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Abstract. The scattered seismic waves of fractured porous rock are strongly affected by the wave-induced fluid pressure
diffusion effects between the compliant fractures and the stiffer embedding background. To include these poroelastic effects
in seismic modeling, we develop a numerical scheme for discrete distributed large-scale fractures embedded in fluid-saturated
porous rock. Using Coates and Schoenberg’s local effective medium theory and Barbosa’s dynamic linear slip model
characterized by complex-valued and frequency-dependent fracture compliances, we derive the effective viscoelastic
compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The
effective governing equations for fractured porous rocks are viscoelastic anisotropic and numerically solved by mixed-grid
stencil frequency-domain finite-difference method. The main advantage of our proposed modeling scheme over poroelastic
modeling schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be
modeled using an elastic solid. We have tested the modeling scheme in a single fracture model, a fractured model, and a
modified Marmousi model. The good consistency between the scattered waves off a single horizontal fracture calculated using
our proposed scheme and the poroelastic modeling validates that our modeling scheme can properly capture the FPD effects.
In the case of a set of aligned fractures, the scattered waves from the top and bottom of the fractured reservoir are strongly
influenced by the FPD effects, and the reflected waves from the underlying formation can retain the relevant attenuation and
dispersion information. The proposed numerical modeling scheme can also be used to improve migration quality and the

estimation of fracture mechanical characteristics in inversion.

1 Introduction

Fluid saturated porous rocks in a reservoir, which are characterized by a heterogeneous internal structure consisting of a solid
skeleton and interconnected fluid-filled voids, are often permeated by much more compliant and permeable fractures. Although

the fractures typically occupy only a small volume, they tend to dominate the overall mechanical and hydraulic properties of
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the reservoir (Liu et al., 2000; Gale et al., 2014). Thus, fracture detection, characterization, and imaging are of great importance
for hydrocarbon exploration and production. Seismic waves are widely used for these purposes because their amplitude, phase,
and anisotropy properties can be strongly affected by the fractures (Chapman, 2003; Gurevich, 2003; Brajanovski et al., 2005;
Carcione et al., 2011; Rubino et al., 2014). Therefore, appropriate numerical modeling methods are required for the
interpretation, migration and inversion of seismic data from porous media containing discrete distributed fractures.

Biot’s poroelastic theory (Biot, 1956a; b) is the fundamental theory to describe elastic wave propagation in fluid porous media,
including the dynamic interactions between rock and pore fluid. However, the original theory, assuming a macroscopically
homogeneous porous media saturated by a single fluid phase, fails to explain the measured velocity dispersion and attenuation
of seismic waves (Nakagawa et al., 2007). In recent decades, many researchers have found that if porous media contains
mesoscale heterogeneity, a local fluid-pressure gradient will be induced at a scale comparable to the fluid pressure diffusion
length at the seismic frequency band, thus causing significant velocity dispersion and attenuation (White et al., 1975; Dutta
and Odé, 1979; Johnson, 2001; and Miiller et al. 2008; Norris, 1993; Gurevich et al., 1997; Gelinsky and Shapiro, 1997,
Kudarova et al., 2016). Fractures embedded in homogeneous porous background are special heterogeneities, exhibiting strong
mechanical contrasts with background. When seismic waves travel through fluid saturated fractured porous rocks, local fluid
pressure gradients will be induced between the fractures and the background in response to the strong compressibility contrast.
To return the equilibrium state, fluid pressure diffusion (FPD) occurs between the fractures and the embedding background,
which in turn changes the fluid stiffening effect on the fractures and thus their mechanical compliances depending on frequency
(Barbosa et al., 2016a, b).

When the fractures with spacing and length much smaller than the wavelengths are uniformly and regularly distributed, the
properties of the fractured rocks are homogeneous at macroscopic scale and can be described by a representative elementary
volume (REV). Various effective medium theories are available for estimating the fracture-induced anisotropy, attenuation,
and dispersion in a poroelastic context (Hudson, 1981; Thomsen, 1995; Chapman, 2003; Brajanovski et al., 2005; Krzikalla et
al. 2011; Galvin et al., 2015; Guo et al., 2017a; b). However, large-scale fractures with much larger spacing and length typically
have a more complex discrete distribution rather than a regular one, therefore the properties of rocks containing such fractures
cannot be modeled by the effective medium theory. In contrast, the linear slip model (LSM) (Schoenberg, 1980), which
represents individual fractures as nonwelded interfaces with discontinuous displacement tensors, is not limited by the
assumption of regular distribution and can be used to model the discretely distributed fractures. Due to the discrete distribution,
the effects of large-scale fractures are not uniform and vary spatially, which mean that their effects cannot be represented by a
single REV. In the framework of LSM, two numerical schemes are available to assess the seismic response of discrete
distributed large-scale fractures, the local effective-medium schemes (Coates and Schoenberg, 1995; Igel et al., 1997; Vlastos
et al., 2003; Oelke, et al., 2013) and the explicit interface scheme (Zhang, 2005; Cui et al., 2018; Khokhlov, et al., 2021). The

local effective-medium scheme uses a very coarse mesh to discretize background media and incorporates the additional effects
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of fractures within each discretized cell based on LSM, that is, it regards each discretized cell as a REV. The advantage is that
it requires no special treatment of the displacement discontinuity conditions on the fractures, which means no additional
memory and computation costs. The explicit interface scheme uses a very fine mesh to discretize fractures and directly treats
the displacement discontinuity across each fracture without any equivalent treatment, resulting an expensive memory and
computation costs.

The common aspect of the aforementioned numerical modeling schemes is that they are all implemented in a purely elastic
LSM with real-valued compliances boundary and represent both the embedding background and factures as elastic solids, thus
the impact of FPD effects on seismic scattering can’t be accounted for. A dynamic linear slip model incorporating FPD effects
should be considered when implementing numerical modeling of seismic wave propagating in fluid saturated porous rocks
containing discrete distributed large-scale fractures. Nakagawa and Schoenberg (2007) developed an extended poroelastic
LSM (PLSM) for a single fracture. The proposed model representing both the background and the fracture as poroelastic media
can appropriately incorporate the frequency related effects, but it will also result in a higher computational consuming and
more memory requirements. Rubino et al. (2015) proposed a frequency-dependent complex-valued normal compliance for a
set of aligned fractures with a separation much smaller than the prevailing seismic wavelength. Despite the ability of including
the FPD across the fractures, the model is not suitable for modeling discrete distributed fractures. In the context of
viscoelasticity, Barbosa et al. (2016a) developed a viscoelastic linear slip model (VLSM) for an individual fracture with explicit
complex-valued and frequency-dependent fracture compliances, to account for the impact of FPD on the fracture stiffness.
That provides a viscoelasticity-based modeling algorithm for discrete distributed large-scale fractures with smaller
computational costs and memory requirements than the poroelasticity based modeling.

