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Abstract. We present a framework for evaluating multi-model ensembles based on common empirical orthogonal functions

(’common EOFs’) that emphasise salient features connected to spatio-temporal covariance structures embedded in large climate

data volumes. In other words, this
✿✿✿

This
✿

framework enables the extraction of the most pronounced spatial patterns of coherent

variability within the joint data set and provides a set of weights for each model in terms of principal components which refer to

exactly the same set of spatial patterns of covariance. In other words, common EOFs provide a means for extracting information

from large volumes of data. Moreover, they can provide an objective basis for evaluation that can be used to accentuate

ensembles more than traditional methods for evaluation, which tend to focus on individual models. Our demonstration of

the capability of common EOFs reveals a statistically significant improvement of the sixth generation of the World Climate

Research Programme (WCRP) Climate Model Intercomparison Project (CMIP6) simulations over the previous generation

(CMIP5) in terms of their ability to reproduce the mean seasonal cycle in air surface temperature, precipitation, and mean sea-

level pressure over the Nordic countries. The leading common EOF principal component for annually/seasonally aggregated

temperature, precipitation and pressure statistics suggest that their simulated interannual variability is generally consistent with

that seen in the ERA5 reanalysis. We also demonstrate how common EOFs can be used to analyse whether CMIP ensembles

reproduce the observed historical trends over the historical period 1959–2021, and the results suggest that the trend statistics

provided by both CMIP5 RCP4.5 and CMIP6 SSP245 are consistent with observed trends. An interesting finding is also that the

leading common EOF principal component for annually/seasonally aggregated statistics seems to be approximately normally

distributed, which is useful information about the multi-model ensemble data.

1

The question of how to evaluate climate models is often complicated by typically large volumes of data. In many cases, it is the

salient information about meteorological phenomena, conditions, and states that they are designed to reproduce that we want

to assess, rather than details in individual grid-boxes that are subject to surface parameterisation and numerical algorithms

associated with discrete mathematics, approximations, and statistical fluctuations. The climate models are expected to have an

intrinsic minimum skillful scale that arises from discrete mathematics, approximations, and parameterisation (?). Furthermore,

they are typically used to study trends and variability but are not expected to be directly synchronised or correlated in time

with the particular timing of ’chaotic’ meteorological phenomena playing out in earth’s climate (?), such as the El Niño

Southern Oscillation (?) or volcanic eruptions. Hence, one approach for evaluating them may relate to the spatio-temporal

covariance structure embedded in the simulated output. An emphasis on the spatio-temporal covariance can also make use of the

redundancy in the data and reduce the degrees of freedom in the data, and hence minimise the required data volume needed for
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model) is essential for common EOFs to make sense. ? described common EOFs and discussed their application in climate

research, and common EOFs have been useful as a framework for empirical-statistical downscaling (?), motivated by ?. ?? also

provided demonstrations of how common EOFs can be applied to analyse ensembles of decadal forecasts. However, a general

literature search with Google Scholar, the assessment reports of the Intergovernmental Panel on Climate Change (IPCC), and

the documentation behind the ESMValTool (??) suggests that common EOFs are not widely used in the climate research

community. The impression of a modest interest in common EOFs was also expressed in ? and is supported by a quote from ?:

"To the best of our knowledge only two studies considered common EOFs, which go back more than two decades (??), which

were based on the original ? (FG86)’s algorithm". However, we also know of a few additional cases where common EOFs

were employed, e.g. those cited above, that were overlooked by ?. A Google Scholar search for "common principal component

analysis" (1,680 hits, 2022-12-01) nevertheless suggests that common EOFs are discussed in scientific journals belonging to

other scientific disciplines than climate science, such as statistics, biometrics, biology geology, and neuro-computing.

To demonstrate the merit of common EOFs, we present some examples of how they can be used to evaluate climate models

in the context of large multi-model ensembles of global climate models (GCMs). One of our objectives was to evaluate GCM

data that are used as predictors for empirical-statistical downscaling (ESD) over Northern Europe, and we picked this as an

example to demonstrate their utility and merit. While ? used common EOFs to compare individual models, we present an

approach where they were used to compare different ensembles, such as CMIP5 RCP4.5 and CMIP6 SSP245, and to assess if

they provide a statistical representation that has a similar statistical population (?, e.g. p.72) as the reanalysis. In this case, they

provided a framework in which we applied standard hypothesis testing and statistical tests.

2 Data & Method

? provide a description of the mathematics behind common EOFs which also is relevant for our analysis, but here we present

a slightly different approach for applying them for the purpose of climate model evaluation and for assessing different model

ensembles. Here we used singular vector
✿✿✿

Our
✿✿✿✿✿✿✿

method
✿✿✿✿✿

bears
✿✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

similarities
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

differences
✿✿

to
✿✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿

of

✿✿✿✿✿✿✿

common
✿✿✿✿✿✿

EOFs.
✿✿

In
✿✿✿

our
✿✿✿✿

case,
✿✿✿

we
✿✿✿✿✿✿

applied
✿✿✿✿✿

EOFs
✿✿

to
✿✿✿✿

one
✿✿✿✿✿✿

variable
✿✿✿✿✿

from
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

sources
✿✿✿✿✿✿✿

stacked
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

space-direction
✿✿

as
✿✿

in
✿

?
✿

,
✿✿✿✿✿

which
✿✿

is

✿✿✿✿✿✿

similar
✿✿

to
✿

a
✿✿✿✿✿

tensor
✿✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

space-time
✿✿✿✿✿✿✿

matrices
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿✿

projections
✿✿✿

are
✿✿✿✿✿✿

stacked
✿✿✿✿✿

along
✿✿

a
✿✿✿✿

third
✿✿✿✿✿✿✿

(model)

