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Abstract. This study analyzes the quality of simulated historical precipitation across the contiguous United States (CONUS)
in a 12-km Weather Research and Forecasting model version 4.2.1 (WRF v 4.2.1)-based dynamical downscaling of the fifth-
generation ECMWF atmospheric reanalysis (ERAS5). This work addresses the following questions: First, how well are the
3- and 24-hr precipitation characteristics (diurnal and annual cycles, precipitation frequency, annual and seasonal mean and
maximum precipitation, and distribution of seasonal maximum precipitation) represented in the downscaled simulation, com-
pared to ERA5? And second, how does the performance of the simulated WRF precipitation vary across seasons, regions, and
timescales? Performance is measured against the NCEP/EMC 4-km Stage IV and PRISM data on 3-hr and 24-hr timescales,
respectively. Our analysis suggests that the 12-km WRF exhibits biases typically found in other WRF simulations, including
those at convection-permitting scales. In particular, WRF simulates both the timing and magnitude of the summer diurnal pre-
cipitation peak as well as ERAS over most of the CONUS, except for a delayed diurnal peak over the Great Plains. As compared
to ERAS, both the month and the magnitude of the precipitation peak annual cycle are remarkably improved in the downscaled
WREF simulation. WREF slightly overestimates 3- and 24-hr precipitation maximum over the CONUS, in contrast to ERAS
which generally underestimates these quantities mainly over eastern half of the CONUS. Notably, WRF better captures the
probability density distribution (PDF) of 3- and 24-hr annual and seasonal maximum precipitation. WRF exhibits seasonally-
dependent precipitation biases across the CONUS, while ERA5’s biases are relatively consistent year-round over most of the
CONUS. These results suggest that dynamical downscaling to a higher resolution improves upon some precipitation metrics,
but is susceptible to common regional climate model biases. Consequently, if used as input data for domain-specific models,

we suggest moderate bias-correction be applied to the dynamically downscaled product.
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1 Introduction

Dynamical downscaling refers to the use of regional climate models forced with initial and lateral boundary conditions derived
from either a global climate model or reanalysis to generate high-resolution climate output (Giorgi and Mearns, 1991). These
high-resolution simulations add value through better representation of regional weather and climate phenomena, especially
over regions of complex and heterogeneous topography (Doblas-Reyes et al., 2021). For example, better representation of
local topography, water bodies and land-sea contrast improves local scale processes such as fine scale convection, land-sea
breeze, and nonlinear interactions between local, mesoscale and large-scale processes (Caldwell et al., 2009; Di Luca et al.,
2015; Ashfaq et al., 2016; Prein et al., 2016; Bozkurt et al., 2019; Rastogi et al., 2022). Both the higher resolution and improved
representation of physical processes facilitate the study of future changes in the mean and variability of the weather and climate
systems (Barsugli et al., 2013) and distilled user-oriented regional climate information on local and regional scales (Rhoades
et al., 2020; Doblas-Reyes et al., 2021; Ranasinghe et al., 2021).

Though increased resolution in downscaled climate models is fundamentally important for their utility at regional scales, it is
not sufficient for ensuring reliable and accurate information. The biases in regional climate model output are well documented.
These biases can originate from various sources, including the lateral boundary conditions (Christensen et al., 2008; Schoetter
et al., 2012; Giorgi, 2019) and parameterization schemes (Iguchi et al., 2017; Kong et al., 2022). The biases may also vary
with variable, region and season of interest (Castro et al., 2005; Prein et al., 2015; Diaconescu et al., 2016; Srivastava et al.,
2020, 2021, 2022). High resolution and high quality climate data have many uses for both advancing process-understanding and
for informing operations, particularly at local to regional scales. The ECMWF atmospheric reanalysis (ERAS; Hersbach et al.,
2020) represents a great stride forward in the development of a complete historical meteorological dataset with sufficiently high
temporal and spatial resolution to represent many forms of extreme weather and their impacts. However, for investigating water
resource availability, mountain snowpack, and land-atmosphere fluxes, particularly in the context of multi-sectoral dynamics,
even finer grid spacing is required. Given the broad interest among scientists and stakeholders in developing regional climate
data products at 1/8° grid spacing based on high-quality reanalysis, it is important to investigate to what degree (if any) the
dynamically downscaled data improves upon the original ERAS product. Such a study is further valuable for informing other
dynamical downscaling efforts, such as the international Coordinated Regional Downscaling Experiment (CORDEX) program
(Gutowski Jr. et al., 2016).

In this study we evaluate historical precipitation over the contiguous United States (CONUS) in a 12-km Weather Research
and Forecasting model version 4.2.1 (WRF v 4.2.1)-based dynamical downscaling of ERAS over the period 1980-2020. This
WRF-based historical simulation is part of an ensemble data product (Jones et al., 2022) that includes thermodynamic global
warming (TGW) simulations under projected climate forcings (Jones et al., under review). In this paper, we specifically ask:
(1) How well are the 3- and 24-hr precipitation characteristics (diurnal and annual cycles, precipitation frequency, annual and
seasonal mean, and maximum precipitation, and distribution of seasonal maximum precipitation) represented in the downscaled
WREF simulation, in comparison to ERA5? (2) How does the performance of the simulated WRF precipitation vary across

seasons, regions, and timescales? The performance of 3-hr ERAS and WREF precipitation simulations are measured against the
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NCEP/EMC 4KM Gridded Stage IV Data (Stage IV). The performance of 24-hr ERAS and WREF precipitation simulations
are measured against the Oregon State University Parameter-Elevation Regressions on Independent Slopes Model (PRISM)
dataset.

The specific questions above are motivated by several important considerations. Most previous studies have focused on
the accuracy of the simulated precipitation on daily or longer timescales (e.g., Bukovsky and Karoly, 2009; Caldwell et al.,
2009; Rhoades et al., 2020; Srivastava et al., 2021, 2022; Gensini et al., 2022), likely because of availability of data on daily
timescales. However, many of the most high-impact precipitation-related physical processes (such as short-duration convective
storms leading to extreme precipitation events or precipitation intermittency) occur at hourly timescales (Westra et al., 2013;
Trenberth et al., 2017), and conclusions drawn from analyzing longer time-scale precipitation do not automatically translate to
shorter timescales (Barbero et al., 2019). Further, regional climate models are known to be sensitive to both the resolved (e.g.,
horizontal resolution and simulation domain) and unresolved parameters (e.g., convection parameterization schemes), and so
particular regional climate model configurations must be examined before they can be used for regional application (Giorgi
and Mearns, 1999; Liang et al., 2004). The 12km WRF simulation examined in this study uses a convective parameterization,
which is considered to be a major source of model biases on both subdaily and daily timescales (Dirmeyer et al., 2012; Hanel
and Buishand, 2010; Knist et al., 2020). Moreover, a seasonal analysis of precipitation is important as, generally, both the
observation-based datasets (e.g., reanalyses) and models (e.g., WRF) better simulate precipitation in winter than in summer,
mainly because winter precipitation is mostly dominated by predictable large scale stratiform systems (Ebert et al., 2007) and
summer precipitation is mainly influenced by unpredictable small-scale convective cells (Prein et al., 2015; Beck et al., 2019).

