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Abstract. We present a framework for evaluating multi-model ensembles based on common empirical orthogonal functions

(’common EOFs’) that emphasise salient features connected to spatio-temporal covariance structures embedded in large climate

data volumes. In other words, this framework enables the extraction of the most pronounced spatial patterns of coherent

variability within the joint data set and provides a set of weights for each model in terms of principal components which refer to

exactly the same set of spatial patterns of covariance. In other words, common EOFs provide a means for extracting information5

from large volumes of data. Moreover, they can provide an objective basis for evaluation that can be used to accentuate

ensembles more than traditional methods for evaluation, which tend to focus on individual models. Our demonstration of

the capability of common EOFs reveals a statistically significant improvement of the sixth generation of the World Climate

Research Programme (WCRP) Climate Model Intercomparison Project (CMIP6) simulations over the previous generation

(CMIP5) in terms of their ability to reproduce the mean seasonal cycle in air surface temperature, precipitation, and mean sea-10

level pressure over the Nordic countries. The leading common EOF principal component for annually/seasonally aggregated

temperature, precipitation and pressure statistics suggest that their simulated interannual variability is generally consistent with

that seen in the ERA5 reanalysis. We also demonstrate how common EOFs can be used to analyse whether CMIP ensembles

reproduce the observed historical trends over the historical period 1959–2021, and the results suggest that the trend statistics

provided by both CMIP5 RCP4.5 and CMIP6 SSP245 are consistent with observed trends. An interesting finding is also that the15

leading common EOF principal component for annually/seasonally aggregated statistics seems to be approximately normally

distributed, which is useful information about the multi-model ensemble data.

1 Introduction

The question of how to evaluate climate models is often complicated by typically large volumes of data. In many cases, it is the

salient information about meteorological phenomena, conditions, and states that they are designed to reproduce that we want20

to assess, rather than details in individual grid-boxes that are subject to surface parameterisation and numerical algorithms

associated with discrete mathematics, approximations, and statistical fluctuations. The climate models are expected to have an

intrinsic minimum skillful scale that arises from discrete mathematics, approximations, and parameterisation (Benestad et al.,

2008). Furthermore, they are typically used to study trends and variability but are not expected to be directly synchronised or
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correlated in time with the particular timing of ’chaotic’ meteorological phenomena playing out in earth’s climate (Lorenz,25

1963), such as the El Niño Southern Oscillation (Philander, 1989) or volcanic eruptions. Hence, one approach for evaluating

them may relate to the spatio-temporal covariance structure embedded in the simulated output. An emphasis on the spatio-

temporal covariance can also make use of the redundancy in the data and reduce the degrees of freedom in the data, and hence

minimise the required data volume needed for describing the output. Empirical orthogonal functions (henceforth ’EOFs’)

represent a mathematical technique that identifies the spatio-temporal covariance structure, based on linear algebra and eigen-30

functions (Lorenz, 1956; Preisendorfer, 1988; Wilks, 2006). Their function may also be considered as a way of reorganising

the information embedded within a data object X according to the decomposition

X = UΛV T , (1)

where information associated with salient covariance structures is "moved to the top of the list". In this case, we distinguish

between the concepts of data (mere a large set of numbers) and information (what the data represents or its statistical/math-35

ematical properties). The matrix X contains a joint dataset and is X = [X1,X2, · · ·Xn] and the principal components in the

matrix denoted by symbol V can be expressed as V = [V1,V2, · · ·Vn]. The first segments X1 and V1 typically hold data from a

reanalysis and the others contain data from climate models. Moreover, the components of an EOF analysis have useful math-

ematical properties, where UT U = V T V = I are an identity matrix and Λ is a diagonal matrix related to the eigenvalues. The

technique may be regarded as a form of machine learning (ML) where EOFs are based on eigenfunctions and eigenvectors for40

which their mathematical properties simplify the analysis of the data (Wilks, 2006).

Sengupta and Boyle (1993, 1998) and Barnett (1999) proposed a variant of EOFs that they described as common Empir-

ical Orthogonal functions (henceforth ’common EOFs’) for model intercomparison. The common EOFs are mathematically

identical to ordinary EOFs, but involve two or more datasets combined on a common grid along the time axis. Hence, one

segment of the time axis may represent reanalysis data, whereas another segment may contain climate model data that have45

been interpolated onto the same grid as the reanalysis. Keeping track of which time segment represents which dataset (in this

case a reanalysis or a particular climate model) is essential for common EOFs to make sense. Benestad et al. (2008) described

common EOFs and discussed their application in climate research, and common EOFs have been useful as a framework for

empirical-statistical downscaling (Benestad et al., 2001), motivated by Barnett (1999). Benestad et al. (2017, 2019a) also pro-

vided demonstrations of how common EOFs can be applied to analyse ensembles of decadal forecasts. However, a general50

literature search with Google Scholar, the assessment reports of the Intergovernmental Panel on Climate Change (IPCC), and

the documentation behind the ESMValTool (Eyring et al., 2020; Weigel et al., 2021) suggests that common EOFs are not

widely used in the climate research community. The impression of a modest interest in common EOFs was also expressed

in Benestad (2021) and is supported by a quote from Hannachi et al. (2022): "To the best of our knowledge only two stud-

ies considered common EOFs, which go back more than two decades (Frankignoul et al., 1995; Sengupta and Boyle, 1998),55

which were based on the original Flury and Gautschi (1986) (FG86)’s algorithm". However, we also know of a few additional

cases where common EOFs were employed, e.g. those cited above, that were overlooked by Hannachi et al. (2022). A Google
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Scholar search for "common principal component analysis" (1,680 hits, 2022-12-01) nevertheless suggests that common EOFs

are discussed in scientific journals belonging to other scientific disciplines than climate science, such as statistics, biometrics,

biology geology, and neuro-computing.60

To demonstrate the merit of common EOFs, we present some examples of how they can be used to evaluate climate models

in the context of large multi-model ensembles of global climate models (GCMs). One of our objectives was to evaluate GCM

data that are used as predictors for empirical-statistical downscaling (ESD) over Northern Europe, and we picked this as an

example to demonstrate their utility and merit. While Hannachi et al. (2022) used common EOFs to compare individual models,

we present an approach where they were used to compare different ensembles, such as CMIP5 RCP4.5 and CMIP6 SSP245,65

and to assess if they provide a statistical representation that has a similar statistical population (Wilks, 2006, e.g. p.72) as the

reanalysis. In this case, they provided a framework in which we applied standard hypothesis testing and statistical tests.