✿✿✿✿✿✿✿

direction
✿✿✿

(?).
✿✿✿✿

Our
✿✿✿✿✿✿✿✿

approach
✿✿✿✿

with
✿✿✿✿

data
✿✿✿✿✿✿

stacked
✿✿✿✿✿

from
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

models
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿✿

direction
✿✿✿✿

had
✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿

function
✿✿

as
✿✿

a
✿✿✿✿✿

’third

✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

dimension’
✿✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrices
✿✿✿✿

only
✿✿✿✿✿✿✿

involve
✿✿✿✿

time
✿✿✿✿

and
✿✿✿✿✿

space.
✿✿

It
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿

stack
✿✿✿✿

data

✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿

space
✿✿✿✿

axis,
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

multi-variate
✿✿✿✿✿

EOFs
✿✿✿✿✿✿✿✿

described
✿✿✿

in
✿✿✿

(?)
✿✿✿✿✿

where
✿✿✿

all
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿✿

values
✿✿

of
✿✿✿

any
✿✿✿✿

one
✿✿✿✿✿✿✿✿

projection
✿✿✿✿✿

were
✿✿✿✿✿✿✿

stacked
✿✿

in

✿✿✿✿✿✿✿✿✿✿✿✿

space-direction
✿✿✿✿✿✿✿

instead
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

time-direction,
✿✿✿✿✿✿✿✿

however,
✿✿✿✿

this
✿✿

is
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿✿

meaningful
✿✿

if
✿✿✿

the
✿✿✿✿

data
✿✿✿

are
✿✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿✿✿

contain
✿✿✿✿✿✿✿✿✿✿✿

synchronous

✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

variations.
✿✿✿✿✿✿✿

Another
✿✿✿✿✿✿✿✿

example
✿✿

of
✿✿✿✿✿

using
✿✿✿✿✿

such
✿✿✿✿✿✿

’mixed
✿✿✿✿✿

field’
✿✿✿✿✿

EOFs
✿✿✿

is
✿✿✿✿✿

found
✿✿

in
✿✿

?
✿✿✿✿

who
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿✿✿✿✿✿✿

standardised
✿✿✿✿✿✿✿

surface

✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿

sea-level
✿✿✿✿✿✿✿

pressure
✿✿✿✿

and
✿✿✿✿

used
✿✿✿✿✿✿

EOFs
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿✿

fields
✿✿

as
✿✿✿✿✿✿✿✿✿

predictors
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

empirical-statistical

✿✿✿✿✿✿✿✿✿✿✿

downscaling.
✿✿✿

The
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

CMIP
✿✿✿✿

runs
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

synchronised
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿✿

variations
✿✿✿

are
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿✿✿

and

✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

chaotic-stochastic
✿✿✿✿✿✿

nature.
✿
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✿✿✿

We
✿✿✿✿

used
✿✿✿✿✿✿✿

singular
✿✿✿✿✿

value decomposition (SVD) (?) on a joint data matrix
✿✿✿✿✿✿✿

(multiple
✿✿✿✿

data
✿✿✿

sets
✿✿✿✿✿✿✿

stacked
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿

axis)

rather than the step-wise algorithm for a set of covariance matrices described by ?. Hence, we obtained identical spatial maps

and eigenvalues for all models in the joint data matrix, but different statistical properties (e.g. amplitude and mean) for the

different segments of the principal components that represented different models. In this
✿✿✿✿

Both
✿✿✿✿✿

these
✿✿✿✿✿✿✿

variants
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿✿

referred

✿✿

to
✿✿

as
✿✿✿✿✿✿✿✿

"common
✿✿✿✿✿✿✿

EOFs",
✿✿✿

and
✿✿✿

for
✿✿✿

the
✿✿✿✿

lack
✿✿

of
✿✿

a
✿✿✿✿✿

better
✿✿✿✿✿

term,
✿✿✿

we
✿✿✿

will
✿✿✿

use
✿✿✿✿

the
✿✿✿✿

term
✿✿✿✿✿✿✿✿

"common
✿✿✿✿✿✿

EOFs"
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿✿✿

framework

✿✿✿✿✿✿✿✿

presented
✿✿✿✿✿✿

herein.
✿✿

In
✿✿✿

our
✿

case, we used the approach described in ? where common EOFs were used to represent an ensemble

of decadal forecasts based on a single GCM. More specifically, we used common EOFs to illustrate how well GCMs reproduce

the mean annual cycle in terms of the spatio-temporal covariance structure, compared with the ERA5 reanalysis (?). We also

present another example where we used common EOFs to assess how well the GCMs simulate the interannual variability in

terms of the annual mean surface air temperature, precipitation, and mean sea-level pressure. A third way of applying EOFs in

model evaluation is as a framework for comparing trends simulated by different GCMs, where they highlight salient features

in the trend structure. In all these cases, we used common EOFs to evaluate both CMIP5 (??) and CMIP6 (?) ensembles in a

joint analysis. One complication was the varying number of simulations carried out with one model set-up, as some GCMs had

produced numerous simulations in the CMIP ensembles whereas others had only produced a few. To make the evaluation as

objective as possible, we only selected one simulation from each GCM, filtering the data based on the ensemble member label

(r1i1p1 for CMIP5, r1i1p1f1 for CMIP6), using runs that spanned the period 1850–2100, and only the emission scenarios

RCP4.5 and SSP245 (in this case, we only used data for the common period with the ERA5 reanalysis: 1959–2021). We

also repeated the analysis on slightly different spatial domains to assess the robustness of our results. In this evaluation, we

computed common EOFs for a joint dataset of 35 CMIP5 RCP4.5 runs and 40 CMIP6 SSP245 runs (75 runs in total for TAS,

but not all of these were available for PR and PSL). To cope with the vast amount of data, each model run was represented

in terms of monthly mean seasonal cycle (12 calendar months each) as well as annually/seasonally aggregated statistics (63

spatial maps for each run, one for each year in the period 1959–2021). In this case, the term aggregated statistics refers to the

mean estimate for TAS and PSL and the sum for PR (total precipitation over the year or season).

