimal coefficients 1 0.6248mw = , 2 0.09381mw = and ( )3 1 21 4 4m m mw w w= − − are computed by Jo et al. (1996). 258 

In order to assess the FPD effects on seismic response, a similar procedure can be adopted in the implementation of elastic 259 

modeling by replacing the frequency-dependent fracture compliances with its low- or high-frequency limit compliances. The 260 

main advantage of our VLSM-based modeling scheme over poroelastic modeling schemes is that the fractured domain can be 261 

modeled using a viscoelastic solid, while the rest of the domain can be modeled using an elastic solid. 262 

3.2 Poroelastic modeling based on PLSM 263 

The poroelastic modeling means that we numerically solve the Biot’s equations and adopt an explicit implementation of the 264 

PLSM across each fracture instead of using the effective media theory. Hence, the poroelastic modeling can naturally deal with 265 

the FPD between fracture and background and account for its impact on wave scattering. To verify the effectiveness of the 266 

viscoelastic modeling based on VLSM, we compared the results obtained from viscoelastic scheme with those obtained from 267 

the poroelastic scheme. Although it is difficult to implement an explicit application of PLSM for arbitrary orientated fracture, 268 

it is relatively straightforward for horizontal or vertical fracture. In the following text, we outline the poroelastic modeling for 269 

a single horizontal fracture embedded in an isotropic homogeneous background with an explicit implementation of the PLSM. 270 

In frequency domain, the governing equations for an isotropic poroelastic media in the absent of fractures can be written as 271 

(Biot, 1962): 272 
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( ) ( )

2 2

2 2

,

,

2 ,

.

i f i i ij

f i w i i i f

ij U i i i i j i i j

f i i i i

u w

u w i w P

H u M w u u

P M u M w

    


    



   



− − = 

− − + = −

= −  +  +  + 

− =  + 

      (29) 273 

In the presence of fractures, the spatial derivative of stress remains unchanged. However, due to the discontinuity of particle 274 

displacements across the fracture interface, its spatial derivative consists of two parts, i.e. the background and the fracture: 275 

,

,

.

x x x

BG FR

z z z

BG FR

z z z

BG FR

u u u

z z z

u u u

z z z

w w w

z z z

     
= +   

     

     
= +   

     

     
= +   

     

        (30) 276 

The spatial derivative of the background is described by the Eq. (29): 277 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
 ,
4 4 4

2 2
,

4 4 4

2 2
.
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4

   

     

   

x D D

xx zz f

D D DBG

z D D

xx zz f

BG D D D

x Uz

xx zz f

D D DBG

u H H
P

x H H H

u H H
P

z H H H

w Hw
P

x z H H M H

 
 

     

 
 

     

 
 

    

 − 
= − + 

 − − − 

 − 
= − + + 

 − − − 

 − 
+ = − − − 

  − − − 

      (31) 278 

The fracture induced spatial derivative can be obtained based on the PLSM: 279 

( )

,

,

.

D

D

x x T

xz

FR

Nz z

zz f

FR

N Uz z

zz f

FR

u u Z

z z z

Zu u
P

z z z

Z Hw w
P

z z z M



 



  
= = 

   

  
= = + 

   

    
= = − +   

     

       (32) 280 

By substituting equations (31)-(32) into Eq. (30) and rewritten Eq. (29), we obtain the governing equations for numerical 281 

simulation of elastic wave in fractured poroelastic media in matrix form: 282 

2 1ˆˆ ˆ ˆ,T −− = Ru S u              (33) 283 

where ( )ˆ , , ,
T

x z x zu u w w=u is the displacement vector, R̂ , Ŝ and are the density, compliance and spatial derivative matrix, 284 

respectively. The three matrices in Eq. (33) are defined as: 285 

0 0

0 0
ˆ ,     .