2 Data & Method

Hannachi et al. (2022) provide a description of the mathematics behind common EOFs which also is relevant for our analysis,

but here we present a slightly different approach for applying them for the purpose of climate model evaluation and for assessing70

different model ensembles. Here we used singular vector decomposition (SVD) (Becker et al., 1988) on a joint data matrix

rather than the step-wise algorithm for a set of covariance matrices described by Hannachi et al. (2022). Hence, we obtained

identical spatial maps and eigenvalues for all models in the joint data matrix, but different statistical properties (e.g. amplitude

and mean) for the different segments of the principal components that represented different models. In this case, we used the

approach described in Benestad et al. (2019a) where common EOFs were used to represent an ensemble of decadal forecasts75

based on a single GCM. More specifically, we used common EOFs to illustrate how well GCMs reproduce the mean annual

cycle in terms of the spatio-temporal covariance structure, compared with the ERA5 reanalysis (Hersbach et al., 2020). We

also present another example where we used common EOFs to assess how well the GCMs simulate the interannual variability

in terms of the annual mean surface air temperature, precipitation, and mean sea-level pressure. A third way of applying EOFs

in model evaluation is as a framework for comparing trends simulated by different GCMs, where they highlight salient features80

in the trend structure. In all these cases, we used common EOFs to evaluate both CMIP5 (Meehl et al., 2005; Taylor et al.,

2012) and CMIP6 (Eyring et al., 2016) ensembles in a joint analysis. One complication was the varying number of simulations

carried out with one model set-up, as some GCMs had produced numerous simulations in the CMIP ensembles whereas others

had only produced a few. To make the evaluation as objective as possible, we only selected one simulation from each GCM,

filtering the data based on the ensemble member label (r1i1p1 for CMIP5, r1i1p1f1 for CMIP6), using runs that spanned85

the period 1850–2100, and only the emission scenarios RCP4.5 and SSP245 (in this case, we only used data for the common

period with the ERA5 reanalysis: 1959–2021). We also repeated the analysis on slightly different spatial domains to assess the

robustness of our results. In this evaluation, we computed common EOFs for a joint dataset of 35 CMIP5 RCP4.5 runs and

40 CMIP6 SSP245 runs (75 runs in total for TAS, but not all of these were available for PR and PSL). To cope with the vast

amount of data, each model run was represented in terms of monthly mean seasonal cycle (12 calendar months each) as well90
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as annually/seasonally aggregated statistics (63 spatial maps for each run, one for each year in the period 1959–2021). In this

case, the term aggregated statistics refers to the mean estimate for TAS and PSL and the sum for PR (total precipitation over

the year or season).

Common EOFs can be used to evaluate individual GCMs against the ERA5 reanalysis through the estimation of difference in

the mean x, standard deviation σ, and lag-1 autocorrelation r1 estimated for the different segments of the principal components95

(PCs) representing different datasets (Benestad et al., 2016, 5.1 in the Supplementary data). Here, we evaluated how well the

models are able to reproduce the mean seasonal cycle in the surface air temperature (TAS), monthly precipitation totals (PR),

and the mean sea-level pressure (PSL) over a region spanning the Nordic countries: 5◦W–45◦E and 55–72◦N. We repeated the

same analysis in four other domains to assess the robustness of our results and those findings can be found in the supporting

material available from FigShare (Benestad, 2022). The model performance was gauged by taking the root-mean-square error100

(RMSE) of the leading principal component that accounts for most of the variance, using ERA5 as a reference. We also applied

common EOFs to the annual/seasonal mean TAS, annual/seasonal total PR, and annual/seasonal mean PSL to diagnose their

interannual variability and how well it was reproduced in the CMIP ensembles. Moreover, we applied the analysis separately to

the full year (Jan-Dec) and each of the four seasons: winter (DJF), spring (MAM), summer (JJA), and autumn (SON). The skill

metric of the models’ reproduction of the interannual variation in the said annually/seasonally aggregated statistics involved105

rank-statistics and the assumption that any rank is equally probable if the weights of the PC representing the ERA5 reanalysis

belongs to the same statistical population as the ensemble of GCMs. We used a two-sided Kolmogorov-Smirnov test (Wilks,

2006) to compare the empirical distribution of the rank-statistics against a uniform distribution representing the case for which

all ranks have the same probability. We also used Monte-Carlo simulations to represent a ’perfect case’ as a reference for the

rank analysis of the annual/seasonal means. In these simulations, we used the same number of years and a statistical sample110

with the same size as the ensemble in question and picked a fixed realisation as a ’surrogate’ for the ’reanalysis’ and the rest

to represent the ’ensemble’. In these Monte-Carlo simulations, the ’reanalysis’ and ’ensemble’ belonged to the same statistical

population by design.

Finally, we made a data matrix with columns consisting of spatial maps (the 2D matrix orientation of the data was reordered

into a 1D vector) with linear trend estimates over 1959–2021 with one column for each GCM in the respective CMIP multi-115

model ensemble, in addition to a corresponding map with trend estimates derived from the ERA5 reanalysis. The EOFs of this

joint data matrix were used to assess the differences in reproducing the main aspects of the historical trends among the GCMs

and reanalysis.