In this paper, we develop a viscoelastic numerical modeling scheme to simulate seismic wave propagation in fluid-saturated
porous media containing discrete distributed large-scale fractures. To capture the FPD effects between the fractures and
background, we use the local effective medium theory based on Barbosa’s VLSM to derive the effective anisotropic
viscoelastic compliances in each numerical cell by superimposing the compliances of the background and the fractures. The
effective anisotropic viscoelastic governing equations of the fractured porous rock are then numerically solved using mixed-
grid stencil frequency-domain finite-difference method (FDFD) (Hustedt, et al. 2004; Operto, et al. 2009; Liu et al., 2018).
Compare to poroelastic modeling scheme, the main advantage of our modeling scheme is that it uses VLSM-based viscoelastic
modeling to account for FDP effects in the domain permeated by fractures, while in the rest fracture-free domain, it uses elastic
modeling. To validate the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave
scattering, we compare the scattered waves of a single horizontal fracture obtained using our proposed modeling scheme with
poroelastic modeling scheme and elastic modeling scheme. Numerical examples of a fractured reservoir are presented to
demonstrate that the proposed modeling scheme can properly simulate the wave attenuation and dispersion due to the FPD

effects between the fracture system and background. A set of rock physics models were generated by the Marmousi model to
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test the proposed modeling scheme and code. The scheme can be used not only to study the impact of mechanical and hydraulic
of fracture properties on seismic scattering but can also to improve migration quality and the estimation of fracture mechanical

characteristics in inversion.

2 Review of the LSM

The LSM was originally proposed by Schoenberg (1980) to represent a solid- or fluid-infilled fracture permeated in a pure
solid background, and then extended by other researchers (e.g. Nakagawa, Barbosa) to represent a poroelastic fracture to

include the FPD effects. We briefly review the original LSM and its poroelastic and viscoelastic extensions.

2.1 The original LSM

Schoenberg (1980) presented the original LSM in the context of elasticity, representing both the background and the fracture
as elastic solids. The original LSM assumes that across a fracture surface the stresses are continuous while the displacements
are discontinuous. The discontinuous displacement vector of a horizontal fracture is linearly related to the stress tensor through

the fracture compliance, which can be written as:

[ux] = ZTO-xz’
[u,]=Z0,, )
[uz] = ZNGZZ’

where [ui]are the discontinuous displacement components, o are the stress components, Z = h/H and Z, =h/u are the

normal and tangential compliance of the fracture, respectively. H and u are the P-wave and shear modulus of the fracture,
and h is the thickness of the fracture. Due to the simple expression, the original LSM can be easily incorporated into the local
effective medium theory to model seismic wave scattering off large-scale fractures. However, the original LSM was derived
in a purely elastic context, only suitable for fractures filled with pure solids or fluids, thus it is not competent to describe the

FPD effects.
2.2 Nakagawa’s PLSM

Nakagawa and Schoenberg (2007) presented a PLSM in the framework of poroelasticity, representing the fracture as a highly
compliant and porous thin isotropic, homogeneous layer embedded in a much stiffer and much less porous background
(Nakagawa et al., 2007, Barbosa et al., 2016a). Similar to the classic LSM, the PLSM assumes that across a fracture surface
the stresses are continuous while the displacements are discontinuous. The discontinuous displacement components for a

horizontal fracture are (Nakagawa and Schoenberg, 2007):
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[ux] = ZTGXZ’

[UJ = ZTO'yz,
[u,]=2,, (o, +aP,), 2)

1
[WZ] = —aZND (GZZ +Epf j,
where Z, = h/Hy and Z; = h/u are the fracture’s drained normal compliance and tangential compliance, respectively, H,

and H,, are the fracture’s drained and undrained P-wave modulus, respectively, « is the Biot’s effective stress coefficient of
the fracture, B =aM/H,, is the fracture’s uniaxial Skempton coefficient. Since the PLSM represents both the background
and the fracture as poroelasticity, it is capable to describe the discontinuous displacement of the relative fluid in addition to
the solid, implying that it can properly handle the FPD effects between the background and the fracture. Although it is difficult
to incorporate the PLSM into the effective medium theory to obtain the effective moduli of the fractured porous rock, these
boundary conditions can be easily incorporated into poroelastic finite-difference algorithm for modeling seismic wave
scattering off large-scale fractures parallel to the coordinate axis. An alternative wavenumber domain method for modeling

the scattered waves by poroelastic fractures is presented by Nakagawa and Schoenberg (2007) based on the PLSM.
2.3 Barbosa’s VLSM

Barbosa et al. (2016a) derived a VLSM that account for the FPD effects between a fracture and background and the resulting
stiffening effect impact on the fracture. The background is assumed to be not impacted by the FPD and can be represented by
an elastic solid, whose properties are computed according to Gassmann’s equation. By representing fractures as extremely thin
viscoelastic layers, the poroelastic effects were incorporated into the classical LSM through complex-valued and frequency-
dependent compliances. These compliances characterize the mechanical properties of the fluid-saturated fracture.

The discontinuous displacement components of the VLSM (Barbosa et al., 2016a) for a horizontal fracture are

[ux] = ZT O-xz’
[u,]=20,, 3)

[u,]=Zyo, +Ze

o
where Z,, and Z; are generalized normal and tangential compliances of the fracture respectively, and Z, is a dimensionless
parameter that related to the coupling between horizontal and vertical deformation of the fracture. The normal compliance Z
and additional parameter Z, are complex-valued and frequency-dependent, while the tangential compliance Z; = h/ g is the
same as for elastic and poroelastic models. The two frequency-dependent and complex-valued compliances are:

G, (1+i)
Vo +G, (1+i)
G; (1+i)

\/5+G4(1+i)7

Zy =2y, +1,,

“
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where Z, = h/H, and Zy, = h/H, are the fracture’s undrained and drained normal compliance respectively, w is the

angular frequency. The four real-valued parameters G, , G, ,G;and G, are defined as

e (Bb—Bf)2 PURY S ZZﬁabyb(Bf—Bb)ﬁ J2x°D

) - , G =D _
nZ,,  D° nZy, o' D'

Hg RPN
where x is the permeability, 77 is the viscosity of the fluid, D = x m
n My

G =

H,M

is the diffusivity, the other parameters are defined in

the same way as in poroelasticity. The parameters in Eq. (5) with superscripts b correspond to background properties and the
parameters with superscripts € correspond to fracture parameters.

