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Abstract. The scattered seismic waves of fractured porous rock are strongly affected by the wave-induced fluid pressure
diffusion effects between the compliant fractures and the stiffer embedding background. To include these poroelastic effects
in seismic modeling, we develop a numerical scheme for discrete distributed large-scale fractures embedded in fluid-saturated
porous rock. Using Coates and Schoenberg’s local effective medium theory and Barbosa’s dynamic linear slip model
characterized by complex-valued and frequency-dependent fracture compliances, we derive the effective viscoelastic
compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The

effective governing equations for fractured porous rocks are viscoelastic anisotropic and numerically solved by mixed-grid

stencil frequency-domain finite-difference method. The main advantage of our proposed modeling scheme over poroelastic

modeling schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be

modeled using an elastic solid. We have tested the modeling scheme in a single fracture model, a fractured model, and a

modified Marmousi model. The good consistency between the scattered waves off a single horizontal fracture calculated using

our proposed scheme and the poroelastic modeling validates that our modeling scheme can properly capture the FPD effects.

In the case of a set of aligned fractures, the scattered waves from the top and bottom of the fractured reservoir are strongly

influenced by the FPD effects, and the reflected waves from the underlying formation can retain the relevant attenuation and

dispersion information.




32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

es—The proposed
numerical modeling scheme can also be used to improve migration quality and the estimation of fracture mechanical

characteristics in inversion.

1 Introduction

Fluid saturated porous rocks in a reservoir, which reek—in-thereserveir—characterized by a heterogeneous internal structure

consisting of a solid skeleton and interconnected fluid-filled voids, are often permeated by much more compliant and
permeable fractures. Although the fractures typically occupy only a small volume, they tend to dominate the overall mechanical
and hydraulic properties of the reservoir (Liu et al., 2000; Gale et al., 2014). Thus, fracture detection, characterization and
imaging are of great importance for reservoir prediction and production. Seismic waves are widely used for these purposes
because their behaviors (amplitude, phase and anisotropy) are strongly affected by the fractures (Chapman, 2003; Gurevich,
2003; Brajanovski et al., 2005; Carcione et al., 2011; Rubino et al., 2014). Therefore, appropriate numerical modeling methods
are required for the interpretation, migration and inversion of seismic data from porous media containing discrete distributed
fractures.

Biot’s poroelastic theory (Biot, 1956a; b) is the fundamental theory to describe elastic wave propagation in fluid porous media,
including the dynamic interactions between rock and pore fluid. However, the original theory, assuming a macroscopically
homogeneous porous media saturated by a single fluid phase, is fail to explain the measured velocity dispersion and attenuation

of seismic waves (Nakagawa et al., 2007). In recent decades, many researchers have found that if porous media contains

mesoscale heterogeneity, a local fluid-pressure gradient will be induced at a scale comparable to the fluid pressure diffusion

length at the seismic frequency band, thus causing significant velocity dispersion and attenuationlreeent-decades,many

Dutta and Odé, 1979; Johnson, 2001; and Miiller et al. 2008; Norris, 1993; Gurevich et al., 1997; Gelinsky and Shapiro, 1997;

Kudarova et al., 2016). Fractures embedded in homogeneous porous background are special heterogeneities, exhibiting strong
mechanical contrasts with background. When seismic waves travel through fluid saturated fractured porous rocks, local fluid
pressure gradients will be induced between the fractures and the background in response to the strong compressibility contrast.
To return the equilibrium state, fluid pressure diffusion (FPD) occurs between the fractures and the embedding background,
which in turn changes the fluid stiffening effect on the fractures and thus their mechanical compliances depending on frequency

(Barbosa et al., 20164, b).
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When fractures with spacing and length apertures-and-lengths-much smaller than the wavelengths are uniformly and regularly

distributed. unified-distributedin-pereusrock; the properties of the fractured rock are homogeneous at macroscopic scale and

can be described by a representative elementary volume (REV). Various effective medium theories are available for estimating

the fracture-induced anisotropy, attenuation and dispersion in a poroelastic context behaviors (Hudson, 1981; Thomsen, 1995;

Chapman, 2003; Brajanovski et al., 2005; Krzikalla et al. 2011; Galvin et al., 2015; Guo et al., 2017a; b). However, large-scale

fractures with much larger spacing and length typically have a more complex discrete distribution rather than a regular one,

therefore the properties of rocks containing such fractures cannot be modeled by the effective medium theory. In contrast, the

linear slip model (LSM) (Schoenberg, 1980), which represents individual fractures as nonwelded interfaces with discontinuous

displacement tensors, is not limited by the assumption of regular distribution and can be used to model the discretely distributed

fractures. Due to the discrete distribution, the effects of large-scale fractures are not uniform and vary spatially, which mean

that their effects cannot be represented by a single REV. In the framework of LSM, two numerical schemes are available to

assess the seismic response of discrete distributed large-scale fractures, the local effective-medium schemes (Coates and

Schoenberg, 1995: Igel et al., 1997; Vlastos et al., 2003; Oelke, et al., 2013) and the explicit interface scheme (Zhang, 2005;

Cui et al., 2018; Khokhlov, et al., 2021). The local effective-medium scheme uses a very coarse mesh to discretize background

media and incorporates the additional effects of fractures within each discretized cell based on LSM, that is, it regards each

discretized cell as a REV. The advantage is that it requires no special treatment of the displacement discontinuity conditions

on the fractures, which means no additional memory and computation costs. The explicit interface scheme uses a very fine

mesh to discretize fractures and directly treats the displacement discontinuity across each fracture without any equivalent

treatment, resulting an expensive memory and computation costs. Fhe-diserete-distributedtarge-sealefractures(the-presenee

The common aspect of the aforementioned numerical modeling schemes is that they are all implemented in a purely elastic

framework LSM with real-valued compliances boundary and represent both the embedding background and factures as elastic

solids, thus the impact of FPD effects on seismic scattering can’t be accounted for. A dynamic linear slip model incorporating

3
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FPD effects should be considered when implementing numerical modeling of seismic wave propagating in fluid saturated
porous rocks containing discrete distributed large-scale fractures. Rubino et al. (2015) proposed a frequency-dependent
complex-valued normal compliance for regularly distributed planar fractures (a set of aligned fractures) with a separation much
smaller than the prevailing seismic wavelength. Despite the ability of including the FPD across the fractures, the model is not
suitable for modeling discrete distributed fractures. Nakagawa and Schoenberg (2007) developed an extended LSM for a single
fracture in the context of poroelasticity. The proposed model representing both the background and the fracture as poroelastic
media can appropriately incorporate the frequency related effects, but it will also result in a higher computational consuming
and more memory requirements. In the context of viscoelasticity, Barbosa et al. (2016a) developed a viscoelastic linear slip
model (VLSM) for an individual fracture with explicit complex-valued and frequency-dependent fracture compliances, to
account for the impact of FPD on the fracture stiffness. That provides a viscoelasticity-based modeling algorithm for discrete
distributed large-scale fractures with smaller computational costs and memory requirements than the poroelasticity based
modeling.