The analysis presented here was carried out using the R-package ’esd’ version 1.10.15 (Benestad et al., 2015) within the

R-environment version 4.2.2 (R Core Team, 2014). Essential data and R-code (an R-markdown script and its output in PDF120

format) used for these computations are available as supporting material and as free open-source material from FigShare in

order to enhance the transparency and reproducibility of these results: https://figshare.com/articles/dataset/Common_EOFs_

for_model_evaluation/21641756. The FigShare repository can be cited as Benestad (2022) and is archived as a combination of

the R-markdown script, the PDF file (supporting material for this paper), and a set of R-binary data files stored as separate files

for the respective RCP45 and SSP245 scenarios and for the three different parameters TAS, PR, and PSL. The data files contain125
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72-75 different GCM runs in addition to ERA5, and the total data volume of all these files is 1.9 GB. While the processing of

the data stored in this repository was carried out on powerful Linux servers and the job for all combinations of seasons and

regions took roughly 22 hrs to complete, the R-code provided was run on a 64-bit HP Elitebook 850 G8 laptop with Ubuntu

18.04.6 LTS with 32 Gb memory.

2.1 Results130

2.1.1 Evaluation of the simulated mean seasonal cycle

Figure 1 presents the leading common EOF for the mean seasonal cycle in the surface air temperature (TAS) over the Nordic

countries. The spatial map (upper left panel) shows the structure of the most dominant covariance pattern of the seasonal cycle,

and the eigenvalues (upper right panel) suggest that this mode dominates the seasonal behaviour completely. Both pattern and

eigenvalues were estimated from the joint dataset that involved ERA5, the CMIP5 RCP4.5 ensemble, and the CMIP6 SSP245135

ensemble. The spatial patterns (U in equation 1 shown in the upper left panel) and the eigenvalues (Λ in equation 1 presented

in the upper right panel) are common for all models, and only the corresponding principal components (PCs, represented

by the matrix V in equation 1) in the lower panel show differences between the reanalysis and the GCMs from the CMIP5

and CMIP6 ensembles. These differences are visible as scattered red and blue curves. It is important to keep in mind that

individual EOFs may not necessarily be associated with a clear physical meaning, especially the higher order ones, as the140

different modes are designed to be orthogonal to each other (Ambaum et al., 2001; Huth and Beranová, 2021). However, they

are useful mathematical concepts that enable more efficient work with large data volumes and make it easier to extract salient

information from it, but sometimes they nevertheless may provide insights on physical phenomena within the analysed domain.

In our analysis, they ensured a set of indices for all GCMs which were related to a common covariance structure within the joint

dataset, and we used them to evaluate the mean seasonal cycle estimated over the period 1959–2021. Our evaluation was based145

on the root-mean-square error (RMSE) between the leading PC representing the corresponding mean seasonal cycle in TAS

from ERA5 and the joint set of 75 GCMs from both CMIP5 RCP4.5 (35 members) and CMIP6 SSP245 GCMs (40 members).

The results of this evaluation are presented in Table 1 and a Wilcoxon Rank Sum (also known as Mann-Whitney) test (Wilks,

2006) was applied to the two sets of RMSE scores representing CMIP5 and CMIP6 respectively. Our results indicated that

the CMIP6 simulations had a better score, and the difference with CMIP5 was statistically significant at the 5% confidence150

level. Hence, the CMIP6 models were more skilful at reproducing the mean seasonal cycle in TAS in the Nordic region. The

difference in skill is also visible in the lower panel, which shows that the curves for CMIP5 (red) were less tightly clustered

around ERA5 (black) than those for CMIP6 (blue). The leading mode accounted for 96% of the variance, which suggests that

all GCMs produced a seasonal cycle with a similar spatial covariance structure (upper left).

We repeated the evaluation of the climate models’ ability to reproduce the mean seasonal cycle in PR (Figure 2 and Table 2)155

and PSL (Figure 3 and Table 3). The number of available CMIP results for PR was slightly different to that of TAS at the

time of the analysis, and our ensembles consisted of 33 members from CMIP5 RCP4.5 and 37 from CMIP6 SSP245. The

exact ensemble size wasn’t critical for our demonstration, as our objective was to demonstrate the utility and merit of common
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EOFs for model evaluation. The eigenvalues for PR indicated that the leading mode accounted for a lower portion of the

variance (71%) than TAS, which may be due to variations in their ability to capture the typical spatial patterns in PR associated160

with different seasons. The greatest seasonal variations in PR can be seen near the west coast of Norway (upper left panel

of Figure 2). The leading mode for PSL, on the other hand, accounted for 86% of the variance, and most GCMs reproduced

a mean seasonal cycle that involved a northwest-southeast PSL gradient. The common EOFs for PSL were applied to 35

members from CMIP5 RCP4.5 and 37 from CMIP6 SSP245. The RMSE scores for PR and PSL are reported in Tables 2–3

and a Wilcoxon rank sum test indicated that the CMIP6 simulations constituted an improvement over those from the CMIP5165

in terms of reproducing the mean seasonal cycle, using the ERA5 reanalysis as a reference (statistically significant at the

5%-level).

2.1.2 Evaluation of the simulated interannual variability

The results of the evaluation of the interannual variability in the annual mean TAS are shown in Figure 4 in terms of the leading

common EOF with a map of the covariance connected to its interannual variability (upper left), eigenvalues (upper right),170

and time evolution (lower). One striking observation is that the leading mode accounted for 65% of the variance with the five

leading modes accounting for approximately 90%, suggesting that most GCMs reproduced a similar covariance structure. We

used a rank metric R where the PC weights for ERA5 were compared with the spread of the CMIP5 and CMIP6 ensembles

in terms of their rank within each year and each ensemble. For the leading mode of the annual mean temperature shown in