The rest of the paper is organized as follows: Section 2 describes the data and methodology used. Results are presented
and discussed in section 3, and also tabulated in Tables 2 and 3, then summarized in section 4. Figures for percent biases are

included in the Supplementary Material.

2 Data and Method
2.1 Data
2.1.1 WRF downscaling of ERAS

The Weather Research and Forecasting model version 4.2.1 is a state-of-the-art, fully compressible, non-hydrostatic, mesoscale
numerical weather prediction system designed for both atmospheric research and operational forecasting applications (Ska-
marock et al., 2008). For this study, the WRF simulation is carried out at 12-km horizontal grid spacing and covers the 1980-
2020 period (Fig. 1). The physical parameterizations chosen are: Thomson microphysics (Thompson and Eidhammer, 2014),
the Tiedke cumulus parameterization (Tiedtke, 1989; Zhang et al., 2011), the Mellor-Yamada-Janjic boundary layer scheme
(Janji¢, 1994), and the Eta similarity surface layer (Janji¢, 1994). Noah is employed for modeling the land surface (Tewari
et al., 2004). WRF is further coupled with an urban canopy model (UCM), which resolves urban surfaces, and its land use/land

cover is based on National Land Cover Data (NLCD, Dewitz, 2021). Studies suggest that urbanization can enhance or suppress
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precipitation over different regions, situations, and urbanization phases. Some examples are: Wang et al. (2015) show that
urban warming during the early urbanization phase promotes increased sensible heat flux, enhanced convergence, and vertical
motion, leading to urban modification of rainfall. Li et al. (2022) find that urbanization suppresses summer precipitation from
mesoscale convective systems, isolated deep convection, and non-convective systems in the Mid-Atlantic region east of the
Rocky Mountains. Georgescu et al. (2021) report that physical growth of the built environment can either enhance or suppress
extreme precipitation across CONUS metropolitan regions.

The initial and boundary conditions are obtained from the ERAS dataset (Hersbach et al., 2020). ERAS is a fifth-generation
ECMWEF reanalysis product that assimilates a suite of observations (e.g., aircraft, in situ, and satellite) into the Integrated
Forecasting System (IFS) to produce hourly meteorological variables on a regular 0.25 degrees lat-lon grid with 137 vertical

levels.
2.1.2 Reference datasets

To evaluate the performance of 3-hr WRF precipitation, NCEP/EMC 4KM Gridded Data Stage IV Data (Stage IV) is used as
reference (Lin and Mitchell, 2005). Stage IV is available at hourly temporal resolution and at 4 km horizontal grid spacing.
Stage IV is generated at NCEP from the regional hourly and 6-hourly multi-sensor (radar + gauges) precipitation analyses
produced by the 12 River Forecast Centers (RFCs) over the Continental United States. Beck et al. (2019) report that, to
minimize systematic biases in Stage IV data, the dataset is rescaled to match its long-term mean with that of the PRISM
dataset (details given below) over the evaluation period (2008-2017).

The performance of 24-hr WRF precipitation is evaluated against the Oregon State University Parameter-Elevation Regres-
sions on Independent Slopes Model (PRISM) dataset at 4km grid spacing (Daly et al., 2008). The daily PRISM data uses in
situ data with a digital elevation model to account for the complex meteorological response from orography, rain shadows,
temperature inversions, slope aspect, coastal proximity, and other local features.

For comparison, ERAS, Stage IV and PRISM precipitation datasets are interpolated to the 12-km WREF grid using first-order

conservative remapping (Jones, 1999).
2.2 Method

In this study, we estimate precipitation metrics that characterize the frequency, total amount, intensity, and timing of the mean
and extreme precipitation. The metrics are summarized in Table 1. We calculate the mean precipitation amount for 3- and 24-hr
durations using all precipitation values, including zeros. We use 0.25mm and 1mm thresholds for estimating the frequency and
mean precipitation during wet 3-hr and 24-hr periods, respectively. We use these thresholds to minimize the effect of excessive
drizzle being present in regional climate models and reanalyses (e.g., Frei et al., 2006; Rajczak et al., 2013), and also to account
for observational constraints (Schir et al., 2016). The differences between the mean precipitation amount and the mean wet-3-
hr/ wet-24-hr precipitation highlight the biases that result from excessive drizzle in the dataset. The precipitation thresholds in
the study are consistent with those in previous studies (e.g., Rajczak et al., 2013; Rajczak and Schir, 2017; Xiao et al., 2018;
Kooperman et al., 2022).
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2.2.1 Diurnal and annual cycle of precipitation

The diurnal cycle of precipitation is estimated by fitting the first two harmonics to the monthly mean 3-hr precipitation. Simi-
larly, the annual cycle of precipitation is estimated by fitting the first two harmonics to the monthly mean 24-hr precipitation.
The timing of the diurnal peak of the 3-hr precipitation is expressed in terms of local solar time (LST). 12 noon LST is the time

when the Sun is highest in the sky at a location. LST hours are obtained from UTC hours as follows (Watters et al., 2021):
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where, tyrc and t7 g1 are the coordinated universal time and local solar time, respectively. A is the longitude, in degrees.

In this work, the subdaily precipitation is examined for the 2003-2019 period and the daily precipitation is analyzed for the
2001-2020 period. These periods are chosen for two considerations. First, the hourly Stage IV data are available only after
2002. Second, any variability arising from the trend may be assumed to be insignificant in the 20-year record. The results
are summarized for the seven National Climate Assessment (NCA) regions over the CONUS (https://www.globalchange.gov/
content/nca5-regions). The seven NCA regions are: NW (northwest), SW (southwest), NGP (northern Great Plains), SGP
(southern Great Plains), MW (Midwest), SE (southeast), and NE (northeast).