In this paper, we develop a viscoelastic numerical modeling scheme to simulate seismic wave propagation in fluid-saturated
porous media containing discrete distributed large-scale fractures. To capture the FPD effects between the fractures and
background, we use the local effective medium theory based on Barbosa’s VLSM to derive the effective anisotropic
viscoelastic compliances in each numerical cell by superimposing the compliances of the background and the fractures. The
effective anisotropic viscoelastic governing equations of the fractured porous rock are then numerically solved using mixed-
grid stencil frequency-domain finite-difference method (FDFD) (Hustedt, et al. 2004; Operto, et al. 2009; Liu et al., 2018).

Compare to poroelastic modeling scheme, the main advantage of our modeling scheme is that it uses VLSM-based viscoelastic

modeling to account for FDP effects in the domain permeated by fractures, while in the rest fracture-free domain, it uses elastic

modeling. To validate the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave
scattering, we compare the scattered waves of a single horizontal fracture obtained using our proposed modeling scheme with
these-obtained-using-poroelastic modeling scheme and elastic modeling scheme. Numerical examples of a fractured reservoir
are presented to demonstrate that the proposed modeling scheme can properly simulate the wave attenuation and dispersion

due to the FPD effects between the fracture system and background. A set of rock physics models were generated by the

Marmousi model to test the proposed modeling scheme and code. A-complex-modified Marmeustmedelis-also-use-to-test the

propesed-modelingscheme-and-eode: The scheme can be used not only to study the impact of mechanical and hydraulic of

fracture properties on seismic scattering but can also to improve migration quality and the estimation of fracture mechanical

characteristics in inversion.
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2 Review of the LSM

2 TFhe-elastic-models

The LSM was originally proposed by Schoenberg (1980) to represent a solid- or fluid-infilled fracture permeated in a pure

solid background, and then extended by other researchers (e.g. Nakagawa, Barbosa) to represent a poroelastic fracture to

include the FPD effects. We briefly review the original LSM and its poroelastic and viscoelastic extensions.

2.1 The original LSM

Schoenberg (1980) presented the original LSM in the context of elasticity, representing both the background and the fracture

as elastic solids. The original LSM assumes that across a fracture surface the stresses are continuous while the displacements

are discontinuous. The discontinuous displacement vector of a horizontal fracture is linearly related to the stress tensor through

the fracture compliance, which can be written as:

[u]=2Z0

Xz

[u,]=20,, (1)
[u,]=Zyo

22!

where [ui] are the discontinuous displacement components, o; are the stress components, Z, =h/H and Z, =h/u are the

normal and tangential compliance of the fracture, respectively. H and g are the P-wave and shear modulus of the fracture

and h is the thickness of the fracture. Due to the simple expression, the original LSM can be easily incorporated into the local

effective medium theory to model seismic wave scattering off large-scale fractures. However, the original LSM was derived

in a purely elastic context, only suitable for fractures filled with pure solids or fluids, thus it is not competent to describe the

FPD effects.
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2.2 Nakagawa’s PLSM

Iolalmoase s poreelastie TORT(PLONTY

Nakagawa and Schoenberg (2007) presented a PLSM in the framework of poroelasticity, representing the fracture as a highly

compliant and porous thin isotropic, homogeneous layer embedded in a much stiffer and much less porous background

6
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porous-background-(Barbosa-et-al;2016a)- Similar to the classic LSM, the PLSM assumes that across a fracture surface the

stress tensor is continuous while the displacement tensor is discontinuous. The discontinuous displacement components for a

horizonal fracture are (Nakagawa and Schoenberg, 2007):

[ux] = ZTaxz'

[UJ =Z;0,,

[u,]=2,, (o, +aP), —2

[y 1 — 7 - (102
Kaza) 1tz rod)
[, 1 7 - (101
K3l ¥ty {+o9)
[y 1—7 [ 1+ oD (10e)

=2ttt H0e)
fwle o7 (- +%*p) (10d)
[ &Lnp\Fzzt 5 ) 0y

where Z, =h/H_ and Z. = h/u are the fracture’s drained normal compliance and tangential compliance, respectively, H
WHEIE &N D T H D

and H, are the fracture’s drained and undrained P-wave modulus, respectively, « is the Biot’s effective stress coefficient of

the fracture, B =aM /H, is the fracture’s uniaxial Skempton coefficient. Since the PLSM represents both the background

and the fracture as poroelasticity, it is capable to describe the discontinuous displacement of the relative fluid in addition to

the solid, implying that it can properly handle the FPD effects between the background and the fracture.where-the-parameter

FPD-effectsbetween-the-background-and-thefracture- Although it is difficult to incorporate the PLSM into the effective

medium theory to obtain the effective moduli of the fractured porous rock, these boundary conditions can be easily incorporated
into poroelastic finite-difference algorithm for modeling seismic wave scattering off large-scale fractures parallel to the
coordinate axis. An alternative wavenumber domain method for modeling the scattered waves by poroelastic fractures is

presented by Nakagawa and Schoenberg (2007) based on the PLSM.

2.3 Barbosa’s VLSM

s vissoalast

Barbosa et al. (2016a) derived a VLSM that account for the FPD effects between a fracture and background and the resulting
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stiffening effect impact on the fracture. The background is assumed to be not impacted by the FPD and can be represented by
an elastic solid, whose properties are computed according to Gassmann’s equation. By representing fractures as extremely thin
viscoelastic layers, the poroelastic effects were incorporated into the classical LSM through complex-valued and frequency-

dependent compliances. These compliances characterize the mechanical properties of the fluid-saturated fracture.