Figure 4, accounting for 65% of the variance, both the CMIP5 and the CMIP6 produced ensemble results with a statistical175

population that was likely consistent with ERA5 data. In both cases, the two-sided Kolmogorov-Smirnov test indicated a high

probability (’p-value’) for R belonging to a uniform distribution. A p-value close to zero means that the data connected to the

part of the leading PC representing ERA5 most likely belonged to a different statistical population than the respective CMIP

ensemble (data from different segments of the same leading PC), whereas a p-value near unity implies that ERA5 and the CMIP

ensemble more likely belonged to the same statistical population. In our analysis, the Kolmogorov–Smirnov test for CMIP5180

returned D = 0.099206 with a p-value of 0.5647 and the CMIP6 R obtained D = 0.11362 with p-value = 0.3902. Figure 5

provides a visualisation of the rank metricR on a year-by-year basis (upper panel) as well as a histogram of the ranks for TAS

results shown in Figure 4. It is evident from these plots that R varies over the whole interval [0,1] and follows a distribution

that is more or less uniform (’flat’ structure) which we expect for R if each rank is equally probable. Hence, for the annual

mean TAS over the Nordic regions, both CMIP ensembles provided an approximate representation of the interannual variability185

seen in ERA5 and connected to the leading mode. A set of Monte-Carlo simulations indicated that the ranking scores would

fluctuate even with ensembles that mimicked perfectly the statistical properties of the observations, due to the limited sample

size.

A corresponding assessment of the leading common EOF for PR (Figure 6) indicated similar differences in statistical terms

for both CMIP5 (D = 0.11858, p-value = 0.3384) and CMIP6 (D = 0.13085, p-value = 0.2309). The leading common EOF for190

annual PR representing variations along the west coast of Norway only accounted for 27% of the variance, but the five leading

modes accounted for approximately 60%, suggesting that interannual variability in precipitation involves more complicated
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anomalies and perhaps greater model differences. The low variance associated with the leading modes may suggest that the

models produce different spatio-temporal covariance structures, i.e. that they produce different typical patterns of rainfall.

Our assessment of how well the GCMs reproduced interannual variations in the annual mean PSL gave similar results as for195

TAS and PR. The leading mode was characterised by a centre of action over northern Scandinavia and accounted for 62% of

the variance (Figure 7). The second and third modes were less important, but the fact that they had similar eigenvalues (16%)

suggests that they were "degenerate" which refers to the two patterns being two aspects of the same mode (Wilks, 2006, p.488).

For PSL,R was close to having a uniform distribution and the test did not indicate a difference that was statistically significant

at the 5%-level for either CMIP5 (D = 0.13492, p-value = 0.2016) nor CMIP6 (D = 0.14329, p-value = 0.1504). In other words,200

both CMIP5 and CMIP6 seemed to roughly reproduce the annual mean circulation patterns over the Nordic region seen in

the ERA5 data represented by the leading mode. The three leading modes accounted for approximately 94% of the variance,

suggesting that the GCMs reproduced a similar covariance structure albeit with slight variations.

We examined the nature of the multi-model ensemble distribution of the data of the leading PC for the annual aggregated

statistics for the year 2022 and found them to be approximately normally distributed (Figure 8) for most cases, both when it205

came to annual and seasonal time scales and for both CMIP5 RCP4.5 and CMIP6 SSP245. Only in a few cases did the data

deviate substantially from the diagonal in the Q-Q plot, such as for the annual mean TAS (Figure 8(b)), but this was not the

typical outcome (supporting material, Benestad (2022)).

2.1.3 Evaluation of the simulated historic trends

Figure 9 shows common EOFs that have been used to compare 1959–2021 trend maps from CMIP5 RCP4.5 (red curve in210

the lower panel) and CMIP6 SSP245 (blue curve in the lower panel) with ERA5 (black symbol), in this case over the Barents

Sea region. Each ensemble member was represented by only one weight in the leading PC. The leading mode dominated

by accounting for 94% of the variance, suggesting that all models reproduced patterns with the strongest response in the

northeast and weakest in the southwest, albeit with different amplitudes. The CMIP6 SSP245 (blue curve) indicated stronger

variability between models than the CMIP5 RCP4.5 (red curve), suggesting a wider range of outcomes for the former and that215

the CMIP6 ensemble contained some more ’extreme’ models. It is nevertheless evident that the spread in both CMIP5 and

CMIP6 embraced the results obtained with ERA5.

2.1.4 Assessment of robustness

The analyses of the mean seasonal cycle, the interannual variability, and historic trends were repeated for the said aggregated

statistics for each of winter, spring, summer and autumn seasons (supporting material) as one motivation behind this evaluation220

was to assess typical predictors used in empirical-statistical downscaling which mainly involve seasonally aggregated statistics.

We obtained similar results for the four different seasons (winter, spring, summer, and autumn). Moreover, the spatial domain

(region) was chosen for the benefit of assessing the models before using them as input in downscaling exercises. The use of

common EOFs as a framework for downscaling also provides a quality assessment (Benestad, 2001; Benestad et al., 2016),

but extending them to larger multi-model ensembles provides a more comprehensive assessment of the entire ensemble. The225
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repeated analysis for different spatial domains gave similar conclusions as those presented here for the 5◦W–45◦E and 55–72◦N

domain and the Barents Sea region.

2.2 Discussion

Linear algebra, eigenfunctions, and EOFs are well-established and versatile mathematical concepts, but we argue that there

still are innovative ways of applying them in data analysis. In these demonstrations, they provided the basis for a framework,230

referred to as ’common EOFs’ that enabled simple data comparisons with an emphasis on the most salient features in the data.

In a way, one could refer to their application as a kind of machine learning (ML) approach to "Big data", characterised by large

data volumes, diverse sources, and speedy analysis. Our demonstrations revealed a spread in the CMIP GCM ensembles that

appeared to be consistent with the ERA5 interannual variability and a spread that often was close to normally distributed. The

different ensemble members were independent of each other and could be considered as ’random’ in terms of their phase and235

timing, making the ensemble suitable for representing the non-deterministic natural variability.