In the low-frequency limit, the two frequency-dependent and complex-valued parameters become:

Zy =2y, +Z,, %
2
(6)

The frequency-independent and real-valued parameters in Eq. (6) indicate the elastic behavior of the fracture, which is expected,
since the fluid pressure between the fracture and background at low frequencies has enough time to equilibrate within a half-
wave period (i.e. the fracture is softest), resulting in no dispersion and attenuation of the seismic waves.

In the high-frequency limit, the two frequency-dependent and complex-valued parameters become:

N ZNU'

(M

x

Equation (7) indicates that the fracture model collapses to an elastic thin layer model in the high-frequency limit, which is
consistent with the original LSM that computes the properties of both fracture and background using Gassmann’s equations.
This because at high frequencies, the fluid pressure between the fracture and background has no time to equilibrate within a
half-wave period, i.e. the fracture is hardest and behaves as being sealed. The VLSM considering FPD effects can be
incorporated into the local effective medium theory to simulate the poroelastic seismic response of large-scale fractures, while
its low- and high-frequency limits can be used to model the elastic seismic response.

In the VLSM, according to Barbosa et al. (2016a), there are two distinct frequency regimes frequency-dependent fracture

compliance due to FPD, and the characteristic frequency for the transition between the two regimes is:

2\ e’
Dy, = 2 fm :[—j z—b Df y (8)
h) | ef +e.e,

where h is the thickness of the fracture, D is the diffusivity, e = K/ 77\/5 , the superscriptsb and f correspond to background

fracture parameters, respectively.

3 Seismic modeling of fractured porous rock
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In this section, we focus on the implementation of seismic modeling of fluid-saturated porous media containing discrete
distributed large-scale fractures in 2D case. We develop a viscoelastic modeling scheme based on the VLSM and local effective
medium theory (Coates and Schoenberg, 1995) to incorporate the FPD effects between fractures and background. To validate
that the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave scattering of fractures,

we outline the implementation of poroelastic modeling scheme using an explicit application of the PLSM.
3.1 viscoelastic modeling based on VLSM

To incorporate the VLSM into viscoelastic finite-difference modeling algorithms, we adopt Coates and Schoenberg’s local
effective media theory (1995) to account for the property of each fracture. We first provide the specific derivation of the
effective viscoelastic-anisotropic stiffness matrix of the numerical cell by superimposing the compliances of the background
and the fractures. The porous background is assumed to be unaffected by the FPD in the presence of fractures because of the
small amount of diffusing fluid and large compliance contrast between background and fluid. Thus, the rock background can

be represented by an elastic homogeneous solid and its strain tensor " can be expressed as
b b - -
&j = Sj0u ('1 J=X va) )
where the compliance tensor s” is computed according to Gassmann’s equation (Rubino et al., 2015), and o is the average stress

tensor. The exceed strain tensor €° induced by a single fracture with surface S in a representative volumeV (e.g. the volume of

numerical cell) is given by (Hudson and Knopoff, 1989; Sayers and Kachanov, 1995; Liu, et al., 2000)
C C 1
& =S50y =W_|'([ui]nj +u; In, )dS, (10)
where s° is the extra compliance tensor resulting from the fractures, [Ui] is the ith component of the displacement

discontinuity on S, n; is the ith component of the fracture normal. Note that Eq. (10) is applicable to finite, nonplanar fractures
in the long wavelength limit, i.e., the applied stress is assumed to be constant over the representative volume.
If we assume that the interface of the fracture is normal to the z-axis (fracture normal vector nis (0,0,1)), substituting Eq. (3)

into Eq. (10), we can obtain the nonzero element of the exceed fracture strain tensor:

S
g;:z _\TZTGXZ’
S
‘C";z Z\TZTO-yz’ (11)

2z X “xx

S
EC =\7(ZNUZZ +7Z {;‘b )
For simplicity, we use an abbreviated Voigt notation for the stresses, strains, and stiffness and compliance tensors, and rewrite
the Eq. (9) and Eq. (11) as:

=5 (12
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e S (5. S\ S (51 Suab)a
& =—(Z'c+Z"s)=—(Z' +Z”Sb)c, (13)
\Y \Y
T T &
where € = [gxx,eyy,gu,Zgyz , ZEXZ,ZSXJ is the strain matrix, 6 = [O‘XX,O'W,O'ZZ,O'YZ,GXZ,O'W] is the stress matrix, and S” is the

compliance matrix of background. Note that in this paper the " A" symbol is used to indicate matrices to distinguish them
from tensors, which is used to distinguish a tensor. The 6 X 6 fracture compliance matrix Z'and additional dimensionless

matrix 2" according to the Voigt notation are defined as

000 0 00 [0 00000)]
000 0 00 000000

., |00z, 0 00| ., [Z,00000

7' = 2" = ,(14)
0002 00 0 00000
000 020 0 00000
000 0 0 0] |0 00000]

The average strain in a homogeneous porous rock containing single fracture can be expressed as the sum of the strains of
background and the fractures
g=8"+28" (15
Substituting Eq. (12) and Eq. (13) into Eq. (15), we can obtain the average strain matrix
A~ lav  Syz suap)|a
g :[sb +\7(z' +z”sb)}s. (16)
Thus, the effective stiffness matrix C can be expressed as
C :{éb +§(2' +2”§b)r. (17)
\
The effective stiffness matrix of case of an inclined fracture can be obtained by rotating the coordinate axis to keep z-axis
perpendicular to fracture interface. We define the inclined fracture have an angle ¢ and an azimuth angle 8, and then the

rotation matrix can be obtained:

cos@dcosp —sind cosésing
R=|sinfcosp cosd sindsing |, (18)
—sing 0 cos g

as well as the corresponding stress Bond matrix A (IQ) and strain Bond matrix A, (Ifl) . The new stress matrix £’ and strain
matrix 6’ can be expressed as:

§=Ag, 6=A_c" (19)

By substituting Eq. (19) into Eq. (13), the new exceed fracture strain matrix can be obtained

& = \%Ag (2'+2"8")Als,  (20)

Finally, substituting Eq. (12) and Eq. (20) into Eq. (15), the average strain matrix of each numerical cell containing discrete

distributed fractures with the same arbitrary direction can be expressed as
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& :[éb +§Ag (Z' +Z“éb)A§}&. (21)
\Y
and the corresponding effective stiffness matrix C is
S -1
_| &b 2 A 1, SUGb |\ AT
C_[S oy (2'+2'S )Aé} N G)
If the background media is isotropic, the C can be simplified as
. S . . T
C=C"™ [I +> A (z'c‘” +2" )AZ} . (23)
\
If we ignore the interaction between different fractures and the FPD along the fracture interfaces, the result can be easily

extended to the case of multiple sets of discrete distributed large-scale fractures with arbitrary orientation:
N, S -1

C=C" {l + ZvrAgr (zic*+2! )A;} .4
r=1

where N, is total number of the fracture directions and the subscript r denotes the rth direction. The derived effective stiffness
matrix is to be employed in the viscoelastic finite-difference modeling of discrete distributed large-scale fractures in porous
rock.

Since the local effective medium theory assumes that the real structure of the fractured porous rock is substituted by ideal
continua, the balance equations of classical continuum mechanics can be applied without considering the discontinuity at the
fracture interfaces, and the constitutive equations can be characterized by the effective viscoelastic stiffness. Combined with
the effective complex-valued and frequency-dependent TTI viscoelastic stiffness, the 2-D frequency-domain second-order
heterogeneous governing equations with PML of fractured porous rock can be expressed as:

a)pu+§1 {Cﬂau+cl3au+clsau+clsauJ 6(C156u+356u+556u+556uj 0,

X z z X X z z X

(25)
a;zpuz+ia [Clsau +C356u - %0.U, Cssau }r—a (Cl3au +C336u +C356ux+cﬁ8xuzj=0,
S S S S <, Sx

X z z X
where u, and u, are the horizontal and vertical components of particle displacement vector, p is the effective density, and ¢;

are the components of complex-valued and frequency-dependent effective stiffness matrix, &, and &, are the frequency domain
PML damping functions.

In time domain, the governing equations are integral differential equations, which require special processing for the
convolution operations, resulting in high computational costs. Although the problem can be relieved by memory functions, it
still requires high memory requirements. Instead, the governing equations can be straightforwardly solved using FDFD. To
efficiently and accurately modelling of seismic wave propagation in fluid saturated fractured porous rock, we solve the second-
order heterogeneous governing equations with mixed-grid stencil FDFD method (Jo et al., 1996; Hustedt et al. 2004). The
mixed system of governing equations is formulated by combining the classical Cartesian coordinate system (CS) and the 45°-

rotated coordinate system (RS):
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@’ pu, +w, (Au, +Bu, )+(1-w)(Au, +B.u,)=0, 26)

o’ pu, +w, (Cyu, + DU, ) +(1-w,)(C,u, + D,u, ) =0,

where the optimal averaging coefficient w, = 0.5461(Jo et al., 1996). The coefficients A, ,B,,C,,D,and A, ,B, ,C,,D, are
functions of the damping functions, effective stiffness coefficients and spatial derivative operators and the detailed expressions
are given in Appendix A. We follow Hustedt et al., (2004) and Liu et al., (2018) to discretize the derivative operation on the

mixed systems using mixed grid stencil. After discretization and arrangement, the mixed system of governing equations can

be written in matrix from as

z

M+wA, +(1-w)A,  wB +(1-w)B, |fu,] [0 -
wC, +(1-w)C, M+wD, +(1-w,)D, ||u, | |0] @7

where M denotes the diagonal mass matrix of coefficients w?p, and blocks A, ,B,,C_.,D,and A, ,B, ,C,,D, form the
stiffness matrices for the CS and RS stencils, respectively, and the corresponding coefficients of submatrices are given in
Appendix B.

To improve the modelling accuracy of mixed-grid stencil, the acceleration term w?p are approximated using a weighted

average over the mixed operator stencil nodes:
[Q’ZP]”. ~ o [Wmlpi,j + W, (pi+1,j TP0ai TPt pi,j—1)+ Wi (pi+1,j+1 TP TPt pi+1j—1):|7 (28)
where the optimal coefficients w,, = 0.6248 ,w,, = 0.09381and w,,, = (1—w,, —4w,, )/4are computed by Jo et al. (1996).

In order to assess the FPD effects on seismic response, a similar procedure can be adopted in the implementation of elastic
modeling by replacing the frequency-dependent fracture compliances with its low- or high-frequency limit compliances. The
main advantage of our VLSM-based modeling scheme over poroelastic modeling schemes is that the fractured domain can be

modeled using a viscoelastic solid, while the rest of the domain can be modeled using an elastic solid.
3.2 Poroelastic modeling based on PLSM

The poroelastic modeling means that we numerically solve the Biot’s equations and adopt an explicit implementation of the
PLSM across each fracture instead of using the effective media theory. Hence, the poroelastic modeling can naturally deal with
the FPD between fracture and background and account for its impact on wave scattering. To verify the effectiveness of the
viscoelastic modeling based on VLSM, we compared the results obtained from viscoelastic scheme with those obtained from
the poroelastic scheme. Although it is difficult to implement an explicit application of PLSM for arbitrary orientated fracture,
it is relatively straightforward for horizontal or vertical fracture. In the following text, we outline the poroelastic modeling for
a single horizontal fracture embedded in an isotropic homogeneous background with an explicit implementation of the PLSM.
In frequency domain, the governing equations for an isotropic poroelastic media in the absent of fractures can be written as

(Biot, 1962):

10
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—0*pU, — 0’ p,W, = ,0;

iij
—?p U — 0 p W, +iw LW = —5.P ,
Pi; PV P i (29)
oy =(Hy —2u)0,u; +aMow, +'u(aiui +aiuj)’
—P; =aMo,u; + Mo,w,.

