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Abstract. The scattered seismic waves of fractured porous rock are strongly affected by the wave-induced fluid pressure 11 

diffusion effects between the compliant fractures and the stiffer embedding background. To include these poroelastic effects 12 

in seismic modeling, we develop a numerical scheme for discrete distributed large-scale fractures embedded in fluid-saturated 13 

porous rock. Using Coates and Schoenberg’s local effective medium theory and Barbosa’s dynamic linear slip model 14 

characterized by complex-valued and frequency-dependent fracture compliances, we derive the effective viscoelastic 15 

compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The 16 

effective governing equations for fractured porous rocks are viscoelastic anisotropic and numerically solved by mixed-grid 17 

stencil frequency-domain finite-difference method. The main advantage of our proposed modeling scheme over poroelastic 18 

modeling schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be 19 

modeled using an elastic solid. We have tested the modeling scheme in a single fracture model, a fractured model, and a 20 

modified Marmousi model. The good consistency between the scattered waves off a single horizontal fracture calculated using 21 

our proposed scheme and the poroelastic modeling validates that our modeling scheme can properly capture the FPD effects. 22 

In the case of a set of aligned fractures, the scattered waves from the top and bottom of the fractured reservoir are strongly 23 

influenced by the FPD effects, and the reflected waves from the underlying formation can retain the relevant attenuation and 24 

dispersion information. The effective governing equations of the fractured porous rock are then characterized by the derived 25 

anisotropic, complex-valued, and frequency-dependent effective compliances. We numerically solved the effective governing 26 

equations by mixed-grid stencil frequency-domain finite-difference method. The good consistency between the scattered 27 

waves off a single horizontal fracture calculated using our proposed scheme and those calculated using the poroelastic linear 28 

slip model shows that our modeling scheme can properly include the FPD effects. We also find that for a P-point source, the 29 

amplitudes of the scattered waves from a single horizontal fracture are strongly affected by the fluid stiffening effects due to 30 

fluid pressure diffusion, while for an S-point source, the scattered waves are less sensitive to fluid pressure diffusion. In the 31 
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case of the conjugate fracture system, the scattered waves from the bottom of the fractured reservoir and the reflected waves 32 

from the underlying formation are attenuated and dispersed by the FPD effects for both P- and S-point sources. The proposed 33 

numerical modeling scheme can also be used to improve migration quality and the estimation of fracture mechanical 34 

characteristics in inversion. 35 

1 Introduction 36 

Fluid saturated porous rocks in a reservoir, which rock in the reservoir characterized by a heterogeneous internal structure 37 

consisting of a solid skeleton and interconnected fluid-filled voids, are often permeated by much more compliant and 38 

permeable fractures. Although the fractures typically occupy only a small volume, they tend to dominate the overall mechanical 39 

and hydraulic properties of the reservoir (Liu et al., 2000; Gale et al., 2014). Thus, fracture detection, characterization and 40 

imaging are of great importance for reservoir prediction and production. Seismic waves are widely used for these purposes 41 

because their behaviors (amplitude, phase and anisotropy) are strongly affected by the fractures (Chapman, 2003; Gurevich, 42 

2003; Brajanovski et al., 2005; Carcione et al., 2011; Rubino et al., 2014). Therefore, appropriate numerical modeling methods 43 

are required for the interpretation, migration and inversion of seismic data from porous media containing discrete distributed 44 

fractures. 45 

Biot’s poroelastic theory (Biot, 1956a; b) is the fundamental theory to describe elastic wave propagation in fluid porous media, 46 

including the dynamic interactions between rock and pore fluid. However, the original theory, assuming a macroscopically 47 

homogeneous porous media saturated by a single fluid phase, is fail to explain the measured velocity dispersion and attenuation 48 

of seismic waves (Nakagawa et al., 2007). In recent decades, many researchers have found that if porous media contains 49 

mesoscale heterogeneity, a local fluid-pressure gradient will be induced at a scale comparable to the fluid pressure diffusion 50 

length at the seismic frequency band, thus causing significant velocity dispersion and attenuationIn recent decades, many 51 

researchers found that if porous media contains mesoscale heterogeneity (ignored by Boit), a local fluid-pressure gradient will 52 

be induced by the passing wave at scale comparable to the wave-induced fluid pressure diffusion length (the wavelength of 53 

slow P-wave), causing significant velocity dispersion and velocity attenuation at seismic frequency band (White et al., 1975; 54 

Dutta and Odé, 1979; Johnson, 2001; and Müller et al. 2008; Norris, 1993; Gurevich et al., 1997; Gelinsky and Shapiro, 1997; 55 

Kudarova et al., 2016). Fractures embedded in homogeneous porous background are special heterogeneities, exhibiting strong 56 

mechanical contrasts with background. When seismic waves travel through fluid saturated fractured porous rocks, local fluid 57 

pressure gradients will be induced between the fractures and the background in response to the strong compressibility contrast. 58 

To return the equilibrium state, fluid pressure diffusion (FPD) occurs between the fractures and the embedding background, 59 

which in turn changes the fluid stiffening effect on the fractures and thus their mechanical compliances depending on frequency 60 

(Barbosa et al., 2016a, b).  61 
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When fractures with spacing and length apertures and lengths much smaller than the wavelengths are uniformly and regularly 62 

distributed,unified distributed in porous rock, the properties of the fractured rock are homogeneous at macroscopic scale and 63 

can be described by a representative elementary volume (REV). Various effective medium theories are available for estimating 64 

the fracture-induced anisotropy, attenuation and dispersion in a poroelastic context behaviors (Hudson, 1981; Thomsen, 1995; 65 

Chapman, 2003; Brajanovski et al., 2005; Krzikalla et al. 2011; Galvin et al., 2015; Guo et al., 2017a; b). However, large-scale 66 

fractures with much larger spacing and length typically have a more complex discrete distribution rather than a regular one, 67 

therefore the properties of rocks containing such fractures cannot be modeled by the effective medium theory. In contrast, the 68 

linear slip model (LSM) (Schoenberg, 1980), which represents individual fractures as nonwelded interfaces with discontinuous 69 

displacement tensors, is not limited by the assumption of regular distribution and can be used to model the discretely distributed 70 

fractures. Due to the discrete distribution, the effects of large-scale fractures are not uniform and vary spatially, which mean 71 

that their effects cannot be represented by a single REV. In the framework of LSM, two numerical schemes are available to 72 

assess the seismic response of discrete distributed large-scale fractures, the local effective-medium schemes (Coates and 73 

Schoenberg, 1995; Igel et al., 1997; Vlastos et al., 2003; Oelke, et al., 2013) and the explicit interface scheme (Zhang, 2005; 74 

Cui et al., 2018; Khokhlov, et al., 2021). The local effective-medium scheme uses a very coarse mesh to discretize background 75 

media and incorporates the additional effects of fractures within each discretized cell based on LSM, that is, it regards each 76 

discretized cell as a REV. The advantage is that it requires no special treatment of the displacement discontinuity conditions 77 

on the fractures, which means no additional memory and computation costs. The explicit interface scheme uses a very fine 78 

mesh to discretize fractures and directly treats the displacement discontinuity across each fracture without any equivalent 79 

treatment, resulting an expensive memory and computation costs.The discrete distributed large-scale fractures (the presence 80 

of spatial correlations of fractures), however, cannot be modeled by any above-mentioned effective medium theories originally 81 

for macroscopically uniformly distributed fractures. The seismic response of individual fracture is mostly assessed in the 82 

framework of the linear slip model (LSM) by modeling a fracture as a nonwelded interface across which the displacement 83 

tensors are assumed to be discontinuous while the stress tensors are continuous (Schoenberg, 1980). Various local numerical 84 

schemes have been developed for discrete distributed large-scale fractures. The most widely used scheme is local effective-85 

medium schemes (Coates and Schoenberg, 1995; Igel et al., 1997; Vlastos et al., 2003; Oelke, et al., 2013) that determine and 86 

incorporate the behavior of fracture-induced media within each spatial discretized cell. The advantage of using the local 87 

effective medium is that it requires no special treatment of the displacement discontinuity conditions on the fractures. An 88 

alternative scheme is the explicit interface scheme that directly treat the displacement discontinuity across each fracture (Zhang, 89 

2005; Cui et al., 2018; Khokhlov, et al., 2021).  90 

The common aspect of the aforementioned numerical modeling schemes is that they are all implemented in a purely elastic 91 

framework LSM with real-valued compliances boundary and represent both the embedding background and factures as elastic 92 

solids, thus the impact of FPD effects on seismic scattering can’t be accounted for. A dynamic linear slip model incorporating 93 
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FPD effects should be considered when implementing numerical modeling of seismic wave propagating in fluid saturated 94 

porous rocks containing discrete distributed large-scale fractures. Rubino et al. (2015) proposed a frequency-dependent 95 

complex-valued normal compliance for regularly distributed planar fractures (a set of aligned fractures) with a separation much 96 

smaller than the prevailing seismic wavelength. Despite the ability of including the FPD across the fractures, the model is not 97 

suitable for modeling discrete distributed fractures. Nakagawa and Schoenberg (2007) developed an extended LSM for a single 98 

fracture in the context of poroelasticity. The proposed model representing both the background and the fracture as poroelastic 99 

media can appropriately incorporate the frequency related effects, but it will also result in a higher computational consuming 100 

and more memory requirements. In the context of viscoelasticity, Barbosa et al. (2016a) developed a viscoelastic linear slip 101 

model (VLSM) for an individual fracture with explicit complex-valued and frequency-dependent fracture compliances, to 102 

account for the impact of FPD on the fracture stiffness. That provides a viscoelasticity-based modeling algorithm for discrete 103 

distributed large-scale fractures with smaller computational costs and memory requirements than the poroelasticity based 104 

modeling. 105 

In this paper, we develop a viscoelastic numerical modeling scheme to simulate seismic wave propagation in fluid-saturated 106 

porous media containing discrete distributed large-scale fractures. To capture the FPD effects between the fractures and 107 

background, we use the local effective medium theory based on Barbosa’s VLSM to derive the effective anisotropic 108 

viscoelastic compliances in each numerical cell by superimposing the compliances of the background and the fractures. The 109 

effective anisotropic viscoelastic governing equations of the fractured porous rock are then numerically solved using mixed-110 

grid stencil frequency-domain finite-difference method (FDFD) (Hustedt, et al. 2004; Operto, et al. 2009; Liu et al., 2018). 111 

Compare to poroelastic modeling scheme, the main advantage of our modeling scheme is that it uses VLSM-based viscoelastic 112 

modeling to account for FDP effects in the domain permeated by fractures, while in the rest fracture-free domain, it uses elastic 113 

modeling. To validate the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave 114 

scattering, we compare the scattered waves of a single horizontal fracture obtained using our proposed modeling scheme with 115 

those obtained using poroelastic modeling scheme and elastic modeling scheme. Numerical examples of a fractured reservoir 116 

are presented to demonstrate that the proposed modeling scheme can properly simulate the wave attenuation and dispersion 117 

due to the FPD effects between the fracture system and background. A set of rock physics models were generated by the 118 