The discontinuous displacement components of the VLSM (Barbosa et al., 2016a) for a horizontal fracture are

[ux] = ZTO-xzl
[uy]=zTayZ, 3)

[u]=Zyo, +Ze

X“xx?

[y 1— 7 - (11a)
Kaza) 1t ey
[, 1 7 - (111
Kzl ¥ty by
[y 1= 7 =+ 1 7 ¢ (11e)
rHz1 Ntz T %% €y

where Z,, and Z; are generalized normal and tangential compliances of the fracture respectively, and Z, is a dimensionless
parameter that related to the coupling between horizontal and vertical deformation of the fracture. The normal compliance Z

and additional parameter Z, are complex-valued and frequency-dependent, while the tangential compliance Z, = h/ g is the

same as for elastic and poroelastic models. The two frequency-dependent and complex-valued compliances are:

G, (L+i
zszNU+zND—1( +)

\/5+Gz(1+i)’

G; (1+i)

«/5+G4(1+i)’

P P - i b -p)]
L INp[YTNgTPy 1Pz P Pz TPy /1 (122)
T oD g b b > Nkt

b b b,b b b b

no = (121
fIx D 2; b b b} =07
AN 4 GHD (132)
=N “Ng ' “Np [eo+G. E] -;v T )
7 _— G3+D (13h)
o097

where Z, = h/H, and Zy, = h/H,, are the fracture’s undrained and drained normal compliance respectively, w is the angular

frequency. The four real-valued parameters G, , G, ,G;and G, are defined as

p (Bb—Bf)2 P B s _Zﬁabyb(Bf—Bb)ﬁ

G B G B ‘\/EKbDf
b " 0z, oD Hp

: (5)
Z. 1 kD"

!G4:
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where k is the permeability, 77 is the viscosity of the fluid, D = is the diffusivity, the other parameters are defined in

SHES

the same way as in poroelasticity. The parameters in equation (5) with superscripts b correspond to background properties and

the parameters with superscripts € correspond to fracture parameters.

ZN :ZNU +ZND %,
2 (6
GS
Z, =——2.
G4

The frequency-independent and real-valued parameters in equation (6) indicate the elastic behavior of the fracture, which is

expected, since the fluid pressure between the fracture and background at low frequencies has enough time to equilibrate within

a half-wave period (i.e. the fracture is softest), resulting in no dispersion and attenuation of the seismic waves.

Equation (7) indicates that the fracture model collapses to an elastic thin layer model in the high-frequency limit, which is

consistent with the original LSM that computes the properties of both fracture and background using Gassmann’s equations.

This because at high frequencies, the fluid pressure between the fracture and background has no time to equilibrate within a

half-wave period, i.e. the fracture is hardest and behaves as being sealed. The VLSM considering FPD effects can be

incorporated into the local effective medium theory to simulate the poroelastic seismic response of large-scale fractures, while

its low- and high-frequency limits can be used to model the elastic seismic response.

In the VLSM., according to Barbosa et al. (2016a), there are two distinct frequency regimes frequency-dependent fracture

compliance due to FPD, and the characteristic frequency for the transition between the two regimes is:

w, =2xf = (EJ {L] D,, (8

2
h) | ef+ee,

where h is the thickness of the fracture, D is the diffusivity, e = K'/ 77\/5 . the superscripts b and f correspond to background

fracture parameters, respectively.

2
[ (b_pe [k
T e S o (Ha)
\j b \j b
b, b(pb_pe b b pe
PR o o i BND oo Y2 b (141
&z e Y. 4o
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3 Seismic modeling of fractured porous rock

In this section, we focus on the implementation of seismic modeling of fluid-saturated porous media containing discrete

distributed large-scale fractures in 2D case. We develop a viscoelastic modeling scheme based on the VLSM and local effective

medium theory (Coates and Schoenberg, 1995) to incorporate the FPD effects between fractures and background. To validate

that the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave scattering of fractures,

we outline the implementation of poroelastic modeling scheme using an explicit application of the PLSM.

3.1 viscoelastic modeling based on VLSM

To incorporate the VLSM into viscoelastic finite-difference modeling algorithms, we adopt Coates and Schoenberg’s local

effective media theory (1995) to account for the property of each fracture. We first provide the specific derivation of the

effective viscoelastic-anisotropic stiffness matrix of the numerical cell by superimposing the compliances of the background

and the fractures.-we-give-th

- The porous background is assumed to

be unaffected by the FPD in the presence of fractures because of the small amount of diffusing fluid and large compliance
contrast between background and fluid. Thus, the rock background can be represented by an elastic homogeneous solid and its

. b
strain tensor & can be expressed as

55 zsgklaklv (i’ j=x y,Z)J_)9

b
2

(15)
N

b
THRLY R
where the compliance tensor s” is computed according to Gassmann’s equation (Rubino et al., 2015), and 6 is the average stress
tensor. The exceed strain tensor £° induced by a single fracture with surface S in a representative volumeV (e.g. the volume of

numerical cell) is given by (Hudson and Knopoff, 1989; Sayers and Kachanov, 1995; Liu, et al., 2000)

gi(j: = Si?klo-kl :%J‘([ui]nj +[ui:|ni)ds’—(—)10

where s° is the extra compliance tensor resulting from the fractures, [Ui] is the ith component of the displacement

discontinuity onS, n is the ith component of the fracture normal. Note that equation (10) Eg—1+6)-is applicable to finite,
10
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301

nonplanar fractures in the long wavelength limit, i.e., the applied stress is assumed to be constant over the representative
volume.
If we assume that the interface of the fracture is normal to the z-axis (fracture normal vector nis (0,0,1)), substituting equation

(3) into equation (10),-Egs—Ha)-(He)into-Eg—16); we can obtain the nonzero element of the exceed fracture strain tensor

S

4
& =—272.0
Xz TY xz?