Common EOFs can be used to evaluate individual GCMs against the ERA5 reanalysis through the estimation of difference in

the mean x, standard deviation σ, and lag-1 autocorrelation r1 estimated for the different segments of the principal components

(PCs) representing different datasets (?, 5.1 in the Supplementary data). Here, we evaluated how well the models are able

to reproduce the mean seasonal cycle in the surface air temperature (TAS), monthly precipitation totals (PR), and the mean

sea-level pressure (PSL) over a region spanning the Nordic countries: 5◦W–45◦E and 55–72◦N. We repeated the same analysis

in four other domains to assess the robustness of our results and those findings can be found in the supporting material

available from FigShare (?). The model performance was gauged by taking the root-mean-square error (RMSE) of the leading

principal component that accounts for most of the variance, using ERA5 as a reference. We also applied common EOFs to the

annual/seasonal mean TAS, annual/seasonal total PR, and annual/seasonal mean PSL to diagnose their interannual variability

and how well it was reproduced in the CMIP ensembles. Moreover, we applied the analysis separately to the full year (Jan-

Dec) and each of the four seasons: winter (DJF), spring (MAM), summer (JJA), and autumn (SON). The skill metric of the

models’ reproduction of the interannual variation in the said annually/seasonally aggregated statistics involved rank-statistics
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and the assumption that any rank is equally probable if the weights of the PC representing the ERA5 reanalysis belongs to

the same statistical population as the ensemble of GCMs. We used a two-sided Kolmogorov-Smirnov test (?) to compare the

empirical distribution of the rank-statistics against a uniform distribution representing the case for which all ranks have the

same probability. We also used Monte-Carlo simulations to represent a ’perfect case’ as a reference for the rank analysis of

the annual/seasonal means. In these simulations, we used the same number of years and a statistical sample with the same

size as the ensemble in question and picked a fixed realisation as a ’surrogate’ for the ’reanalysis’ and the rest to represent the

’ensemble’. In these Monte-Carlo simulations, the ’reanalysis’ and ’ensemble’ belonged to the same statistical population by

design.

Finally, we made a data matrix with columns consisting of spatial maps (the 2D matrix orientation of the data was reordered

into a 1D vector) with linear trend estimates over 1959–2021 with one column for each GCM in the respective CMIP multi-

model ensemble, in addition to a corresponding map with trend estimates derived from the ERA5 reanalysis. The EOFs of this

joint data matrix were used to assess the differences in reproducing the main aspects of the historical trends among the GCMs

and reanalysis.

The analysis presented here was carried out using the R-package ’esd’ version 1.10.15 (?) within the R-environment version

4.2.2 (?). Essential data and R-code (an R-markdown script and its output in PDF format) used for these computations are

available as supporting material and as free open-source material from FigShare in order to enhance the transparency and

reproducibility of these results: https://figshare.com/articles/dataset/Common_EOFs_for_model_evaluation/21641756. The FigShare

repository can be cited as ? and is archived as a combination of the R-markdown script, the PDF file (supporting material for

this paper), and a set of R-binary data files stored as separate files for the respective RCP45 and SSP245 scenarios and for

the three different parameters TAS, PR, and PSL. The data files contain 72-75 different GCM runs in addition to ERA5, and

the total data volume of all these files is 1.9 GB. While the processing of the data stored in this repository was carried out on

powerful Linux servers and the job for all combinations of seasons and regions took roughly 22 hrs to complete, the R-code

provided was run on a 64-bit HP Elitebook 850 G8 laptop with Ubuntu 18.04.6 LTS with 32 Gb memory.

✿

It
✿✿

is
✿✿✿✿✿✿✿

possible
✿✿✿

to
✿✿✿

test
✿✿✿

the
✿✿✿✿✿✿✿✿

common
✿✿✿✿

EOF
✿✿✿✿✿✿✿✿✿✿

framework
✿✿✿

for
✿✿✿✿✿

cases
✿✿✿✿

with
✿✿✿✿✿

’bad’
✿✿✿✿

data
✿✿

to
✿✿✿

see
✿✿✿✿

how
✿✿✿✿

the
✿✿✿✿✿

results
✿✿✿✿

turn
✿✿✿✿

out
✿✿✿

for
✿✿✿✿✿

when
✿✿✿

the

✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿✿✿

reproduce
✿✿✿

the
✿✿✿✿✿✿✿✿

properties
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

reference.
✿✿✿

In
✿✿✿

this
✿✿✿✿✿

case,
✿✿✿

we
✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿

such
✿

a
✿✿✿✿

case
✿✿✿

by
✿✿✿✿✿✿✿✿

replacing
✿✿✿

the
✿✿✿✿✿✿

ERA5

✿✿✿✿

TAS
✿✿✿✿

with
✿✿✿✿✿

ERA5
✿✿✿✿

PR
✿✿✿✿✿✿

keeping
✿✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

as
✿✿

it
✿✿✿✿

were
✿✿✿✿✿✿

(TAS)
✿✿

so
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

and
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

consisted
✿✿

of
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

types

✿✿

of
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿✿✿

(supporting
✿✿✿✿✿✿✿✿✿

material).
✿✿✿✿

The
✿✿✿✿✿✿✿✿

mismatch
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿

seen
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿

the
✿✿✿✿

PCs
✿✿✿✿✿✿✿✿✿✿✿

representing
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

and

✿✿✿✿✿✿✿✿

ensemble
✿✿

as
✿✿✿✿

well
✿✿✿

as
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

leading
✿✿✿✿✿

EOFs
✿✿✿✿✿✿✿✿✿✿✿

representing
✿

a
✿✿✿✿✿

lower
✿✿✿✿✿✿✿

fraction
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

variance.
✿✿✿✿

The
✿✿✿✿✿

EOFs
✿✿✿✿✿

were
✿✿✿✿✿✿✿✿✿

dominated
✿✿✿

by
✿✿✿

the

✿✿✿✿✿✿✿✿

ensemble
✿✿✿

and
✿✿

in
✿✿✿✿✿✿✿

general
✿

it
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿

necessary
✿✿

to
✿✿✿✿✿✿✿

include
✿✿✿✿✿✿

several
✿✿✿✿

PCs
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

evaluation
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿

leading
✿✿✿✿✿

EOFs
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿

account

✿✿

for
✿✿✿✿✿

most
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

variance.
✿✿✿✿

It’s
✿✿✿

also
✿✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿

keep
✿✿

in
✿✿✿✿

mind
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

PCs’
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿

fractions
✿✿✿✿

may
✿✿✿✿✿✿

depend
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

domain

✿✿✿✿✿✿

covered
✿✿✿

by
✿✿✿

the
✿✿✿✿

data
✿✿✿✿

grid.
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2.1 Results

2.1.1 Evaluation of the simulated mean seasonal cycle

Figure 1 presents the leading common EOF for the mean seasonal cycle in the surface air temperature (TAS) over the Nordic