In the presence of fractures, the spatial derivative of stress remains unchanged. However, due to the discontinuity of particle

displacements across the fracture interface, its spatial derivative consists of two parts, i.e. the background and the fracture:
ou, (ou, ou,
= —= —+ s
oz 0 Joo \ 07 )
au, =(6uzj +[6uzj , (30)
oz 0 Joo \ 07 g
w (&R
oz 7)o \OZ )eg

The spatial derivative of the background is described by the Eq. (29):

(Guxj _ H, o _ Hp —2u o+ 2au P
X Jog  Au(Hp—p) ™ Au(Hy—p) * 4u(Hp-u)

(6uzj _ Hp —2u o, + Hp o + 20 P, 31)

07 Joo  Au(Hp—u) 4u(Hp—p) © du(Hy—p)

%Jr% _ 2ou 2au H, —u
ox oz

= Oy — o, P, .
BG 4/”(HD_,U) 4#(HD_IU) M(HD_,U) f
The fracture induced spatial derivative can be obtained based on the PLSM:
ou, Au,  Z;
= =—0,,
07 ) A Az

ou Au, Z
( j =——2=—"(o, +aP), (32)
0L )ow A7 Az

(&) ey
= =— ao,, +—=P; |.
07 Jepn A2 Az M

By substituting equations (31)-(32) into Eq. (30) and rewritten Eq. (29), we obtain the governing equations for numerical

simulation of elastic wave in fractured poroelastic media in matrix form:
—’RO=VSVQ, (33)
where (0 = (ux Uy, W, W, )T is the displacement vector, R ,é and V are the density, compliance and spatial derivative matrix,

respectively. The three matrices in Eq. (33) are defined as:

p 0 p 0O

. 0 0 i

R=| 0 (pm=pw—'—’7j- (34)
P 0 py O ox
0 pf 0 pm
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o, 00, 0
287 V= 00, 0.0 , (35)
0 0 0 o,
0 0 0o,
o H o Ho2e 0 __2ap
Ap(Hp —u) Ap(Hp —u) Ap(Hp —u)
Hp —2u Hp Zy, 2oy aly,
R _4y(HD—,u) 4,u(HD—y)+E 0 _4,u(HD—,u)_ Az
288 S= L 7 .(36)
0 0 —+= 0
u Az
o 2ou  20p 92y, __Hy-p HZy
| 4,u(HD—,u) 4,u(HD—,u) Az M(HD—,u) MAz |

289 A compact discretized wave equation system that contains only displacement field can be obtained by using second-order

290 difference operators to discretize the new governing equations:

Gll GlZ Gl3 Gl4 0

c

X

291 G, Gy Gy Gy || U, _ 0 ,(37)
Gy Gy Gy Gy || W, 0
G, G, Gy Gulw, 0

292 where blocks G, (i, j :1...4) forms the stiffness matrices of the discretized system of the poroelastic wave equations. The

293 poroelastic modeling based on PLSM will be used to validate the other modeling schemes.

294 4 Numerical examples

Tablel Physical Properties of the Materials Employed in the Numerical Modeling

Parameters Background Fracture Underlying
Porosity, ¢ 0.15 0.8 0.05
Permeability, x 0.1D 100 D 0.01 D
Solid bulk modulus, Kj 36 GPa 36 GPa 36 GPa
Frame bulk modulus, K, 20.3 GPa 0.055 GPa 30.6 GPa
Frame shear modulus, p,, 18.6 GPa 0.033 GPa 32.2 GPa
Solid density, pg 2700 kg/m? 2700 kg/m? 2700 kg/m?
Fluid density, ps 1000 kg/m? 1000 kg/m? 1000 kg/m?
Fluid shear viscosity, 7f 0.01 Poise 0.01 Poise 0.01 Poise
Fluid bulk modulus, K 2.25 GPa 2.25 GPa 2.25 GPa
Thickness, h 1 mm

295 In this section, we apply different numerical modeling schemes on three fractured models to examine the FPD effects on

296 seismic wave scattering. We mainly focus on the amplitudes and phases of the scattered and reflected waves.

297 4.1 Single fracture model

298 Here, we numerically simulate the scattering of seismic waves from a single fracture embedded in a homogeneous background.

299 The model measures 2000mx1500m with a grid interval Sm (namely, the numerical grids size is 401x301) surrounded by a
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301
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307

308
309

310

311
312

313
314

200m thick PML boundary. The fracture is parallel to the x-axis (a horizontal fracture) and located 750m directly below the
source (1000m, 30m), with a 500m horizontal extending. A Ricker wavelet with a central frequency of 35Hz is used as the
temporal source excitation. The material properties of the fracture and background are given in Table 1 modified from
Nakagawa and Schoenberg (2007) and Barbosa et al. (2016a). For comparison, we present the seismic wavefields obtained
using the poroelastic modeling based on PLSM, the viscoelastic modeling based on VLSM, as well as the elastic modeling
based on low-frequency limit of VLSM (LVLSM) and high-frequency limit of VLSM (HVLSM). For the convenience of

observation of the impact of the FPD on the scattered P- and S-wave of the fracture, we apply the pressure source in all four

schemes.
L 10712 T T T T T T T T T T T
——Real (Zn) | | 00l | —Real (Zx)| |
——Imag(Zn) | | _/- —— Imag(Zx)
J . |
~~
£ 1 =0t 1
= =)
é | —
b
= 2l J N -0.02 - 1
N
1 - -
o ] -0.03 | 1
-0.04 1
2+ 4
107 1072 107! 10" 10! 107 10} 10 10° 107 107 107! 10" 10! 10° 10° 10* 10°
Frequency (Hz) Frequency (Hz)

Figure 1: Complex-valued and frequency-dependent Zn and Zx. The dashed vertical line denotes the characteristic frequency
computed using Eq. (8).
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Figure 2: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms: (a) the PLSM based
poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based
elastic modeling. The blue asterisk and line represent the source and the fracture, respectively.

13



315
316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

x10™" Ux x10™" Uz

5.0 : : : : 5.0 : : : :
HVLMS HVLMS i
—- LVLMS —- LVLMS i
— - VLMS — - VLMS il
751 — PLMS 751 — PLMS lll
[ © !
= = !
= 8
= 0.0 7 = 0.0 -
g g
< <
2.5 -2.5
-5.0 - - : - -5.0 : - - :
0.26 0.31 0.36 0.41 0.46 0.51 0.26 0.31 0.36 0.41 0.46 0.51
t (s) t (s)

Figure 3: Comparison of 1-D seismograms components Ux and Uz at (1200m, Om) for a single horizontal fracture model.