Marmousi model to test the proposed modeling scheme and code.A complex modified Marmousi model is also use to test the 119 

proposed modeling scheme and code. The scheme can be used not only to study the impact of mechanical and hydraulic of 120 

fracture properties on seismic scattering but can also to improve migration quality and the estimation of fracture mechanical 121 

characteristics in inversion. 122 
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2 Review of the LSM 123 

2 The elastic models 124 

The LSM was originally proposed by Schoenberg (1980) to represent a solid- or fluid-infilled fracture permeated in a pure 125 

solid background, and then extended by other researchers (e.g. Nakagawa, Barbosa) to represent a poroelastic fracture to 126 

include the FPD effects. We briefly review the original LSM and its poroelastic and viscoelastic extensions. 127 

2.1 The original LSM 128 

Schoenberg (1980) presented the original LSM in the context of elasticity, representing both the background and the fracture 129 

as elastic solids. The original LSM assumes that across a fracture surface the stresses are continuous while the displacements 130 

are discontinuous. The discontinuous displacement vector of a horizontal fracture is linearly related to the stress tensor through 131 

the fracture compliance, which can be written as: 132 
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where  iu are the discontinuous displacement components, 
ij are the stress components, NZ h H= and TZ h = are the 134 

normal and tangential compliance of the fracture, respectively. H and  are the P-wave and shear modulus of the fracture, 135 

and h is the thickness of the fracture. Due to the simple expression, the original LSM can be easily incorporated into the local 136 

effective medium theory to model seismic wave scattering off large-scale fractures. However, the original LSM was derived 137 

in a purely elastic context, only suitable for fractures filled with pure solids or fluids, thus it is not competent to describe the 138 

FPD effects. 139 

The two most widely used non-attenuated and non-dissipative elastic models for fractured porous media are the low- and high-140 

frequency limits elastic LSM that ignore the FPD effects between the background and the fractures. The two elastic models 141 

can be used to determine the effective anisotropic-elastic-moduli of the fractured porous rock.  142 

2.1 The low-frequency limits elastic linear slip models (LFLSM) 143 

The presence of fractures in a homogeneous and isotropic porous rock results in an effective anisotropic medium. The effective 144 

compliance matrix of the dry fractured rock 𝐒𝑑ry can be obtained using the LSM (Schoenberg and Sayers, 1995): 145 

𝐒𝑑ry = 𝐒𝑏
𝑑ry

+ 𝐙0,                     (1) 146 

where 𝐒𝑏
𝑑ry

 is the isotropic compliance matrix of the dry background medium in the absent of fractures, and 𝐙0 is the excess 147 

compliance matrix due to the dry fractures. For a single set of rotationally invariant fractures, 𝐙0  can be written as 148 

(Schoenberg and Sayers, 1995): 149 
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𝑍𝑖𝑗,0 =
𝑍𝑇

4
(𝛿𝑖𝑘𝑛𝑙𝑛𝑗 + 𝛿𝑗𝑘𝑛𝑙𝑛𝑖 + 𝛿𝑖𝑙𝑛𝑘𝑛𝑗 + 𝛿𝑗𝑙𝑛𝑘𝑛𝑖) + (𝑍𝑁𝑑

− 𝑍𝑇)𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙,          (2) 150 

where 𝑛𝑖 is the component of the local unit normal to the fracture surface, 𝑍𝑁𝑑
 and 𝑍𝑇 are the drained normal fracture 151 

compliance and tangential fracture compliance, respectively, as functions of fracture thickness ℎ𝑐 and the drained 152 

longitudinal modulus 𝐻𝑑
𝑐   and shear moduli 𝜇𝑐 of the fracture (Brajanovski et al., 2005): 153 

𝑍𝑁𝑑
≡

ℎ𝑐

𝐻𝑑
𝑐,  𝑍𝑇 ≡

ℎ𝑐

𝜇𝑐.                    (3) 154 

Since the fluid pressure is uniform in the low-frequency limit, the corresponding effective stiffness matrix 𝐂𝑙𝑓
sat of the fluid 155 

saturated rock can be obtained using the anisotropic Gassmann equation (Gurevich, 2003): 156 

𝐶𝑖𝑗,𝑙𝑓
sat = 𝐶𝑖𝑗

dry
+ 𝛼𝑖𝛼𝑗𝑀𝑑𝑟𝑦,  𝑖, 𝑗 = 1,… ,6.                (4) 157 

The anisotropic Biot-Willis coefficients 𝛼𝑚 are: 158 

𝛼𝑚 = 1 −
∑ 𝐶𝑚𝑛

dry3
𝑛=1

3𝐾𝑔
,  𝑚 = 1,2,3,                  (5) 159 

𝛼4 = 𝛼5 = 𝛼6 = 0. The Biot’s fluid-storage modulus 𝑀 is 160 

𝑀𝑑𝑟𝑦 =
𝐾𝑔

(1−𝐾0
∗ 𝐾𝑔⁄ )−𝜙(1−𝐾𝑔 𝐾𝑓⁄ )

,                  (6) 161 

where 𝐾𝑔  denotes the grain solid bulk modulus, 𝐾𝑓  the pore fluid bulk modulus, and 𝐾0
∗  the generalized drained bulk 162 

modulus, defined as 163 

𝐾0
∗ =

1

9
∑ ∑ 𝐶𝑖𝑗

dry3
𝑗=1

3
𝑖=1 .                    (7) 164 

2.2 The high-frequency limits elastic linear slip models (HFLSM) 165 

In the high-frequency limit, the fractures are hydraulically isolated from the saturated background medium. The effective 166 

compliance matrix of the saturated background medium permeated by the dry fractures can be expressed as (Guo et al., 2016): 167 

𝐒ℎ𝑓
1 = 𝐒𝑏

𝑠𝑎𝑡 + 𝐙0,                     (8) 168 

where 𝐒𝑏
𝑠𝑎𝑡 is the isotropic compliance matrix of the saturated background medium in the absent of fractures. The effective 169 

stiffness coefficients of the saturated fractured rock can be written as: 170 

𝐶𝑖𝑗,ℎ𝑓
sat = 𝐶𝑖𝑗,ℎ𝑓

1 + 𝛼𝑖
1𝛼𝑗

1𝑀1,   𝑖, 𝑗 = 1,… ,6,               (9) 171 

where 𝛼1 and 𝑀1 can be again calculated using Eqs. (5)-(7) but replacing the solid grains bulk modulus 𝐾𝑔 with saturated 172 

bulk modulus of the background 𝐾𝑚
𝑠𝑎𝑡, the overall porosity 𝜙 with the fracture porosity 𝜙𝑐. 173 

2.2 Nakagawa’s PLSM 174 

3 Nakagawa’s poroelastic LSM (PLSM) 175 

Nakagawa and Schoenberg (2007) presented a PLSM in the framework of poroelasticity, representing the fracture as a highly 176 

compliant and porous thin isotropic, homogeneous layer embedded in a much stiffer and much less porous background 177 



7 
 

(Nakagawa et al., 2007, Barbosa et al., 2016a).Nakagawa and Schoenberg (2007) presented a PLSM in the framework of 178 

poroelasticity, representing the fracture as a highly compliant and porous thin layer embedded in a much stiffer and much less 179 

porous background (Barbosa et al., 2016a). Similar to the classic LSM, the PLSM assumes that across a fracture surface the 180 

stress tensor is continuous while the displacement tensor is discontinuous. The discontinuous displacement components for a 181 

horizonal fracture are (Nakagawa and Schoenberg, 2007): 182 

 
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  (2) 183 

[𝑢𝑥] =  𝑍𝑇𝜏𝑥𝑧,                     (10a) 184 

[𝑢𝑦] =  𝑍𝑇𝜏𝑦𝑧,                     (10b) 185 

[𝑢𝑧] = 𝑍𝑁𝐷
(𝜏𝑧𝑧 + 𝛼𝑃𝑓),                    (10c) 186 

[𝑤𝑧] = −𝛼𝑍𝑁𝐷
(𝜏𝑧𝑧 +

1

𝐵
𝑃𝑓),                   (10d) 187 

where
DN DZ h H= and TZ h = are the fracture’s drained normal compliance and tangential compliance, respectively, DH188 

and UH are the fracture’s drained and undrained P-wave modulus, respectively,  is the Biot’s effective stress coefficient of 189 

the fracture, UB M H= is the fracture’s uniaxial Skempton coefficient. Since the PLSM represents both the background 190 

and the fracture as poroelasticity, it is capable to describe the discontinuous displacement of the relative fluid in addition to 191 

the solid, implying that it can properly handle the FPD effects between the background and the fracture.where the parameter 192 

𝐵 = 𝛼𝑀 𝐻𝑢⁄ , and the definition of drained normal fracture compliance 𝑍𝑁𝐷
 and tangential fracture compliance 𝑍𝑇 are the 193 

same as those in LFLEM. Since the PLSM represents both the background and the fracture as poroelasticity, it is capable to 194 

describe the discontinuous displacement of the relative fluid in addition to the solid, implying that it can properly handle the 195 

FPD effects between the background and the fracture. Although it is difficult to incorporate the PLSM into the effective 196 

medium theory to obtain the effective moduli of the fractured porous rock, these boundary conditions can be easily incorporated 197 

into poroelastic finite-difference algorithm for modeling seismic wave scattering off large-scale fractures parallel to the 198 

coordinate axis. An alternative wavenumber domain method for modeling the scattered waves by poroelastic fractures is 199 

presented by Nakagawa and Schoenberg (2007) based on the PLSM. 200 

2.3 Barbosa’s VLSM 201 

4 Barbosa’s viscoelastic LSM (VLSM) 202 

Barbosa et al. (2016a) derived a VLSM that account for the FPD effects between a fracture and background and the resulting 203 
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stiffening effect impact on the fracture. The background is assumed to be not impacted by the FPD and can be represented by 204 

an elastic solid, whose properties are computed according to Gassmann’s equation. By representing fractures as extremely thin 205 

viscoelastic layers, the poroelastic effects were incorporated into the classical LSM through complex-valued and frequency-206 

dependent compliances. These compliances characterize the mechanical properties of the fluid-saturated fracture. 207 

4.1 The boundary conditions of VLSM 208 

The discontinuous displacement components of the VLSM (Barbosa et al., 2016a) for a horizontal fracture are 209 
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= +