3 Results
3.1 Diurnal cycle of precipitation

Fig. 2 shows the peak time of the JJA diurnal precipitation peak (TDPP) in ERAS5, WRF and Stage IV datasets (in hours at
LST). We chose to analyze the JJA diurnal cycle because the diurnal variations are stronger in summer than in winter (Dai
et al., 1999). Presumably, this is because winter variations of precipitation are dominated by frontal cyclones, and a frontal
passage can occur at any time of day, thereby masking any diurnal cycle present. During summer, the frontal cyclone passages
are much less frequent, allowing the diurnal cycle to be more visible (e.g., Kunkel et al., 2012). The observed (Stage IV) spatial
pattern of TDPP shows that, mostly, precipitation peaks in the afternoon over most of the CONUS, except for regions to the
east of the Rocky Mountains (the Great Plains and MW regions). The eastward propagating shift in nighttime diurnal peak
east of the Rockies is consistent with mesoscale convective systems (MCSs) originating over the Rockies and moving eastward
(Dai et al., 1999; Tan et al., 2019; Scaff et al., 2020; Watters et al., 2021). ERAS generally reproduces the spatial pattern of the
observed diurnal cycle, but the peak occurs earlier along the northern boundaries of the Northern Great Plains (NGP) and west
of the Great Lakes in the Midwest (MW). The largest biases in ERAS are found between 100°-85°W, also noted in Watters
et al. (2021) who compared biases in ERAS against the Multi-Radar Multi-Sensor (MRMS) gauge-adjusted ground-based radar
network product. Similar to ERAS, WRF simulates the observed timing of the diurnal precipitation peak everywhere except
over the regions east of the Rockies. Over the regions falling east of 100°W, the observed late night to early morning peak in the

diurnal cycle is delayed in the WRF simulation. Similar behavior was also noted in the convection-permitting WRF simulation
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of Scaff et al. (2020). The slow propagation eastward of convective systems is driven by cloud-scale phenomena that are not
necessarily well captured by the models used to generate datasets.

The observed magnitude of the JJA precipitation diurnal cycle (using MDPP; precipitation magnitude during the peak of
the diurnal cycle) is larger in the eastern CONUS compared to the western CONUS (Fig. 3). The largest MDPP magnitudes
are observed along the Gulf coast and in Florida. ERAS simulates the observed spatial pattern of the diurnal precipitation mag-
nitude very well. Watters et al. (2021) found that ERAS generally overestimates the magnitude over much of the CONUS in
comparison to the Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset, possibly due to reliance on the convection
parameterization. The differing performance of ERAS against the two different observational datasets (as noted in Watters
et al. (2021) and our study) also points to uncertainties arising due to differences in reference datasets. WRF does capture the
spatial pattern of the observed diurnal precipitation peak magnitude over most of the CONUS; except over the Southeast where
it overestimates the magnitude of the precipitation peak, and over the central Great Plains region, where it underestimates the
magnitude more than ERAS. The dry biases over the midwest and parts of the central CONUS in WREF diurnal precipitation
magnitude are consistent with those of Scaff et al. (2020), suggesting that current climate models, including WREF, underesti-
mate MCS frequencies in summertime weak synoptic-scale forced conditions (Prein et al., 2020). The wet MDPP bias in WRF
over the SE is also observed in previous WRF-based studies (e.g., Wang and Kotamarthi, 2014; Scaff et al., 2020). Sun and
Bi (2019) showed that the WRF simulation with the Tiedke cumulus parameterization scheme exhibits an earlier and stronger
diurnal cycle than the observed over land regions between 25°S and 25°N in boreal summer. As the convective scheme is the
most crucial model component in capturing the diurnal cycle of precipitation (Shin et al., 2007); and precipitation from cumu-
lus parameterization schemes dominates over the SE CONUS (Iguchi et al., 2017), we suspect that cumulus parameterization

in the current WRF simulation may be responsible for the wet bias over the SE region.
3.2 Annual cycle of precipitation

Fig. 4 shows the peak time (calendar month) of the monthly averaged precipitation (TMPP; the annual cycle of the monthly
averaged precipitation). Using PRISM as a reference, maximum monthly precipitation occurs during winter season over the
western CONUS and parts of Arkansas, Mississippi, Louisiana, and the NE CONUS. The majority of the Great Plains is
dominated by the late spring and early summer precipitation, whereas the Southeast region gets most of the rainfall in the
summer season. This high-resolution spatial map of the annual cycle of monthly precipitation is consistent with previous
studies (e.g., Bukovsky and Karoly, 2007). Stage IV also exhibits a similar annual precipitation cycle as PRISM; however,
differences from PRISM emerge over multiple regions across the US such as SW (Utah) , NE (Maine), and MW (northern and
eastern boundaries of Lake Michigan). A few sources of biases in Stage IV may affect its results shown in Fig. 4 and subsequent
figures. For e.g., a discontinuity in the mosaic-making process exists over a few regions such as over oceans, and areas that
cover the Great Lakes region. A few western RFCs, including Colorado Basin RFC (CBRFC) do not use radar estimates due
to poor coverage over mountainous regions. Moreover, the inherent biases in radar rainfall estimation due to factors such as
lack of radar coverage, brightband contamination, and biases existing in the algorithms, are not completely avoidable (Nelson

et al., 2016; Prat and Nelson, 2015). Both ERAS and WREF are able to simulate the spatial pattern of peak time of the annual
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cycle. However, WRF outperforms ERAS5 in simulating the spatial structure of the annual cycle, as it greatly improves ERAS
biases over the NE, and parts of the SE and Great Plains regions.

The spatial pattern of the magnitude of the monthly averaged precipitation peak (MMPP) is shown in Fig. 5. The maximum
monthly average precipitation occurs along the western coast, Sierra Nevada mountains and in the Southeastern region. Stage
IV does capture the spatial pattern of the referenced precipitation magnitude; it exhibits underestimated precipitation (dry bias)
of 20% or more almost everywhere across the CONUS. The largest percent biases exist over the SE and SW regions (Fig. 5 and
Supplementary Fig. S2). ERAS underestimates the precipitation magnitude over the NE and SE regions, and overestimates it
over the Southern Great Plains. On the other hand, WRF captures the spatial pattern of the magnitude very well across CONUS,
and exhibits much lower biases across the CONUS than ERAS.

In summary, both the timing and magnitude of the monthly averaged precipitation peak are improved in the downscaled

WREF simulations compared to ERAS.
3.3 Evaluation of 3-hr precipitation

Fig. 6 shows the precipitation frequency of 3-hr precipitation (PF3h). The precipitation frequency is computed as the counts
of 3-hr precipitation events with magnitude greater than 0.25 mm expressed as a percentage of the total number of 3-hr time
steps. Compared with Stage IV, ERAS5 overestimates the precipitation frequency by 3-10% in all seasons over most of the
CONUS except over the NW and SW. It does underestimate the frequency over the hilly areas of the NW regions in JJA. WRF
also exhibits more frequent precipitation mostly over NGP and MW regions in DJF and MAM. In contrast, WRF consistently
underestimates precipitation frequency along the west coast. Also, notably, WRF overestimates the frequency over the SE in
MAM and JJA and underestimates it in DJF. The spatial pattern of biases in the annual 3-hr precipitation frequency in WRF
is consistent with Kong et al. (2022), who found that precipitation frequency in WRF is more sensitive to the convective and
radiation schemes than the precipitation amount.