Figure 1 shows the complex-valued and frequency-dependent fracture normal compliance Z,, and dimensionless parameter Z,
computed from Eq. (6). The mechanical compliance of the fracture is strongly controlled by FPD effects. It can be observed
that the real part of the fracture normal compliance decreases with the increment of frequency, while the imaginary part has a
peak at the characteristic frequency, corresponding to the maximal dispersion. The central frequency (35Hz) of the Ricker
wavelet used for numerical simulation is close to the characteristic frequency (46Hz), which ensures that the impact of the
FDP effects on seismic scattering is significant in the seismic frequency band.

Figure 2 shows the 280ms snapshots of the displacement fields for the single horizontal fracture model models. The
displacement fields are calculated by the PLSM-based poroelastic modeling, the VLSM-based viscoelastic modeling, the
LVLSM-based elastic modeling and the HVLSM-based elastic modeling, respectively. The asterisk represents the source and
the blue line represents the fracture. To make the small scattered wave visible, large amplitude is clipped, thus the transmitted
compressional waves (Tpp), scattered compressional waves (Spp) and scattered converted waves (Sps) can be seen clearly. It
should note that the slow P-waves are invisible in the poroelastic modeling, due to the high diffusion and attenuation of slow
P-waves in the background media. Figure 3 present the comparison of 1-D seismograms at (1200m, Om).

We consider the poroelastic modeling as a reference scenario because it can naturally incorporate the FPD effects. Figures 2
and 3 suggest very good agreement between the Spp amplitude calculated using the PLSM-based and VLSM-based modeling,
while the HVLSM-based modeling obviously underestimate the Spp amplitude, and the LVLSM-based modeling overestimate
the Spp amplitude. This is to be expected, since the scattering behavior of a fracture is mainly controlled by the stiffness contrast
with respect to the background. The HVLSM assumes there is insufficient time for fluid exchange at the fracture interface, the
fracture behaves as being sealed and the stiffness of the saturated fracture is maximal, resulting in an underestimated stiffness
contrast between fracture and background. The LVLSM assumes there is enough time for fluid flow between the fracture and
background, the deformation of the fracture is maximal, resulting in an overestimated stiffness contrast with background. The

VLSM derived from poroelastic theory, however, can properly incorporate the FPD effects, leading to a frequency-dependent
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stiffness contrast equivalent to the PLSM. It can be note that the Spp amplitudes obtained using the LVLSM-based modeling
is comparable to that of the PLSM based modeling, because the FPD effects mainly occur at seismic frequencies closer to the
low frequency limit. The Spp travel time obtained using the four modeling schemes shows good consistency. Figures 2 and 3
also show that the discrepancy of the Sps amplitudes is almost negligible. Because the S-wave scattering behavior is mainly
controlled by the drained stiffness contrast between the fracture and the background. The comparison of different modeling
schemes demonstrates that the DLSM-based viscoelastic modeling can appropriately capture the FPD effects on wave

scattering of a fluid saturated fracture, while the two elastic modeling cannot correctly estimate the scattered waves.
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Figure 4: Snapshots of the wavefields components Ux and Uz for a single inclined fracture model at 280ms: (a) the PLSM based

poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based

elastic modeling. The blue asterisk and line represent the source and the fracture, respectively.

15



350
351

352

353

354

355

356

357

358

359

360

361

362

363

364
365

366

x10™" Ux x10™" Uz

5.0 . ; ; : 5.0 : ; ; .
- HVLMS - HFLMS
—= LVLMS == LFLMS i
— VLMS — VLMS 1
1
2.5 2.5 i

Amplitude
o
o

Amplitude
o
o

-2.5 2.5
-5.0 : - - : -5.0 : - - -
0.26 031 036 041 046 0.51 0.26 031 036 041  0.46 0.51
t (s) t (s)

Figure 5: Comparison of 1-D seismograms components Ux and Uz at (1000m, Om) for a single inclined fracture model.

The proposed modeling scheme is also applicable to the inclined fracture. Figure 4 shows the 280ms snapshots of the
displacement fields for the single inclined fracture model models. Figure 5 is the comparison of 1-D seismograms at
(1200m,0m). Figures 4 and 5 show that both the scattered P- and S-waves of a single inclined fracture are strongly affected by

the FPD effects.
4.2 Fractured reservoir model

In addition to a single fracture, we are more interested in the scattering behavior of discrete distributed fractures system. To
this end, we designed two fractured reservoir models containing a set of regularly distributed aligned horizontal fractures and
a set of randomly distributed aligned horizontal fractures, respectively, as illustrated in Fig. 6. There are 200 horizontal fractures
spread over a space of 200m, each extending 500m. The material properties of the fracture, background (yellow region) and
underlying (green region) formation are given in Table 1. The model size, grid interval and source location are the same as
those in the previous numerical examples. Through a set of aligned horizontal fracture structures is not practical in the actual

subsurface, it helps to illustrate the impact of FPD effects on the amplitude and phase of scattered waves of fractures.
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Figure 6: Schematic diagram of the fractured reservoir model with a set of aligned horizontal fractures: (a)regular distribution

(b)random distribution. The black segments present the fracture system. The extending of each fracture is 500m.
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Figure 7: Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned horizontal
fractures calculated using (a)the LVLSM, (b)the VLSM, (c)the HVLSM. A, B are scattered P-wave from top and bottom, respectively,
C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and shear converted
S-wave, respectively.
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Figure 8: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 7.

Figure 7 presents the seismograms of fractured reservoir model with a set of regular distributed aligned horizontal fractures.
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The scattered compressional wave (Spp) and scattered converted wave (Sps) from the top and bottom of the fractured reservoir,
the reflected compressional wave (Rpp), converted wave (Rps) from the underlying formation can be clearly identified. Due to
the regular distribution of aligned fracture, the fractured reservoir is equivalent to an anisotropic homogeneous media, and
therefore the diffracted wave is generated only at the edges of the fractured reservoir. Similar to the single fracture case, the
amplitude of the Spp from the top and bottom of the fractured reservoir obtained by the HVLSM-based modeling is weakest
(underestimated), that obtained by LVLSM-based modeling is strongest (overestimated), and that obtained by the VLSM-
based modeling is intermediate. We notice that the Spp amplitudes from the bottom of the fractured reservoir obtained by the
LVLSM-based and HVLSM-based modeling are slightly smaller than those from the top, while the Spp amplitude from the
bottom obtained by the VLSM-based modeling is much smaller than that from the top. This is expected, since the VLSM-
based modeling scheme can capture the wave attenuation and dispersion due to the FDP effects between the fracture system
and background, while the LVLSM and HVLSM represent non-attenuated and non-dispersive elastic processes. Another
evidence for attenuation is that the Rpp amplitudes of underlying formation calculated by the HVLSM-based and LVLSM-
based modeling are almost equal, while the Rpp amplitude calculated by the VLSM-based modeling is much smaller. Figure 7
also shows that the arrival times of Spp from the bottom and Rpp from underlying formation obtained by the three modeling
schemes are different.