    (3) 210 

[𝑢𝑥] =  𝑍𝑇𝜏𝑥𝑧,                     (11a) 211 

[𝑢𝑦] =  𝑍𝑇𝜏𝑦𝑧,                     (11b) 212 

[𝑢𝑧] =  𝑍𝑁𝜏𝑧𝑧 + 𝑍𝑋𝜀𝑥𝑥,                    (11c) 213 

where NZ and TZ are generalized normal and tangential compliances of the fracture respectively, and XZ is a dimensionless 214 

parameter that related to the coupling between horizontal and vertical deformation of the fracture. The normal compliance NZ215 

and additional parameter XZ are complex-valued and frequency-dependent, while the tangential compliance TZ h = is the 216 

same as for elastic and poroelastic models. The two frequency-dependent and complex-valued compliances are: 217 
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      (4) 218 

The three effective fracture parameters are given by Barbosa et al. (2016a) 219 

𝜂𝑁 = 
𝜂𝑁𝐷

[𝛼𝜂𝑁𝑈
𝐷𝑃2

𝑏 −2𝐵𝛾𝑃2
𝑏 𝑖𝑘𝑃2

𝑏 −2𝛼𝑖𝑘𝑃2
𝑏 (1 𝛾𝑃2

𝑏⁄ +2𝐵)]
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𝑏 ,               (12a) 220 

𝜂𝑋 = 
−4𝑘𝑃2

𝑏 𝛼𝑏𝜂𝑇𝑀𝑏𝜇𝑏𝜇(𝛼𝐻𝑈
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2
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.                 (12b) 221 

We rewrite Eqs. (12a)-(12b) as 222 

𝑍𝑁 = 𝑍𝑁𝑈
+ 𝑍𝑁𝐷
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𝑍𝑋 = −
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√𝜔+𝐺4(1+𝑖)
,                     (13b) 224 

where
UN UZ h H= and

DN DZ h H= are the fracture’s undrained and drained normal compliance respectively, 𝜔 is the angular 225 

frequency. The four real-valued parameters 1G , 2G , 3G and 4G are defined as  226 
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where is the permeability, is the viscosity of the fluid, D

U

H M
D

H




= is the diffusivity, the other parameters are defined in 228 

the same way as in poroelasticity. The parameters in equation (5) with superscripts b correspond to background properties and 229 

the parameters with superscripts c correspond to fracture parameters.  230 

In the low-frequency limit, the two frequency-dependent and complex-valued parameters become: 231 

1

2

3

4

,

.

U DN N N

X

G
Z Z Z

G

G
Z

G

= +

= −

    (6) 232 

The frequency-independent and real-valued parameters in equation (6) indicate the elastic behavior of the fracture, which is 233 

expected, since the fluid pressure between the fracture and background at low frequencies has enough time to equilibrate within 234 

a half-wave period (i.e. the fracture is softest), resulting in no dispersion and attenuation of the seismic waves.  235 

In the high-frequency limit, the two frequency-dependent and complex-valued parameters become: 236 

,

0.

UN N

X

Z Z

Z

=

=
       (7) 237 

Equation (7) indicates that the fracture model collapses to an elastic thin layer model in the high-frequency limit, which is 238 

consistent with the original LSM that computes the properties of both fracture and background using Gassmann’s equations. 239 

This because at high frequencies, the fluid pressure between the fracture and background has no time to equilibrate within a 240 

half-wave period, i.e. the fracture is hardest and behaves as being sealed. The VLSM considering FPD effects can be 241 

incorporated into the local effective medium theory to simulate the poroelastic seismic response of large-scale fractures, while 242 

its low- and high-frequency limits can be used to model the elastic seismic response. 243 

In the VLSM, according to Barbosa et al. (2016a), there are two distinct frequency regimes frequency-dependent fracture 244 

compliance due to FPD, and the characteristic frequency for the transition between the two regimes is: 245 

2 2

2

2
2 ,b

m m f

f f b

e
f D

h e e e
 

  
= =     +   

    (8) 246 

where h is the thickness of the fracture, D is the diffusivity, e D = , the superscripts b and f correspond to background 247 

fracture parameters, respectively. 248 

𝐺1 = √
𝜅𝑏

𝜂𝑁𝑏

(𝐵𝑏−𝐵𝑐)
2

𝜂𝑁𝐷

,      𝐺2 ≈ √
𝜅𝑏

𝜂𝑁𝑏

1

𝜂𝑁𝐷

,                (14a) 249 

𝐺3 =
2√2 𝛼𝑏𝜇𝑏(𝐵𝑏−𝐵𝑐)√𝐷𝑏

𝐻𝐷
𝑏 ,  𝐺4 =

√2 𝜅𝑏

ℎ𝑐𝜅𝑐

𝐷𝑐

√𝐷𝑏
,                (14b) 250 

where the parameters with superscripts 𝑏  correspond to background properties and the parameters with superscripts 𝑐 251 

correspond to fracture parameters. In Eqs. (14a)-(14b), 𝐷 is the diffusivity defined as 𝐷 = 𝜅𝑁 𝜂⁄  (𝑁 = 𝐻𝐷𝑀 𝐻𝑈⁄ ), and the 252 
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dimensionless parameter 𝐵 defined as 𝐵 = 𝛼𝑀 𝐻𝑈⁄ . 𝐻𝑈, 𝐻𝐷 and 𝜇 are the corresponding undrained 𝑃 wave modulus, 253 

drained 𝑃 wave modulus and shear modulus. The Barbosa’s VLSM can properly capture the FPD effects between a fracture 254 

and background. 255 

3 Seismic modeling of fractured porous rock  256 

In this section, we focus on the implementation of seismic modeling of fluid-saturated porous media containing discrete 257 

distributed large-scale fractures in 2D case. We develop a viscoelastic modeling scheme based on the VLSM and local effective 258 

medium theory (Coates and Schoenberg, 1995) to incorporate the FPD effects between fractures and background. To validate 259 

that the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave scattering of fractures, 260 

we outline the implementation of poroelastic modeling scheme using an explicit application of the PLSM. 261 

3.1 viscoelastic modeling based on VLSM 262 

4.2 The effective viscoelastic-anisotropic stiffness matrix based on Barbosa’s VLSM 263 

To incorporate the VLSM into viscoelastic finite-difference modeling algorithms, we adopt Coates and Schoenberg’s local 264 

effective media theory (1995) to account for the property of each fracture. We first provide the specific derivation of the 265 

effective viscoelastic-anisotropic stiffness matrix of the numerical cell by superimposing the compliances of the background 266 

and the fractures. we give the specific derivation of the effective viscoelastic-anisotropic stiffness matrix of the numerical grids 267 

on a fracture based on Coates and Schoenberg’s local effective medium theory (1995). The porous background is assumed to 268 

be unaffected by the FPD in the presence of fractures because of the small amount of diffusing fluid and large compliance 269 

contrast between background and fluid. Thus, the rock background can be represented by an elastic homogeneous solid and its 270 

strain tensor
b
ε  can be expressed as 271 

( ),    , , ,b b

ij ijkl kls i j x y z = =   (9) 272 

𝜀𝑖𝑗
𝑏 = 𝑠𝑖𝑗𝑘𝑙

𝑏 𝜎𝑘𝑙,                      (15) 273 

where the compliance tensor
b

s is computed according to Gassmann’s equation (Rubino et al., 2015), and σ is the average stress 274 

tensor. The exceed strain tensor
c
ε induced by a single fracture with surface S in a representative volumeV (e.g. the volume of 275 

numerical cell) is given by (Hudson and Knopoff, 1989; Sayers and Kachanov, 1995; Liu, et al., 2000)  276 

 ( )
1

,
2

c c

ij ijkl kl i j j is u n u n dS
V

   = = +     (10) 277 

𝜀𝑖𝑗
𝑐 = 𝑠𝑖𝑗𝑘𝑙

𝑐 𝜎𝑘𝑙 =
1

2𝑉
∫([𝑢𝑖]𝑛𝑗 + [𝑢𝑗]𝑛𝑖)𝑑𝑆,                (16) 278 

where
c

s  is the extra compliance tensor resulting from the fractures,  iu  is the 𝑖 th component of the displacement 279 

discontinuity on S , in is the thi component of the fracture normal. Note that equation (10) Eq. (16) is applicable to finite, 280 
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nonplanar fractures in the long wavelength limit, i.e., the applied stress is assumed to be constant over the representative 281 

volume.  282 

If we assume that the interface of the fracture is normal to the z-axis (fracture normal vector n is (0,0,1)), substituting equation 283 

(3) into equation (10), Eqs. (11a)-(11c) into Eq. (16), we can obtain the nonzero element of the exceed fracture strain tensor 284 

( )

,

,

.

c

xz T xz

c

yz T yz

c b

zz N zz X xx

S
Z

V

S
Z

V

S
Z Z

V

 

 

  

=

=

= +

      (11) 285 

𝜀𝑥𝑧
𝑐 =

𝑆

𝑉
𝑍𝑇𝜏𝑥𝑧,                     (17a) 286 

𝜀𝑦𝑧
𝑐 =

𝑆

𝑉
𝑍𝑇𝜏𝑦𝑧,                     (17b) 287 

𝜀𝑧𝑧
𝑐 =

𝑆

𝑉
(𝑍𝑁𝜏𝑧𝑧 + 𝑍𝑋𝜀𝑥𝑥

𝑏 ),                   (17c) 288 

For simplicity, we use an abbreviated Voigt notation for the stresses, strains, and stiffness and compliance tensors, and rewrite 289 

the equation (9) and (11) as: 290 

Then the exceed fracture strain tensor 𝜀𝑖𝑗
𝑐  and the background strain tensor 𝜀𝑖𝑗

𝑏  can be written in matrix from in Voigt notation 291 

ˆˆ ˆ,b b=ε S σ    (12) 292 

( ) ( )I II I II ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ,c bS S

V V
= + = +ε Z σ Z ε Z Z S σ   (13) 293 

where ˆ , , , 2 ,2 ,2
T

xx yy zz yz xz xy      =  ε is the strain matrix, ˆ , , , , ,
T

xx yy zz yz xz xy      =  σ is the stress matrix, and ˆ b
S is the 294 

compliance matrix of background. Note that in this paper the "  " symbol is used to indicate matrices to distinguish them 295 

from tensors, which is used to distinguish a tensor. The 6 × 6 fracture compliance matrix
I

Ẑ and additional dimensionless 296 

matrix
II

Ẑ according to the Voigt notation are defined as 297 

I II

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
ˆ ˆ,   ,

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

N X

T

T

Z Z

Z

Z

   
   
   
   

= =   
   
   
   
      