countries. The spatial map (upper left panel) shows the structure of the most dominant covariance pattern of the seasonal cycle,

and the eigenvalues (upper right panel) suggest that this mode dominates the seasonal behaviour completely. Both pattern and

eigenvalues were estimated from the joint dataset that involved ERA5, the CMIP5 RCP4.5 ensemble, and the CMIP6 SSP245

ensemble. The spatial patterns (U in equation 1 shown in the upper left panel) and the eigenvalues (Λ in equation 1 presented

in the upper right panel) are common for all models, and only the corresponding principal components (PCs, represented by

the matrix V in equation 1) in the lower panel show differences between the reanalysis and the GCMs from the CMIP5 and

CMIP6 ensembles. These differences are visible as scattered red and blue
✿✿✿✿✿

brown
✿✿✿✿

and
✿✿✿✿✿

green curves. It is important to keep in

mind that individual EOFs may not necessarily be associated with a clear physical meaning, especially the higher order ones,

as the different modes are designed to be orthogonal to each other (??). However, they are useful mathematical concepts that

enable more efficient work with large data volumes and make it easier to extract salient information from it, but sometimes

they nevertheless may provide insights on physical phenomena within the analysed domain. In our analysis, they ensured a

set of indices for all GCMs which were related to a common covariance structure within the joint dataset, and we used them

to evaluate the mean seasonal cycle estimated over the period 1959–2021. Our evaluation was based on the root-mean-square

error (RMSE) between the leading PC representing the corresponding mean seasonal cycle in TAS from ERA5 and the joint set

of 75 GCMs from both CMIP5 RCP4.5 (35 members) and CMIP6 SSP245 GCMs (40 members). The results of this evaluation

are presented in Table 1 and a Wilcoxon Rank Sum (also known as Mann-Whitney) test (?) was applied to the two sets of

RMSE scores representing CMIP5 and CMIP6 respectively. Our results indicated that the CMIP6 simulations had a better

score, and the difference with CMIP5 was statistically significant at the 5% confidence level. Hence, the CMIP6 models were

more skilful at reproducing the mean seasonal cycle in TAS in the Nordic region. The difference in skill is also visible in the

lower panel, which shows that the curves for CMIP5 (red
✿✿✿✿✿

brown) were less tightly clustered around ERA5 (black) than those for

CMIP6 (blue
✿✿✿✿

green). The leading mode accounted for 96% of the variance, which suggests that all GCMs produced a seasonal

cycle with a similar spatial covariance structure (upper left).

We repeated the evaluation of the climate models’ ability to reproduce the mean seasonal cycle in PR (Figure 2 and Table 2)

and PSL (Figure 3 and Table 3). The number of available CMIP results for PR was slightly different to that of TAS at the

time of the analysis, and our ensembles consisted of 33 members from CMIP5 RCP4.5 and 37 from CMIP6 SSP245. The

exact ensemble size wasn’t critical for our demonstration, as our objective was to demonstrate the utility and merit of common

EOFs for model evaluation. The eigenvalues for PR indicated that the leading mode accounted for a lower portion of the

variance (71%) than TAS, which may be due to variations in their ability to capture the typical spatial patterns in PR associated

with different seasons. The greatest seasonal variations in PR can be seen near the west coast of Norway (upper left panel

of Figure 2). The leading mode for PSL, on the other hand, accounted for 86% of the variance, and most GCMs reproduced

a mean seasonal cycle that involved a northwest-southeast PSL gradient. The common EOFs for PSL were applied to 35
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members from CMIP5 RCP4.5 and 37 from CMIP6 SSP245. The RMSE scores for PR and PSL are reported in Tables 2–3

and a Wilcoxon rank sum test indicated that the CMIP6 simulations constituted an improvement over those from the CMIP5

in terms of reproducing the mean seasonal cycle, using the ERA5 reanalysis as a reference (statistically significant at the

5%-level).

2.1.2 Evaluation of the simulated interannual variability

The results of the evaluation of the interannual variability in the annual mean TAS are shown in Figure 4 in terms of the leading

common EOF with a map of the covariance connected to its interannual variability (upper left), eigenvalues (upper right),

and time evolution (lower). One striking observation is that the leading mode accounted for 65% of the variance with the five

leading modes accounting for approximately 90%, suggesting that most GCMs reproduced a similar covariance structure. We

used a rank metric R where the PC weights for ERA5 were compared with the spread of the CMIP5 and CMIP6 ensembles

in terms of their rank within each year and each ensemble. For the leading mode of the annual mean temperature shown in

Figure 4, accounting for 65% of the variance, both the CMIP5 and the CMIP6 produced ensemble results with a statistical

population that was likely consistent with ERA5 data. In both cases, the two-sided Kolmogorov-Smirnov test indicated a high

probability (’p-value’) for R belonging to a uniform distribution. A p-value close to zero means that the data connected to the

part of the leading PC representing ERA5 most likely belonged to a different statistical population than the respective CMIP

ensemble (data from different segments of the same leading PC), whereas a p-value near unity implies that ERA5 and the CMIP

ensemble more likely belonged to the same statistical population. In our analysis, the Kolmogorov–Smirnov test for CMIP5

returned D = 0.099206 with a p-value of 0.5647 and the CMIP6 R obtained D = 0.11362 with p-value = 0.3902. Figure 5

provides a visualisation of the rank metric R on a year-by-year basis (upper panel) as well as a histogram of the ranks for TAS

results shown in Figure 4. It is evident from these plots that R varies over the whole interval [0,1] and follows a distribution

that is more or less uniform (’flat’ structure) which we expect for R if each rank is equally probable. Hence, for the annual

mean TAS over the Nordic regions, both CMIP ensembles provided an approximate representation of the interannual variability

seen in ERA5 and connected to the leading mode. A set of Monte-Carlo simulations indicated that the ranking scores would

fluctuate even with ensembles that mimicked perfectly the statistical properties of the observations, due to the limited sample

size.