The independence between each model’s representation of random variability together with the ensemble spread being

approximately normal suggests that the salient information about future projections can be summarised by two parameters: the

ensemble mean µe and the ensemble standard deviation σe. They can provide an estimate of a confidence interval µe±2σe, and

if the ensemble spread is normally distributed we can use them to project a pdf ∼N (µe,σ
2
e) for future aggregated TAS, PR or240

PSL statistics on an annual or seasonal basis. This illustrates the difference between data and information, where the collection

of time series for all ensemble members constitutes data of the ensemble, whereas µe± 2σe provides information about the

ensemble. Hence, users of regional climate projections may not necessarily need to adapt their analysis to many individual

simulations if they can get away with information about potential future outlooks in terms of a robust confidence interval. A

pdf representing the ensemble distribution may also be used as a component of Bayesian inferences to estimate probabilities245

for e.g. heatwaves or heavy 24-hr precipitation (Benestad et al., 2018, 2019b).

The common EOF framework also suggested that CMIP6 models were better than CMIP5 models at reproducing the mean

seasonal cycle in TAS, PR, and PSL over the Nordic region. Additionally, our analysis proposed that both CMIP5 RCP4.5 and

CMIP6 SSP245 multi-model ensembles provide an approximate description of typical predictors on spatial domains relevant

for empirical-statistical downscaling over the Nordic countries. The information about improved simulations in CMIP6 is in250

line with Lauer et al. (2022) who found that the total cloud cover, cloud water path, and cloud radiative effect, were slightly

better in the CMIP6 multi-model mean than the CMIP5 ensemble mean, in terms of mean bias, pattern correlation, and relative

root-mean-square deviation. They also noted that an underestimation of cloud cover in stratocumulus regions is still a problem

in CMIP6. The clouds simulated by the CMIP5 models were reported to be too few and too reflective over the Southern Ocean,

but were significantly improved in CMIP6.255

The common EOF approach and the esd-tool (Benestad et al., 2015) represent a complement to already existing analysis

tools such as the GCMeval tool (Parding et al., 2020) or the Earth System Model Evaluation Tool (ESMValTool) (Eyring et al.,

2020; Weigel et al., 2021). The latter performs common preprocessing operations and diagnostics that include tailored diag-

nostics and performance metrics for specific scientific applications. It furthermore provides diagnostics for the mean annual
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cycle, pattern correlation, clustering, and EOFs, with RMSE estimates on a grid-by-grid basis (or spatial means of grid-box260

estimates) rather than in terms of covariance structure such as in Figure 1 and Table 1. ESMValTool also offers regression of

monthly mean geopotential heights onto the leading principal component monthly averaged to represent the Northern Annular

Mode (NAM), rather than a common EOF approach similar to that presented in Figure 4. It makes use of the Climate Vari-

ability Diagnostics Package (CVDP) that computes key metrics of internal climate variability in a set of user-specific model

simulations and observational data sets, providing spatial patterns and time series (Phillips et al., 2014). Although it offers a265

large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state,

trends, and variability, it does not include common EOFs. While the ESMValTool is designed for the evaluation of climate

model performance on a more individual basis rather than how well multi-model ensembles represent the world, the common

EOF framework proposed here can be used to assess whether the multi-model ensemble is fit for representing climate change

and non-deterministic climate variability. Hence, the common EOF framework can be designed to assess model results with a270

focus on their application for climate change adaptation. The ESMValTool has been developed as a community effort currently

involving more than 40 institutes with a rapidly growing developer and user community. It offers more predefined function-

alities than the esd-package, but the esd-package is more generic, flexible, and also more geared towards empirical-statistical

downscaling (ESD). ESD can also provide diagnostics about GCMs (Benestad, 2021), and the esd-package is designed to

deal with a more varied set of data types than just GCM output, as it has evolved from a previous open-source R-library275

clim.pact (Benestad, 2003). Both these tools can likely benefit from closer collaboration than in the past, as they seem to

complement each other. Moreover, common EOFs make it easy to avoid matrices of many small maps ("stamp collections")

that are difficult to digest, since comparisons can be limited to time series and their differences in terms of statistics. Finally,

common EOFs also give a visual impression of simulated quality, as well as a framework for more objective tests when applied

to their principal components.280

3 Conclusions

We present some demonstrations of how common EOFs can be applied in global climate model evaluation and use them to show

that the CMIP6 SSP245 multi-model ensemble represents an improvement over CMIP5 RCP4.5 when it comes to reproducing

the mean seasonal cycle in the near-surface temperature, precipitation, and mean sea-level pressure over the Nordic countries.

The analysis based on common EOFs also suggests that both CMIP ensembles are able to reproduce interannual variability285

of these variables over the Nordic region and that they seem to embrace the observed historical trend seen in the ERA5

reanalysis. Common EOFs are not widely used within the climate research community and we propose that they may benefit

further research through innovative applications. A motivation for using common EOFs was to assess the value of multi-model

ensembles of climate models for the application in climate services, rather than focusing on single models. Hence, they were

used to answer the question of whether the said CMIP multi-model ensembles are able to reproduce the observed statistics of290

the regional climate that is necessary for supporting climate change adaptation.
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Code and data availability. Both R-markdown scripts with embedded R-code, output in the PDF-format and data in R-binary are available

from FigShare (Benestad, 2022).

Video supplement. A couple of YouTube demonstrations on common EOFs are available from https://youtu.be/32mtHHAoq6k and https:

//youtu.be/E01hthVL9pY.295
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Figure 1. Common EOFs which present the covariance structure for model simulations of the annual mean cycle in TAS. The upper left

panel presents the spatial covariance structure of the leading mode, the upper right indicates the variance associated with 20 leading modes,

and the lower panel shows the leading PC for the multi-model ensemble. The black curve represents the ERA5 reanalysis, whereas the red

curves represent CMIP5 and the blue curves CMIP6.
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Figure 2. Same as 1 but for the mean annual cycle in precipitation.
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TAS. The upper left panel presents the spatial covariance structure of the leading mode, the upper left indicates the variance associated with

20 leading modes, and the lower panel shows the leading PC for the multi-model ensemble. The black curve represents the ERA5 reanalysis,

whereas the red curves represent CMIP5 and the blue curves CMIP6.
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Figure 5. Rank statisticsR for the case presented in Figure 4 where the upper panel shows the rank of ERA5 results within the multi-model

ensemble spread on a year-to-year basis, whereas the lower panel shows histograms of the rank statistics together with results from Monte-

Carlo simulations of perfect cases (y-axis shows frequency and x-axis the range of rank categories). Red marks CMIP5, whereas blue marks

CMIP6. Kolmogorov–Smirnov statistic D for CMIP5 was D = 0.099206 with a p-value = 0.5647 and the CMIP6 R obtained D = 0.11362

with a p-value = 0.3902.
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19

https://doi.org/10.5194/egusphere-2022-1385
Preprint. Discussion started: 8 February 2023
c© Author(s) 2023. CC BY 4.0 License.