0 0

0 0

f

f

m w

f m

f m

i

 

  
 

  

 

 
 

  = = −    
 
  

R     (34) 286 



12 
 

0 0

0 0
,

0 0 0

0 0 0

x z

z x

x

z

  
 

 
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 

 

           (35) 287 

( ) ( ) ( )

( ) ( ) ( )
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0
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     

 

     


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− 
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 +
 
 

− − − − − −
 − −  −  

S (36) 288 

A compact discretized wave equation system that contains only displacement field can be obtained by using second-order 289 

difference operators to discretize the new governing equations: 290 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

,

x

z

x

z

     
     
     =
     
     

   

G G G G u 0

G G G G u 0

G G G G w 0

G G G G w 0

(37) 291 

where blocks ( ), , 1...4i j i j =G  forms the stiffness matrices of the discretized system of the poroelastic wave equations. The 292 

poroelastic modeling based on PLSM will be used to validate the other modeling schemes. 293 

4 Numerical examples 294 

Table1 Physical Properties of the Materials Employed in the Numerical Modeling 

Parameters Background Fracture Underlying 

Porosity, 𝜙 0.15 0.8 0.05 

Permeability, 𝜅 0.1 D 100 D 0.01 D 

Solid bulk modulus, 𝐾𝑠  36 GPa 36 GPa 36 GPa 

Frame bulk modulus, 𝐾𝑚 20.3 GPa 0.055 GPa 30.6 GPa 

Frame shear modulus, 𝜇𝑚 18.6 GPa 0.033 GPa 32.2 GPa 

Solid density, 𝜌𝑠 2700 kg/m3 2700 kg/m3 2700 kg/m3 

Fluid density, 𝜌𝑓 1000 kg/m3 1000 kg/m3 1000 kg/m3 

Fluid shear viscosity, 𝜂𝑓 0.01 Poise 0.01 Poise 0.01 Poise 

Fluid bulk modulus, 𝐾𝑓 2.25 GPa 2.25 GPa 2.25 GPa 

Thickness, ℎ  1 mm  

In this section, we apply different numerical modeling schemes on three fractured models to examine the FPD effects on 295 

seismic wave scattering. We mainly focus on the amplitudes and phases of the scattered and reflected waves.  296 

4.1 Single fracture model 297 

Here, we numerically simulate the scattering of seismic waves from a single fracture embedded in a homogeneous background. 298 

The model measures 2000 1500m m with a grid interval 5m (namely, the numerical grids size is 401 301 ) surrounded by a 299 
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200m thick PML boundary. The fracture is parallel to the x-axis (a horizontal fracture) and located 750m directly below the 300 

source (1000m, 30m), with a 500m horizontal extending. A Ricker wavelet with a central frequency of 35Hz is used as the 301 

temporal source excitation. The material properties of the fracture and background are given in Table 1 modified from 302 

Nakagawa and Schoenberg (2007) and Barbosa et al. (2016a). For comparison, we present the seismic wavefields obtained 303 

using the poroelastic modeling based on PLSM, the viscoelastic modeling based on VLSM, as well as the elastic modeling 304 

based on low-frequency limit of VLSM (LVLSM) and high-frequency limit of VLSM (HVLSM). For the convenience of 305 

observation of the impact of the FPD on the scattered P- and S-wave of the fracture, we apply the pressure source in all four 306 

schemes. 307 

 308 
Figure 1: Complex-valued and frequency-dependent ZN and ZX. The dashed vertical line denotes the characteristic frequency 309 

computed using Eq. (8). 310 

 311 

Figure 2: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms: (a) the PLSM based 312 

poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based 313 

elastic modeling. The blue asterisk and line represent the source and the fracture, respectively. 314 
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 315 

Figure 3: Comparison of 1-D seismograms components Ux and Uz at (1200m, 0m) for a single horizontal fracture model. 316 

Figure 1 shows the complex-valued and frequency-dependent fracture normal compliance NZ and dimensionless parameter XZ  317 

computed from Eq. (6). The mechanical compliance of the fracture is strongly controlled by FPD effects. It can be observed 318 

that the real part of the fracture normal compliance decreases with the increment of frequency, while the imaginary part has a 319 

peak at the characteristic frequency, corresponding to the maximal dispersion. The central frequency (35Hz) of the Ricker 320 

wavelet used for numerical simulation is close to the characteristic frequency (46Hz), which ensures that the impact of the 321 