Pmean3h (the mean of all 3-hr precipitation values including zeros) is shown in Fig. 7. In Stage IV data, the 3-hr mean pre-
cipitation is maximum over the coastal and mountainous regions of the western US (Washington, Oregon, and Sierra Mountains
of California). The eastern half of the CONUS experiences more 3-hr average precipitation than the western half (except in
the coastal and mountainous regions). The maximum values of Stage IV 3-hr precipitation observed along the northwest-
ern US states are missing in the satellite-derived and bias-corrected gridded Climate Prediction Center Morphing technique
(CMORPH) dataset, probably due to the insufficient representation of orography at 0.25° x 0.25° grid spacing (Kong et al.,
2022). ERAS generally overestimates the 3-hr mean precipitation over much of the CONUS throughout the year. On the other
hand, while its performance is an improvement in many regions, WRF overestimates the precipitation over most of the CONUS
(except SGP) annually or in winter and spring seasons. When compared across seasons, WRF underestimates the summer pre-
cipitation but overestimates the winter precipitation over the SGP region. Moreover, WRF simulates a much larger wet bias
over the SE in summer than in any other season. The spatial pattern of the WRF simulated precipitation frequency is similar to
the mean precipitation amount, suggesting that the subdaily precipitation frequency affects the corresponding subdaily mean

precipitation in WRF. The spatial pattern of annual dry bias in the SGP and wet bias in the SE region is also found in the other
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WREF simulation employing the Tiedke cumulus parameterization scheme along with the Rapid Radiative Transfer Model for
global models (RRTMG) radiation scheme (Kong et al., 2022).

Fig. 8 shows the 3-hr mean for precipitation greater than 0.25mm/3hr (S3hII). As shown for Stage IV, mean S3hlII values
are generally higher than Pmean3h across the CONUS. The highest S3hII values are observed over the SE and SGP regions,
suggesting that 3-hr precipitation in these regions is dominated by drizzling precipitation (< 0.25 mm). Notably, except for
parts of NGP, NW, and SW regions in DJF, ERAS underestimates the mean S3hII over most of the CONUS in all seasons.
This ERAS bias, together with those shown in Figs. 6 and 7 suggest that ERAS suffers from drizzling effect, causing it to
precipitate more frequently but in lesser amounts when it rains. In contrast to ERAS, WRF simulates more S3hlI values across
the CONUS in DJF and less in JJA. Notably, the absolute S3hII biases in WRF are generally lower than those in ERAS in most
of the seasons and regions.

The spatial pattern of the 3-hr annual maximum precipitation (Rx3h) is shown in Fig. 9. Rx3h in Stage IV exhibits higher
values in the eastern half of the CONUS than in the western half. The spatial pattern and the magnitude in Stage IV is similar
to that obtained from the Next-Generation Radar (NEXRAD) dataset in Wehner et al. (2021). ERAS generally underestimates
(mostly within £5mm) the maximum precipitation in all seasons and everywhere. On the other hand, WRF overestimates the
3-hr annual maximum precipitation over the eastern half of the CONUS, but shows clear seasonal variation in its biases over
the western CONUS regions. For example, WRF slightly overestimates the precipitation maxima over parts of the NW, SW,
and the GP regions in DJF, but underestimates the maxima over those regions in JJA. A detailed investigation of biases in
WREF is out of the scope of this paper, but we suspect that WRF biases in the Great Plains may be attributed to underestimated
MCS frequencies (Prein et al., 2020), imperfect cumulus parameterization scheme and biases in the representation of intensity,
location, and diurnal cycle of the low-level jet in 12-km WRF simulation (Lee et al., 2017).

The above analysis of average 3-hr annual maximum precipitation provides little information on whether the datasets rea-
sonably simulate the distribution of the 3-hr annual maximum precipitation. Fig. 10 shows the probability density function
(PDF) of the 3-hr annual maximum precipitation. In each panel, the y-axis uses a log-scale to clearly show higher, less fre-
quent precipitation values. It is apparent from the figures that ERAS5 consistently underestimates extreme precipitation values
over all NCA regions and across all seasons. WRF generally improves on the biases in ERAS by producing higher extreme

precipitation values and thereby bringing the PDF of extreme precipitation values close to the observed PDF.
3.4 Evaluation of 24-hr precipitation

For 24-hr precipitation analysis, we use PRISM as reference data. We also evaluate 24-hr precipitation in Stage IV against
PRISM to quantify observational uncertainty.

Fig. 11 shows the 24-hr precipitation frequency (PF24h). The precipitation frequency is computed from the days when
24-hr precipitation is more than 1 mm/day. Stage IV consistently underestimates (in comparison to PRISM) the precipitation
frequency over most of the CONUS. The largest biases in Stage I'V precipitation frequency are observed over the NGP in winter
and SW throughout the year (Supplementary Fig. S7). The underrepresented precipitation frequency in Stage IV may be related

to its difficulty in detecting light and frozen precipitation across the CONUS and, most notably, in the western US, because
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the precipitation processing system in Stage IV does not distinguish between liquid and frozen hydrometeor types (Smalley
et al., 2014). ERAS consistently overestimates PF24h by more than 5% in all seasons over most of the CONUS except NW
and SW regions. It also underestimates the precipitation frequency over the SW region in summer and fall. In contrast, WRF
underestimates the frequency in the NW and SW regions, and shows frequency biases in other regions that are seasonally
dependent. For example, over the SE, WRF underestimates the frequency in DJF but overestimates it in JJA. Similarly, WRF
overestimates the frequency over NGP and MW in DIJF, but it underestimates the frequency over those regions in JJA. It is
also notable that WRF underestimates the frequency over most of the CONUS in JJA (except SE) and SON. When compared
with the biases in 3-hr precipitation frequency (Fig. 6), the spatial pattern of the biases in ERAS is similar for both 3-hr and
24-hr precipitation. However, the 24-hr precipitation frequency biases in WRF are larger than those for 3-hr precipitation.
This suggests that while ERAS5 tends to exhibit more drizzle (i.e., low intensity precipitation), WRF generally concentrates
precipitation into fewer days of the year than we see in observations.