A corresponding assessment of the leading common EOF for PR (Figure 6) indicated similar differences in statistical terms

for both CMIP5 (D = 0.11858, p-value = 0.3384) and CMIP6 (D = 0.13085, p-value = 0.2309). The leading common EOF for

annual PR representing variations along the west coast of Norway only accounted for 27% of the variance, but the five leading

modes accounted for approximately 60%, suggesting that interannual variability in precipitation involves more complicated

anomalies and perhaps greater model differences. The low variance associated with the leading modes may suggest that the

models produce different spatio-temporal covariance structures, i.e. that they produce different typical patterns of rainfall.
✿

It

✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿

possible
✿✿✿

that
✿✿

a
✿✿✿✿✿

lower
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿✿✿✿

represented
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

leading
✿✿✿✿✿

mode
✿✿

is
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

smaller-scale
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

structures

✿✿✿✿✿✿

relative
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

domain
✿✿✿✿

size
✿✿✿✿✿

when
✿✿

it
✿✿✿✿✿

comes
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿

patterns.
✿✿✿✿✿✿

Hence,
✿✿✿

the
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿

EOFs
✿✿✿✿✿✿

applied
✿✿

to
✿✿✿✿✿✿

annual
✿✿✿

PR
✿✿✿✿✿✿✿

revealed
✿✿

a

✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

complicated
✿✿✿✿✿✿✿✿

situation
✿✿✿✿✿

where
✿✿✿✿✿

more
✿✿✿✿

than
✿✿✿

one
✿✿✿✿✿

mode
✿✿✿✿✿✿✿✿✿✿

dominates.
✿✿

In
✿✿✿

this
✿✿✿✿✿

case,
✿✿✿

the
✿✿✿

first
✿✿✿✿

five
✿✿✿✿

PCs
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿

salient
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✿✿✿✿✿✿✿✿

properties
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿

PR
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatio-temporal
✿✿✿✿✿✿✿✿✿

covariance,
✿✿✿✿✿✿✿✿✿✿✿

representing
✿✿✿✿

more
✿✿✿✿✿

then
✿✿✿✿

60%
✿✿

of
✿✿✿✿✿✿✿✿

variance,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

high-order
✿✿✿✿

PCs
✿✿✿✿✿

were

✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

negligible
✿✿✿✿✿✿✿

variance
✿✿✿

that
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿✿✿

“numeric
✿✿✿✿✿✿

noise”.

Our assessment of how well the GCMs reproduced interannual variations in the annual mean PSL gave similar results as for

TAS and PR. The leading mode was characterised by a centre of action over northern Scandinavia and accounted for 62% of

the variance (Figure 7). The second and third modes were less important, but the fact that they had similar eigenvalues (16%)

suggests that they were "degenerate" which refers to the two patterns being two aspects of the same mode (?, p.488). For PSL,

R was close to having a uniform distribution and the test did not indicate a difference that was statistically significant at the

5%-level for either CMIP5 (D = 0.13492, p-value = 0.2016) nor CMIP6 (D = 0.14329, p-value = 0.1504). In other words, both

CMIP5 and CMIP6 seemed to roughly reproduce the annual mean circulation patterns over the Nordic region seen in the ERA5

data represented by the leading mode. The three leading modes accounted for approximately 94% of the variance, suggesting

that the GCMs reproduced a similar covariance structure albeit with slight variations.

We examined the nature of the multi-model ensemble distribution of the data of the leading PC for the annual aggregated

statistics for the year 2022 and found them to be approximately normally distributed (Figure 8) for most cases, both when it

came to annual and seasonal time scales and for both CMIP5 RCP4.5 and CMIP6 SSP245. Only in a few cases did the data

deviate substantially from the diagonal in the Q-Q plot, such as for the annual mean TAS (Figure 8(b)), but this was not the

typical outcome (supporting material, ?).

2.1.3 Evaluation of the simulated historic trends

Figure 9 shows common EOFs that have been used to compare 1959–2021 trend maps from CMIP5 RCP4.5 (red curve in

the lower panel) and CMIP6 SSP245 (blue curve in the lower panel) with ERA5 (black symbol), in this case over the Barents

Sea region. Each ensemble member was represented by only one weight in the leading PC. The leading mode dominated

by accounting for 94% of the variance, suggesting that all models reproduced patterns with the strongest response in the

northeast and weakest in the southwest, albeit with different amplitudes. The CMIP6 SSP245 (blue curve) indicated stronger

variability between models than the CMIP5 RCP4.5 (red curve), suggesting a wider range of outcomes for the former and that

the CMIP6 ensemble contained some more ’extreme’ models. It is nevertheless evident that the spread in both CMIP5 and

CMIP6 embraced the results obtained with ERA5.

2.1.4 Assessment of robustness

The analyses of the mean seasonal cycle, the interannual variability, and historic trends were repeated for the said aggregated

statistics for each of winter, spring, summer and autumn seasons (supporting material) as one motivation behind this evaluation

was to assess typical predictors used in empirical-statistical downscaling which mainly involve seasonally aggregated statistics.

We obtained similar results for the four different seasons (winter, spring, summer, and autumn). Moreover, the spatial domain

(region) was chosen for the benefit of assessing the models before using them as input in downscaling exercises. The use of

common EOFs as a framework for downscaling also provides a quality assessment (??), but extending them to larger multi-
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model ensembles provides a more comprehensive assessment of the entire ensemble. The repeated analysis for different spatial

domains gave similar conclusions as those presented here for the 5◦W–45◦E and 55–72◦N domain and the Barents Sea region.

2.2 Discussion

Linear algebra, eigenfunctions, and EOFs are well-established and versatile mathematical concepts, but we argue that there

still are innovative ways of applying them in data analysis. In these demonstrations, they provided the basis for a framework,

referred to as ’common EOFs’ that enabled simple data comparisons with an emphasis on the most salient features in the data.