FDP effects on seismic scattering is significant in the seismic frequency band. 322 

Figure 2 shows the 280ms snapshots of the displacement fields for the single horizontal fracture model models. The 323 

displacement fields are calculated by the PLSM-based poroelastic modeling, the VLSM-based viscoelastic modeling, the 324 

LVLSM-based elastic modeling and the HVLSM-based elastic modeling, respectively. The asterisk represents the source and 325 

the blue line represents the fracture. To make the small scattered wave visible, large amplitude is clipped, thus the transmitted 326 

compressional waves (TPP), scattered compressional waves (SPP) and scattered converted waves (SPS) can be seen clearly. It 327 

should note that the slow P-waves are invisible in the poroelastic modeling, due to the high diffusion and attenuation of slow 328 

P-waves in the background media. Figure 3 present the comparison of 1-D seismograms at (1200m, 0m).  329 

We consider the poroelastic modeling as a reference scenario because it can naturally incorporate the FPD effects. Figures 2 330 

and 3 suggest very good agreement between the SPP amplitude calculated using the PLSM-based and VLSM-based modeling, 331 

while the HVLSM-based modeling obviously underestimate the SPP amplitude, and the LVLSM-based modeling overestimate 332 

the SPP amplitude. This is to be expected, since the scattering behavior of a fracture is mainly controlled by the stiffness contrast 333 

with respect to the background. The HVLSM assumes there is insufficient time for fluid exchange at the fracture interface, the 334 

fracture behaves as being sealed and the stiffness of the saturated fracture is maximal, resulting in an underestimated stiffness 335 

contrast between fracture and background. The LVLSM assumes there is enough time for fluid flow between the fracture and 336 

background, the deformation of the fracture is maximal, resulting in an overestimated stiffness contrast with background. The 337 

VLSM derived from poroelastic theory, however, can properly incorporate the FPD effects, leading to a frequency-dependent 338 
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stiffness contrast equivalent to the PLSM. It can be note that the SPP amplitudes obtained using the LVLSM-based modeling 339 

is comparable to that of the PLSM based modeling, because the FPD effects mainly occur at seismic frequencies closer to the 340 

low frequency limit. The SPP travel time obtained using the four modeling schemes shows good consistency. Figures 2 and 3 341 

also show that the discrepancy of the SPS amplitudes is almost negligible. Because the S-wave scattering behavior is mainly 342 

controlled by the drained stiffness contrast between the fracture and the background. The comparison of different modeling 343 

schemes demonstrates that the DLSM-based viscoelastic modeling can appropriately capture the FPD effects on wave 344 

scattering of a fluid saturated fracture, while the two elastic modeling cannot correctly estimate the scattered waves. 345 

 346 
Figure 4: Snapshots of the wavefields components Ux and Uz for a single inclined fracture model at 280ms: (a) the PLSM based 347 

poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based 348 

elastic modeling. The blue asterisk and line represent the source and the fracture, respectively. 349 



16 
 

 350 

Figure 5: Comparison of 1-D seismograms components Ux and Uz at (1000m, 0m) for a single inclined fracture model. 351 

The proposed modeling scheme is also applicable to the inclined fracture. Figure 4 shows the 280ms snapshots of the 352 

displacement fields for the single inclined fracture model models. Figure 5 is the comparison of 1-D seismograms at 353 

(1200m,0m). Figures 4 and 5 show that both the scattered P- and S-waves of a single inclined fracture are strongly affected by 354 

the FPD effects. 355 

4.2 Fractured reservoir model 356 

In addition to a single fracture, we are more interested in the scattering behavior of discrete distributed fractures system. To 357 

this end, we designed two fractured reservoir models containing a set of regularly distributed aligned horizontal fractures and 358 

a set of randomly distributed aligned horizontal fractures, respectively, as illustrated in Fig. 6. There are 200 horizontal fractures 359 

spread over a space of 200m, each extending 500m. The material properties of the fracture, background (yellow region) and 360 

underlying (green region) formation are given in Table 1. The model size, grid interval and source location are the same as 361 

those in the previous numerical examples. Through a set of aligned horizontal fracture structures is not practical in the actual 362 

subsurface, it helps to illustrate the impact of FPD effects on the amplitude and phase of scattered waves of fractures. 363 