\

S
c _ =
gyZ—VZTO'yZ, (11)

S
c _ b
gzz__( No-zz+ZX8xx)'

\
e _ Sy (172)
Cxz = 5Tt )
€ _ S (171
&z — 7Ty 79}
ce Sy o 7 b (17)

s 7€)

For simplicity, we use an abbreviated Voigt notation for the stresses, strains, and stiffness and compliance tensors, and rewrite

the equation (9) and (11) as:

S /4 . S ni ara
ac _ 2 (51 a2 (5! &b\ A
—V(ZG+Z a) V(z +2"$ )c, (13)
~ . . A T. . Ab -
where € = [gxx,gyy,g 2e,,2¢ ZSXJ is the strain matrix, 6 = [O'XX,O'W,O'ZZ,O'VZ,O'XZ,O'XJ is the stress matrix, and S” is the

2 yz1 “Cxz

compliance matrix of background. Note that in this paper the " A " symbol is used to indicate matrices to distinguish them

from tensors, which is used to distinguish a tensor. The 6 X 6_fracture compliance matrix Z'and additional dimensionless

matrix 2" according to the Voigt notation are defined as

(00 0 0 00O 0 00000O0]

000 0 OO 0 000O0O
ZI:OOZNOOO’Z”:ZXOOOOO'_(HI

00 0 zZ 00 0 000O0O

000 0 2z 0 0 000O00O

100 0 0 0 0 10 00000
et =Stg, (8)
Q€ =(7 a1 7 oDV _S(7 17 ¢he (19)
€ A A BT S S A

11
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The average strain in a homogeneous porous rock containing single fracture can be expressed as the sum of the strains of

background and the fractures
g=8"+8._ (15

e=-el 4 et @b

Substituting equation (12) and (13) into equation (15), Eg—5)-and-Egq19)-inte-Eeq—+2H;-we can obtain the average strain

matrix

e—lst Sz 7 o] (22)
e =8>+ +Z;5)6 22)
Thus, the effective stiffness matrix C can be expressed as

-1

&b S 51, Sl&b

c=|$ +\7(z +2'8)| . __an

-1 -1
c—lsb  Sm 7 e\ _ by Sr7 cb 7] 23
C={$> A +257 D — e

The effective stiffness matrix of case of an inclined fracture can be obtained by rotating the coordinate axis to keep z-axis

perpendicular to fracture interface. We define the inclined fracture have an angle ¢ and an azimuth angle &, and then the
rotation matrix can be obtained:

[cos@cosp —sin@ cos@sing
sinfdcosep cos@ sindsing |, (18)
—sing 0 cos g

X
Il

A~
ol
N
N

=
=

as well as the corresponding stress Bond matrix A (IQ) and strain Bond matrix A, (IQ) . The new stress matrix £’ and strain

matrix 6’ can be expressed as-the-multiplication-of the-old-one-and Bond-matrix:

F— A a a =A_o (D5)
x50~

e
e He® 9 & =)

By substituting equation (19) into equation (13).Eq+25) inte-E¢—+19); the new exceed fracture strain matrix can be obtained

12
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Finally, substituting equation (12) and (20) into equation (15).E¢—6)inte-Eg—~21); the average strain matrix of each numerical

cell containing discrete distributed fractures with the same arbitrary direction can be expressed as

e—=lst L SA (7 7 eb\AT| o VisluA\
A R . A =7
and the corresponding effective stiffness matrix C is
&b S 1, SUEb\ AT N

c=|$ +\7Ag(z +2'$* )AL (22
celsb 1 5a 7 1 g ear] 28)
P T T A e =57
If the background media is isotropic, the C can be simplified as
C _ CiSO I S A Zlciso 2" AT N 23

—oe[1s3A (zem 2)AT| ey
c—ctlieSA (7 ¢t 17 \/\T-]_4 (20)
A EELETELT A S N e =7

If we ignore the interaction between different fractures and the FPD along the fracture interfaces, the result can be easily

extended to the case of multiple sets of discrete distributed large-scale fractures with arbitrary orientation:

N, . . - . . -1
c=C* {| + Z%A” (zic™+ 2} )AL} )
r=1

30
)
where N, is total number of the fracture directions and the subscript I denotes the rth direction. The derived effective stiffness
matrix is to be employed in the viscoelastic finite-difference modeling of discrete distributed large-scale fractures in porous

rock.

Since the local effective medium theory assumes that the real structure of the fractured porous rock is substituted by ideal

continua, the balance equations of classical continuum mechanics can be applied without considering the discontinuity at the

fracture interfaces, and the constitutive equations can be characterized by the effective viscoelastic stiffness. Combined with

the effective complex-valued and frequency-dependent TTI viscoelastic stiffness, the 2-D frequency-domain second-order

heterogeneous governing equations with perfectly matched layer (PML) of fractured porous rock can be expressed as:

13
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1 1 c C C
@’ pu, +§—6x [ﬁaxuX +%azuz +§62uX +E6XUZJ+§—6Z [%axux +?62uZ +?6qu +?6Xu2]= 0,
X X z z X z X z z X z25:
c C C c c c
o’ pu, +§iax [iﬁxuX +-30,u, +-20,u, +iaquJ+§iaZ (ﬁaxuX +-20,u,+-30,u, +ﬁ8XuZJ=O,

where u, and u, are the horizontal and vertical components of particle displacement vector, p is the effective density, and ¢;

are the components of complex-valued and frequency-dependent effective stiffness matrix, &, and &, are the frequency domain

PML damping functions.

In time domain, the governing equations are integral differential equations, which require special processing for the

convolution operations, resulting in high computational costs. Although the problem can be relieved by memory functions, it
still requires high memory requirements. Instead, the governing equations can be straightforwardly solved using FDFD. To

efficiently and accurately modelling of seismic wave propagation in fluid saturated fractured porous rock, we solve the second-

14
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order heterogeneous governing equations with mixed-grid stencil FDFD method (Jo et al., 1996; Hustedt et al. 2004). The
mixed system of governing equations is formulated by combining the classical Cartesian coordinate system (CS) and the 45°-
rotated coordinate system (RS):

o’ pu, +w, (AU, +Bu, )+(1-w)(Au, +B.u,)=0,

(26)
2 _
@’ pu, +w, (C.u, + Dy, )+(1-w, )(C,u, +D,u,)=0,
yZ2 o0y vy (A o LD ooy ) (1 we MA 24 B a )0 (324}
WP+ Wbyt Dt )+ F— W AR+t —05 GZ2a)
2 _
% €% €z F X ¥z B

where the optimal averaging coefficient W, = 0.5461(Jo et al., 1996). The coefficients A, ,B.,C,,D, and A, ,B,,C,,D, are
functions of the damping functions, effective stiffness coefficients and spatial derivative operators and the detailed expressions
are given in Appendix A. We follow Hustedt et al., (2004) and Liu et al., (2018) to discretize the derivative operation on the
mixed systems using mixed grid stencil. After discretization and arrangement, the mixed system of governing equations can

be written in matrix from as

M+wA +(1-w)A, ~ wB +(1-w)B, |fu,] [0 -

wC, +(1-w)C, M+wD, +(1-w)D, ||u, | |0 —27)
[” w0 —wohAs wrBe G—wpB; ”ug]_[g] (36)
[ w4+ —wpC, M+ D+ —w )b | [zl Lol 36

where M denotes the diagonal mass matrix of coefficients w?p, and blocks A, ,B,,C,.,D,and A, ,B,,C, ,D, form the
stiffness matrices for the CS and RS stencils, respectively, and the corresponding coefficients of submatrices are given in
Appendix B.