✿

It
✿✿

is
✿✿

in
✿✿✿✿✿✿

general
✿✿✿✿✿✿✿

possible
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

does
✿✿✿

not
✿✿✿

fall
✿✿✿✿✿

inside
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿

for
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿

PCs,
✿✿✿

for
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿

EOFs

✿✿✿✿✿

would
✿✿✿✿

give
✿✿✿✿

low
✿✿✿✿✿✿✿✿

fractional
✿✿✿✿✿✿✿✿

variances
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

leading
✿✿✿✿✿

modes
✿✿✿✿

and
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

amplitudes
✿✿

in
✿✿✿

the
✿✿✿✿

PCs.
✿

In a way, one could refer to

their application
✿✿

the
✿✿✿✿✿✿✿✿✿✿

application
✿✿

of
✿✿✿✿✿✿✿

common
✿✿✿✿✿✿

EOFs as a kind of machine learning (ML) approach to "Big data", characterised

by large data volumes, diverse sources, and speedy analysis.

Our demonstrations revealed a spread in the CMIP GCM ensembles that appeared to be consistent with the ERA5 interannual

variability and a spread that often was close to normally distributed. The different ensemble members were independent of each

other and could be considered as ’random’ in terms of their phase and timing, making the ensemble suitable for representing

the non-deterministic natural variability.
✿✿✿✿✿

From
✿

a
✿✿✿✿✿✿✿✿

physical
✿✿✿✿✿

point
✿✿

of
✿✿✿✿✿

view,
✿✿✿

we
✿✿✿✿✿

know
✿✿✿✿

that
✿✿✿✿

these
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿

reproduce
✿✿✿✿✿✿

chaotic
✿✿✿✿

and

✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿✿✿✿✿

variability
✿✿

on
✿✿✿✿✿✿✿

decadal
✿✿✿✿✿✿

scales
✿✿✿

and
✿✿✿✿

this
✿✿

is
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿

apparent
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿✿✿

made
✿✿✿

up
✿✿

of
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

with
✿✿✿✿

one

✿✿✿✿✿✿✿

common
✿✿✿✿✿✿

model
✿✿✿

(?).
✿✿✿✿

For
✿✿✿✿✿✿✿✿✿✿

multi-model
✿✿✿✿✿✿✿✿✿✿

ensembles,
✿✿✿✿✿

there
✿✿

is
✿✿✿✿

also
✿✿✿

the
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿✿

component
✿✿

in
✿✿✿✿✿

terms
✿✿

of
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

differences.
✿✿✿

In

✿✿✿

one
✿✿✿✿✿✿✿

respect,
✿✿✿

we
✿✿✿✿✿✿

should
✿✿✿✿✿✿

indeed
✿✿✿✿✿

expect
✿✿

a
✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

interdependence
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

climate
✿✿✿✿✿✿

models
✿✿✿✿✿

since
✿✿✿✿

they
✿✿✿

are
✿✿✿✿✿

built
✿✿

to
✿✿✿✿✿✿✿✿

represent
✿✿✿

the

✿✿✿✿

same
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿

system,
✿✿✿

but
✿✿✿✿

what
✿✿✿

we
✿✿✿✿✿✿

really
✿✿✿✿✿

desire
✿✿

is
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

aspects
✿✿✿

that
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

well-established
✿✿✿

and
✿✿✿✿✿✿✿✿

uncertain
✿✿✿✿✿✿

should
✿✿✿✿✿✿✿

involve

✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

choices/methods
✿✿

so
✿✿✿✿

that
✿✿✿✿

they
✿✿✿✿

also
✿✿✿✿✿✿✿

provide
✿✿

a
✿✿✿✿✿✿

decent
✿✿✿✿✿✿

sample
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿

space
✿✿✿

of
✿✿✿✿✿✿✿✿✿

unknowns.
✿✿✿✿

But
✿✿

in
✿✿✿✿✿✿✿✿

practice,

✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

groups
✿✿✿✿

often
✿✿✿✿

copy
✿✿✿✿✿✿

others’
✿✿✿✿✿✿✿✿

attempts
✿✿

so
✿✿✿

that
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿

are
✿✿✿

not
✿✿

so
✿✿✿✿

well
✿✿✿✿✿✿✿

sampled
✿✿✿

(?)
✿

.
✿✿✿✿✿✿✿✿✿✿✿

Nevertheless,
✿✿✿

the
✿✿✿✿✿✿✿✿

simulated

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

stochastic/chaotic
✿✿✿✿✿✿✿

regional
✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

appears
✿✿

to
✿✿✿

be
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

pronounced,
✿✿

as
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿

time
✿✿✿✿✿

series
✿✿

in
✿✿✿✿✿✿

Figures
✿✿✿✿

4–7
✿✿✿✿✿

seem
✿✿

to

✿✿✿✿✿✿✿

indicate,
✿✿

so
✿✿✿✿✿

these
✿✿✿✿✿✿✿

concerns
✿✿✿

are
✿✿✿✿✿✿✿✿✿

secondary
✿✿

in
✿✿✿

this
✿✿✿✿✿

case.

The independence between each model’s representation of random variability together with the ensemble spread being

approximately normal suggests that the salient information about future projections can be summarised by two parameters:

the ensemble mean µe and the ensemble standard deviation σe. They can provide an estimate of a confidence interval µe ±

2σe, and if the ensemble spread is
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿

normally distributed we can use them to project a pdf ∼N (µe,σ
2

e) for

future aggregated TAS, PR or PSL statistics on an annual or seasonal basis. This illustrates the difference between data and

information, where the collection of time series for all ensemble members constitutes data of the ensemble, whereas µe ± 2σe

provides information about the ensemble. Hence, users of regional climate projections may not necessarily need to adapt

their analysis to many individual simulations if they can get away with information about potential future outlooks in terms

of a robust confidence interval. A pdf representing the ensemble distribution may also be used as a component of Bayesian

inferences to estimate probabilities for e.g. heatwaves or heavy 24-hr precipitation (??).