Biases in 24-hr precipitation mean (Pmean24h) are shown in Fig. 12. Stage IV shows dry bias as compared to PRISM
over most of the CONUS in all seasons, except that it shows wet biases over sporadic locations in NW and SW regions. The
corresponding percent bias in Pmean24h (Supplementary Fig. S8) indicates large Stage IV relative dry biases in the western
CONUS (NGP, NW and SW) in DJF, possibly related to its inability to detect freezing and light precipitation events, as
discussed in the previous subsection. ERAS consistently exhibits a dry bias in 24-hr mean precipitation over the Southeast
throughout the year. When compared with the frequency biases in Fig. 11, it appears that although ERAS precipitates more
frequently than PRISM, it precipitates less during wet days than PRISM. ERAS generally exhibits wet biases over other
regions. Over the NE, ERAS shows dry biases over regions close to the coasts and wet biases over the inland areas — a pattern
that may be associated with the insufficient ability of ERAS5 parameterizations to produce sea breeze-induced precipitation
(Crossett et al., 2020). WRF generally shows dry biases over the Great Plains, exhibiting typical model biases existing in the
state-of-the-art climate models (Srivastava et al., 2020). The spatial patterns of 24-hr frequency biases in WRF (Fig. 11) are
similar to the 24-hr mean precipitation. When compared with ERAS, WRF shows stronger dry biases over the Great Plains
regions, particularly in JJA. It is interesting to note that the spatial pattern of the seasonal 24-hr mean precipitation biases
in WREF is quite similar to those simulated by another recent bias-corrected convection-permitting WRF simulation over the
CONUS (Gensini et al., 2022) — for example, JJA dry biases in both the studies are spread over most the CONUS. Similarly
dry biases over the SE region are quite similar. What is more striking is that the magnitude of the 24-hr mean biases in our
study are largely comparable to those in Gensini et al. (2022). The summer dry biases in the Great Plains have been reported
in previous analyses of WRF simulations employing convection-permitting or convection-parameterizing configurations (Sun
et al., 2016), and in other regional climate models, including WRF (Mearns et al., 2012; Gao et al., 2017). The summer dry
biases in the Great Plains may be associated with the unrealistically strong coupling of convection with the surface heating
over the Rocky Mountains, and insufficiently resolved and slow propagating mesoscale systems (Mearns et al., 2012; Tripathi
and Dominguez, 2013; Hu et al., 2018).

The 24-hr mean wet-day precipitation (SDII) is shown in Fig. 13. As for the biases in Pmean24h (Fig. 12), Stage IV

underestimates SDII almost everywhere, but more prominently over the eastern half of the CONUS in all seasons. ERAS
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underestimates SDII over the eastern half of the CONUS (parts of NGP, MW, SGP, and NE) across the year. The dry SDII
biases, together with the overestimated frequency and mean precipitation in winter and spring over NGP, MW, and SGP, suggest
that ERAS has too-little-and-too-frequent precipitation bias. WRF exhibits wet SDII biases over most of the CONUS in DJF,
except in a few places over the SGP and SE. On the other hand, it shows strong dry biases over the SGP and SE during spring
and over the SGP, MW and SE during summer.

Fig. 14 shows biases in 24-hr annual maximum precipitation (Rx1day). As for the other metrics, Stage IV underestimates
Rx1day over the eastern half of the CONUS. The dry bias is most pronounced (~ 20%) over the Great Plains and MW during
summer and over the NGP and northeastern parts of SW (> 50%) during winter (Supplementary Material Fig. S10). On the
other hand, Rx1day values in Stage IV are very well represented over NW and SW in all seasons except winter. ERAS shows
strong and significant dry biases over the eastern CONUS throughout the year. The ERAS wet biases over the western CONUS
are smaller than over the eastern half. These pattern are roughly similar to the 3-hr precipitation biases (Fig. 9). WRF generally
shows seasonally-dependent biases across CONUS. For example, it shows wet biases during winter and spring but a mix of wet
and dry biases (SGP and MW) during summer and fall. When compared with ERAS, it is evident that though WRF reverses
the sign of dry bias over most of the eastern CONUS (except parts of the Great Plains), WRF exhibits smaller magnitude of
biases across the CONUS than ERAS.

Finally, the PDF of 24-hr annual maximum precipitation (PDF24h) is shown in Fig. 15. Stage IV represents well the PDF24h
over NW and SW. However, it does show problems in capturing the PDF24h over the NGP throughout the year. It is apparent
that ERAS severely underestimates the annual maximum precipitation across the CONUS and throughout the year. WRF does
a much better job of simulating the observed distribution as it reduces the biases in ERAS frequency distribution of 24-hr
annual maximum precipitation for most of the regions and seasons.

For the sake of convenience, the results discussed in this section are also tabulated in Tables 2 and 3.

4 Summary and discussion

This paper evaluates the performance of the 12-km Weather Research and Forecasting (WRF) based dynamical downscaling of
the fifth generation ECMWF atmospheric reanalysis (ERAS) in simulating the subdaily and daily precipitation characteristics.
In particular, we evaluate diurnal and annual cycles, frequency and mean precipitation, annual maximum precipitation and its
distribution. We addressed two questions specifically: (1) How well are the 3- and 24-hr precipitation characteristics represented
in the downscaled WRF simulation in comparison to those in ERA5? (2) How does the performance of the simulated WRF
precipitation vary across seasons, regions, and timescales? We measure the ERAS and WREF precipitation simulation against
the NCEP/EMC 4KM Stage IV and PRSIM data on 3-hr and 24-hr timescales, respectively.

Our analysis suggests that WRF performs similarly to ERAS in capturing the timing and magnitude of the JJA 3-hr diurnal
precipitation peak over most of the CONUS, except the Great Plains regions. Over the Great Plains, WRF exhibits a diurnal
cycle delayed by a few hours, suggesting that the mesoscale convective systems, that originate in the Rockies and travel

eastward, are slower in the WRF simulation — a typical model problem found in many previous studies. WRF simulates the
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timing (month) and magnitude of the monthly mean 24-hr precipitation annual cycle much better than ERAS. Notably, WRF
improves the timing of the annual cycle over the NE, SE and areas surrounding the Gulf of Mexico.

One noticeable difference between ERAS and WREF is that ERAS generally displays similar signs of biases (positive or nega-
tive) in most of the precipitation characteristics examined throughout the year and across most of the CONUS. However, WRF
exhibits seasonally-dependent biases in the precipitation characteristics across the CONUS. For instance, ERAS overestimates
both the frequency and mean of the 3-hr precipitation over most of the CONUS, except over parts of the western CONUS. On
the other hand, WRF underestimates the frequency and mean of the 3-hr precipitation over the SE in winter but overestimates
these quantities in summer over that region. Similarly, WRF underestimates the mean 3-hr precipitation over the central Great
Plains region in summer but not in winter. Also, ERA5 generally underpredicts the 3-hr annual and seasonal maximum pre-
cipitation throughout the year over the CONUS, but WRF overestimates it over the eastern CONUS in all seasons. What is
interesting is that ERAS performs poorly in simulating the observed probability distribution of the 3-hr precipitation and thus
severely underestimates the observed 3-hr extreme precipitation, but WRF performs quite well in capturing the observed PDF,
thereby reducing the biases in ERAS.