 0 

 0.005 
 0.01  0.015 

 0.02 

 0.025 

 0.03 

 0.035 

msl (hPa) −
50

55

60

65

70

75

−10 0 10 20 30 40 50

−0.005 0.01 0.02 0.03 0.04

0 5 10 15 20

0

20

40

60

80

100

20 leading EOFs:  99.9 % of variance

EOF order

V
ar

ia
nc

e 
(%

)

−0.04

−0.02

0.00

0.02

0.04

0.06

Index

P
C

 1

Leading PC#1 of Mean sea level pressure − Explained variance = 61.8%

1960 1970 1980 1990 2000 2010 2020

msl
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Figure 8. Normal Q-Q Plots for CMIP5 RCP4.5 (left panels) and CMIP6 SSP245 (right panels) and for annual mean TAS (upper panels)

and winter mean TAS (lower panels) showing variations in the nature of the ensemble distribution. The more pronounced deviation from a

normal distribution for annual mean CMIP6 TAS in panel (b) was untypical for these results.
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Table 1. GCMs ranked according to their RMSE score for their TAS mean seasonal cycle common EOF results. A Wilcoxon rank sum test

with continuity correction data gave W = 533.5, p-value = 0.03892 for the alternative hypothesis that the true location shift is less than 0. See

the Supporting material for details behind the calculations.

NorESM2-MM.ssp245.r1i1p1f1 0.136 NorESM1-M.rcp45.r1i1p1_1 0.145 TaiESM1.ssp245.r1i1p1f1 0.145

MRI-ESM2-0.ssp245.r1i1p1f1 0.149 AWI-CM-1-1-MR.ssp245.r1i1p1f1 0.153 CNRM-ESM2-1.ssp245.r1i1p1f2 0.153

NorESM1-ME.rcp45.r1i1p1_1 0.154 CNRM-CM6-1-HR.ssp245.r1i1p1f2 0.156 NorESM2-LM.ssp245.r1i1p1f1 0.156

EC-EARTH.rcp45.r1i1p1_1 0.159 CNRM-CM6-1.ssp245.r1i1p1f2 0.161 E3SM-1-1.ssp245.r1i1p1f1 0.161

FIO-ESM-2-0.ssp245.r1i1p1f1 0.163 CESM2-WACCM.ssp245.r1i1p1f1 0.164 EC-Earth3-CC.ssp245.r1i1p1f1 0.165

GISS-E2-1-H.ssp245.r1i1p1f2 0.168 GFDL-CM3.rcp45.r1i1p1_1 0.169 KIOST-ESM.ssp245.r1i1p1f1 0.17

BNU-ESM.rcp45.r1i1p1_1 0.171 GISS-E2-1-G.ssp245.r1i1p1f2 0.172 EC-Earth3-Veg.ssp245.r1i1p1f1 0.173

MCM-UA-1-0.ssp245.r1i1p1f2 0.173 MIROC-ESM-CHEM.rcp45.r1i1p1_1 0.175 MPI-ESM-MR.rcp45.r1i1p1_1 0.176

CAMS-CSM1-0.ssp245.r1i1p1f1 0.176 CESM1-BGC.rcp45.r1i1p1_1 0.18 ACCESS1.3.rcp45.r1i1p1_1 0.185

CESM1-CAM5.rcp45.r1i1p1_1 0.185 GFDL-ESM2G.rcp45.r1i1p1_1 0.185 FGOALS-f3-L.ssp245.r1i1p1f1 0.185

CCSM4.rcp45.r1i1p1_1 0.186 MIROC-ESM.rcp45.r1i1p1_1 0.186 CNRM-CM5.rcp45.r1i1p1_1 0.188

MPI-ESM-LR.rcp45.r1i1p1_1 0.188 ACCESS-ESM1-5.ssp245.r1i1p1f1 0.19 IITM-ESM.ssp245.r1i1p1f1 0.19

ACCESS1-0.rcp45.r1i1p1_1 0.192 EC-Earth3-Veg-LR.ssp245.r1i1p1f1 0.192 FIO-ESM.rcp45.r1i1p1_1 0.193

GISS-E2-H.rcp45.r1i1p1_1 0.193 CIESM.ssp245.r1i1p1f1 0.197 IPSL-CM6A-LR.ssp245.r1i1p1f1 0.197

MIROC-ES2L.ssp245.r1i1p1f2 0.197 GISS-E2-H-CC.rcp45.r1i1p1_1 0.198 CanESM5.ssp245.r1i1p1f1 0.198

UKESM1-0-LL.ssp245.r1i1p1f2 0.198 GISS-E2-R.rcp45.r1i1p1_1 0.199 ACCESS-CM2.ssp245.r1i1p1f1 0.199

EC-Earth3.ssp245.r1i1p1f1 0.199 CMCC-CMS.rcp45.r1i1p1_1 0.2 GISS-E2-R-CC.rcp45.r1i1p1_1 0.2

GFDL-ESM2M.rcp45.r1i1p1_1 0.201 IPSL-CM5A-MR.rcp45.r1i1p1_1 0.201 MPI-ESM1-2-LR.ssp245.r1i1p1f1 0.202

MIROC6.ssp245.r1i1p1f1 0.203 CMCC-CM2-SR5.ssp245.r1i1p1f1 0.206 IPSL-CM5A-LR.rcp45.r1i1p1_1 0.207