Z Z   (14) 298 

𝐞𝑏 = 𝐒𝑏𝛔,                      (18) 299 

𝐞𝑐 =
𝑆

𝑉
(𝐙1𝛔 + 𝐙2𝐞

𝑏) =
𝑆

𝑉
(𝐙1 + 𝐙2𝐒

𝑏)𝛔,                (19) 300 

where the strain matrix 𝐞 = [𝜀11, 𝜀22, 𝜀33, 2𝜀23, 2𝜀13, 2𝜀13]
𝑇 , and the stress matrix 𝛔 = [𝜎11, 𝜎22, 𝜎33, 𝜎23, 𝜎13, 𝜎12]

𝑇 . The 301 
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6 × 6 fracture compliance matrix 𝐙1 and additional dimensionless matrix 𝐙2 according to the Voigt notation are defined as 302 

𝐙1 =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 𝑍𝑁

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑍𝑇 0 0
0 𝑍𝑇 0
0 0 0]

 
 
 
 
 

, 𝐙2 =

[
 
 
 
 
 
0 0 0
0 0 0
𝑍𝑋 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 

.            (20) 303 

The average strain in a homogeneous porous rock containing single fracture can be expressed as the sum of the strains of 304 

background and the fractures 305 

ˆ ˆ ˆ .b c= +ε ε ε   (15) 306 

𝐞 = 𝐞𝑏 + 𝐞𝑐.                      (21) 307 

Substituting equation (12) and (13) into equation (15), Eq. (15) and Eq. (19) into Eq. (21), we can obtain the average strain 308 

matrix 309 

( )I IIˆ ˆˆ ˆˆ ˆ.b bS

V

 
= + + 
 

ε S Z Z S σ   (16) 310 

𝐞 = [𝐒𝑏 +
𝑆

𝑉
(𝐙1 + 𝐙2𝐒

𝑏)] 𝛔.                   (22) 311 

Thus, the effective stiffness matrix C can be expressed as 312 

( )
1

I IIˆ ˆˆ ˆ .b bS

V

−

 
= + + 
 

C S Z Z S     (17) 313 

𝐂 = [𝐒𝑏 +
𝑆

𝑉
(𝐙1 + 𝐙2𝐒

𝑏)]
−1

= 𝐂𝑏 [𝐈 +
𝑆

𝑉
(𝐙1𝐂

𝑏 + 𝐙2)]
−1

.             (23) 314 

The effective stiffness matrix of case of an inclined fracture can be obtained by rotating the coordinate axis to keep z-axis 315 

perpendicular to fracture interface. We define the inclined fracture have an angle and an azimuth angle , and then the 316 

rotation matrix can be obtained: 317 

cos cos sin cos sin

ˆ sin cos cos sin sin ,

sin 0 cos

    

    

 

− 
 

=
 
 − 

R   (18) 318 

𝐑 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑
−𝑠𝑖𝑛𝜑 0 𝑐𝑜𝑠𝜑

],                 (24) 319 

as well as the corresponding stress Bond matrix ( )ˆ ˆ
A R and strain Bond matrix ( )ˆ ˆ

A R . The new stress matrix ˆε and strain 320 

matrix ˆ σ can be expressed as the multiplication of the old one and Bond matrix: 321 

ˆ ˆˆ ˆ,    . 
   = =ε A ε σ A σ     (19) 322 

𝐞′ = 𝐀𝜀𝐞 , 𝛔′ = 𝐀𝜎𝛔.                    (25) 323 

By substituting equation (19) into equation (13),Eq. (25) into Eq. (19), the new exceed fracture strain matrix can be obtained 324 
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( )I IIˆ ˆ ˆˆ ˆˆ ˆ ,c b TS

V
 = +ε A Z Z S A σ   (20) 325 

𝐞𝑐 =
𝑆

𝑉
𝐀𝜀(𝐙1 + 𝐙2𝐒

𝑏)𝐀𝜀
𝑇𝛔.                   (26) 326 

Finally, substituting equation (12) and (20) into equation (15),Eq. (6) into Eq. (21), the average strain matrix of each numerical 327 

cell containing discrete distributed fractures with the same arbitrary direction can be expressed as 328 

( )I IIˆ ˆ ˆ ˆˆ ˆˆ ˆ.b b TS

V
 

 
= + + 
 

ε S A Z Z S A σ   (21) 329 

𝐞 = [𝐒𝑏 +
𝑆

𝑉
𝐀𝜀(𝐙1 + 𝐙2𝑺

𝑏)𝐀𝜀
𝑇] 𝛔,                  (27) 330 

and the corresponding effective stiffness matrix C is 331 

( )
1

I IIˆ ˆ ˆ ˆˆ ˆ .b b TS

V
 

−

 
= + + 
 

C S A Z Z S A     (22) 332 

𝐂 = [𝐒𝑏 +
𝑆

𝑉
𝐀𝜀(𝐙1 + 𝐙2𝑺

𝑏)𝐀𝜀
𝑇]

−1

,                  (28) 333 

If the background media is isotropic, the C can be simplified as 334 

( )
1

I IIˆ ˆˆ ˆ .iso iso TS

V
 

−

 
= + + 

 
C C I A Z C Z A     (23) 335 

𝐂 = 𝐂𝑏 [𝐈 +
𝑆

𝑉
𝐀𝜀(𝐙1𝐂

𝑏 + 𝐙2)𝐀𝜀
𝑇]

−1

,                 (29) 336 

If we ignore the interaction between different fractures and the FPD along the fracture interfaces, the result can be easily 337 

extended to the case of multiple sets of discrete distributed large-scale fractures with arbitrary orientation: 338 

( )
1

I II

1

ˆ ˆˆ ˆ .
cN

iso iso Tr

r r r r

r

S

V
 

−

=

 
= + + 

 
C C I A Z C Z A     (24) 339 

𝐂 = 𝐂𝑏 [𝐈 + ∑
𝑆𝑟

𝑉
𝐀𝜀𝑟(𝐙1𝑟𝐂

𝑏 + 𝐙2𝑟)𝐀𝜀𝑟
𝑇𝑁𝑐

𝑟=1 ]
−1

,               (30) 340 

where cN is total number of the fracture directions and the subscript r denotes the thr direction. The derived effective stiffness 341 

matrix is to be employed in the viscoelastic finite-difference modeling of discrete distributed large-scale fractures in porous 342 

rock.  343 

Since the local effective medium theory assumes that the real structure of the fractured porous rock is substituted by ideal 344 

continua, the balance equations of classical continuum mechanics can be applied without considering the discontinuity at the 345 

fracture interfaces, and the constitutive equations can be characterized by the effective viscoelastic stiffness. Combined with 346 

the effective complex-valued and frequency-dependent TTI viscoelastic stiffness, the 2-D frequency-domain second-order 347 

heterogeneous governing equations with perfectly matched layer (PML) of fractured porous rock can be expressed as: 348 
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5. Seismic modeling of fractured porous rock  349 

In this section, we focus on the implementation of seismic modeling of fluid-saturated porous media containing discrete 350 

distributed large-scale fractures in 2D case. We develop a viscoelastic modeling scheme based on the VLSM and local effective 351 

medium theory (Coates and Schoenberg, 1995) to incorporate the FPD effects between fractures and background. To validate 352 

that the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave scattering of fractures, 353 

we outline the implementation of poroelastic modeling scheme using an explicit application of the PLSM. 354 

5.1 viscoelastic modeling based on VLSM 355 

For viscoelastic modeling, we adopt local effective media theory based on VLSM to derive the effective anisotropic 356 

viscoelastic compliances in each numerical cell by superimposing the compliances of the background and the fractures. Since 357 

the real structure of the rock is substituted by ideally continua, the balance equations of classical continuum mechanics can be 358 

applied without considering the discontinuity at the fracture interfaces (Lewis and Schrefler, 1998; Gavagnin et al., 2020), and 359 

the constitutive equations are characterized by effective complex-valued and frequency-dependent TTI viscoelastic stiffness. 360 

Thus, the second-order heterogeneous governing equations of fractured porous rock with PML in frequency domain can be 361 

expressed as: 362 

2 13 15 15 15 35 55 5511

2 15 35 55 55 13 33 35

1 1
0,

1 1

x x x x z z z x x z z x x z z z x x z

x x z z x z x z z x

z x x x z z z x x z z x x z z z

x x z z x z x z z

c c c c c c cc
u u u u u u u u u

c c c c c c c
u u u u u u u u

 
         

 
        

   
+   +  +  +  +   +  +  +  =   

   

 
+   +  +  +  +   +  +  

 

35 0,x x z

x

c
u



 
+  = 

 

  (25) 363 

𝜔2𝜌𝑢𝑥 +
1

𝜉𝑥
𝜕𝑥 (

𝑐11

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐13

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐15

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐15

𝜉𝑥
𝜕𝑥𝑢𝑧) +

1

𝜉𝑧
𝜕𝑧 (

𝑐15

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐35

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐55

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐55

𝜉𝑥
𝜕𝑥𝑢𝑧) = 0,  (31a) 364 

𝜔2𝜌𝑢𝑧 +
1

𝜉𝑥
𝜕𝑥 (

𝑐15

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐35

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐55

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐55

𝜉𝑥
𝜕𝑥𝑢𝑧) +

1

𝜉𝑧
𝜕𝑧 (

𝑐13

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐33

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐35

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐35

𝜉𝑥
𝜕𝑥𝑢𝑧) = 0,  (31b) 365 

where xu and zu are the horizontal and vertical components of particle displacement vector,  is the effective density, and
ijc366 

are the components of complex-valued and frequency-dependent effective stiffness matrix, x and z are the frequency domain 367 

PML damping functions.  368 

where 𝑢𝑥 and 𝑢𝑧 are the horizontal and vertical components of particle displacement vector, 𝜌 is the effective density, and 369 

𝑐𝑖𝑗  are the components of complex-valued and frequency-dependent effective stiffness matrix, 𝜉𝑥 and 𝜉𝑧 are the frequency 370 

domain PML damping functions.  371 

In time domain, the governing equations are integral differential equations, which require special processing for the 372 

convolution operations, resulting in high computational costs. Although the problem can be relieved by memory functions, it 373 

still requires high memory requirements. Instead, the governing equations can be straightforwardly solved using FDFD. To 374 

efficiently and accurately modelling of seismic wave propagation in fluid saturated fractured porous rock, we solve the second-375 
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order heterogeneous governing equations with mixed-grid stencil FDFD method (Jo et al., 1996; Hustedt et al. 2004). The 376 

mixed system of governing equations is formulated by combining the classical Cartesian coordinate system (CS) and the 45◦-377 

rotated coordinate system (RS): 378 

( ) ( )( )

( ) ( )( )

2

1 1

2

1 1

1 0,

1 0,

x c x c z r x r z

z c x c z r x r z

u w A u B u w A u B u

u w C u D u w C u D u

 

 