To improve the modelling accuracy of mixed-grid stencil, the acceleration term w?p are approximated using a weighted

average over the mixed operator stencil nodes:

I:a)zp]i’j ~ o I:Wmlpi,j + W, (pi+1,j +Pajt Pt pi,j—1)+ Wi (pi+1,j+1 P T Piaja +pi+1j—1)j|’ _(28)

where the optimal coefficients W, = 0.6248 ,w, , =0.09381and w,; = (1-w,, —4w,, )/4are computed by Jo et al. (1996).

The

main advantage of our VLSM-based modeling scheme over poroelastic modeling schemes is that the fractured domain can be

modeled using a viscoelastic solid, while the rest of the domain can be modeled using an elastic solid.
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3.2 Poroelastic modeling based on PLSM

The poroelastic modeling means that we numerically solve the Biot’s equations and adopt an explicit implementation of the

PLSM across each fracture instead of using the effective media theory. Hence, the poroelastic modeling can naturally deal with

the FPD between fracture and background and account for its impact on wave scattering. _

{HE DOIORIASHESEREME] Although it is difficult to implement an explicit application of PLSM for arbitrary orientated fracture,

it is relatively straightforward for horizonal or vertical fracture. In the following text, we outline the poroelastic modeling for

a single horizontal fracture embedded in an isotropic homogeneous background with an explicit implementation of the PLSM.

In frequency domain, the governing equations for an isotropic poroelastic media in the absent of fractures can be written as
(Biot, 1962):

-’ pu, — @’ p,W, = 0,0,

iij?

~0 iU~ @’ p,W, +ia)QWi =—0,P,
K (29)
oy =(Hy —2u)0u; +aMaw, + (U, +d,u; ),

-P, =aMo,u, + Mo,w,.

In the presence of fractures, the spatial derivative of stress remains unchanged. However, due to the discontinuity of particle

displacements across the fracture interface, its spatial derivative consists of two parts, i.e. the background and the fracture:

6ux_(auxj +[6uXJ
oz \az )y 07 )y

ER I o —
oz 07 )5 \ O Jmg
ow,

SOk
oz 7 )y \ 07 )g

The spatial derivative of the background is described by the equation (29):

(GUXJ _ Hp o Hy —2u o+ 20u P,
X Jogs  Au(Hp—p) 4u(H, - p) 4u(Hp —u)
ou, Hp —2u H, 2o
== O-xx+ O-zz+ P’ 4&)
[az jBG 4u(Hy - p) 4u(Hy —u) du(Hy—p)
(%4_%} == Zalu Oy — zalu O, = HU A Pf'
X 0 Jog  Au(Ho—p) ™ Au(Ho—u) ® M(Ho-u)

The fracture induced spatial derivative can be obtained based on the PLSM:
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By substituting equation (31)-(32) into equation (30) and rewritten equation (29), we obtain the governing equations for

numerical simulation of elastic wave in fractured poroelastic media in matrix form:

~’R0O=VSVQ, (33)

N T . . 2 A . . . . . .
where 0 = (ux Uy, W, WZ) is the displacement vector, R ,S and V are the density, compliance and spatial derivative matrix

respectively. The three matrices in equation (33) are defined as:

[p 0 p 0
A 0 p 0 p in
R= : = Py —— |- 34
pi 0 p, O ( a Q’KJA_)
_0 pe 0 p,
(6, 0 0, O
00,0 O
V= , (35)
0 0 0 9,
10 0 0 o,
| Hy Hp-2u 0 e ]
4ﬂ(HD_,U) 41”(HD_:U) 4/1(HD_,U)
_ Hp-2u Ho . Zn, __2opu _aZy,
& 4u(HD—u) 4y(HD—y) Az 4/1(HD—/1) Az G36)
0 0 i+Z—T 0
u o Az
_ Za:u _ 20(/1 _ c{ZND _ HU _lu _ HUZND
| 4,u(HD—,u) 4,u(HD—,u) Az M(HD—y) MAz |

A compact discretized wave equation system that contains only displacement field can be obtained by using second-order

difference operators to discretize the new governing equations:

Gll G12 Gl3 Gl4 u, 0
G21 G22 st Gz4 u, _ 0 L (37)
G31 G32 G33 Gs4 W, 0
G‘41 G42 G43 G44 w, 0

where blocks Gi, i (i, j :1...4) forms the stiffness matrices of the discretized system of the poroelastic wave equations. The

poroelastic modeling based on PLSM will be used to validate the other modeling schemesea%pu—-l—eeip;—w—-l—ﬂ—-—s—;@,—
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6.4 Numerical examples

Tablel Physical Properties of the Materials Employed in the Numerical Modeling

Parameters Background Fracture Underlying
Porosity, ¢ 0.15 0.8 0.05
Permeability, 0.1 D 100 D 0.01 D
Solid bulk modulus, K 36 GPa 36 GPa 36 GPa
Frame bulk modulus, K, 20.3 GPa 0.055 GPa 30.6 GPa
Frame shear modulus, p,, 18.6 GPa 0.033 GPa 32.2 GPa
Solid density, ps 2700 kg/m? 2700 kg/m? 2700 kg/m?
Fluid density, ps 1000 kg/m? 1000 kg/m? 1000 kg/m?
Fluid shear viscosity, 7y 0.01 Poise 0.01 Poise 0.01 Poise
Fluid bulk modulus, K 2.25 GPa 2.25 GPa 2.25 GPa
Thickness, h 1 mm

In this section, we apply different numerical modeling schemes on three fractured models to examine the FPD effects on

seismic wave scattering. We mainly focus on the amplitudes and phases of the scattered and reflected waves-generated-by
e