 364 
Figure 6: Schematic diagram of the fractured reservoir model with a set of aligned horizontal fractures: (a)regular distribution 365 

(b)random distribution. The black segments present the fracture system. The extending of each fracture is 500m. 366 
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 367 

Figure 7: Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned horizontal 368 

fractures calculated using (a)the LVLSM, (b)the VLSM, (c)the HVLSM. A, B are scattered P-wave from top and bottom, respectively, 369 

C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and shear converted 370 

S-wave, respectively. 371 

 372 
Figure 8: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 7. 373 

Figure 7 presents the seismograms of fractured reservoir model with a set of regular distributed aligned horizontal fractures. 374 
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The scattered compressional wave (SPP) and scattered converted wave (SPS) from the top and bottom of the fractured reservoir, 375 

the reflected compressional wave (RPP), converted wave (RPS) from the underlying formation can be clearly identified. Due to 376 

the regular distribution of aligned fracture, the fractured reservoir is equivalent to an anisotropic homogeneous media, and 377 

therefore the diffracted wave is generated only at the edges of the fractured reservoir. Similar to the single fracture case, the 378 

amplitude of the SPP from the top and bottom of the fractured reservoir obtained by the HVLSM-based modeling is weakest 379 

(underestimated), that obtained by LVLSM-based modeling is strongest (overestimated), and that obtained by the VLSM-380 

based modeling is intermediate. We notice that the SPP amplitudes from the bottom of the fractured reservoir obtained by the 381 

LVLSM-based and HVLSM-based modeling are slightly smaller than those from the top, while the SPP amplitude from the 382 

bottom obtained by the VLSM-based modeling is much smaller than that from the top. This is expected, since the VLSM-383 

based modeling scheme can capture the wave attenuation and dispersion due to the FDP effects between the fracture system 384 

and background, while the LVLSM and HVLSM represent non-attenuated and non-dispersive elastic processes. Another 385 

evidence for attenuation is that the RPP amplitudes of underlying formation calculated by the HVLSM-based and LVLSM-386 

based modeling are almost equal, while the RPP amplitude calculated by the VLSM-based modeling is much smaller. Figure 7 387 

also shows that the arrival times of SPP from the bottom and RPP from underlying formation obtained by the three modeling 388 

schemes are different. 389 

To show the trend of frequency-dependent attenuation and dispersion, time-frequency distribution of the middle trace was 390 

computed for three modeling schemes. Figure 8 clearly shows that the frequency content and energy of the scattered and 391 

reflected waves calculated by VLSM tend to decrease strongly, while the frequency content and energy calculated by HVLSM 392 

and LVLSM remain steady. The impact of FPD effects on the SPS and RPS is similar to that of the SPP and RPP, but to a much 393 

weaker extent. 394 

In addition to regularly distributed fractures, our proposed modeling scheme can also simulate the wave scattering of random 395 

distributed fractures. Figure 9 presents the seismograms of fractured reservoir model with a set of random distributed aligned 396 

horizontal fractures. Figure 10 presents the time-frequency distributions of the middle trace for three modeling schemes cases 397 

in Fig. 9. Due to the random distribution of aligned fracture, the fractured reservoir exhibits a stronger heterogeneity, resulting 398 

in more prevalent diffracted wave (coda wave) in Fig. 9 than in Fig. 7. Except for the diffracted wave, the scattered and 399 

reflected waves in the random distribution case is similar to those in the regular distribution case due to the FPD effect. The 400 

two fractured reservoir models suggest that the scattered waves from the bottom of the fractured reservoir are attenuated and 401 

dispersed by the FPD effects and the reflected waves can retain the relevant attenuation and dispersion information. 402 
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 403 