Similar to what was found for the 3-hr precipitation, ERAS5 does show similar biases in the 24-hr precipitation, but WRF
displays regionally- and seasonally dependent biases. WRF overestimates the 24-hr precipitation frequency over most of the
CONUS (except, NW and SW). The 12-km WRF generally exhibits seasonally dependent biases also found in the convection-
permitting WREF simulation (Gensini et al., 2022). In this analysis, WRF underestimates the frequency throughout the CONUS
in SON, but overestimates the frequency over the eastern half of the CONUS in MAM. The underestimated frequency in WRF
is more severe in JJA. Similarly, ERAS underestimates the 24-hr annual maximum precipitation over the eastern half of the
CONUS, most notably in the Great Plains and SE regions; whereas, these biases are generally reduced in magnitude in the
WREF simulation, but they also occur with a change in the sign. Notably, ERAS underestimates the 24-hr annual maximum pre-
cipitation over the SE, while WRF overestimates it (though by a smaller overall magnitude). As observed for 3-hr precipitation,
WRF shows remarkable improvements in the simulated probability distribution of the 24-hr annual maximum precipitation;
throughout the CONUS, ERAS does have problems in capturing the extreme precipitation magnitudes, suggesting that its rep-
resentation of the strongest precipitation extremes is overly conservative. These results are also summarized in Tables 2 and
3.

This work adds to the literature addressing the value of dynamical downscaling to higher resolution. Our results echo similar
past studies, which generally show a mixture of improvement and deterioration in the quality of simulated fields. Although we
find that dynamical downscaling with WRF simulates observed precipitation characteristics reasonably well on both the daily
and subdaily timescales, improvements do not emerge everywhere. Particularly, WRF exhibits several common biases found in
many other models, which are likely suppressed in ERAS through data assimilation. As hypothesized in this study, WRF does
show seasonally- and regionally- dependent biases in precipitation, while ERAS5’s biases are less seasonal. Nonetheless, WRF
greatly improves upon the PDFs of annual maximum precipitation at both 3-hr and 24-hr timescales, and improves on the month
and magnitude of the seasonal precipitation cycle. This suggests the WRF product is generally more useful when it comes to

its representation of precipitation extremes — which seems to be a consequence of the fact WRF tends to produce generally
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flashier precipitation. These results suggest care should be taken in using the WRF simulations for further applications such as
355 future regional climate projections or regional hydrologic modeling.

A related question is how much bias is acceptable in a climate model. The acceptable level of biases really depends on the
application of the climate data. Although the data could be used directly in analysis, we expect a large portion of users will
use the data to force other models. In that case, tolerance for biases depends on the type, scope, and scale of the downstream
modeling frameworks. Nonetheless, the question is hard to answer quantitatively given that a large uncertainty exists even

360 among observational datasets (e.g., Srivastava et al., 2020, 2022). Still, one can qualitatively assess the model’s performance
by comparing it with other models or observational datasets. We assessed the observational uncertainty in 24-hr precipitation
representation by comparing precipitation characteristics between PRISM and Stage IV in 24-hr precipitation analysis. We
found that biases in WRF are generally smaller in magnitude than in Stage IV. For example, annual 24-hr precipitation fre-
quency (PF24h) is better simulated in WRF than in Stage IV, and biases in the magnitude of monthly average precipitation

365 peak (MMPP) are much smaller in WRF than in Stage IV. Similarly, WRF shows comparable (e.g., DJF PDF24h in NW and
SW) or even better (e.g., NGP in all seasons) simulation of Rx1day PDF (PDF24h) than Stage IV. These analyses suggest that
WREF reasonably simulates the observed precipitation characteristics across the CONUS.

While the 12km grid spacing of these simulations is a clear refinement on the native resolution of ERAS, ultimately, it would
be far more desirable to run the downscaled simulation in the convection-resolving regime (i.e., 3km or finer). We expect the

370 match between the precipitation frequency distribution in the tail will improve monotonically with resolution. Until convection-
resolving scales are reached, important processes such as horizontal propagation of mesoscale convective systems will not be
properly represented. Consequently, when it becomes possible to reach these spatial scales at climatological time scales with

available computing power, we would advocate for the metrics explored in this study to be revisited.

Code and data availability. The WRF source code is available on GitHub: https://github.com/wrf-model. ERAS5 is publicly accessible

375 from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. PRISM precipitation data can be downloaded from https://prism.
oregonstate.edu/, and Stage IV data is available on https://data.eol.ucar.edu/dataset/21.093. WRF data is accessible at https://data.msdlive.org/records/ksw6
2xv06. The 40-year historical WRF dataset can be downloaded from https://data.msdlive.org/records/kswér-2xv06.
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Figure 1. The WRF domain employed in this study. Colors denote topography in meters. Bounded regions show the 7 National Climate
Assessment (NCA) regions: Northwest (NW), Southwest (SW), Northern Great Plains (NGP), Southern Great Plains (SGP), Midewest
(MW), Southeast (SE), Northeast (NE).
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Figure 2. Timing of the diurnal precipitation peak (TDPP) in JJA (in units of hours at local solar time) estimated over 2003-2019. The left
column shows the timing in each dataset and uses the color scale along the bottom edge of the figure. The right column shows differences in

timings of the precipitation peak and uses the color scale along the right edge of the figure.
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Figure 3. Magnitude of the diurnal precipitation peak (MDPP) in JJA estimated over 2003-2019. The left column shows the magnitude in
each dataset and uses the color scale along the bottom edge of the figure. The right column shows biases in the magnitude of the precipitation

peak and uses the color scale along the right edge of the figure. Units: mm/3hr
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Figure 4. Calendar month of the monthly average precipitation peak (TMPP) estimated over 2001-2020 (2003-2019 for Stage IV).
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Figure 5. Magnitude of the monthly average precipitation peak (MMPP) estimated over 2001-2020 (2003-2019 for Stage IV). The left
column shows the magnitude of the peak in each dataset and uses the color scale along the bottom edge of the figure. The right column shows

biases in the magnitude and uses the color scale along the right edge of the figure. Units: mm/day.
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Figure 6. 3-hr precipitation frequency (PF3h) estimated over 2003-2019. The left column shows the frequency in Stage IV data and uses
the color scale along the bottom of the figure. The right two columns show differences in the precipitation frequency and use the color scale

along the right edge of the figure. Units: %.
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Figure 7. 3-hr precipitation mean (Pmean3h) estimated over 2003-2019. The left column shows the mean in Stage IV data and uses the color
scale along the bottom of the figure. The right two columns show differences in the mean and use the color scale along the right edge of the
figure. Hatching denotes grid points where the differences are found to be significant at the 5% significance level based upon t-test. Units:

mm/3hr.
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Figure 8. 3-hr mean for precipitation greater than 0.25mm (S3hII) estimated over 2003-2019. The left column shows the mean in Stage IV
data and uses the color scale along the bottom of the figure. The right two columns show differences in the mean and use the color scale
along the right edge of the figure. Hatching denotes grid points where the differences are found to be significant at the 5% significance level

based upon t-test. Units: mm/3hr.
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Figure 9. 3-hr precipitation maximum (Rx3h) estimated over 2003-2019. The left column shows the mean in Stage IV data and uses the
color scale along the bottom of the figure. The right two columns show differences in the mean and use the color scale along the right edge
of the figure. Hatching denotes grid points where the differences are found to be significant at the 5% significance level based upon t-test.
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Figure 10. Probability density function of 3-hr precipitation annual maximum ((PDF3h) estimated over 2003-2019. The Y-axis is plotted on

log-scale.
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Figure 11. As Fig. 6 but for 24-hr precipitation frequency (PF24h) estimated over 2001-2020 (2003-2019 for Stage IV). Units: %
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Figure 12. As Fig. 7 but for 24-hr precipitation mean (Pmean24h) estimated over 2001-2020 (2003-2019 for Stage IV). Units: mm/day.
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Figure 13. As Fig. 7 but for 24-hr mean for precipitation greater than Imm (SDII) estimated over 2001-2020 (2003-2019 for Stage IV).
Units: mm/day.
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Figure 14. As Fig. 9 but for 24-hr precipitation maximum (Rx1day) estimated over 2001-2020 (2003-2019 for Stage IV). Units: mm/day.
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Figure 15. As Fig. 10 but for the PDF of 24-hr precipitation maximum (PDF24h) estimated over 2001-2020 (2003-2019 for Stage IV).
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Table 1. Precipitation metrics analyzed in this study. Please refer to the subsection 2.2 for more details.

Metrics Symbol Description Unit
3-hr precipitation

Peak time of the JJA precipitation diurnal cycle TDPP Timing of the diurnal precipitation peak in JJA none
Magnitude of the JJA precipitation diurnal cycle MDPP Magnitude of the diurnal precipitation peak in JJA mm/3hr
Frequency of 3-hr precipitation PF3h Counts of 3-hr precipitation events with magnitude greater than %

0.25 mm expressed as a percentage of the total number of 3-hr

time steps
3-hr precipitation mean Pmean3h Climatological mean of 3-hr precipitation including zeros mm/3hr
Wet-3-hr precipitation mean S3hIl Climatological mean of 3-hr precipitation greater than 0.25 mm mm/3hr
Annual maximum of 3-hr precipitation Rx3h Climatological mean of annual maximum of 3-hr precipitation mm/3hr
PDF of the annual maximum of 3-hr precipitation PDF3h Probability distribution of the 3-hr annual maximum precipitation none

24-hr precipitation

Peak time of the annual cycle TMPP Calander month of the maximum monthly averaged 24-hr pre- none

cipitation
Magnitude of the peak of the annual cycle MMPP Magnitude of the monthly average precipitation peak mm/day
Frequency of 24-hr precipitation PF24h % of total days when 24-hr precipitation is more than 1 mm %
24-hr precipitation mean Pmean24h  Climatological mean of 24-hr precipitation including zeros mm/day
Wet-24-hr precipitation mean SDII Climatological mean of 24-hr precipitation greater than 1 mm mm/day
Annual maximum of 24-hr precipitation Rx1day Climatological mean of annual maximum of 24-hr precipitation mm/day
PDF of the annual maximum of 24-hr precipitation =~ PDF24h Probability distribution of the 24-hr annual maximum precipitation = none
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Table 2. Regions where ERAS or WREF precipitation (P) fidelity is subjectively better for 3-hr precipitation. Reference data: Stage IV.

Precipitation parameter | ERAS WRF Comments
<relevant Figure>
Peak time of the JJA pre- | The peak occurs earlier over | Earlier peak over much of | Generally larger biases are with OEPC

much of the CONUS, especially
along the northern boundaries
of the Northern Great Plains
(NGP) and west of the Great
Lakes in the Midwest (MW).

CONUS, better in NE. OEPC
(overnight eastward progression
of convection) too early in north-

ern NGP, too late in SGP.

in NGP & parts of: SGP and MW. Both
datasets are too late for northern OEPC
and too early for southern OEPC. (Note:
12 hrs late = 12 hrs early). Both are too
early along NW coast.

cipitation diurnal cycle
(TDPP) < Fig. 2>
Magnitude of the JJA

precipitation diurnal cycle

(MDPP) <Fig. 3>

Better over SE & SGP. Too wet
over south FLL & Rockies.

Too large over most of SE & less
so over NE & eastern MW. Too
dry over northern SGP. Better over

Rockies.

ERAS5 & WREF fine over NW & SW
though the magnitude is smaller than

elsewhere.

Annual frequency of 3-hr P
(PF3h) <Fig. 6>

Generally too frequent (>5%)

everywhere, less error over

southern SW.

Better over NGP, MW, SGP, west-
ern SE. SW & NW generally bet-
ter except not frequent enough
along coastal & west-slopes of:

NW & SW.

Both datasets too frequent (>5%) over
most of: SE, MW, & NGP.

Seasonal frequency of 3-hr

P (PF3h) <Fig. 6>

Seasons have similar excess as
annual except JJA has reduced
excess over most of SW & NW.
Better at coast & western slopes

in DJF, MAM, & SON.

Patterns differ from annual: west-
ern SW better during JJA. SGP
worse during MAM. SE better in
MAM & SON, too frequent dur-
ing JJA.

ERAS has frequent P throughout the

year, WRF displays seasonal variation.

Annual 3-hr precipitation

mean (Pmean3h) <Fig. 7>

Generally too wet, except good

in SE & southwestern SW.

Best over SGP. Worse over most
of SE & NE. Too dry at NW
coast. Generally, slightly smaller

bias elsewhere.

seasonal biases in WRF over SGP are

better except in JJA.

Seasonal 3-hr precipitation

mean (Pmean3h) <Fig. 7>

MAM: slightly better in NE, SE,
SW, & NW coast. JJA: better
over SE, SGP, & NE. SON: bet-
ter in SE, and better along NW

coast.

MAM: SGP better. During JJA:
SGP & western SE too dry, while
eastern SE & all of NE are too wet.
SON: better over NGP, MW, and

interior SW

DIJF similar in both, except NW coast
better in ERAS. MAM similar over NGP
& MW for both. Though opposite: SON
good in both over SGP.
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Table 2 (Contd ...).

Precipitation parameter
(observation-based dataset)

<relevant Figure>

ERAS

WRF

Comments

Annual wet-3-hr precipita-

tion mean (S3hlI) <Fig. 8>

Dry bias, most prominent over

SGP and SE

Wet bias over NW,NE and N Cal-
ifornia. Dry bias over SGP.