+ + + − + =

+ + + − + =
   (26) 379 

𝜔2𝜌𝑢𝑥 + 𝑤1(𝐴𝑐𝑢𝑥 + 𝐵𝑐𝑢𝑧) + (1 − 𝑤1)(𝐴𝑟𝑢𝑥 + 𝐵𝑟𝑢𝑧) = 0,             (32a) 380 

𝜔2𝜌𝑢𝑧 + 𝑤1(𝐶𝑐𝑢𝑥 + 𝐷𝑐𝑢𝑧) + (1 − 𝑤1)(𝐶𝑟𝑢𝑥 + 𝐷𝑟𝑢𝑧) = 0,             (32b) 381 

where the optimal averaging coefficient 1 0.5461w = (Jo et al., 1996). The coefficients cA , cB , cC , cD and rA , rB , rC , rD  are 382 

functions of the damping functions, effective stiffness coefficients and spatial derivative operators and the detailed expressions 383 

are given in Appendix A. We follow Hustedt et al., (2004) and Liu et al., (2018) to discretize the derivative operation on the 384 

mixed systems using mixed grid stencil. After discretization and arrangement, the mixed system of governing equations can 385 

be written in matrix from as 386 

( ) ( )

( ) ( )
1 1 1 1

1 1 1 1

1 1
,

1 1

c r c r x

c r c r z

w w w w

w w w w

 + + − + −     
=     

+ − + + −    

M A A B B u 0

C C M D D u 0
   (27) 387 

[
𝐌 + 𝑤1𝐀𝑐 + (1 − 𝑤1)𝐀𝑟 𝑤1𝐁𝑐 + (1 − 𝑤1)𝐁𝑟

𝑤1𝐂𝑐 + (1 − 𝑤1)𝐂𝑟 𝐌 + 𝑤1𝐃𝑐 + (1 − 𝑤1)𝐃𝑟
] [

𝐮𝑥

𝐮𝑧
] = [

𝟎
𝟎
],           (36) 388 

where M  denotes the diagonal mass matrix of coefficients 𝜔2𝜌 , and blocks cA  , cB  , cC  , cD  and rA  , rB  , rC  , rD  form the 389 

stiffness matrices for the CS and RS stencils, respectively, and the corresponding coefficients of submatrices are given in 390 

Appendix B.  391 

To improve the modelling accuracy of mixed-grid stencil, the acceleration term 𝜔2𝜌 are approximated using a weighted 392 

average over the mixed operator stencil nodes: 393 

( ) ( )2 2

1 i,j 2 i 1, j i 1, j i, j 1 i, j 1 3 i 1, j 1 i 1, j 1 i 1, j 1 i 1j 1i,j
,m m mw w w           + − + − + + − − − + + −

    + + + + + + + +   
  (28) 394 

[𝜔2𝜌]i,j ≈ 𝜔2 [𝑤𝑚1𝜌i,j + 𝑤𝑚2(𝜌i+1,j + 𝜌i−1,j + 𝜌i,j+1 + 𝜌i,j−1) +
(1−𝑤𝑚1−4𝑤𝑚2)

4
(𝜌i+1,j+1 + 𝜌i−1,j−1 + 𝜌i−1,j+1 + 𝜌i+1,j−1)] ,(37) 395 

where the optimal coefficients 1 0.6248mw = , 2 0.09381mw = and ( )3 1 21 4 4m m mw w w= − − are computed by Jo et al. (1996). 396 

In order to assess the FPD effects on seismic response, a similar procedure can be adopted in the implementation of elastic 397 

modeling by replacing the frequency-dependent fracture compliances with its low- or high-frequency limit compliances. The 398 

main advantage of our VLSM-based modeling scheme over poroelastic modeling schemes is that the fractured domain can be 399 

modeled using a viscoelastic solid, while the rest of the domain can be modeled using an elastic solid. 400 

In order to assess the FPD effects on seismic response, the similar procedure was adopted in the implementation of elastic 401 

modeling by replacing the VLSM with the LFLSM (assuming fluid pressure is equilibrium) or the HFLSM (assuming fluid 402 

pressure is unequilibrium). 403 
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3.2 Poroelastic modeling based on PLSM 404 

5.2 Poroelastic modeling based on PLSM 405 

The poroelastic modeling means that we numerically solve the Biot’s equations and adopt an explicit implementation of the 406 

PLSM across each fracture instead of using the effective media theory. Hence, the poroelastic modeling can naturally deal with 407 

the FPD between fracture and background and account for its impact on wave scattering. To verify the effectiveness of the 408 

viscoelastic modeling based on VLSM, we compared the results obtained from viscoelastic scheme with those obtained from 409 

the poroelastic scheme. Although it is difficult to implement an explicit application of PLSM for arbitrary orientated fracture, 410 

it is relatively straightforward for horizonal or vertical fracture. In the following text, we outline the poroelastic modeling for 411 

a single horizontal fracture embedded in an isotropic homogeneous background with an explicit implementation of the PLSM. 412 

In frequency domain, the governing equations for an isotropic poroelastic media in the absent of fractures can be written as 413 

(Biot, 1962): 414 

( ) ( )

2 2

2 2

,

,

2 ,

.

i f i i ij

f i w i i i f

ij U i i i i j i i j

f i i i i

u w

u w i w P

H u M w u u

P M u M w

    


    



   



− − = 

− − + = −

= −  +  +  + 

− =  + 

      (29) 415 

In the presence of fractures, the spatial derivative of stress remains unchanged. However, due to the discontinuity of particle 416 

displacements across the fracture interface, its spatial derivative consists of two parts, i.e. the background and the fracture: 417 

,

,

.

x x x

BG FR

z z z

BG FR

z z z

BG FR

u u u

z z z

u u u

z z z

w w w

z z z

     
= +   

     

     
= +   

     

     
= +   

     

        (30) 418 

The spatial derivative of the background is described by the equation (29): 419 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
 ,
4 4 4

2 2
,

4 4 4

2 2
.

 4

 

4

   

     

   

x D D

xx zz f

D D DBG

z D D

xx zz f

BG D D D

x Uz

xx zz f

D D DBG

u H H
P

x H H H

u H H
P

z H H H

w Hw
P

x z H H M H

 
 

     

 
 

     

 
 

    

 − 
= − + 

 − − − 

 − 
= − + + 

 − − − 

 − 
+ = − − − 

  − − − 

      (31) 420 

The fracture induced spatial derivative can be obtained based on the PLSM: 421 
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( )

,

,

.

D

D

x x T

xz

FR

Nz z

zz f

FR

N Uz z

zz f

FR

u u Z

z z z

Zu u
P

z z z

Z Hw w
P

z z z M



 



  
= = 

   

  
= = + 

   

    
= = − +   

     

       (32) 422 

By substituting equation (31)-(32) into equation (30) and rewritten equation (29), we obtain the governing equations for 423 

numerical simulation of elastic wave in fractured poroelastic media in matrix form: 424 

2 1ˆˆ ˆ ˆ,T −− = Ru S u              (33) 425 

where ( )ˆ , , ,
T

x z x zu u w w=u is the displacement vector, R̂ , Ŝ and are the density, compliance and spatial derivative matrix, 426 

respectively. The three matrices in equation (33) are defined as: 427 

0 0

0 0
ˆ ,     .

0 0

0 0

f

f

m w

f m

f m

i

 

  
 

  

 

 
 

  = = −    
 
  

R     (34) 428 

0 0

0 0
,

0 0 0

0 0 0

x z

z x

x

z

  
 

 
  =
 
 

 

           (35) 429 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
0

4 4 4

2 2
0

4 4 4
ˆ .

1
0 0 0

2 2
0

4 4

D D

D D

D D

D D D

N ND D

D D D

T

N U NU

D D D

H H

H H H

Z ZH H

H H z H z

Z

z

Z H ZH

H H z M H M z

 

     

 

     



  

    

− 
− − − − −

 
 −
− + − − 

− −  −  
=  
 +
 
 

− − − − − −
 − −  −  

S (36) 430 

A compact discretized wave equation system that contains only displacement field can be obtained by using second-order 431 

difference operators to discretize the new governing equations: 432 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

,

x

z

x

z

     
     
     =
     
     

   

G G G G u 0

G G G G u 0

G G G G w 0

G G G G w 0

(37) 433 

where blocks ( ), , 1...4i j i j =G  forms the stiffness matrices of the discretized system of the poroelastic wave equations. The 434 

poroelastic modeling based on PLSM will be used to validate the other modeling schemes𝜔2𝜌𝐮 + 𝜔2𝜌𝑓𝐰 + ∇ ∙ 𝛔 = 0,  435 

                 (38a) 436 
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𝜔2𝜌𝑓𝐮 + 𝑖𝜔
𝜂

𝜅
𝐰 − ∇𝑃𝑓 = 0,                   (38b) 437 

𝛔 = [(𝐻𝑈 − 2𝜇)∇ ∙ 𝐮 + 𝛼𝑀∇ ∙ 𝐰]𝐈 + 𝜇(∇𝐮 + ∇𝐮𝑻),              (38c) 438 

−𝑃𝑓 = 𝛼𝑀∇ ∙ 𝐮 + 𝑀∇ ∙ 𝐰.                   (38d) 439 

By discretizing Eqs. (38a)-(38d) using second-order differences, we can obtain: 440 

𝜔2𝜌𝑢𝑥 i,j + 𝜔2𝜌𝑓𝑤𝑥 i,j +
𝜎𝑥𝑥 i+1,j−𝜎𝑥𝑥 i,j

Δ
+

𝜎𝑥𝑧 i,j+1−𝜎𝑥𝑧 i,j

Δ
= 0,             (39a) 441 

𝜔2𝜌𝑢𝑥 i,j + 𝜔2𝜌𝑓𝑤𝑥 i,j +
𝜎𝑥𝑥 i+1,j−𝜎𝑥𝑥 i,j

Δ
+

𝜎𝑥𝑧 i,j+1−𝜎𝑥𝑧 i,j

Δ
= 0,             (39b) 442 

𝜔2𝜌𝑓𝑢𝑥 i,j + 𝑖𝜔
𝜂

𝜅
𝑤𝑥 i,j −

𝑃𝑓 i+1,j−𝑃𝑓 i,j

Δ
= 0,                (39c) 443 

𝜔2𝜌𝑓𝑢𝑧 i,j + 𝑖𝜔
𝜂

𝜅
𝑤𝑧 i,j −

𝑃𝑓 i,j+1−𝑃𝑓 i,j

Δ
= 0,                (39d) 444 

𝜎𝑥𝑥 i,j = 𝐻𝑈

𝑢𝑥 i+1,j−𝑢𝑥 i,j

Δ
+ (𝐻𝑈 − 2𝜇)