4.1 Single fracture model

Here, we numerically simulate the scattering of seismic waves from a single fracture embedded in a homogeneous background.
The model measures 2000m=x1500m with a grid interval 5m (namely, the numerical grids size is 401x301) surrounded by a

200m thick PML boundary. The fracture is parallel to the x-axis (a horizontal fracture) and located 750m directly below the

source (1000m,30m)_., with a 500m horizontal extending. Fhe—fracture—is—tocated—750m—directly—below—the—source
{1000m;-30m)-with-a-500m-herizontal-extending-A Ricker wavelet with a central frequency of 35Hz is used as the temporal

source excitation. The material properties of the fracture and background are given in Table 1 modified from Nakagawa and

Schoenberg (2007) and Barbosa et al. (2016a)._For comparison, we present the seismic wavefields obtained using the

poroelastic modeling based on PLSM, the viscoelastic modeling based on VLSM, as well as the elastic modeling based on

low-frequency limit of VLSM (LVLSM) and high-frequency limit of VLSM (HVLSM). For the convenience of observation

of the impact of the FPD on the scattered P- and S-wave of the fracture, we apply the pressure source in all four schemes.
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Figure 1: Complex-valued and frequency-dependent Zn and Zx. The dashed vertical line denotes the characteristic frequency

computed using equation (8).
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Figure 2: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms: (a) the PLSM based
poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based

elastic modeling. The blue asterisk and line represent the source and the fracture, respectively.
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Figure 3: Comparison of 1-D seismograms components Ux and Uz at (1200m, 0m) for a single horizontal fracture model.

Figure +-2 shows the 280ms snapshots of the displacement fields for the single horizontal fracture model models-with-P-wave

pointseuree. The displacement fields are calculated by the PLSM-based poroelastic modeling, the VLSM-based viscoelastic
modeling, the EEESMLVLSM-based elastic modeling and the HEESMHVLSM-based elastic modeling, respectively. The
asterisk represents the source and the blue line represents the fracture. To make the small scattered wave visible, large amplitude

is clipped, thus the transmitted compressional wave (Tpp), scattered compressional wave (Spp) and scattered converted wave

(Srs) can be seen clearly. It should note that the slow P-waves are invisible in the poroelastic modeling. due to the high diffusion
And AHERIAtoN OF SIoW PSvaves in the backsround medial Figure 2-3 present the comparison of 1-D seismograms at (1200m,
Om).

We consider the poroelastic modeling as a reference scenario because it can naturally incorporate the FPD effects. Figure +2
and Figure 2-3 suggest very good agreement between the Spp amplitude calculated using the PLSM-based and VLSM-based
modeling, while the HEESMHVLSM-based modeling obviously underestimate the Spp amplitude, and the EEESMLVLSM-
based modeling overestimate the Spp amplitude. This is to be expected, since the scattering behavior of a fracture is mainly
controlled by the stiffness contrast with respect to the background. The HEESM-HVLSM assumes there is insufficient time

for fluid exchange at the fracture interface, the fracture behaves as being sealed and the stiffeness of the saturated fracture is
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maximal, resulting in an underestimated stiffness contrast between fracture and background. The EEESM-LVLSM assumes
there is enough time for fluid flow between the fracture and background, the deformation of the fracture is maximal, resulting

in an overestimated stiffness contrast with background. Hewewver,tThe VLSM derived from poroelastic theory, however, can

properly incorporate the FPD effects, leading to a frequency-dependent stiffness contrast equivalent to the PLSM. It can be
note that the Spp amplitudes obtained using the EEESMLVILSM-based modeling is comparable to that of the PLSM based
modeling, because the FPD effects mainly occur at seismic frequencies closer to the low frequency limit. The Spp travel time
obtained using the four modeling schemes shows good consistency. Figure 2 and Figure 3 also shows that the discrepancy of

the Sps amplitudes is almost negligible. Because the S-wave scattering behavior is mainly controlled by the drained stiffness

contrast between the fracture and the background. The comparison of different modeling schemes demonstrates that the

DLSM-based viscoelastic modeling can appropriately capture the FPD effects on wave scattering of a fluid saturated fracture,

while the two elastic modeling cannot correctly estimate the scattered waves.Figuretand-Figure 2 demonstrate-that the DESM-
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Figure 4: Snapshots of the wavefields components Ux and Uz for a single inclined fracture model at 280ms: (a) the PLSM based
poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LVLSM based elastic modeling and (d) the HVLSM based

elastic modeling. The blue asterisk and line represent the source and the fracture, respectively.
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Figure 5: Comparison of 1-D seismograms components Ux and Uz at (1000m, 0m) for a single inclined fracture model.

The proposed modeling scheme is also applicable to the inclined fracture. Figure 4 shows the 280ms snapshots of the

displacement fields for the single inclined fracture model models. Figure 5 is the comparison of 1-D seismograms at

(1200m.,0m). Figure 4 and Figure 5 show that both the scattered P- and S-waves of a single inclined fracture are strongly

affected by the FPD effects.

4.2 Fractured reservoir model

6.2 Fracturedreservoir-model

In addition to a single fracture, we are more interested in the scattering behavior of discrete distributed fractures system. To

this end, we designed two fractured reservoir models containing a set of regularly distributed aligned horizontal fractures and

a set of randomly distributed aligned horizontal fractures, respectively, as illustrated in Figure 6. There are 200 horizontal

fractures spread over a space of 200m, each extending 500m. The material properties of the fracture, background (yellow

region) and underlying (green region) formation are given in Table 1. The model size, grid interval and source location are the

same as those in the previous numerical examples. Through a set of aligned horizontal fracture structures is not practical in the

actual subsurface, it helps to illustrate the impact of FPD effects on the amplitude and phase of scattered waves of fractures.
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b58 Figure 6: Schematic diagram of the fractured reservoir model with a set of aligned horizontal fractures: (a)reqgular distribution

b59 (b)random distribution. The black segments present the fracture system. The extending of each fracture is 500m.
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b61 Figure 7: Seismogram components Ux and Uz of the fractured reservoir model with a set of reqularly distributed aligned horizontal
b62 fractures calculated using (a)the LVLSM, (b)the VLSM, (c)the HVLSM. A, B are scattered P-wave from top and bottom, respectively,

63 C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and shear converted

b64 S-wave, respectively.
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Figure 8: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Figure
7.