The common EOF framework also suggested that CMIP6 models were better than CMIP5 models at reproducing the mean

seasonal cycle in TAS, PR, and PSL over the Nordic region. Additionally, our analysis proposed that both CMIP5 RCP4.5 and
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CMIP6 SSP245 multi-model ensembles provide an approximate description of typical predictors on spatial domains relevant

for empirical-statistical downscaling over the Nordic countries. The information about improved simulations in CMIP6 is in

line with ? who found that the total cloud cover, cloud water path, and cloud radiative effect, were slightly better in the CMIP6

multi-model mean than the CMIP5 ensemble mean, in terms of mean bias, pattern correlation, and relative root-mean-square

deviation. They also noted that an underestimation of cloud cover in stratocumulus regions is still a problem in CMIP6. The

clouds simulated by the CMIP5 models were reported to be too few and too reflective over the Southern Ocean, but were

significantly improved in CMIP6.

The common EOF approach and the esd-tool (?) represent a complement to already existing analysis tools such as the

GCMeval tool (?) or the Earth System Model Evaluation Tool (ESMValTool) (??). The latter performs common preprocessing

operations and diagnostics that include tailored diagnostics and performance metrics for specific scientific applications. It

furthermore provides diagnostics for the mean annual cycle, pattern correlation, clustering, and EOFs, with RMSE estimates

on a grid-by-grid basis (or spatial means of grid-box estimates) rather than in terms of covariance structure such as in Figure 1

and Table 1. ESMValTool also offers regression of monthly mean geopotential heights onto the leading principal component

monthly averaged to represent the Northern Annular Mode (NAM), rather than a common EOF approach similar to that

presented in Figure 4. It makes use of the Climate Variability Diagnostics Package (CVDP) that computes key metrics of

internal climate variability in a set of user-specific model simulations and observational data sets, providing spatial patterns

and time series (?). Although it offers a large collection of diagnostics and performance metrics for atmospheric, oceanic,

and terrestrial variables for the mean state, trends, and variability, it does not include common EOFs. While the ESMValTool

is designed for the evaluation of climate model performance on a more individual basis rather than how well multi-model

ensembles represent the world, the common EOF framework proposed here can be used to assess whether the multi-model

ensemble is fit for representing climate change and non-deterministic climate variability. Hence, the common EOF framework

can be designed to assess model results with a focus on their application for climate change adaptation. The ESMValTool

has been developed as a community effort currently involving more than 40 institutes with a rapidly growing developer and

user community. It offers more predefined functionalities than the esd-package, but the esd-package is more generic, flexible,

and also more geared towards empirical-statistical downscaling (ESD). ESD can also provide diagnostics about GCMs (?),

and the esd-package is designed to deal with a more varied set of data types than just GCM output, as it has evolved from a

previous open-source R-library (?). Both these tools can likely benefit from closer collaboration than in the past, as they seem

to complement each other. Moreover, common EOFs make it easy to avoid matrices of many small maps ("stamp collections")

that are difficult to digest, since comparisons can be limited to time series and their differences in terms of statistics. Finally,

common EOFs also give a visual impression of simulated quality, as well as a framework for more objective tests when applied

to their principal components.

✿✿✿

The
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿✿

presented
✿✿✿✿

here
✿✿✿

for
✿✿✿✿✿

TAS
✿✿✿✿✿✿✿✿

represent
✿

a
✿✿✿✿✿✿

typical
✿✿✿✿✿✿

“easy”
✿✿✿✿

case
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿

is
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

overwhelmingly
✿✿✿

by

✿✿

the
✿✿✿✿

first
✿✿✿✿✿

EOF
✿✿✿

and
✿✿✿✿✿✿

ERA5
✿✿✿

lies
✿✿✿✿

well
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

middle
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

distribution.
✿✿✿✿

The
✿✿✿✿✿✿

results
✿✿✿

for
✿✿✿

PR
✿✿✿✿✿✿

exhibit
✿✿

a
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿

complicated

✿✿✿✿✿✿✿

situation
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

interannual
✿✿✿✿✿✿✿✿

variation
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿

higher-order
✿✿✿

PCs
✿✿✿✿✿✿✿✿

represent
✿

a
✿✿✿✿✿✿

greater
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿

structure,
✿✿✿✿

and
✿✿

in
✿✿✿

our

9



✿✿✿✿

case,
✿✿✿

the
✿✿

20
✿✿✿✿✿✿✿

leading
✿✿✿✿✿

modes
✿✿✿✿✿✿✿

merely
✿✿✿✿✿✿✿✿

accounted
✿✿✿

for
✿✿✿✿✿

about
✿✿✿✿

80%
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

variance.
✿✿✿

For
✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿✿✿✿✿

evaluation,
✿✿✿

the
✿✿✿✿✿✿

RMSE
✿✿✿✿✿

score

✿✿✿✿✿

metric
✿✿✿

em
✿✿✿✿✿

needs
✿✿

to
✿✿✿✿✿✿✿

include
✿✿✿✿✿✿✿✿✿✿

higher-order
✿✿✿✿

PCs,
✿✿✿✿

and
✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿✿✿✿✿

Equation
✿✿

1,
✿✿✿

we
✿✿✿

get

em =

√

∑N

i=1
Λ2

i

∑

t(Vm,i,t −V1,i,t)2

N
,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2)