𝑢𝑧 i,j+1−𝑢𝑧 i,j

Δ
+ 𝛼𝑀 (

𝑤𝑥 i+1,j−𝑤𝑥 i,j

Δ
+

𝑤𝑧 i,j+1−𝑤𝑧 i,j

Δ
),        (39e) 445 

𝜎𝑧𝑧 i,j = (𝐻𝑈 − 2𝜇)
𝑢𝑥 i+1,j−𝑢𝑥 i,j

Δ
+ 𝐻𝑈

𝑢𝑧 i,j+1−𝑢𝑧 i,j

Δ
+ 𝛼𝑀 (

𝑤𝑥 i+1,j−𝑤𝑥 i,j

Δ
+

𝑤𝑧 i,j+1−𝑤𝑧 i,j

Δ
),        (39f) 446 

𝜎𝑥𝑧 i,j = 𝜇 (
𝑢𝑥 i,j+1−𝑢𝑥 i,j

Δ
+

𝑢𝑧 i+1,j−𝑢𝑧 i,j

Δ
),                 (39g) 447 

−𝑃𝑓 = 𝛼𝑀
𝑢𝑥 i+1,j−𝑢𝑥 i,j

Δ
+ 𝛼𝑀

𝑢𝑧 i,j+1−𝑢𝑧 i,j

Δ
+ 𝑀 (

𝑤𝑥 i+1,j−𝑤𝑥 i,j

Δ
+

𝑤𝑧 i,j+1−𝑤𝑧 i,j

Δ
).          (39h) 448 

In the presence of horizonal fracture passing through the numerical cell (i, j0), the PLSM can be written as: 449 

𝑢𝑥 i,j0+1 − 𝑢𝑥 i,j0 = (𝑍𝑇𝜎𝑥𝑧)i,j0 ,                  (40a) 450 

𝑢𝑧 i,j0+1 − 𝑢𝑧 i,j0 = (𝑍𝑁𝐷
𝜎𝑧𝑧 + 𝑍𝑁𝐷

𝛼𝑃𝑓)i,j0
,                (40b) 451 

𝑤𝑧 i,j0+1 − 𝑤𝑧 i,j0 = −(𝛼𝑍𝑁𝐷
𝜎𝑧𝑧 +

𝛼𝑍𝑁𝐷

𝐵
𝑃𝑓)

i,j0
.               (40c) 452 

Rearrange the Eqs. (39e)-(39h), i.e. use the displacement components to represent the stress components, and superimpose the 453 

discrete Eqs. (40a)-(40c), we get the following discrete equations: 454 

𝑢𝑥 i+1,j0−𝑢𝑥 i,j0

Δ
= [

𝐻𝐷

4𝜇(𝐻𝐷−𝜇)
𝜎𝑥𝑥 +

(2𝜇−𝐻𝐷)

4𝜇(𝐻𝐷−𝜇)
𝜎𝑧𝑧 +

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
𝑃𝑓]

i,j0

,            (41a) 455 

𝑢𝑧 i,j0+1−𝑢𝑧 i,j0

Δ
= [

(2𝜇−𝐻𝐷)

4𝜇(𝐻𝐷−𝜇)
𝜎𝑥𝑥 + [

𝐻𝐷

4𝜇(𝐻𝐷−𝜇)
+

𝑍𝑁𝐷

Δ
] 𝜎𝑧𝑧 + [

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
+

𝛼𝑍𝑁𝐷

Δ
] 𝑃𝑓]

i,j0

,         (41b) 456 

𝑢𝑥 i,j0+1−𝑢𝑥 i,j0

Δ
+

𝑢𝑧 i+1,j0−𝑢𝑧 i,j0

Δ
= [(

1

𝜇
+

𝑍𝑇

Δ
)𝜎𝑥𝑧]

i,j0

,               (41c) 457 

𝑤𝑥 i+1,j0−𝑤𝑥 i,j0

Δ
+

𝑤𝑧 i,j0+1−𝑤𝑧 i,j0

Δ
= [

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
𝜎𝑥𝑥 + (

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
−

𝛼𝑍𝑁𝐷

Δ
) 𝜎𝑧𝑧 −

1

𝑀
(

𝐻𝑈−𝜇

𝐻𝐷−𝜇
+

𝐻𝑈𝑍𝑁𝐷

Δ
) 𝑃𝑓]

i,j0

.     (41d) 458 

For a numerical cell, if j ≠ j0, we set 𝑍𝑁𝐷
= 𝑍𝑇 = 0. By re-injecting Eqs. (41a)-(41d) into the discretized Eqs. (39a)-(39c), 459 

we eliminate the stress terms and obtain the compact discretized system of wave equations that contain only the displacement 460 

field: 461 
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[

𝐆11 𝐆12

𝐆21 𝐆22

𝐆13 𝐆14

𝐆23 𝐆24

𝐆31 𝐆32

𝐆41 𝐆42

𝐆33 𝐆34

𝐆43 𝐆44

] [

𝐮𝑥

𝐮𝑧
𝐰𝑥

𝐰𝑧

] = [

𝟎
𝟎
𝟎
𝟎

],                 (42) 462 

where blocks 𝐆𝑖𝑗  (𝑖, 𝑗 = 1…4) form the stiffness matrices of the discretized system of the poroelastic wave equations. The 463 

poroelastic modeling based on PLSM will be used to validate the other modeling schemes.. 464 

6.4 Numerical examples 465 

Table1 Physical Properties of the Materials Employed in the Numerical Modeling 

Parameters Background Fracture Underlying 

Porosity, 𝜙 0.15 0.8 0.05 

Permeability, 𝜅 0.1 D 100 D 0.01 D 

Solid bulk modulus, 𝐾𝑠  36 GPa 36 GPa 36 GPa 

Frame bulk modulus, 𝐾𝑚 20.3 GPa 0.055 GPa 30.6 GPa 

Frame shear modulus, 𝜇𝑚 18.6 GPa 0.033 GPa 32.2 GPa 

Solid density, 𝜌𝑠 2700 kg/m3 2700 kg/m3 2700 kg/m3 

Fluid density, 𝜌𝑓 1000 kg/m3 1000 kg/m3 1000 kg/m3 

Fluid shear viscosity, 𝜂𝑓 0.01 Poise 0.01 Poise 0.01 Poise 

Fluid bulk modulus, 𝐾𝑓 2.25 GPa 2.25 GPa 2.25 GPa 

Thickness, ℎ  1 mm  

In this section, we apply different numerical modeling schemes on three fractured models to examine the FPD effects on 466 

seismic wave scattering. We mainly focus on the amplitudes and phases of the scattered and reflected waves generated by 467 

pressure source and shearing source.  468 

4.1 Single fracture model 469 

6.1 Single horizontal fracture model 470 

Here, we numerically simulate the scattering of seismic waves from a single fracture embedded in a homogeneous background. 471 

The model measures 2000 1500m m with a grid interval 5m (namely, the numerical grids size is 401 301 ) surrounded by a 472 

200m thick PML boundary. The fracture is parallel to the x-axis (a horizontal fracture) and located 750m directly below the 473 

source (1000m, 30m) , with a 500m horizontal extending. The fracture is located 750m directly below the source 474 

(1000m, 30m), with a 500m horizontal extending. A Ricker wavelet with a central frequency of 35Hz is used as the temporal 475 

source excitation. The material properties of the fracture and background are given in Table 1 modified from Nakagawa and 476 

Schoenberg (2007) and Barbosa et al. (2016a). For comparison, we present the seismic wavefields obtained using the 477 

poroelastic modeling based on PLSM, the viscoelastic modeling based on VLSM, as well as the elastic modeling based on 478 

low-frequency limit of VLSM (LVLSM) and high-frequency limit of VLSM (HVLSM). For the convenience of observation 479 

of the impact of the FPD on the scattered P- and S-wave of the fracture, we apply the pressure source in all four schemes. 480 
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 481 

Figure 1: Complex-valued and frequency-dependent ZN and ZX. The dashed vertical line denotes the characteristic frequency 482 

computed using equation (8). 483 

 For comparison, we present the seismic wavefields obtained using the poroelastic modeling based on PLSM, the viscoelastic 484 

modeling based on VLSM, as well as the elastic modeling based on LFLSM and HFLSM. To further study the impact of FPD 485 

effects on P- and S-wave, we also apply the pressure source and shearing source in all four schemes, respectively. 486 

 487 

Figure 2: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms: (a) the PLSM based 488 

poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based 489 

elastic modeling. The blue asterisk and line represent the source and the fracture, respectively. 490 

Figure 1: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms due to a P-wave point 491 

source: (a) the PLSM based poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LFLSM based elastic modeling 492 

and (d) the HFLSM based elastic modeling. 493 
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 494 

Figure 3: Comparison of 1-D seismograms components Ux and Uz at (1200m, 0m) for a single horizontal fracture model. 495 

Figure 1 shows the complex-valued and frequency-dependent fracture normal compliance NZ and dimensionless parameter XZ  496 

computed from equation (6). The mechanical compliance of the fracture is strongly controlled by FPD effects. It can be 497 

observed that the real part of the fracture normal compliance decreases with the increment of frequency, while the imaginary 498 

part has a peak at the characteristic frequency, corresponding to the maximal dispersion. The central frequency (35Hz) of the 499 

Ricker wavelet used for numerical simulation is close to the characteristic frequency (46Hz), which ensures that the impact of 500 

the FDP effects on seismic scattering is significant in the seismic frequency band. 501 

Figure 2: Comparison of 1-D seismograms components Ux and Uz at (1200m, 0m) for a single horizontal fracture model due to a P-502 

wave point source. 503 

Figure 1 2 shows the 280ms snapshots of the displacement fields for the single horizontal fracture model models with P-wave 504 

point source. The displacement fields are calculated by the PLSM-based poroelastic modeling, the VLSM-based viscoelastic 505 

modeling, the LFLSMLVLSM-based elastic modeling and the HFLSMHVLSM-based elastic modeling, respectively. The 506 

asterisk represents the source and the blue line represents the fracture. To make the small scattered wave visible, large amplitude 507 

is clipped, thus the transmitted compressional wave (TPP), scattered compressional wave (SPP) and scattered converted wave 508 

(SPS) can be seen clearly. It should note that the slow P-waves are invisible in the poroelastic modeling, due to the high diffusion 509 

and attenuation of slow P-waves in the background media. Figure 2 3 present the comparison of 1-D seismograms at (1200m, 510 