Figure 9: Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned horizontal 404 

fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom, 405 

respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and 406 

shear converted S-wave, respectively. 407 

 408 
Figure 10: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 9. 409 
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 410 
Figure 11: Schematic diagram of the fractured reservoir model with a set of aligned inclined fractures: (a)regular distribution 411 

(b)random distribution. The black segments present the fracture system. The extending of each fracture is 282.8m. 412 

 413 

Figure 12: Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned inclined 414 

fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom, 415 

respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and 416 

shear converted S-wave, respectively. 417 
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 418 
Figure 13: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 12. 419 

 420 

Figure 14: Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned inclined 421 

fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom, 422 

respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and 423 

shear converted S-wave, respectively. 424 
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 425 
Figure 15: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 14. 426 

To validate the effectiveness of our proposed modeling scheme in a more practical underground fractured reservoir, we replace 427 

a set of aligned horizontal fractures in the original model with a set of aligned inclined fractures, as illustrated in Fig. 11. Figure 428 

12 presents the seismograms of fractured reservoir model with a set of regular distributed aligned inclined fractures and Fig. 429 

13 shows the time-frequency distributions of the middle trace for three modeling schemes. Figures 14 and 15 present the 430 

seismograms of fractured reservoir model with a set of random distributed aligned inclined fractures and the time-frequency 431 

distributions of the middle trace for three modeling schemes, respectively. All results of PLSM-based modeling capture the 432 

influence of FPD effects on the amplitude and phase of scattered waves, validating the effectiveness of our proposed modeling 433 

scheme. Figures 12 and 14 also show the different scattering characteristics of the randomly and regularly distributed incline 434 

fractures: many coda waves are generated by the randomly distributed fractures due to a stronger heterogeneity.  435 

4.3 Modified Marmousi model 436 

We test the proposed VLSM-based modeling scheme on a more complex modified Marmousi model. To modify the Marmousi 437 

model, we generate a porosity model, permeability model and discrete large-scale fracture system, and transform the original 438 

P-wave velocity and density into the fluid saturated bulk and shear modulus of the background by a constant Poisson’s ratio 439 

0.5, and finally obtain the grain bulk modulus, the frame bulk and shear modulus of the background through Gassmann 440 

equation and empirical formula ( ( )( )
3

11m sK K −= − ). The input physical properties and elastic modulus models of the modified 441 

Marmousi model are present in Fig. 11. The fluid density, bulk modulus and viscosity are the same as in Table 1. The model 442 

size is 4250m×1750m with grid interval 5m and a 100m thick PML boundary. The source is located at the surface (2125m, 443 

0m). A Ricker wavelet with a central frequency of 25Hz is used as the temporal source excitation. 444 
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 445 

Figure 16: The physical properties and elastic modulus models of the modified Marmousi model. 446 

 447 
Figure 17: Snapshots of the wavefields components Ux and Uz at 1000ms: (a) the original Marmousi model without fractures, (b) 448 

the modified Marmousi model with fractures and (c) the differences. 449 
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 450 

Figure 18: Seismogram components Ux and Uz: (a) the modified Marmousi model with fractures, (b) the original Marmousi model 451 

without fractures and (c) the differences. 452 

Figure 17 shows the snapshots of displacement fields at 1000ms. The figure clearly shows the scattered P- and S-waves by the 453 

discrete distributed large-scale fractures. The results with such a complex model clearly verify the numerical implementation 454 

and the code. We also calculate the seismograms of the displacement shown in Fig. 18. The seismograms obtained by our 455 

proposed modeling scheme present the scattered seismic waves by the discrete fractures. 456 

5 Conclusions 457 

In this work, we have developed a numerical modeling scheme including FPD effects for discrete distributed large-scale 458 

fractures embedded in fluid saturated porous rock. To capture the FPD effects between the fractures and background, the 459 

fractures are represented as Barbosa’s VLSM with complex-valued and frequency-dependent fracture compliances. Using 460 