MIROC5.rcp45.r1i1p1_1 0.209 FGOALS-g3.ssp245.r1i1p1f1 0.21 INM-CM4-8.ssp245.r1i1p1f1 0.211

MRI-CGCM3.rcp45.r1i1p1_1 0.216 CMCC-ESM2.ssp245.r1i1p1f1 0.216 bcc-csm1-1.rcp45.r1i1p1_1 0.219

HadGEM3-GC31-LL.ssp245.r1i1p1f3 0.22 INM-CM5-0.ssp245.r1i1p1f1 0.221 FGOALS.g2.rcp45_r1 0.227

IPSL-CM5B-LR.rcp45.r1i1p1_1 0.23 NESM3.ssp245.r1i1p1f1 0.232 BCC-CSM2-MR.ssp245.r1i1p1f1 0.234

HadGEM2-CC.rcp45.r1i1p1_1 0.237 HadGEM2-ES.rcp45.r1i1p1_1 0.237 KACE-1-0-G.ssp245.r1i1p1f1 0.237

bcc-csm1-1-m.rcp45.r1i1p1_1 0.243 CSIRO-Mk3-6-0.rcp45.r1i1p1_1 0.271 CanESM2.rcp45.r1i1p1_1 0.278
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Table 2. GCMs ranked according to their RMSE score for their PR mean seasonal cycle common EOF results. A Wilcoxon rank sum test

with continuity correction data returned W = 303.5, and a p-value = 0.0001545 for the alternative hypothesis that the true location shift is

less than 0.

CNRM-CM6-1-HR.ssp245.r1i1p1f2 0.137 EC-Earth3.ssp245.r1i1p1f1 0.139 EC-Earth3-CC.ssp245.r1i1p1f1 0.142

MRI-ESM2-0.ssp245.r1i1p1f1 0.143 CMCC-ESM2.ssp245.r1i1p1f1 0.144 CMCC-CM2-SR5.ssp245.r1i1p1f1 0.149

EC-Earth3-Veg.ssp245.r1i1p1f1 0.153 EC-Earth3-Veg-LR.ssp245.r1i1p1f1 0.158 EC-EARTH.rcp45.r1i1p1_1 0.164

IPSL-CM6A-LR.ssp245.r1i1p1f1 0.165 CNRM-CM6-1.ssp245.r1i1p1f2 0.166 MPI-ESM-LR.rcp45.r1i1p1_1 0.167

KIOST-ESM.ssp245.r1i1p1f1 0.167 UKESM1-0-LL.ssp245.r1i1p1f2 0.168 AWI-CM-1-1-MR.ssp245.r1i1p1f1 0.17

NorESM2-MM.ssp245.r1i1p1f1 0.17 HadGEM3-GC31-LL.ssp245.r1i1p1f3 0.171 CNRM-ESM2-1.ssp245.r1i1p1f2 0.173

GFDL-ESM2G.rcp45.r1i1p1_1 0.174 MIROC6.ssp245.r1i1p1f1 0.178 MPI-ESM-MR.rcp45.r1i1p1_1 0.179

CESM2-WACCM.ssp245.r1i1p1f1 0.179 MRI-CGCM3.rcp45.r1i1p1_1 0.18 FIO-ESM-2-0.ssp245.r1i1p1f1 0.18

CESM1-BGC.rcp45.r1i1p1_1 0.181 CESM1-CAM5.rcp45.r1i1p1_1 0.181 CMCC-CMS.rcp45.r1i1p1_1 0.181

CIESM.ssp245.r1i1p1f1 0.181 CCSM4.rcp45.r1i1p1_1 0.182 GFDL-CM3.rcp45.r1i1p1_1 0.182

NorESM1-ME.rcp45.r1i1p1_1 0.182 GISS-E2-H-CC.rcp45.r1i1p1_1 0.183 NorESM1-M.rcp45.r1i1p1_1 0.183

INM-CM5-0.ssp245.r1i1p1f1 0.184 NorESM2-LM.ssp245.r1i1p1f1 0.184 MCM-UA-1-0.ssp245.r1i1p1f2 0.185

TaiESM1.ssp245.r1i1p1f1 0.186 GISS-E2-1-G.ssp245.r1i1p1f2 0.187 ACCESS-CM2.ssp245.r1i1p1f1 0.188

MPI-ESM1-2-LR.ssp245.r1i1p1f1 0.188 ACCESS1-0.rcp45.r1i1p1_1 0.189 HadGEM2-ES.rcp45.r1i1p1_1 0.189

BCC-CSM2-MR.ssp245.r1i1p1f1 0.189 CAMS-CSM1-0.ssp245.r1i1p1f1 0.189 E3SM-1-1.ssp245.r1i1p1f1 0.189

NESM3.ssp245.r1i1p1f1 0.19 INM-CM4-8.ssp245.r1i1p1f1 0.191 CNRM-CM5.rcp45.r1i1p1_1 0.192

GISS-E2-R.rcp45.r1i1p1_1 0.192 CanESM5.ssp245.r1i1p1f1 0.192 FGOALS.g2.rcp45_r1 0.193

KACE-1-0-G.ssp245.r1i1p1f1 0.194 bcc-csm1-1-m.rcp45.r1i1p1_1 0.196 HadGEM2-CC.rcp45.r1i1p1_1 0.196

bcc-csm1-1.rcp45.r1i1p1_1 0.197 CSIRO-Mk3-6-0.rcp45.r1i1p1_1 0.199 GFDL-ESM2M.rcp45.r1i1p1_1 0.199

FGOALS-f3-L.ssp245.r1i1p1f1 0.199 GISS-E2-R-CC.rcp45.r1i1p1_1 0.2 MIROC-ESM-CHEM.rcp45.r1i1p1_1 0.201

MIROC-ESM.rcp45.r1i1p1_1 0.202 ACCESS-ESM1-5.ssp245.r1i1p1f1 0.202 MIROC5.rcp45.r1i1p1_1 0.203