0m).  511 

We consider the poroelastic modeling as a reference scenario because it can naturally incorporate the FPD effects. Figure 1 2 512 

and Figure 2 3 suggest very good agreement between the SPP amplitude calculated using the PLSM-based and VLSM-based 513 

modeling, while the HFLSMHVLSM-based modeling obviously underestimate the SPP amplitude, and the LFLSMLVLSM-514 

based modeling overestimate the SPP amplitude. This is to be expected, since the scattering behavior of a fracture is mainly 515 

controlled by the stiffness contrast with respect to the background. The HFLSM HVLSM assumes there is insufficient time 516 

for fluid exchange at the fracture interface, the fracture behaves as being sealed and the stiffeness of the saturated fracture is 517 
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maximal, resulting in an underestimated stiffness contrast between fracture and background. The LFLSM LVLSM assumes 518 

there is enough time for fluid flow between the fracture and background, the deformation of the fracture is maximal, resulting 519 

in an overestimated stiffness contrast with background. However, tThe VLSM derived from poroelastic theory, however, can 520 

properly incorporate the FPD effects, leading to a frequency-dependent stiffness contrast equivalent to the PLSM. It can be 521 

note that the SPP amplitudes obtained using the LFLSMLVLSM-based modeling is comparable to that of the PLSM based 522 

modeling, because the FPD effects mainly occur at seismic frequencies closer to the low frequency limit. The SPP travel time 523 

obtained using the four modeling schemes shows good consistency. Figure 2 and Figure 3 also shows that the discrepancy of 524 

the SPS amplitudes is almost negligible. Because the S-wave scattering behavior is mainly controlled by the drained stiffness 525 

contrast between the fracture and the background. The comparison of different modeling schemes demonstrates that the 526 

DLSM-based viscoelastic modeling can appropriately capture the FPD effects on wave scattering of a fluid saturated fracture, 527 

while the two elastic modeling cannot correctly estimate the scattered waves.Figure 1 and Figure 2 demonstrate that the DLSM-528 

based viscoelastic modeling can appropriately capture the FPD effects on wave scattering of a fluid saturated fracture. However, 529 

the two elastic modeling cannot correctly estimate the SPP amplitudes. 530 

531 
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 532 

Figure 4: Snapshots of the wavefields components Ux and Uz for a single inclined fracture model at 280ms: (a) the PLSM based 533 

poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based 534 

elastic modeling. The blue asterisk and line represent the source and the fracture, respectively. 535 

536 

Figure 3: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms due to a S-wave point 537 

source: (a) the PLSM based poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LFLSM based elastic modeling 538 

and (d) the HFLSM based elastic modeling. 539 
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 540 

Figure 5: Comparison of 1-D seismograms components Ux and Uz at (1000m, 0m) for a single inclined fracture model. 541 

Figure 4: Comparison of 1-D seismograms components Ux and Uz at receiver (1200m, 0m) for a single horizontal fracture model 542 

due to a S-wave point source. 543 

The proposed modeling scheme is also applicable to the inclined fracture. Figure 4 shows the 280ms snapshots of the 544 

displacement fields for the single inclined fracture model models. Figure 5 is the comparison of 1-D seismograms at 545 

(1200m,0m). Figure 4 and Figure 5 show that both the scattered P- and S-waves of a single inclined fracture are strongly 546 

affected by the FPD effects. 547 

4.2 Fractured reservoir model 548 

6.2 Fractured reservoir model 549 

In addition to a single fracture, we are more interested in the scattering behavior of discrete distributed fractures system. To 550 

this end, we designed two fractured reservoir models containing a set of regularly distributed aligned horizontal fractures and 551 

a set of randomly distributed aligned horizontal fractures, respectively, as illustrated in Figure 6. There are 200 horizontal 552 

fractures spread over a space of 200m, each extending 500m. The material properties of the fracture, background (yellow 553 

region) and underlying (green region) formation are given in Table 1. The model size, grid interval and source location are the 554 

same as those in the previous numerical examples. Through a set of aligned horizontal fracture structures is not practical in the 555 

actual subsurface, it helps to illustrate the impact of FPD effects on the amplitude and phase of scattered waves of fractures. 556 
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       557 

Figure 6: Schematic diagram of the fractured reservoir model with a set of aligned horizontal fractures: (a)regular distribution 558 

(b)random distribution. The black segments present the fracture system. The extending of each fracture is 500m. 559 

 560 

Figure 7: Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned horizontal 561 

fractures calculated using (a)the LVLSM, (b)the VLSM, (c)the HVLSM. A, B are scattered P-wave from top and bottom, respectively, 562 

C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and shear converted 563 

S-wave, respectively. 564 
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 565 
Figure 8: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Figure 566 

7. 567 

Figure 7 presents the seismograms of fractured reservoir model with a set of regular distributed aligned horizontal fractures. 568 

The scattered compressional wave (SPP) and scattered converted wave (SPS) from the top and bottom of the fractured reservoir, 569 

the reflected compressional wave (RPP), converted wave (RPS) from the underlying formation can be clearly identified. Due to 570 

the regular distribution of aligned fracture, the fractured reservoir is equivalent to an anisotropic homogeneous media, and 571 

therefore the diffracted wave is generated only at the edges of the fractured reservoir. Similar to the single fracture case, the 572 

amplitude of the SPP from the top and bottom of the fractured reservoir obtained by the HVLSM-based modeling is weakest 573 

(underestimated), that obtained by LVLSM-based modeling is strongest (overestimated), and that obtained by the VLSM-574 

based modeling is intermediate. We notice that the SPP amplitudes from the bottom of the fractured reservoir obtained by the 575 

LVLSM-based and HVLSM-based modeling are slightly smaller than those from the top, while the SPP amplitude from the 576 

bottom obtained by the VLSM-based modeling is much smaller than that from the top. This is expected, since the VLSM-577 

based modeling scheme can capture the wave attenuation and dispersion due to the FDP effects between the fracture system 578 

and background, while the LVLSM and HVLSM represent non-attenuated and non-dispersive elastic processes. Another 579 

evidence for attenuation is that the RPP amplitudes of underlying formation calculated by the HVLSM-based and LVLSM-580 

based modeling are almost equal, while the RPP amplitude calculated by the VLSM-based modeling is much smaller. Figure 7 581 

also shows that the arrival times of SPP from the bottom and RPP from underlying formation obtained by the three modeling 582 

schemes are different. 583 

To show the trend of frequency-dependent attenuation and dispersion, time-frequency distribution of the middle trace was 584 

computed for three modeling schemes. Figure 8 clearly shows that the frequency content and energy of the scattered and 585 

reflected waves calculated by VLSM tend to decrease strongly, while the frequency content and energy calculated by HVLSM 586 

and LVLSM remain steady. The impact of FPD effects on the SPS and RPS is similar to that of the SPP and RPP, but to a much 587 

weaker extent. 588 
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In addition to regularly distributed fractures, our proposed modeling scheme can also simulate the wave scattering of random 589 

distributed fractures. Figure 9 presents the seismograms of fractured reservoir model with a set of random distributed aligned 590 

horizontal fractures. Figure 10 presents the time-frequency distributions of the middle trace for three modeling schemes cases 591 

in Figure 9. Due to the random distribution of aligned fracture, the fractured reservoir exhibits a stronger heterogeneity, 592 

resulting in more prevalent diffracted wave (coda wave) in Figure 9 than in Figure 7. Except for the diffracted wave, the 593 

scattered and reflected waves in the random distribution case is similar to those in the regular distribution case due to the FPD 594 

effect. The two fractured reservoir models suggest that the scattered waves from the bottom of the fractured reservoir are 595 

attenuated and dispersed by the FPD effects and the reflected waves can retain the relevant attenuation and dispersion 596 

information. 597 

 598 

Figure 9: Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned horizontal 599 

fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom, 600 

respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and 601 

shear converted S-wave, respectively. 602 
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 603 

Figure 10: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Figure 604 

9. 605 

       606 

Figure 11: Schematic diagram of the fractured reservoir model with a set of aligned inclined fractures: (a)regular distribution 607 

(b)random distribution. The black segments present the fracture system. The extending of each fracture is 282.8m. 608 
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 609 

Figure 12: Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned inclined 610 

fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom, 611 

respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and 612 

shear converted S-wave, respectively. 613 

 614 

Figure 13: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Figure 615 

12. 616 
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 617 

Figure 14: Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned inclined 618 

fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom, 619 

respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and 620 

shear converted S-wave, respectively. 621 

 622 

Figure 15: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Figure 623 

14. 624 
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To validate the effectiveness of our proposed modeling scheme in a more practical underground fractured reservoir, we replace 625 

a set of aligned horizontal fractures in the original model with a set of aligned inclined fractures, as illustrated in Figure 11. 626 

Figure 12 and presents the seismograms of fractured reservoir model with a set of regular distributed aligned inclined fractures 627 

and Figure 13 shows the time-frequency distributions of the middle trace for three modeling schemes. Figure 14 and Figure 628 

15 present the seismograms of fractured reservoir model with a set of random distributed aligned inclined fractures and the 629 

time-frequency distributions of the middle trace for three modeling schemes, respectively. All results of PLSM-based modeling 630 

capture the influence of FPD effects on the amplitude and phase of scattered waves, validating the effectiveness of our proposed 631 

modeling scheme. Figure 12 and Figure 14 also show the different scattering characteristics of the randomly and regularly 632 

distributed incline fractures: many coda waves are generated by the randomly distributed fractures due to a stronger 633 

heterogeneity.  634 

In addition to a single fracture, we are more interested in the scattering behavior of discretely distributed fractures system. To 635 

this end, we designed a fractured reservoir model containing a conjugate fracture system (consisting of two sets of mutually 636 

perpendicular fractures, as illustrated in Figure 5). The normal spacing and extending of this set of conjugate fractures are 637 

1.768m and 70.7m, respectively. The material properties of the fracture, background (yellow region) and underlying (green 638 

region) formation are given in Table 1. The model size, grid interval and source location are the same as those in the previous 639 

numerical examples. 640 
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 641 

Figure 5: Schematic diagram of the fractured reservoir model I with a conjugate fracture system. The black segments present the 642 

fracture system. The normal spacing and extending of each fracture are 1.768m and 70.7m, respectively. 643 

 644 
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 645 

Figure 6: Seismogram components Ux and Uz of the fractured reservoir model I due to a P-wave point source: calculated using (a) 646 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. A and B are 647 

scattered compressional wave from top and bottom, respectively, C and D are scattered converted wave top and bottom, respectively, 648 

F and G are reflected compressional wave and converted wave, respectively, E is scattered diffracted wave. 649 

Figure 6 presents the seismograms of fractured reservoir model I for a P-wave point source. The scattered compressional wave 650 

(SPP) and scattered converted wave (SPS) from the top and bottom of the fractured reservoir, the reflected compressional wave 651 

(RPP), converted wave (RPS) from the underlying formation, diffracted wave at the edge of the fractured reservoir can be clearly 652 

identified. Similar to the single fracture case, the amplitude of the SPP from the top of the fractured reservoir obtained by the 653 