To show the trend of frequency-dependent attenuation and dispersion, time-frequency distribution of the middle trace was
computed for three modeling schemes. Figure 8 clearly shows that the frequency content and energy of the scattered and
reflected waves calculated by VLSM tend to decrease strongly, while the frequency content and energy calculated by HVLSM
and LVLSM remain steady. The impact of FPD effects on the Sps and Rps is similar to that of the Spp and Rpp, but to a much
weaker extent.

In addition to regularly distributed fractures, our proposed modeling scheme can also simulate the wave scattering of random
distributed fractures. Figure 9 presents the seismograms of fractured reservoir model with a set of random distributed aligned
horizontal fractures. Figure 10 presents the time-frequency distributions of the middle trace for three modeling schemes cases
in Fig. 9. Due to the random distribution of aligned fracture, the fractured reservoir exhibits a stronger heterogeneity, resulting
in more prevalent diffracted wave (coda wave) in Fig. 9 than in Fig. 7. Except for the diffracted wave, the scattered and
reflected waves in the random distribution case is similar to those in the regular distribution case due to the FPD effect. The
two fractured reservoir models suggest that the scattered waves from the bottom of the fractured reservoir are attenuated and

dispersed by the FPD effects and the reflected waves can retain the relevant attenuation and dispersion information.
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Figure 9: Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned horizontal
fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom,
respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and
shear converted S-wave, respectively.
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Figure 10: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 9.
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Figure 11: Schematic diagram of the fractured reservoir model with a set of aligned inclined fractures: (a)regular distribution
(b)random distribution. The black segments present the fracture system. The extending of each fracture is 282.8m.

Ux
Offset (km) Offset (km) Offset (km)
-1 -05 0 05 1 -1 -05 0 05 1 -1 -05 0 05 1

0.1
0.2
0.3
= 04
0.5
g 0.6
= 0.7
0.8
0.9
1.0
Offset (km) Offset (km) Offset (km)
-1 -0.5 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
0.1
0.2
0.3
’5 0.4
N 0.5
g 0.6
= 0.7
0.8
0.9
1.0

Figure 12: Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned inclined
fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom,
respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and
shear converted S-wave, respectively.
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Figure 13: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 12.
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Figure 14: Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned inclined
fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom,
respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and

shear converted S-wave, respectively.
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Figure 15: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Fig. 14.

To validate the effectiveness of our proposed modeling scheme in a more practical underground fractured reservoir, we replace
a set of aligned horizontal fractures in the original model with a set of aligned inclined fractures, as illustrated in Fig. 11. Figure
12 presents the seismograms of fractured reservoir model with a set of regular distributed aligned inclined fractures and Fig.
13 shows the time-frequency distributions of the middle trace for three modeling schemes. Figures 14 and 15 present the
seismograms of fractured reservoir model with a set of random distributed aligned inclined fractures and the time-frequency
distributions of the middle trace for three modeling schemes, respectively. All results of PLSM-based modeling capture the
influence of FPD effects on the amplitude and phase of scattered waves, validating the effectiveness of our proposed modeling
scheme. Figures 12 and 14 also show the different scattering characteristics of the randomly and regularly distributed incline

fractures: many coda waves are generated by the randomly distributed fractures due to a stronger heterogeneity.
4.3 Modified Marmousi model

We test the proposed VLSM-based modeling scheme on a more complex modified Marmousi model. To modify the Marmousi
model, we generate a porosity model, permeability model and discrete large-scale fracture system, and transform the original
P-wave velocity and density into the fluid saturated bulk and shear modulus of the background by a constant Poisson’s ratio

0.5, and finally obtain the grain bulk modulus, the frame bulk and shear modulus of the background through Gassmann
3
equation and empirical formula (K, =(1-¢)t-9 K, ). The input physical properties and elastic modulus models of the modified

Marmousi model are present in Fig. 11. The fluid density, bulk modulus and viscosity are the same as in Table 1. The model
size is 4250mx1750m with grid interval 5Sm and a 100m thick PML boundary. The source is located at the surface (2125m,

Om). A Ricker wavelet with a central frequency of 25Hz is used as the temporal source excitation.
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448 Figure 17: Snapshots of the wavefields components Ux and Uz at 1000ms: (a) the original Marmousi model without fractures, (b)

449 the modified Marmousi model with fractures and (c) the differences.
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Figure 18: Seismogram components Ux and Uz: (a) the modified Marmousi model with fractures, (b) the original Marmousi model
without fractures and (c) the differences.

Figure 17 shows the snapshots of displacement fields at 1000ms. The figure clearly shows the scattered P- and S-waves by the
discrete distributed large-scale fractures. The results with such a complex model clearly verify the numerical implementation
and the code. We also calculate the seismograms of the displacement shown in Fig. 18. The seismograms obtained by our

proposed modeling scheme present the scattered seismic waves by the discrete fractures.

5 Conclusions

In this work, we have developed a numerical modeling scheme including FPD effects for discrete distributed large-scale
fractures embedded in fluid saturated porous rock. To capture the FPD effects between the fractures and background, the
fractures are represented as Barbosa’s VLSM with complex-valued and frequency-dependent fracture compliances. Using
Coates and Schoenberg’s local effective medium theory and Barbosa’s VLSM, we derive the effective anisotropic viscoelastic
compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The

effective governing equations of each numerical cell are expressed by the derived effective compliances and discretized by
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mixed-grid stencil FDFD. The proposed modeling scheme can be used to study the impact of mechanical and hydraulic of
fracture properties on seismic scattering. The main advantage of our proposed modeling scheme over poroelastic modeling
schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be modeled
using an elastic solid.