ACCESS1.3.rcp45.r1i1p1_1 0.206 MIROC-ES2L.ssp245.r1i1p1f2 0.209 IPSL-CM5A-MR.rcp45.r1i1p1_1 0.212

IPSL-CM5A-LR.rcp45.r1i1p1_1 0.22 CanESM2.rcp45.r1i1p1_1 0.224 FIO-ESM.rcp45.r1i1p1_1 0.232

BNU-ESM.rcp45.r1i1p1_1 0.24

24

https://doi.org/10.5194/egusphere-2022-1385
Preprint. Discussion started: 8 February 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 3. GCMs ranked according to their RMSE score for their PSL mean seasonal cycle common EOF results. A Wilcoxon rank sum test

with continuity correction data gave W = 296, with p-value = 3.8×10−5 for the alternative hypothesis that the true location shift is less than

0.

UKESM1-0-LL.ssp245.r1i1p1f2 0.15 EC-Earth3-CC.ssp245.r1i1p1f1 0.152 CNRM-ESM2-1.ssp245.r1i1p1f2 0.153

HadGEM3-GC31-LL.ssp245.r1i1p1f3 0.153 MRI-ESM2-0.ssp245.r1i1p1f1 0.157 CNRM-CM6-1.ssp245.r1i1p1f2 0.158

EC-EARTH.rcp45.r1i1p1_1 0.16 CAMS-CSM1-0.ssp245.r1i1p1f1 0.165 ACCESS-CM2.ssp245.r1i1p1f1 0.171

CNRM-CM6-1-HR.ssp245.r1i1p1f2 0.173 TaiESM1.ssp245.r1i1p1f1 0.173 CESM2-WACCM.ssp245.r1i1p1f1 0.174

EC-Earth3.ssp245.r1i1p1f1 0.174 CNRM-CM5.rcp45.r1i1p1_1 0.175 NorESM2-MM.ssp245.r1i1p1f1 0.175

EC-Earth3-Veg-LR.ssp245.r1i1p1f1 0.176 FIO-ESM-2-0.ssp245.r1i1p1f1 0.178 CMCC-CMS.rcp45.r1i1p1_1 0.179

AWI-CM-1-1-MR.ssp245.r1i1p1f1 0.179 KIOST-ESM.ssp245.r1i1p1f1 0.179 EC-Earth3-Veg.ssp245.r1i1p1f1 0.181

MPI-ESM-MR.rcp45.r1i1p1_1 0.182 BCC-CSM2-MR.ssp245.r1i1p1f1 0.184 CIESM.ssp245.r1i1p1f1 0.184

FGOALS-f3-L.ssp245.r1i1p1f1 0.186 MPI-ESM-LR.rcp45.r1i1p1_1 0.187 ACCESS-ESM1-5.ssp245.r1i1p1f1 0.188

INM-CM4-8.ssp245.r1i1p1f1 0.188 ACCESS1-0.rcp45.r1i1p1_1 0.189 CESM1-CAM5.rcp45.r1i1p1_1 0.189

NorESM1-M.rcp45.r1i1p1_1 0.189 GISS-E2-H-CC.rcp45.r1i1p1_1 0.19 NorESM1-ME.rcp45.r1i1p1_1 0.19

KACE-1-0-G.ssp245.r1i1p1f1 0.19 MIROC-ESM-CHEM.rcp45.r1i1p1_1 0.191 CCSM4.rcp45.r1i1p1_1 0.193

IPSL-CM6A-LR.ssp245.r1i1p1f1 0.193 GFDL-CM3.rcp45.r1i1p1_1 0.194 GISS-E2-H.rcp45.r1i1p1_1 0.194

INM-CM5-0.ssp245.r1i1p1f1 0.196 GISS-E2-1-G.ssp245.r1i1p1f2 0.197 CESM1-BGC.rcp45.r1i1p1_1 0.199

IITM-ESM.ssp245.r1i1p1f1 0.199 GFDL-ESM2G.rcp45.r1i1p1_1 0.2 CanESM5.ssp245.r1i1p1f1 0.2

CMCC-CM2-SR5.ssp245.r1i1p1f1 0.2 NorESM2-LM.ssp245.r1i1p1f1 0.2 IPSL-CM5A-MR.rcp45.r1i1p1_1 0.201

MIROC-ESM.rcp45.r1i1p1_1 0.201 MPI-ESM1-2-LR.ssp245.r1i1p1f1 0.201 CMCC-ESM2.ssp245.r1i1p1f1 0.203

IPSL-CM5A-LR.rcp45.r1i1p1_1 0.204 GISS-E2-R.rcp45.r1i1p1_1 0.207 GISS-E2-R-CC.rcp45.r1i1p1_1 0.209

NESM3.ssp245.r1i1p1f1 0.209 FIO-ESM.rcp45.r1i1p1_1 0.21 GFDL-ESM2M.rcp45.r1i1p1_1 0.21

ACCESS1.3.rcp45.r1i1p1_1 0.212 MIROC6.ssp245.r1i1p1f1 0.212 HadGEM2-CC.rcp45.r1i1p1_1 0.213

BNU-ESM.rcp45.r1i1p1_1 0.215 CSIRO-Mk3-6-0.rcp45.r1i1p1_1 0.216 MIROC5.rcp45.r1i1p1_1 0.217

bcc-csm1-1-m.rcp45.r1i1p1_1 0.218 HadGEM2-ES.rcp45.r1i1p1_1 0.22 MRI-CGCM3.rcp45.r1i1p1_1 0.221

CanESM2.rcp45.r1i1p1_1 0.223 bcc-csm1-1.rcp45.r1i1p1_1 0.233 MCM-UA-1-0.ssp245.r1i1p1f2 0.234

MIROC-ES2L.ssp245.r1i1p1f2 0.235 IPSL-CM5B-LR.rcp45.r1i1p1_1 0.244 FGOALS.g2.rcp45_r1 0.246
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