✿✿✿✿✿

where
✿✿

N
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿

modes,
✿✿

Λ
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

eigenvector,
✿✿✿

and
✿✿✿✿✿

Vm,i,t
✿✿

is
✿✿✿

the
✿✿✿

ith
✿✿✿

PC
✿✿✿

for
✿✿✿✿✿✿

model
✿✿

m
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

references
✿✿✿✿

that

✿✿✿✿✿✿

consists
✿✿✿

of
✿

a
✿✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿

over
✿✿✿✿

time
✿✿✿✿✿✿

period
✿✿

t.
✿✿✿✿

The
✿✿✿✿✿✿

leading
✿✿✿✿✿✿

EOFs
✿✿✿

are
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿

fractions
✿✿

of
✿✿✿✿✿✿✿

variance
✿✿✿✿

and
✿✿✿✿✿✿

higher

✿✿✿✿✿✿✿✿✿

eigenvalues
✿✿✿

Λi,
✿✿✿✿✿✿✿

whereas
✿✿✿

the
✿✿✿✿✿✿

RMSE
✿✿

is
✿✿✿✿

less
✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿

higher-order
✿✿✿✿

ones
✿✿✿✿

with
✿✿✿

low
✿✿✿

Λi.
✿

✿✿✿

One
✿✿✿✿✿✿

choice
✿✿✿✿✿✿✿✿✿

regarding
✿✿✿

the
✿✿✿

use
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿

approach
✿✿✿

for
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

is
✿✿✿

to
✿✿✿✿✿✿

include
✿✿✿✿

only
✿✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿✿✿✿

projections
✿✿

in
✿✿✿

the
✿✿✿✿✿

EOF

✿✿✿✿✿✿✿

analysis,
✿✿✿✿

and
✿✿✿✿

then
✿✿

to
✿✿✿✿✿✿

project
✿✿✿✿

one
✿✿

or
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿✿✿

reanalyses
✿✿✿✿

onto
✿✿✿✿✿

these
✿✿✿✿✿✿✿

patterns.
✿✿✿✿✿

This
✿✿✿✿✿✿✿

variation
✿✿✿

of
✿✿✿

our
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿

would

✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿✿✿

“cleaner”
✿✿✿✿✿✿✿✿

approach
✿✿✿

not
✿✿

to
✿✿✿✿✿✿✿

meddle
✿✿✿✿✿✿✿✿✿

projections
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

references,
✿✿✿✿✿✿✿✿

especially
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿✿

projections
✿✿✿✿✿✿✿

involve
✿✿✿✿

other
✿✿✿✿

time
✿✿✿✿✿✿✿

periods

✿✿✿

and
✿✿✿✿✿

future
✿✿✿✿✿✿✿✿

outlooks.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿

the
✿✿✿✿✿✿✿✿

exclusion
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿

the
✿✿✿✿✿

EOFs
✿✿✿✿✿✿

would
✿✿✿✿✿✿

hardly
✿✿✿✿

make
✿✿✿✿

any
✿✿✿✿✿✿✿✿✿✿

appreciable

✿✿✿✿✿✿✿✿

difference
✿✿✿✿

with
✿✿✿✿✿

such
✿✿✿

vast
✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿

as
✿✿✿✿

used
✿✿✿✿

here
✿✿✿

and
✿✿✿✿✿

with
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿

time
✿✿✿✿✿✿✿✿

coverage.
✿✿

In
✿✿✿

our
✿✿✿✿✿

case,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

hypothesis
✿✿✿✿

was
✿✿✿✿

that
✿✿✿

the

✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿

and
✿✿✿✿✿✿

model
✿✿✿

data
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

statistics,
✿✿✿✿✿✿✿✿

variable,
✿✿✿✿✿

region
✿✿✿

and
✿✿✿✿

time
✿✿✿✿✿✿

period,
✿✿✿✿

and
✿✿✿✿✿

hence
✿✿✿✿✿✿

should
✿✿✿✿

have
✿✿✿✿✿✿

similar

✿✿✿✿✿✿✿✿

properties.
✿✿

It
✿✿

is
✿✿✿

of
✿✿✿✿✿

course
✿✿✿✿✿✿✿✿

possible
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

GCMs
✿✿✿✿

and
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

differ
✿✿

so
✿✿✿✿✿

much
✿✿

so
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿

is
✿✿✿✿✿✿✿

outside
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿

spread,
✿✿✿✿✿

which
✿✿✿✿✿✿

would
✿✿✿✿✿✿✿

indicate
✿✿✿

that
✿✿✿✿

they
✿✿✿✿✿✿

belong
✿✿

to
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿✿

populations.
✿✿✿✿

This
✿✿✿✿✿✿✿

matters
✿✿

for
✿✿✿

the
✿✿✿✿

first
✿✿✿✿

PCs
✿✿✿✿✿✿✿✿✿✿

representing
✿✿

a

✿✿✿✿

large
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿✿✿✿✿✿

variance,
✿✿✿

but
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

ignored
✿✿

for
✿✿✿✿✿✿✿✿✿

high-order
✿✿✿✿

PCs
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

negligible
✿✿✿✿✿✿✿

variance
✿✿✿✿

that
✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿✿✿

“numeric

✿✿✿✿✿✿

noise”.

3

We present some demonstrations of how common EOFs can be applied in global climate model evaluation and use them to show

that the CMIP6 SSP245 multi-model ensemble represents an improvement over CMIP5 RCP4.5 when it comes to reproducing

the mean seasonal cycle in the near-surface temperature, precipitation, and mean sea-level pressure over the Nordic countries.

The analysis based on common EOFs also suggests that both CMIP ensembles are able to reproduce interannual variability

of these variables over the Nordic region and that they seem to embrace the observed historical trend seen in the ERA5

reanalysis. Common EOFs are not widely used within the climate research community and we propose that they may benefit

further research through innovative applications. A motivation for using common EOFs was to assess the value of multi-model

ensembles of climate models for the application in climate services, rather than focusing on single models. Hence, they were

used to answer the question of whether the said CMIP multi-model ensembles are able to reproduce the observed statistics of

the regional climate that is necessary for supporting climate change adaptation.

. Both R-markdown scripts with embedded R-code, output in the PDF-format and data in R-binary are available from FigShare (?).
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. A couple of YouTube demonstrations on common EOFs are available from https://youtu.be/32mtHHAoq6k and https://youtu.be/E01hthVL9pY.

. REB conceptualised the work, carried out the analysis, and participated in the writing; KMP and AM have contributed to the write-up and

the development of the esd-package used to compute common EOFs and carry out the analysis; JL, AD and OAL contributed to the writing

process.

. None.

. Several datasets (CMIP5 and CMIP6) used in this work were obtained from the CMIP6 project hosted on the Earth System Grid Federation

https://esgf-data.dkrz.de/esg-search/search/ and CMIP5 through the KNMI ClimateExplorer https://climexp.knmi.nl/start.cgi. The ERA5

reanalysis was obtained through the Copernicus Climate Change Services (C3S) Climate Data Store (CDS): https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-

The analysis was implemented in the R-environment (?) and R-studio https://posit.co/downloads/.
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https://youtu.be/32mtHHAoq6k
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form
https://posit.co/downloads/