The scattered P-wave of a fluid saturated horizontal fracture calculated by VLSM-based modeling is strongly affected by the
FPD effects, while the scattered S-wave is less sensitive, which is consistent the result of PLSM-based modeling. However,
the LVLSM-based modeling overestimates the scattered P-wave and the HVLSM-based modeling underestimates the scattered
P-wave. The numerical results valid that the proposed VLSM-based modeling can include the FPD effects and thus accurately
estimate the scattered wave of the horizontal fracture. The results of the fractured reservoir models show that the amplitudes
of the scattered waves from the top of the fractured reservoir are affected by the fluid stiffening effects due to the FPD effects.
The scattered waves from the bottom of the fractured reservoir are also attenuated and dispersed by the FPD effects in addition
to the fluid stiffening effects and the reflected waves can retain the relevant attenuation and dispersion information. Randomly
distributed fractures can also result in a different scattering characteristic than regularly distributed fractures, i.e. a large number
of coda waves are generated due to increased inhomogeneity. The results of the modified Marmousi model clearly show the
scattered waves by the discrete distributed large-scale fractures and verify the proposed numerical modeling scheme. The
proposed numerical modeling scheme is expected not only to improve the estimations of seismic wave scattering from discrete
distributed large-scale fractures but can also to improve migration quality and the estimation of fracture mechanical

characteristics in inversion.

Appendix A: The coefficients related to spatial derivative operators

We define coefficient vectors T, (k =1,2,3,4) and the derivative operate vector D(c)as

1 1 1 1
T,=—[1000], T,=—[0100], ,=——[0010], T,=—[0 0 0 1],(A-1
cfxfx[ ] éxé[ ] <§x§z[ ] fzfz[ LD

D(c)=[2,(cd,) o,(ca,) 0,(cd,) 0,(ca,)], (A-2)
where £, and &, are the PML damping function, crepresents effective stiffness. Then, the expression of A,,B,,C_, D, are
written in matrix form:

A D
(A-3)

A

B, (
C.| |D(cs
D, (
We formulate A , B, ,C_, D, in a similar way by defining the coefficient vectors T, (k =1,2,3,4) and D’(c) as
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r 1 ’ 1 ’ 1 ’ 1
T, = 1111, T= [-11 -1 1],T3=E[—1 -111), T, =

X2X X2z X2z ya=ys

[1-1-11],(A4)

D'(c)=[0,(cd,) 0,(cd,) 8,(cd,) 0,(co,)],  (A-5)
The expression of A , B, ,C,, D, are written as

Al |D'(es) D'(cs) D'(cs) D'(css) || TY

B, |_|D'(6) D(es) D'(es) D(e) | |
Cr D,(C].S) D'(Cl3) D’(CSS) D,(CBS) T3'

D, ] |[D'(Cs) D'(Css) D'(Css) D'(Css) | T

Appendix B: Parsimonious staggered-grid stencil

The nine coefficients of the CS stencil for the submatrix A, of Eq. (36):

A: _ Cll i+0.5,j A _ Cll i-05,] A: _ CSS i,j+05 A% _ C55 i,j-05
i+1Lj T A2 1 i-1,j 7 42 ! ij+l1 T A2 ' ij-1 7 4,2 !
A éx i‘/JKX i+0.5 A 5)( i‘/:)( i-0.5 A é':z jé:z j+0.5 A é:z jgz j-0.5
Cll i+0.5,j Cll i-05,j _ CSS i,j+0.5 _ C55 i,j-0.5 _ C15 i+1,j + C15 i j+l

Af:i,j = ! Ai+1,j+1_—’

Azgx i§x i+0.5 Azgx ié:x i-0.5 AZCJEZ jé:z j+05 Azgz jgz j-05 4A2§x ié':zj
L+ o .+ . . A
Atiﬂ'j_l :_C15|+1,12 C15|,]—1 , Ati_l’j_ﬂ :_C15|—1,12 ClS|,J+1 , Ati_lvj_l — C15|—1,J2 ClS|,J—1. (B-l)
4A é:xigzj 4A é:xigzj 4A gxié:zj

The nine coefficients of the RS stencil for the submatrix A, of Eq. (36):

Cyy i+0.5,j-0.5 —Cs5 i+0.5,j-0.5 Cy i+0.5, j+0.5 — G55 i+0.5, j+0.5 Cy i-05,j+0.5 —Cs5 i-05,j+0.5 Clli—O.S,j—O.S -
A= A=
i+1,j — | i-1,j —

Cosi-05,j-05

4A2§x iéz j—05 4A2§z jéx i+0.5 4A2§x igz j+0.5 4A2§z jéx i-0.5

C

Css i-05,j-05 Cyy i-05,j-0.5

_ CSSi—O,S,j+O.5 _Clli—O.S,j+0.5 Css i+0.5,j+05 —Cy i+0.5,j+0.5 _ ¥55i+05,j-05 —Cy i+0.5,j-0.5
A’i,j+1_ ! Ai,j—l

4A2§x igz j+0.5 4A2§z j §x i+0.5 - 4A2§x iéz j—05 4A2§z jgx i-0.5

A, _ Cll i+05,j-05 2c15 i+0.5,j-0.5 + C55 i+0.5,j-0.5 Cll i-05,j+05 2015 i-05,j+0.5 + 055 i-0.5,j+0.5
i 2 - 2
4A é:x ié:x i+0.5 4A ‘/:x ié:x i-0.5

Cirivos,j+05 T 2(:15 i+05,j+05 T Co5i:05,j+05  Ciri-osj-os T 2015 i-05,j-05 T Cs5i-05,j-05

4A2§z jcfz j+05 4A2§Z ié:Z i-05

A _ Clli+0.5,j+0.5 + 2C15 i+0.5,j+0.5 +Cg i+0.5,j+0.5
i+1,j+1 T 2 ’
4A §zj§zj+0.5

_ cll i+0.5,j-05 2(;15 i+0.5,j-0.5 + C55 i+0.5,j-0.5
Ar i+1,j-1 =

4A2§x iéx i+0.5

Cll i-05,j+05 2015 i-05,j+0.5 + C55 i-05,j+0.5

_ Cll i-0.5,j-05 + 2C15 i-05,j-05 + CSS i—-0.5,j—0.5
2 .
4A gx igx i-05

v A=
H AA%E, &, s

(B-2)

Ar i-1,j+1 =

The coefficients of the submatrices B, ,C., D, and B, ,C,, D, can be inferred easily from those of submatrix A, and A, ,

respectively.
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