Figure 7 presents the seismograms of fractured reservoir model with a set of regular distributed aligned horizontal fractures.

The scattered compressional wave (Spp) and scattered converted wave (Sps) from the top and bottom of the fractured reservoir,

the reflected compressional wave (Rpp), converted wave (Rps) from the underlying formation can be clearly identified. Due to

the regular distribution of aligned fracture, the fractured reservoir is equivalent to an anisotropic homogeneous media, and

therefore the diffracted wave is generated only at the edges of the fractured reservoir. Similar to the single fracture case, the

amplitude of the Spp from the top and bottom of the fractured reservoir obtained by the HVLSM-based modeling is weakest

(underestimated), that obtained by LVLSM-based modeling is strongest (overestimated), and that obtained by the VLSM-

based modeling is intermediate. We notice that the Spp amplitudes from the bottom of the fractured reservoir obtained by the

LVLSM-based and HVLSM-based modeling are slightly smaller than those from the top, while the Spp amplitude from the

bottom obtained by the VLSM-based modeling is much smaller than that from the top. This is expected, since the VLSM -

based modeling scheme can capture the wave attenuation and dispersion due to the FDP effects between the fracture system

and background, while the LVLSM and HVLSM represent non-attenuated and non-dispersive elastic processes. Another

evidence for attenuation is that the Rpp amplitudes of underlying formation calculated by the HVLSM-based and LVLSM-

based modeling are almost equal, while the Rpp amplitude calculated by the VLSM-based modeling is much smaller. Figure 7

also shows that the arrival times of Spp from the bottom and Rpp from underlying formation obtained by the three modeling

schemes are different.

To show the trend of frequency-dependent attenuation and dispersion, time-frequency distribution of the middle trace was

computed for three modeling schemes. Figure 8 clearly shows that the frequency content and energy of the scattered and

reflected waves calculated by VLSM tend to decrease strongly, while the frequency content and energy calculated by HVLSM

and LVLSM remain steady. The impact of FPD effects on the Sps and Rps is similar to that of the Spp and Rpp, but to a much

weaker extent.
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b89 In addition to regularly distributed fractures, our proposed modeling scheme can also simulate the wave scattering of random

90 distributed fractures. Figure 9 presents the seismograms of fractured reservoir model with a set of random distributed aligned

b91 horizontal fractures. Figure 10 presents the time-frequency distributions of the middle trace for three modeling schemes cases

92 in Figure 9. Due to the random distribution of aligned fracture, the fractured reservoir exhibits a stronger heterogeneity,

b93 resulting in more prevalent diffracted wave (coda wave) in Figure 9 than in Figure 7. Except for the diffracted wave, the

94 scattered and reflected waves in the random distribution case is similar to those in the regular distribution case due to the FPD

b95 effect. The two fractured reservoir models suggest that the scattered waves from the bottom of the fractured reservoir are

96 attenuated and dispersed by the FPD effects and the reflected waves can retain the relevant attenuation and dispersion

b97 information.
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b99 Figure 9: Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned horizontal
b00 fractures calculated using (a) the LVLSM, (b) the VLSM, (c) the HVLSM. A, B are scattered P-wave from top and bottom,

b01 respectively, C and D are scattered converted shear S-wave from top and bottom, respectively, F and G are reflected P-wave and

b02 shear converted S-wave, respectively.
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Figure 10: Time-frequency distributions of the middle trace for (b) the LVPLM, (c) the PLSM, and (d) the HVLSM cases in Figure
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b25 To validate the effectiveness of our proposed modeling scheme in a more practical underground fractured reservoir, we replace

526 a set of aligned horizontal fractures in the original model with a set of aligned inclined fractures, as illustrated in Figure 11.

b27 Figure 12 and presents the seismograms of fractured reservoir model with a set of regular distributed aligned inclined fractures

528 and Figure 13 shows the time-frequency distributions of the middle trace for three modeling schemes. Figure 14 and Figure

529 15 present the seismograms of fractured reservoir model with a set of random distributed aligned inclined fractures and the

530 time-frequency distributions of the middle trace for three modeling schemes, respectively. All results of PLSM -based modeling

b31 capture the influence of FPD effects on the amplitude and phase of scattered waves, validating the effectiveness of our proposed

532 modeling scheme. Figure 12 and Figure 14 also show the different scattering characteristics of the randomly and regularly

b33 distributed incline fractures: many coda waves are generated by the randomly distributed fractures due to a stronger

534 heterogeneity.
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4.3 Modified Marmousi model

. ifi . ol

We test the proposed VLSM-based modeling scheme on a more complex modified Marmousi model. To modify the Marmousi
model, we generate a porosity model, permeability model and discrete large-scale fracture system, and transform the original
P-wave velocity and density into the fluid saturated bulk and shear modulus of the background by a constant Poisson’s ratio

0.5, and finally obtain the grain bulk modulus, the frame bulk and shear modulus of the background through Gassmann
equation and empirical formula K, =(1- ¢)ﬁ K, . The input physical properties and elastic modulus models of the modified

Marmousi model are present in Figure 11. The fluid density, bulk modulus and viscosity are the same as in Table 1. The model
size is 4250mXx1750m with grid interval 5m and a 100m thick PML boundary. The source is located at the surface (2125m,

Om). A Ricker wavelet with a central frequency of 25Hz is used as the temporal source excitation.
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Figure £116: The physical properties and elastic modulus models of the modified Marmousi model.
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Figure 4318: Seismogram components Ux and Uz: (a) the modified Marmousi model with fractures, (b) the original Marmousi model
without fractures and (c) the differences.

Figures +2-17 shows the snapshots of displacement fields at 1000ms. The figure clearly shows the scattered P- and S-waves
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by the discrete distributed large-scale fractures. The results with such a complex model clearly verify the numerical
implementation and the code. We also calculate the seismograms of the displacement shown in Figure +318. The seismograms

obtained by our proposed modeling scheme present the scattered seismic waves by the discrete fractures.