HFLSM-based modeling is weakest (underestimated), that obtained by LFLSM-based modeling is strongest (overestimated), 654 

and that obtained by the VLSM-based modeling is intermediate (accurate). The purple arrows in the Figure 6 (d) indicate that 655 

the SPP from the bottom of the fractured reservoir obtained by the LFLSM-based and HFLSM-based modeling has a slightly 656 

larger amplitude than that from the top, while the SPP from the bottom of the fractured reservoir obtained by the VLSM-based 657 

modeling has a slightly smaller amplitude than that from the top. This is expected, since the VLSM-based modeling scheme 658 

can capture the wave attenuation and dispersion due to the FDP effects between the fracture system and background, while the 659 

LFLSM and HFLSM represent non-attenuated and non-dispersive elastic processes. However, due to the weak degree of 660 

dispersion, the SPP travel time obtained by the three modeling schemes is almost consistent. Figure 6 shows that the amplitudes 661 

of the RPP from the underlying formation calculated by the HFLSM-based and LFLSM-based modeling are almost equal, while 662 
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that calculated by the VLSM-based modeling is attenuated and dispersed. That again indicates the VLSM-based modeling can 663 

capture the FPD effects. The SPS and RPS show similar behavior as the SPP and RPP. Figure 6 suggests that the scattered waves 664 

from the bottom of the fractured reservoir are attenuated and dispersed by the FPD effects and the reflected waves can retain 665 

the relevant attenuation and dispersion information. 666 

 667 

 668 
Figure 7: Seismogram components Ux and Uz of the fractured reservoir model I due to a S-wave point source: calculated using (a) 669 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. A, B are scattered 670 

converted SP-wave from top and bottom, respectively, C and D are scattered shear SS-wave from top and bottom, respectively, F 671 

and G are reflected converted SP-wave and shear SS-wave, respectively, E is scattered diffracted wave. 672 

Figure 7 presents the seismograms of fractured reservoir model I for a S-wave point source. The scattered converted wave (SSP) 673 

and shearing wave (SSS) from the top and bottom of the fractured reservoir, the reflected converted wave (RSP) and shearing 674 

wave (RSS) from the underlying formation can be identified in Figure 7. Unlike the case of single horizontal fracture, the FPD 675 

effects between a conjugate fracture system and background can attenuate and disperse the SPP, SPS, RPP and RPS for a S-wave 676 

point source exploration survey. 677 
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 678 
Figure 8: Schematic diagram of the fractured reservoir model II. The normal spacing and extending of each fracture are 1.768m 679 

and 282.8m, respectively. 680 

The attenuation and dispersion caused by FDP effects are strongly affected by the thickness of the reservoir. In general, the 681 

thicker the fractured reservoir, the more severe attenuation and dispersion of the seismic wave. To demonstrate the strong 682 

attenuation and dispersion caused by FDP effect, we modify the fractured model I, increase each fracture to 282.8m without 683 

changing other parameters, and obtain a fractured model II. Figure 9 presents the seismograms of fractured reservoir model II 684 

for a P-wave point source. Figure 9 shows that the SPP and SPS from the bottom of the fractured reservoir and the RPP and RPS 685 

from the underlying formation obtained by the VLSM-based modeling are strongly attenuated and dispersed, proving that the 686 

VLSM-based modeling can be captured the FPD effects when seismic waves travel through the fractured reservoir. Figure10 687 

presents the seismograms of the fractured reservoir model II for a S-wave point source. Figure 10 shows that the scattered and 688 

reflected waves obtained by VLSM-based modeling are also strongly attenuated and dispersed. 689 
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 690 
Figure 9: Seismogram components Ux and Uz of the fractured reservoir model II due to a P-wave point source: calculated using (a) 691 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. The meanings of 692 

A, B, C, D, E, F and G are same as those in Figure 9. 693 

 694 
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Figure 10: Seismogram components Ux and Uz of the fractured reservoir model I due to a S-wave point source: calculated using (a) 695 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. The meanings of 696 

A, B, C, D, E, F and G are same as those in Figure 10. 697 

4.3 Modified Marmousi model 698 

6.3 Modified Marmousi model 699 

We test the proposed VLSM-based modeling scheme on a more complex modified Marmousi model. To modify the Marmousi 700 

model, we generate a porosity model, permeability model and discrete large-scale fracture system, and transform the original 701 

P-wave velocity and density into the fluid saturated bulk and shear modulus of the background by a constant Poisson’s ratio 702 

0.5, and finally obtain the grain bulk modulus, the frame bulk and shear modulus of the background through Gassmann 703 

equation and empirical formula ( )( )
3

11m sK K −= − . The input physical properties and elastic modulus models of the modified 704 

Marmousi model are present in Figure 11. The fluid density, bulk modulus and viscosity are the same as in Table 1. The model 705 

size is 4250m×1750m with grid interval 5m and a 100m thick PML boundary. The source is located at the surface (2125m, 706 

0m). A Ricker wavelet with a central frequency of 25Hz is used as the temporal source excitation. 707 

 708 

Figure 1116: The physical properties and elastic modulus models of the modified Marmousi model. 709 
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 710 
Figure 1217: Snapshots of the wavefields components Ux and Uz at 1000ms: (a) the original Marmousi model without fractures, (b) 711 

the modified Marmousi model with fractures and (c) the differences. 712 

 713 

Figure 1318: Seismogram components Ux and Uz: (a) the modified Marmousi model with fractures, (b) the original Marmousi model 714 

without fractures and (c) the differences. 715 

Figures 12 17 shows the snapshots of displacement fields at 1000ms. The figure clearly shows the scattered P- and S-waves 716 
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by the discrete distributed large-scale fractures. The results with such a complex model clearly verify the numerical 717 

implementation and the code. We also calculate the seismograms of the displacement shown in Figure 1318. The seismograms 718 

obtained by our proposed modeling scheme present the scattered seismic waves by the discrete fractures. 719 

7. 5 ConclusionsConclusions 720 

In this work, we have developed a numerical modeling scheme including FPD effects for discrete distributed large-scale 721 

fractures embedded in fluid saturated porous rock. To capture the FPD effects between the fractures and background, the 722 

fractures are represented as Barbosa’s VLSM with complex-valued and frequency-dependent fracture compliances. Using 723 

Coates and Schoenberg’s local effective medium theory and Barbosa’s VLSM, we derive the effective anisotropic viscoelastic 724 

compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The 725 

effective governing equations of each numerical cells are expressed by the derived effective compliances and discretized by 726 

mixed-grid stencil FDFD. The proposed modeling scheme can be used to study the impact of mechanical and hydraulic of 727 

fracture properties on seismic scattering. The main advantage of our proposed modeling scheme over poroelastic modeling 728 

schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be modeled 729 

using an elastic solid. 730 

The scattered P-wave of a fluid saturated horizontal fracture calculated by VLSM-based modeling is strongly affected by the 731 

FPD effects, while the scattered S-wave is less sensitive, which is consistent the result of PLSM-based modeling. However, 732 

the LVLSM-based modeling overestimates the scattered P-wave and the HVLSM-based modeling underestimates the scattered 733 

P-wave. The numerical results valid that the proposed VLSM-based modeling can include the FPD effects and thus accurately 734 

estimate the scattered wave of the horizontal fracture. The results of the fractured reservoir models show that the amplitudes 735 

of the scattered waves from the top of the fractured reservoir are affected by the fluid stiffening effects due to the FPD effects. 736 

The scattered waves from the bottom of the fractured reservoir are also attenuated and dispersed by the FPD effects in addition 737 

to the fluid stiffening effects and the reflected waves can retain the relevant attenuation and dispersion information. Randomly 738 

distributed fractures can also result in a different scattering characteristic than regularly distributed fractures, i.e. a large number 739 

of coda waves are generated due to increased inhomogeneity. The results of the modified Marmousi model clearly show the 740 

scattered waves by the discrete distributed large-scale fractures and verify the proposed numerical modeling scheme.The 741 

numerical results of the single horizontal fracture model with a P-point source valid that the proposed VLSM-based modeling 742 

can include the FPD effects and thus accurately estimate the scattered wave of the horizontal fracture. In contrast, the LFLSM-743 

based modeling overestimates the scattered wave and the HFLSM-based modeling underestimates the scattered wave. The 744 

numerical results with an S-point source show that the scattered waves off a single horizontal fracture is less sensitive to FDP 745 

effects. Due to the differences in fracture orientation, the results of the conjugate fractured reservoir model are quite different 746 
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from those of the single horizontal fracture model. For both P- and S-point sources, the amplitudes of the scattered waves from 747 

the top of the fractured reservoir are affected by the fluid stiffening effects due to the FPD effects. The scattered waves from 748 

the bottom of the fractured reservoir are also attenuated and dispersed by the FPD effects in addition to the fluid stiffening 749 

effects and the reflected waves can retain the relevant attenuation and dispersion information. The results of the modified 750 

Marmousi model clearly show the scattered P- and S-waves by the discrete distributed large-scale fractures and verify the 751 

proposed numerical modeling scheme. The proposed numerical modeling scheme is expected not only to improve the 752 

estimations of seismic wave scattering from discrete distributed large-scale fractures but can also to improve migration quality 753 

and the estimation of fracture mechanical characteristics in inversion. 754 

Appendix A: The coefficients related to spatial derivative operators  755 

We define coefficient vectors ( )1,2,3,4k k =T and the derivative operate vector ( )cD as 756 

       1 2 3 4

1 1 1 1
1 0 0 0 ,  0 1 0 0 ,  0 0 1 0 ,  0 0 0 1 ,

x x x z x z z z       
= = = =T T T T (A-1) 757 

( ) ( ) ( ) ( ) ( ) ,x x x z z x z zc c c c c=          D   (A-2) 758 

where x  and z  are the PML damping function, c  represents effective stiffness. Then, the expression of cA  , cB  , cC  , cD  are 759 

written in matrix form: 760 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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   (A-3) 761 

We formulate rA , rB , rC , rD in a similar way by defining the coefficient vectors ( )1,2,3,4k k =T and ( )cD as 762 

       1 2 3 4

1 1 1 1
1 1 1 1 ,  1 1 1 1 ,  1 1 1 1 ,  1 1 1 1 ,

2 2 2 2x x x z x z z z       
   = = − − = − − = − −T T T T (A-4) 763 

( ) ( ) ( ) ( ) ( ) ,x x x z z x z zc c c c c       
 =          D     (A-5) 764 

The expression of rA , rB , rC , rD are written as 765 

( ) ( ) ( ) ( )
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   (A-6) 766 

Appendix B: Parsimonious staggered-grid stencil 767 

The nine coefficients of the CS stencil for the submatrix cA of Eq. (36): 768 
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The nine coefficients of the RS stencil for the submatrix rA of Eq. (36): 772 
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The coefficients of the submatrices cB  , cC  , cD  and rB  , rC  , rD  can be inferred easily from those of submatrix cA  and rA  , 778 

respectively. 779 
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