Coates and Schoenberg’s local effective medium theory and Barbosa’s VLSM, we derive the effective anisotropic viscoelastic 461 

compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The 462 

effective governing equations of each numerical cell are expressed by the derived effective compliances and discretized by 463 
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mixed-grid stencil FDFD. The proposed modeling scheme can be used to study the impact of mechanical and hydraulic of 464 

fracture properties on seismic scattering. The main advantage of our proposed modeling scheme over poroelastic modeling 465 

schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be modeled 466 

using an elastic solid. 467 

The scattered P-wave of a fluid saturated horizontal fracture calculated by VLSM-based modeling is strongly affected by the 468 

FPD effects, while the scattered S-wave is less sensitive, which is consistent the result of PLSM-based modeling. However, 469 

the LVLSM-based modeling overestimates the scattered P-wave and the HVLSM-based modeling underestimates the scattered 470 

P-wave. The numerical results valid that the proposed VLSM-based modeling can include the FPD effects and thus accurately 471 

estimate the scattered wave of the horizontal fracture. The results of the fractured reservoir models show that the amplitudes 472 

of the scattered waves from the top of the fractured reservoir are affected by the fluid stiffening effects due to the FPD effects. 473 

The scattered waves from the bottom of the fractured reservoir are also attenuated and dispersed by the FPD effects in addition 474 

to the fluid stiffening effects and the reflected waves can retain the relevant attenuation and dispersion information. Randomly 475 

distributed fractures can also result in a different scattering characteristic than regularly distributed fractures, i.e. a large number 476 

of coda waves are generated due to increased inhomogeneity. The results of the modified Marmousi model clearly show the 477 

scattered waves by the discrete distributed large-scale fractures and verify the proposed numerical modeling scheme. The 478 

proposed numerical modeling scheme is expected not only to improve the estimations of seismic wave scattering from discrete 479 

distributed large-scale fractures but can also to improve migration quality and the estimation of fracture mechanical 480 

characteristics in inversion. 481 

Appendix A: The coefficients related to spatial derivative operators  482 

We define coefficient vectors ( )1,2,3,4k k =T and the derivative operate vector ( )cD as 483 

       1 2 3 4

1 1 1 1
1 0 0 0 ,  0 1 0 0 ,  0 0 1 0 ,  0 0 0 1 ,

x x x z x z z z       
= = = =T T T T (A-1) 484 

( ) ( ) ( ) ( ) ( ) ,x x x z z x z zc c c c c=          D   (A-2) 485 

where x  and z  are the PML damping function, c  represents effective stiffness. Then, the expression of cA  , cB  , cC  , cD  are 486 

written in matrix form: 487 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 15 15 55 1

15 55 13 35 2

15 13 55 35 3

55 35 35 33 4

.

c

c

c

c

A c c c c

B c c c c

C c c c c

D c c c c

    
    
    =
    
    
      

D D D D T

D D D D T

D D D D T

D D D D T

   (A-3) 488 

We formulate rA , rB , rC , rD in a similar way by defining the coefficient vectors ( )1,2,3,4k k =T and ( )cD as 489 
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       1 2 3 4

1 1 1 1
1 1 1 1 ,  1 1 1 1 ,  1 1 1 1 ,  1 1 1 1 ,

2 2 2 2x x x z x z z z       
   = = − − = − − = − −T T T T (A-4) 490 

( ) ( ) ( ) ( ) ( ) ,x x x z z x z zc c c c c       
 =          D     (A-5) 491 

The expression of rA , rB , rC , rD are written as 492 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 15 15 55 1

15 55 13 35 2

15 13 55 35 3

55 35 35 33 4

.

r

r

r

r

A c c c c

B c c c c

C c c c c

D c c c c

        
        
    =
        
    

         

D D D D T

D D D D T

D D D D T

D D D D T

   (A-6) 493 

Appendix B: Parsimonious staggered-grid stencil 494 

The nine coefficients of the CS stencil for the submatrix cA of Eq. (36): 495 
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,
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The nine coefficients of the RS stencil for the submatrix rA of Eq. (36): 499 
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The coefficients of the submatrices cB  , cC  , cD  and rB  , rC  , rD  can be inferred easily from those of submatrix cA  and rA  , 505 

respectively. 506 
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