7. 5 ConclusionsGenclusions

In this work, we have developed a numerical modeling scheme including FPD effects for discrete distributed large-scale
fractures embedded in fluid saturated porous rock. To capture the FPD effects between the fractures and background, the
fractures are represented as Barbosa’s VLSM with complex-valued and frequency-dependent fracture compliances. Using
Coates and Schoenberg’s local effective medium theory and Barbosa’s VLSM, we derive the effective anisotropic viscoelastic
compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The
effective governing equations of each numerical cells are expressed by the derived effective compliances and discretized by
mixed-grid stencil FDFD. The proposed modeling scheme can be used to study the impact of mechanical and hydraulic of

fracture properties on seismic scattering. The main advantage of our proposed modeling scheme over poroelastic modeling

schemes is that the fractured domain can be modeled using a viscoelastic solid, while the rest of the domain can be modeled

using an elastic solid.

The scattered P-wave of a fluid saturated horizontal fracture calculated by VLSM-based modeling is strongly affected by the

FPD effects, while the scattered S-wave is less sensitive, which is consistent the result of PLSM-based modeling. However,

the LVLSM-based modeling overestimates the scattered P-wave and the HVLSM-based modeling underestimates the scattered

P-wave. The numerical results valid that the proposed VLSM-based modeling can include the FPD effects and thus accurately

estimate the scattered wave of the horizontal fracture. The results of the fractured reservoir models show that the amplitudes

of the scattered waves from the top of the fractured reservoir are affected by the fluid stiffening effects due to the FPD effects.

The scattered waves from the bottom of the fractured reservoir are also attenuated and dispersed by the FPD effects in addition

to the fluid stiffening effects and the reflected waves can retain the relevant attenuation and dispersion information. Randomly

distributed fractures can also result in a different scattering characteristic than regularly distributed fractures, i.e. a large number

of coda waves are generated due to increased inhomogeneity. The results of the modified Marmousi model clearly show the

scattered waves by the discrete distributed large-scale fractures and verify the proposed numerical modeling scheme.The
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propesed—numerical-medelingseheme—The proposed numerical modeling scheme is expected not only to improve the

estimations of seismic wave scattering from discrete distributed large-scale fractures but can also to improve migration quality

and the estimation of fracture mechanical characteristics in inversion.

Appendix A: The coefficients related to spatial derivative operators

We define coefficient vectors T, (k =123, 4) and the derivative operate vector D(C) as

1 1 1 1
T=—"-7J1000],T,=—[0100], ,=—[0010], T,=—[0 0 0 1],(A-1
' cfxfx[ ] fxfz[ ] eicfz[ ] §z§z[ ha-h

D(C) = I:ax (CaX) aX (Caz ) aZ (Cax) az (Caz ):|’ (A'z)
where £, and £, are the PML damping function, crepresents effective stiffness. Then, the expression of A, , B, ,C,, D, are

written in matrix form:

A Dgcng DE%% DECH,; Dgcssg T,
B, D(cs) D(cy) D(cy) D(cy) || T,
C.| | D(cs) D(cs) D(cy) D(cy)|| T, | (A-3)
D, D(cg) D(cy) D(cy) D(cy) || T,

We formulate A , B, ,C_, D, in a similar way by defining the coefficient vectors T, (k =1,2,3, 4) and D'(C) as

1 1 1 1
T = 1111], T;= -11-11), Tj=———[-1-111], Tj=-—[1 -1 -1 1], (A4
2f§x§x[ ] Zeiéz[ ] 243(51[ ] 25252[ bt

D'(c)=[0,(cd,) 0,(cd,) 8,(cd,) 0,(co,)],  (A-5)

The expression of A, , B, ,C, , D, are written as

Al |D'(cy) D'(cs) D'(cs) D'(Css) || T/
Br D’(C15) D,(CSS) D,(Cl3) D’(C35) TZ’
c | 7| p(es) D(e) D(ey) D(es) | T3 A
D] [D(cy) D'(cy) D(cs) D'(c) || T

Appendix B: Parsimonious staggered-grid stencil

The nine coefficients of the CS stencil for the submatrix A, of Eq. (36):
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A:i+1,j—1:_ — Jz =, A:i—l,j+1:_ I Jz -, A:i—l,j—lz—éll Jz = (B-1)
4A §xi§zj 4A §xi§zj A égxigzj

The nine coefficients of the RS stencil for the submatrix A, of Eq. (36):

A _ Ci1is05,j-05 ~Cosis05,j-05 |, Ci1is05,j:05 ~ Cs5is05,j105 A _ Ci1i 05,j+05 ~Cssi-05,j+05 , C1i-05,j-05 ~Cs5i-05,j-05
i+1j 1 i-Lj —

4A2§x ié:z j—05 4A2§z jgx i+0.5 4A2§x igz j+0.5 4A2§z jgx i-0.5

A _ C55i—0.5,j+0.5 _Clli—O.S,j+0.5 Css i+05,j+05 _C11i+0.5,j+0.5 A _ Css i+0.5,j-05 —Cy i+05,j-05 C55i—o.5,j—0.5 —Cy i-0.5,j-0.5
i j+l ) i j-1

2 2 2 2 !
4A gx i§Zj+0.5 4A gzjgx i+05 4A gx igzj—O.S 4A gzjéx i-0.5
C i+05,j-05 2C15 i+05,j-05 +Cs5 i+0.5,j-05 Cyy i-05,j+05 2015 i-05,j+05 +Cs5 i-05,j+05
A =- 4N? - 4N?
é:x ié:x i+0.5 ‘/:x ié:x i-0.5
_ Cu i+05,j+05 + 2(}15 i+05,j+05 +Cs5 i+05,j+05 Cy i-0.5,j-0.5 + 2C15 i-0.5,j-0.5 +Cs5 i-0.5,j-0.5
2 2
4A gz jgz j+05 4A gz jé:z j-0.5

_ Citivos,jo5 T 2C15 i+05,j+05 T C55i+05,j+05 _ Ci1iv05,j-05 — 2C; i+05,j-05 T Cs5i105,j-05
AM,M - ) A i+1,j-1 — )

2 2
4A gz jéz j+05 4A gx igx i+0.5
A _ Ciiios j+o5 — 2015 i—05,j+05 T Cssi_05,j+05 A _ Cu i-05,j-05 T 2C15 i-05,j-05 T Css i-05,j-05 (B-2)
i-1,j+1 T 2 ’ i-1j-1 = 2 .
4A éxigxi—o.s 4A §Zi§2170-5

The coefficients of the submatrices B, ,C,,D,andB, ,C,, D, can be inferred easily from those of submatrix A, and A, ,

respectively.
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