Overall smaller biases over NGP, MW
& SE. ERAS5 shows drizzling bias.

Seaonal wet-3-hr precipita-

tion mean (S3hlII) <Fig. 8>

DJF: small wet biases over NW,
NGP, MW & SW. March-Nov:
Strong dry biases over SGP
and SE. The dry bias is more

widespread and stronger in JJA.

DJF: Generally, wet biases every-
where. MAM: Wet biases over the
northern half of the CONUS. Dry
over SGP. JJA: Stronger dry bias
over SW, SGP, MW & SE.

ERAS shows drizzling bias.

Annual maximum of 3-hr
precipitation (Rx3h) <Fig.
9>

Generally too small over whole

CONUS, especially eastern SE.

Better over most of NW, NGP, &
SW. Much too wet over SGP, MW,
SE, & NE.

Most larger values cover SE and eastern

SGP.

Seasonal maximum of 3-hr
precipitation (Rx3h) <Fig.
9>

Generally too small

CONUS though bias least dur-

over

ing SON. Only notable area too
wet is NGP during DJF. Worst
bias during JJA over most of SE
& border between SGP & SW.

Generally too wet over MW, NE,
& SE though bias least during
DJF. Worst biases during JJA too
wet over most of MW, NE, & SE
while too dry over interior SW.
MAM and SON too wet over SE
& southern SGP.

WRF shows wet bias in the eastern
CONUS, ERA shows dry bias roughly

everywhere.

Probability density func-
tion (PDF) of 3-hr max P
(PDF3h) <Fig. 10>

3-hr max P values are severely

underrepresented.

Much better representation. Large
underestimation in NGP and over-

estimation in SGP

NGP and SGP are problematic regions
for WRF
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Table 3. Regions where ERAS or WREF precipitation (P) fidelity is subjectively better for 24-hr precipitation. Reference data: PRISM.

Precipitation parameter
(observation-based dataset)

<relevant Figure>

ERAS

WRF

Comments

Peak time of the annual cy-

cle (TMPP) <Fig. 4>

Simulates the spatial pattern ex-

cept over NE & Gulf regions.

Slightly better over SGP, NE,
northern SE, & Great Basin.

NW, SW, NGP, MW, & southeastern SE

good in both datasets.

Magnitude of the peak of
the annual cycle (MMPP)
<Fig. 5>

Too dry over most of SE & NE,
& eastern NW. Too wet over
SGP, much of NGP, & coastal
NW.

Generally better whole

CONUS

over

Both the magnitude and timing of the

annual cycle are improved in WRFE.

Annual 24-hr P frequency
(PF24h) <Fig. 11>

Generally better over SW &
coastal NW. Generally too fre-
quent over NGP, SGP, MW, NE,
& SE.

Generally better over NGP, MW,
& NE. Too frequent over east-
ern SE. Much too infrequent over

most of: NW, SW, SGP.

Highest observed over: NE, south FL,
coast and mountains of NW & NGP.

Seasonal 24-hr P frequency
(PF24h) <Fig. 11>

DJF better along coastal NW
& most of SW. DJF, MAM, &
SON: too frequent over NGP,
MW, NE, SE, SGP, and most of:
SW & NW.

DJF is better over most of MW,
NE, & SGP. Coastal & moun-
tainous: NW & SW are generally
too infrequent during DJF, MAM,
& SON. SE too infrequent dur-
ing DJF but other seasons too fre-
quent. JJA: much too infrequent
over all but opposite bias over
parts of SE & NE. SON: too in-
frequent over most of CONUS

Both datasets too infrequent along NW
coast during DJF & SON, though ERA5
better there. Both too infrequent during

JJA over most of SW.

Annual 24-hr precipitation
mean (Pmean24h) <Fig.
12>

Worse biases (dry) over south-

ern SE.

Worse biases (dry) over western

SE and most of SGP.

observed peak values over western SE
and coastal NW. Datasets generally sim-
ilar except SE, SGP, & coastal NW
where WRF has greater dry bias.

Seasonal 24-hr precipi-
tation mean (Pmean24h)

<Fig. 12>

MAM & SON biases generally
similar to DJF. JJA has largest
biases (dry) covering all of: SGP
& SE & much of: MW & NE.
JJA & SON better over NGP,
MW, SGP, & western SE.

MAM bias similar to DJF. Largest
bias (dry) is during JJA and cov-
ers SGP, most of: MW & NGP,
and western SE. SON: coastal SE

is better.

DJF: similar in both datasets with
greater bias along coast of NW, & Gulf
of Mexico coast of SE. Largest seasonal
values are at coastal NW during DJF;
ERAS captures this better. Secondary
maximum during JJA covers FL and SE

Gulf of Mexico coast; both datasets un-

derestimate these larger values.
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Table 3 (Contd ...).

Precipitation parameter
(observation-based dataset)

<relevant Figure>

ERA5S

WRF

Comments

Annual wet 24-hr precipita-
tion mean (SDII) <Fig. 13>

Strong dry biases over eastern

CONUS.

Worse biases (dry) over western
SE, SGP & southern MW+NGP
regions wet biases over NW and
SW.

Smaller biases over NGP, MW, NE &
SE.

Seasonal wet 24-hr precip-
itation mean (SDII) <Fig.
13>

DJF & MAM: Strong dry biases
over SE and eastern SGP. Small
wet bias over NW. JJA & SON:
Strong dry bias over eatsren half

of the CONUS

DJF: Generally, small wet biases
except over SGP and SE. JJA:
Strong dry bias over the Great
Plains and SE. SON: Dry bias over
the SGP, small wet bias over NW.

Biases are typically smaller in magni-

tude in WRF in DJF and SON.

Annual 24-hr
(Rx1day) <Fig. 14>

max P

General dry bias over SGP, MW,
SE, & NE. Slightly better over
NW & SW.

Wet bias over most of SE, NE,
eastern MW, & parts of: SW, NGP,
& NW.

Datasets do well over NW, NGP, & SW.
They have opposite biases over most of

SE, NE, MV, & southern SGP.

Seasonal 24-hr
(Rx1day) <Fig. 14>

max P

DJF: dry bias mainly in SE.
MAM, JJA, & SON: dry bias
across SGP, SE, MW, & NE.

DJF: better over SE. MAM &
SON: better over most of: SGP,
SE, MW, NE. JJA: wet bias over:
NE & eastern and southern SE.

Performance similar over SW, NW, &
NGP. Both have large dry bias over SGP
during JJA. Bias generally smaller over
SW, NW, and NGP, but so are the ob-

served means.

Probability density func-
tion (PDF) of 24-hr max P
(PDF24h) <Fig. 15>

24-hr max P values are severely

underrepresented.

Much better representation.

24-hr PDF representation is better than
the 3-hr PDF in WRFE.
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